Course detail

Introduction to the Materials Physics

FSI-WUFAcad. year: 2011/2012

The purpose of the course „Introduction to physics of materials“ is to give to students necessary theoretical basis for solution problems in materials engineering. The main issues of the course are fundamental physicallaws governing the properties and manufacturing processes of the materials. Beside the metallic materials, it covers also basics of ceramics and polymers, their properties and processing. In this way, it creates cross-disciplinary bonds between various types of material.

Language of instruction

Czech

Number of ECTS credits

7

Mode of study

Not applicable.

Learning outcomes of the course unit

This course allows students to obtain knowledges about inner structure of materials and about thermodynamics and kinetics of processes during material's manufacturing and use. Students get knowledges about relations between microstructure and properties of materials.

Prerequisites

The course continue knowledges from atomic composition field, chemical thermodynamic, electrochemistry, crystalline composition of metals, equilibrium and disequilibrium phase transformations focused on metal systems, deformation and fracture behaviour of materials and knowledge of structure and properties of basic groups of metalic and nonmetalic materials

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Students have to take part in all practices, to give over all protocols of laboratory practices, which have to meet commensurate scientific and graphic level. Students have to elaborate final semestral thesis which will be included in the exam classification. Knowledges of given topics are to be chcked at the exam mainly by written form. List of topics will be notified to students at the beginning of the course. At the verbal part of the exam students will answer questions for other knowledges verification. Final classification includes: protocols evaluation, final thesis evaluation and results of the written and verbal parts of the exam.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim of this course is to notify students of inner structure of real crystalic and amorphous materials (metals, ceramics, polymers) and of the influence of defects interactions on their application properties and manufacturing processes.The task os this course is to give knowledges about relationship among phase composition, transformations, mechanical and other properties of the material.

Specification of controlled education, way of implementation and compensation for absences

Attendance in practices will be checked, non-participation have to be duly excused. Basic credit conditions is continuous giving over protocols. Knowledges of lectured topics will be checked by short tests. In the case of sick leave in practice given topic will be supplied by individual submission.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

SMALLMAN, Raymond E. Modern physical metallurgy. Elsevier, 2016, 544 s. ISBN 9781483105970. (EN)
MUNZ, Dietrich a Theo FETT. Ceramics: mechanical properties, failure behaviour, materials selection. Berlin: Springer-Verlag, 1999, 298 s. ISBN 3-540-65376-7. (EN)

Recommended reading

PTÁČEK, Luděk. Nauka o materiálu. I. 2. opr. a rozš. vyd. Brno: Akademické nakladatelství CERM, 2003, 516 s. ISBN 80-7204-283-1. (CS)
MÜNSTEROVÁ, Eva. Fyzikální metalurgie a mezní stavy materiálu: doplňková skripta a návody do cvičení. Brno: Vysoké učení technické, 1989, 208 s. (CS)
PLUHAŘ, Jaroslav. Fyzikální metalurgie a mezní stavy materiálu. Praha: Bratislava: SNTL; Alfa, 1987, 418 s. (CS)
KRATOCHVÍL, Petr, P. LUKÁČ a B. SPRUŠIL. Úvod do fyziky kovů I. Praha: SNTL, 1984, 243 s. (CS)

Classification of course in study plans

  • Programme B3A-P Bachelor's

    branch B-MTI , 2. year of study, summer semester, compulsory

Type of course unit

 

Lecture

39 hours, optionally

Teacher / Lecturer

Syllabus

1. Elements and their properties. Types of chemical bounds in solids.
2. Inner structure of metallic materials, crystallography, concept of phases.
3. Inner structure of ceramics and polymers.
4. Structure defects, their properties and importance.
5. Thermodymamics of phase transformations.
6. Phase transformations kinetics.
7. Solidification and crystal growth of metals and alloys.
8. Point defects and diffusion.
9. Role of diffusion in phase transformations. Diffusion-controlled transformations. Non-diffusion transformations.
10. Elastic, anelastic and plastic deformation.
11. Role of dislocations in deformation processes. Strengthening and recovery processes.
12. Elements of electric and magnetic properties of materials.
13. Basics of degradation processes

labs and studios

26 hours, compulsory

Teacher / Lecturer

Syllabus

1. Crystal structures I – basic structures, Miller's indices of directions and plains
2. Crystal structures II – structures of more components, superlattices
3. Methods of structural analysis, X-ray diffraction
4. Methods of dislocation structure observation, electron microscopy
5. Thermodynamics of solutions – thermodinamic activity determination. Test.
6. Decomposition of overcooled austenite – „IRA“ and „ARA“ diagrams construction
7. Dendritic and cellular structures, structure of massive castings
8. Diffusion, 1st a 2nd Fick's law
9. Methods of diffusion coefficient determination. Test.
10. Plastic deformation – tensile test, creep. Determination of parametres
11. Plastic deformation – hardness, toughness
12. Magnetic hysteresis loop, measurement methods, parametres assesment. Semestral thesis.
13. Fatigue, ageing, creep damage. Student's credits evaluation.