Publication detail

Pollution dispersion in street canyon under traffic induced flow and turbulence

KATOLICKÝ, J., JÍCHA, M., POSPÍŠIL, J.

Original Title

Pollution dispersion in street canyon under traffic induced flow and turbulence

English Title

Pollution dispersion in street canyon under traffic induced flow and turbulence

Type

conference paper

Language

en

Original Abstract

The paper deals with a computational model for traffic induced flow field and turbulence in a 3D street canyon. An Eulerian-Lagrangean model developed is presented that accounts for moving vehicles in several combinations of traffic lanes, one- or two-way traffic and different traffic rates. Moving vehicles are treated as a discrete phase using Particle-Source-In-Cell method. A Lagrangean momentum equation is solved for moving vehicles and additional momentum source is calculated for the momentum of continuos phase of ambiant air. Also several formulas for traffic induced turbulence are tested to show the influence on the flow field entrained into the street canyon. The street canyon is defined with an aspect ratio of W/H=1.27. As the results the velocity field in the mid-cross section of the canyon is presented showing the influence of traffic rate and one- or two-way traffic in two or four lanes.

English abstract

The paper deals with a computational model for traffic induced flow field and turbulence in a 3D street canyon. An Eulerian-Lagrangean model developed is presented that accounts for moving vehicles in several combinations of traffic lanes, one- or two-way traffic and different traffic rates. Moving vehicles are treated as a discrete phase using Particle-Source-In-Cell method. A Lagrangean momentum equation is solved for moving vehicles and additional momentum source is calculated for the momentum of continuos phase of ambiant air. Also several formulas for traffic induced turbulence are tested to show the influence on the flow field entrained into the street canyon. The street canyon is defined with an aspect ratio of W/H=1.27. As the results the velocity field in the mid-cross section of the canyon is presented showing the influence of traffic rate and one- or two-way traffic in two or four lanes.

Keywords

street canyon, pollution dispersion

RIV year

1999

Released

03.03.1999

Publisher

Institute of Physics, London

Location

Madrid, Spain

Pages from

65

Pages to

66

Pages count

2

BibTex


@inproceedings{BUT133,
  author="Jaroslav {Katolický} and Miroslav {Jícha} and Jiří {Pospíšil}",
  title="Pollution dispersion in street canyon under traffic induced flow and turbulence",
  annote="The paper deals with a computational model for traffic induced flow field and turbulence in a 3D street canyon. An Eulerian-Lagrangean model developed is presented that accounts for moving vehicles in several combinations of traffic lanes, one- or two-way traffic and different traffic rates. Moving vehicles are treated as a discrete phase using Particle-Source-In-Cell method. A Lagrangean momentum equation is solved for moving vehicles and additional momentum source is calculated for the momentum of continuos phase of ambiant air. Also several formulas for traffic induced turbulence are tested to show the influence on the flow field entrained into the street canyon. The street canyon is defined with an aspect ratio of W/H=1.27. As the results the velocity field in the mid-cross section of the canyon is presented showing the influence of traffic rate and one- or two-way traffic in two or four lanes.",
  address="Institute of Physics, London",
  booktitle="2nd International Conference Urban Air Quality",
  chapter="133",
  institution="Institute of Physics, London",
  year="1999",
  month="march",
  pages="65",
  publisher="Institute of Physics, London",
  type="conference paper"
}