Course detail

Physics

FIT-IFYAcad. year: 2010/2011

Overview of principles and models of classical physics. Mechanics, waves, thermodynamics, electromagnetism and optics. Applications, holography, fiber optics. Results and hypotheses of modern physics, quantum mechanics, statistical physics, relativity.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

The students understand basic physical phenomena, are able to present corresponding laws both in descriptive way and in terms of math relations. They can solve less complicated problems related to the above phenomena and describe and explain the laboratory experiments, they carried out.

Prerequisites

Vector operations. Fundamentals of differential calculus of function of one and more variables, fundamentals of integral calculus.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Duty credit requires the experiments measurement and laboratory reports submission.

Course curriculum

  1. Quantities and units in physics. Mechanics of a particle. Laws of motion.
  2. Work and energy. Field of gravitation forces.
  3. Oscillations and waves. Interference. Acoustic waves, electromagnetic waves, matter waves. Doppler effect.
  4. Thermodynamic system. Heat, work, internal energy. Entropy. Principles of thermodynamics.
  5. Electric interaction. Charges and fields.Gauss' law. Potential. Conductors, dielectrics. Electric current.
  6. Magnetic interaction. Magnetic fields of electric currents. Ampere's law. Forces in magnetic fields. Electromagnetic induction.
  7. Light and optics. Reflection, mirror and diffusion components. Refraction, light absorption. Elements of fiber optics. Light polarization.
  8. Interference, diffraction. Optical gratings. Holography.
  9. Thermal radiation. Black body radiation, Planck's law, consequences. Photometry. Illumination and color.
  10. Elements of quantum physics. Wave properties of particles, the uncertainty principle. Barrier tunneling. Particle in a well.
  11. Electronic cloud and nucleus of the atom. Atomic spectra. X radiation.
  12. Physical statistics. Spontaneous and stimulated emission of light. Lasers.
  13. Elements of special theory of relativity. Length conctraction. Time dilation.

Work placements

Not applicable.

Aims

To acquire the understanding of basic properties and features of phenomena in physics.

Specification of controlled education, way of implementation and compensation for absences

Mid-term examination, laboratory practice and final examination are monitored, and points earning parts of students' learning. Mid-term examination has no make-up.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme IT-BC-3 Bachelor's

    branch BIT , 1. year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

  1. Quantities and units in physics. Mechanics of a particle. Laws of motion.
  2. Work and energy. Field of gravitation forces.
  3. Oscillations and waves. Interference. Acoustic waves, electromagnetic waves, matter waves. Doppler effect.
  4. Thermodynamic system. Heat, work, internal energy. Entropy. Principles of thermodynamics.
  5. Electric interaction. Charges and fields.Gauss' law. Potential. Conductors, dielectrics. Electric current.
  6. Magnetic interaction. Magnetic fields of electric currents. Ampere's law. Forces in magnetic fields. Electromagnetic induction.
  7. Light and optics. Reflection, mirror and diffusion components. Refraction, light absorption. Elements of fiber optics. Light polarization.
  8. Interference, diffraction. Optical gratings. Holography.
  9. Thermal radiation. Black body radiation, Planck's law, consequences. Photometry. Illumination and color.
  10. Elements of quantum physics. Wave properties of particles, the uncertainty principle. Barrier tunneling. Particle in a well.
  11. Electronic cloud and nucleus of the atom. Atomic spectra. X radiation.
  12. Physical statistics. Spontaneous and stimulated emission of light. Lasers.
  13. Elements of special theory of relativity. Length conctraction. Time dilation.

Fundamentals seminar

7 hours, compulsory

Teacher / Lecturer

Syllabus

  1. Scalars, vectors. Basic operations.
  2. Position vector. Linear momentum. Newton's laws. Work, energy, power. Friction.
  3. Waves, characteristic quantities. The Doppler acoustic effect. Plane electromagnetic wave.
  4. Ideal and real gas, equation of state. Work, heat, internal energy. Entropy.
  5. Electric charges and forces. Potential, work of electric forces. Motion of charges.
  6. Magnetic fields of electric currents. Motion of electric charges in magnetic fields. Electromagnetic induction.
  7. Snell's laws. Total internal reflection.
  8. Diffraction gratings, slits.
  9. Black body radiation. Thermal and radiation power. Wien's law.
  10. The quantum well. Microscopic quantum wells and structures.
  11. Radiation of atoms, spectra.
  12. Physical statistics. Comparison.
  13. Relativistic applications.

Exercise in computer lab

6 hours, optionally

Teacher / Lecturer

Laboratory exercise

13 hours, optionally

Teacher / Lecturer

Syllabus

  1. Speed of light. Dispersion of light. Ray optics experiments.
  2. Experiments in thermodynamics. The Stirling engine.
  3. Study of magnetic domains by means of video-microscope.
  4. Fiber optics experimental set OPTEL.
  5. Interference and diffraction of light and microwaves. The Michelson experiment. Holograms.
  6. Light polarization. Absorption (using lasers).
  7. Photoeffect. Planck's constant.
  8. X-ray radiation. Absorption, dispersion and reflection.