Course detail
Digital Circuits
FEKT-BDIOAcad. year: 2015/2016
Fundamentals of digital circuits. VHDL language and general syntax. Concurrent statements, design methodology and examples. Logic hazards, their elimination and avoiding. Sequential statements, design methodology and examples. Metastability. State machine theory and design methodology. Translation of VHDL code to schematic representation (methodology understanding). Practical design of sequential systems and state machines.
Supervisor
Department
Learning outcomes of the course unit
Student will be able to:
- explain fundamentals of combinational and sequential circuits and how these circuits manually design
- describe digital circuits by using VHDL
- design state machines and their design and methodology
- draw the schematic representation from VHDL code
- explain synchronous circuit design methodology
Prerequisites
Student should be able to:
- Describe the basic logic gates NAND, NOR, AND, OR, INV – logic functions, truth tables etc.
- Conversion from various number representations
- Describe CMOS technology process and how the NMOS and PMOS transistor work.
- Fundamentals of flowcharts and their utilization
Co-requisites
Not applicable.
Recommended optional programme components
Not applicable.
Recommended or required reading
číslicové systémy a jazyk VHDL, Pinker Jiří, Poupa Martin
(CS)
Skahill, K., VHDL for Programmable Logic, Addison-Wesley, 1996, ISBN 0-201-89573-0. (EN)
Planned learning activities and teaching methods
Techning methods include lectures, computer laboratories and practical laboratories. Course is taking advantage of e-learning (Moodle) system.
Assesment methods and criteria linked to learning outcomes
30 points for work during semester.
70 points for final exam.
Language of instruction
Czech
Work placements
Not applicable.
Course curriculum
1. Fundamentals of digital circuits
2. VHDL language and general syntax
3. Concurrent statements and design methodology
4. Concurrent statements and examples
5. Hazards in digital circuits and metastability
6. Sequential statements and design methodology
7. Sequential statements and examples
8. Theory of state machines
9. Translation of VHDL code to schematic representation, methodology how to properly describe the sequential system by using VHDL
10. Practical design of sequential circuits and state machines
11. Memories – SRAM, DRAM, FLASH etc.
12. Introduction to digital integrated circuit design
Aims
Aim of this course is make students familiar with recent digital world by balanced using of theory, intuitive approach and practical exercises performed on development kits with FPGA circuit. Students learn the methodology of digital circuit design which can be applied on any platforms such as FGPA, ASIC or discrete solution.
Specification of controlled education, way of implementation and compensation for absences
The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.
Type of course unit
Laboratory exercise
39 hours, compulsory
Teacher / Lecturer