Publication detail

Shear Resistance of Concrete Beams with FRP Grating as a Shear reinforcement

LYČKA, L. ŠTĚPÁNEK, P.

Original Title

Shear Resistance of Concrete Beams with FRP Grating as a Shear reinforcement

English Title

Shear Resistance of Concrete Beams with FRP Grating as a Shear reinforcement

Type

conference paper

Language

en

Original Abstract

This paper presents an experimental study on the shear behavior of concrete beams with fiber-reinforced (FRP) composite grating as shear reinforcement. Corrosion resistance and non-magnetic properties of FRP reinforcement allows its use in places where application of regular steel reinforcement would face difficulties. The use of FRP composites can increase the life span of constructions and reduce its maintenance costs. Shear stirrups are more susceptible to harsh conditions, due to their placement at the outer face of the reinforcement, and the use of FRP materials can lead to lower concrete cover thickness and therefore to a more effective design of an element. FRP reinforcements are highly anisotropic material with low strength in the direction perpendicular to the fibers. This causes the strength of a FRP stirrup to be limited by its strength in the bends (corners) of a stirrup. The tensile strength in the corner of the bent stirrup is around 40 to 60% of the strength of the straight bar. FRP grating doesn’t contain a bent section limiting its strength, but its behavior as a shear reinforcement is unknown. The paper contains the results of own experimental research on concrete beams with shear reinforcement made of FRP gratings done at the Faculty of Civil Engineering at the Brno University of Technology. Test specimen consisted of nine beams with different shear reinforcement ratios. Presented experimental data are then compared with the results of tests on beams with regular shear FRP stirrups found in literature.

English abstract

This paper presents an experimental study on the shear behavior of concrete beams with fiber-reinforced (FRP) composite grating as shear reinforcement. Corrosion resistance and non-magnetic properties of FRP reinforcement allows its use in places where application of regular steel reinforcement would face difficulties. The use of FRP composites can increase the life span of constructions and reduce its maintenance costs. Shear stirrups are more susceptible to harsh conditions, due to their placement at the outer face of the reinforcement, and the use of FRP materials can lead to lower concrete cover thickness and therefore to a more effective design of an element. FRP reinforcements are highly anisotropic material with low strength in the direction perpendicular to the fibers. This causes the strength of a FRP stirrup to be limited by its strength in the bends (corners) of a stirrup. The tensile strength in the corner of the bent stirrup is around 40 to 60% of the strength of the straight bar. FRP grating doesn’t contain a bent section limiting its strength, but its behavior as a shear reinforcement is unknown. The paper contains the results of own experimental research on concrete beams with shear reinforcement made of FRP gratings done at the Faculty of Civil Engineering at the Brno University of Technology. Test specimen consisted of nine beams with different shear reinforcement ratios. Presented experimental data are then compared with the results of tests on beams with regular shear FRP stirrups found in literature.

Keywords

Shear, FRP, composites, FRP grating

Released

28.02.2018

Publisher

Trans Tech Publications

Location

Switzerland

Pages from

115

Pages to

120

Pages count

6

BibTex


@inproceedings{BUT144902,
  author="Lukáš {Lyčka} and Petr {Štěpánek}",
  title="Shear Resistance of Concrete Beams with FRP Grating as a Shear reinforcement",
  annote="This paper presents an experimental study on the shear behavior of concrete beams with fiber-reinforced (FRP) composite grating as shear reinforcement. Corrosion resistance and non-magnetic properties of FRP reinforcement allows its use in places where application of regular steel reinforcement would face difficulties. The use of FRP composites can increase the life span of constructions and reduce its maintenance costs. Shear stirrups are more susceptible to harsh conditions, due to their placement at the outer face of the reinforcement, and the use of FRP materials can lead to lower concrete cover thickness and therefore to a more effective design of an element. 
FRP reinforcements are highly anisotropic material with low strength in the direction perpendicular to the fibers. This causes the strength of a FRP stirrup to be limited by its strength in the bends (corners) of a stirrup. The tensile strength in the corner of the bent stirrup is around 40 to 60% of the strength of the straight bar. FRP grating doesn’t contain a bent section limiting its strength, but its behavior as a shear reinforcement is unknown. The paper contains the results of own experimental research on concrete beams with shear reinforcement made of FRP gratings done at the Faculty of Civil Engineering at the Brno University of Technology. Test specimen consisted of nine beams with different shear reinforcement ratios. Presented experimental data are then compared with the results of tests on beams with regular shear FRP stirrups found in literature.
",
  address="Trans Tech Publications",
  booktitle="Solid State Phenomena",
  chapter="144902",
  doi="10.4028/www.scientific.net/SPP.272.115",
  howpublished="online",
  institution="Trans Tech Publications",
  number="115",
  year="2018",
  month="february",
  pages="115--120",
  publisher="Trans Tech Publications",
  type="conference paper"
}