Course detail

Electromechanical System Dynamics

FEKT-NDESAcad. year: 2011/2012

The basic laws of electromechanical energy conversion. Electromechanical systems with one or more excitation coils, with linear and with rotor movement. Dynamic equations. Variation principle. Theory of general electric machine, basic equations and its linear transformation. Mathematical model of synchronous generator, interaction of synchronous generator and mains, transients in the system generator - mains.

Language of instruction

English

Number of ECTS credits

6

Mode of study

Not applicable.

Offered to foreign students

Of all faculties

Learning outcomes of the course unit

Students become familiar with basic laws of electromechanical energy conversion, with setting of dynamic equations, including their solution on PC. Special programs like DYNAST and/or MatLab - Simulink are used for dynamic equations simulation.

Prerequisites

The subject knowledge on the Bachelor´s degree level is requested.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Control tests - 20 points
Evaluation of simulation tasks - 15 points
Final exam - 65 points

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The students will get the basic knowledge of electromechanical energy conversion, the knowledge of how to set dynamic equations of electromechanical systems and how to solve these equations on PC. The students will be acquainted with the general theory of electrical machines.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Měřička, Zoubek:Obecná teorie elektrického stroje,SNTL Praha
Majmudar, H.:Elektromechanical Enargy Conversion,England Allynana Bacon
Chee-Mun Ong: Dynamic Simulation of Electric Machinery

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme EEKR-MN Master's

    branch MN-SVE , 1. year of study, winter semester, compulsory
    branch MN-KAM , 2. year of study, winter semester, optional interdisciplinary
    branch MN-EEN , 2. year of study, winter semester, optional interdisciplinary

Type of course unit

 

Lecture

26 hours, compulsory

Teacher / Lecturer

Syllabus

Basic laws of electromechanical energy conversion. Laws of conservation of energy.
Energy and coenergy as state function. Systems with one and/or more excitation coils.
Dynamic equations of an electromechanical system.
Lagrange equations, Hamiltons principle of motion.
General electric machine and its equations.
DC machine as a general electric machine.
Transformation of coordinates. General view.
Synchronous machine. Mathematical expression of self and mutual inductances.
Transformation of coordinates: a,b,c to d,q,0; reverse transformation.
Dynamic equations of synchronous machine in transformed coordinates. Transients in the system electrical machine and mains.
Transformation of coordinates of an induction machine. Mathematical model in arbitrary rotating q,d,0 coordinates.
Modelling in steady state and in transient regime.
Mathematical model and simulation of transformer.

Exercise in computer lab

39 hours, compulsory

Teacher / Lecturer

Syllabus

Simulation software DYNAST. Basic instruction. Principle of electric circuit solutions.
Computer programme for differential equation solution. Simulation of DC motor transients.
Simulation of DC shunt motor transients. Nonlinearity of magnetic circuit influence.
Dynamic equation of electromagnet. Electromagnet supplied from DC and/or AC source. Electromagnet supplied from rectifier.
Individual project.
Individual project.
Dynamic simulation of synchronous machine.
Dynamic simulation of a system synchronous machine and transmission line.
Individual project.
Dynamic simulation of induction machine in real coordinates a,b,c.
Dynamic simulation of induction machine in d,q,0 coordinates.
Individual project.
Evaluation