Course detail

Parallel and Distributed Algorithms

FIT-PRLAcad. year: 2010/2011

Not applicable.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

Not applicable.

Prerequisites

Not applicable.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

Not applicable.

Specification of controlled education, way of implementation and compensation for absences

Not applicable.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

  • Akl, S.: The Design and Analysis of Parallel Algorithms, Prentice-Hall International, ISBN 0-13-200073-3
  • Jaja, J.: An Introduction to Parallel Algorithms, Addison-Wesley, 1992, ISBN 0-201-54856-9
  • Tvrdík, P.: Parallel Systems and Algorithms, skripta, Praha, Vydavatelství ČVUT 1997.

Recommended reading

  • Akl, S.: The Design and Analysis of Parallel Algorithms, Prentice-Hall International, ISBN 0-13-200073-3
  • Reif, J: Synthesis of Parallel Algorithms, Morgan Kaufmann, 1993, ISBN:155860135X

Classification of course in study plans

  • Programme IT-MGR-2 Master's

    branch MGM , any year of study, summer semester, compulsory-optional
    branch MPS , any year of study, summer semester, elective
    branch MBI , 1. year of study, summer semester, compulsory
    branch MSK , 1. year of study, summer semester, compulsory
    branch MIS , 1. year of study, summer semester, compulsory
    branch MBS , 1. year of study, summer semester, compulsory
    branch MIN , 1. year of study, summer semester, compulsory
    branch MMI , 1. year of study, summer semester, compulsory
    branch MMM , 1. year of study, summer semester, compulsory
    branch MPV , 2. year of study, summer semester, compulsory

Type of course unit

 

Lecture

39 hours, optionally

Teacher / Lecturer

Syllabus

  • Introduction, architectures and languages for parallel and distributed processing.
  • Abstract models of parallel computing, PRAM (Parallel Random Access Machine).
  • Distributed and parallel algorithms and their complexity.
  • Interaction between processes, communication, synchronization.
  • Topologie, synchrinous and asynchronous algorithms.
  • Algorithms for parallel sorting.
  • Algorithms for parallel searching.
  • Parallel matrix operations.
  • All prefix sums and their applications.
  • Graph and list algorithms.
  • Synchronization algorithms and tasks.
  • Mechanisms and language constructs for synchronization.
  • Languages for parallel and distributed computing.

Project

13 hours, optionally

Teacher / Lecturer