Course detail

Advanced Operating Systems

FIT-POSAcad. year: 2010/2011

Not applicable.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

Not applicable.

Prerequisites

Not applicable.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

Not applicable.

Specification of controlled education, way of implementation and compensation for absences

Not applicable.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Basic literature

  • Andrews, G.R.: Foundations of Multithreaded, Parallel, and Distributed Programming, Addison-Wesley, 2000, ISBN 0-201-35752-6
  • Bic, L., Shaw, A.C.: Operating Systems Principles, Prentice-Hall, 2003, ISBN 0-13-026611-6
  • Nutt, G.J.: Operating Systems: A Modern Perspective, Addison-Wesley, 2000, ISBN 0-201-61251-8
  • Vahalia, U.: Unix Internals: The New Frontiers, Prentice-Hall, 1996, ISBN 0-13-101908-2
  • Schimmel, K.: UNIX Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers, Addison-Wesley, 1994, ISBN 0-201-63338-8
  • McKusick, M.K., Neville-Neil, G.V.: The Design and Implementation of the FreeBSD Operating System, Addison-Wesley, 2004, ISBN 0-201-70245-2
  • Stevens, W.,R.: Advanced Programming in the UNIX Environment: Second Edition, Addison-Wesley Professional, 2005, 0-201-43307-9

Recommended reading

  • Bic, L., Shaw, A.C.: Operating Systems Principles, Prentice-Hall, 2003, ISBN 0-13-026611-6
  • Open Sources: Voices from the Open Source Revolution, O'Reilly, 1999, ISBN 1-56592-582-3
  • Love, R.: Linux Kernel Development, Second Edition, Pearson Education, 2005, ISBN 0-672-32720-1

Classification of course in study plans

  • Programme IT-MGR-2 Master's

    branch MPV , any year of study, summer semester, elective
    branch MPS , any year of study, summer semester, elective
    branch MBS , any year of study, summer semester, compulsory-optional
    branch MIN , any year of study, summer semester, elective
    branch MMM , any year of study, summer semester, elective
    branch MBI , 1. year of study, summer semester, compulsory-optional
    branch MSK , 1. year of study, summer semester, compulsory-optional
    branch MIS , 1. year of study, summer semester, compulsory
    branch MMI , 1. year of study, summer semester, compulsory-optional
    branch MGM , 2. year of study, summer semester, elective

Type of course unit

 

Lecture

39 hours, optionally

Teacher / Lecturer

Syllabus

  1. Kernel structure, interface, system calls, context switch, interrupts, system interface, Unix systems interface, standardization, SVID, XPG.
  2. Processes and POSIX threads, creating processes and threads, threads implementation.
  3. Parallel programming, synchronization, synchronization basics, mutual exclusion using memory read&write.
  4. Synchronization using special instructions on uniprocessor and multiprocessor systems with shared memory, priority inversion and solution.
  5. Synchronization tools and programming languages frameworks, classical synchronization tasks and their solutions.
  6. Processor scheduling, strategy, implementation, scheduling algorithms for uniprocessor systems.
  7. Resource allocation, deadlock, deadlock avoidance, solutions for CR and SR systems.
  8. Memory architecture, paging, page tables and TLB.
  9. Virtual memory, paging algorithm, page replacement algorithms.
  10. Practical aspects of virtual memory - code sharing, memory sharing, locking, dynamic libraries, file mapping, kernel memory.
  11. Input and output, drivers, synchronous and asynchronous operations, disk I/O optimization.
  12. Files systems, organization, space allocation, free space allocation, failure recovery, Unix file systems, BSD FFS and log based file systems.
  13. Security and protection, system access, data protection, security risks.

Project

13 hours, optionally

Teacher / Lecturer