Publication detail

OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION

LISÝ, M. BALÁŠ, M. ŠPILÁČEK, M. SKÁLA, Z.

Original Title

OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION

English Title

OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION

Type

journal article in Web of Science

Language

en

Original Abstract

The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e,. tar) in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate) from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5 per cent, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/m3n. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.

English abstract

The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e,. tar) in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate) from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5 per cent, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/m3n. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.

Keywords

biomass, gasification, gas cleaning, dolomite

RIV year

2015

Released

31.12.2015

Publisher

Czech Technical University in Prague,

Location

Praha

ISBN

1210-2709

Periodical

Acta Polytechnica

Year of study

55

Number

6

State

CZ

Pages from

401

Pages to

406

Pages count

6

Documents

BibTex


@article{BUT119733,
  author="Martin {Lisý} and Marek {Baláš} and Michal {Špiláček} and Zdeněk {Skála}",
  title="OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION",
  annote="The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e,. tar) in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate) from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5 per cent, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/m3n. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.",
  address="Czech Technical University in Prague,",
  chapter="119733",
  doi="10.14311/AP.2015.55.0401",
  howpublished="print",
  institution="Czech Technical University in Prague,",
  number="6",
  volume="55",
  year="2015",
  month="december",
  pages="401--406",
  publisher="Czech Technical University in Prague,",
  type="journal article in Web of Science"
}