Course detail

Information Theory and Encoding

FSI-VTI-KAcad. year: 2011/2012

The course is aimed to basics in information theory (message, entropy, transfer of information, discrete and continuous channels) and signals (signal processing, modulation). Further the course includes basic overview of coding methods in areas: bar codes, compression codes, error correcting codes and cryptography. At the end of the course the modern trends in coding are presented (quantum error correction, quantum cryptography).

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

The acquired knowledge will be sufficient for the basic orientation in the Theory of Information.

Prerequisites

Basic mathematical knowledge is required.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

The active participation and mastering the assigned task.

Course curriculum

1. Introduction to the information theory
2. Basic concepts of the information theory
3. Exercises to basic concepts
4. The discrete memoryless information source
5. Exercises to the discrete memoryless information source
6. The discrete information source with memory
7. The discrete communication channel
8. Network information theory
9. Error-correcting codes

Work placements

Not applicable.

Aims

The course objective is to make students familiar with the basics of the Theory of information.

Specification of controlled education, way of implementation and compensation for absences

Solving an extra assignment can compensate absence.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

USHER M.J.,GUY C.G,: Information and Communication for Engineers, , 0
SIMMOND A.: Data Communication and Transmission Principles, , 0
TERRELL T.J.,SHARK K.L.: Digital Signal Processing, , 0
Lubbe J.C.A.: Information Theory, Cambridge University Press, 1997

Recommended reading

Ošmera P.: Informační systémy, , 0
Ošmera P.: Mikroprocesorová technika a informační systémy, , 0
Přibyl J.,Kodl J.: Ochrana dat v informatice, , 0
Lubbe J.C.A.: Information Theory, Cambridge University Press, 1997

Classification of course in study plans

  • Programme B3S-K Bachelor's

    branch B-AIŘ , 3. year of study, winter semester, compulsory

  • Programme M2I-K Master's

    branch M-AIŘ , 2. year of study, winter semester, compulsory-optional

Type of course unit

 

Guided consultation

17 hours, optionally

Teacher / Lecturer

Syllabus

1. Introduction to the information theory (channel capacity, noisy-channel coding theorem).
2. Basic principle of communication (discrete and continuous channel).
3. Signal processing.
4. Introduction to encoding theory.
5. Bar Code. RFID technology.
6. Data compression I.
7. Data compression II.
8. Error detection and correction I.
9. Error detection and correction II.
10. Cryptogaphy I.
11. Cryptogaphy II.
12. Cryptogaphy III.
13. Advanced in encoding and cryptography theory (quantum cryptography).

Controlled Self-study

35 hours, compulsory

Teacher / Lecturer

Syllabus

Computer labs (exercises) are consistent with the content of lectures. The aim of the labs is to introduce students to practical part of the course above all using Matlab/Simulink system.
The labs are divided into six parts:
a) Bit rate, channel capacity, information ratio.
b) Signals, modulation methods.
c) Bar code.
d) Data compression.
e) Error detection and correction.
f) Cryptography.