Publication detail

Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales

ŘEHÁK, P. YAMAOKA, N.

Original Title

Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales

English Title

Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales

Type

journal article in Web of Science

Language

en

Original Abstract

We are concerned with the oscillation problem for second-order nonlinear dynamic equations on time scales of the form $x^{\Delta \Delta} + f(x)/(t \sigma(t)) = 0$, where $f(x)$ satisfies $x f(x) > 0$ if $x \neq 0$. By means of Riccati technique and phase plane analysis of a system, (non)oscillation criteria are established. A necessary and sufficient condition for all nontrivial solutions of the Euler-Cauchy dynamic equation $y^{\Delta \Delta} +\lambda/(t \sigma(t))\, y = 0$ to be oscillatory plays a crucial role in proving our results.

English abstract

We are concerned with the oscillation problem for second-order nonlinear dynamic equations on time scales of the form $x^{\Delta \Delta} + f(x)/(t \sigma(t)) = 0$, where $f(x)$ satisfies $x f(x) > 0$ if $x \neq 0$. By means of Riccati technique and phase plane analysis of a system, (non)oscillation criteria are established. A necessary and sufficient condition for all nontrivial solutions of the Euler-Cauchy dynamic equation $y^{\Delta \Delta} +\lambda/(t \sigma(t))\, y = 0$ to be oscillatory plays a crucial role in proving our results.

Keywords

Oscillation constant; Dynamic equations on time scales; Euler-Cauchy equation; Riccati technique; Phase plane analysis; Schauder fixed point theorem

Released

07.09.2017

Publisher

Taylor and Francis

Pages from

1884

Pages to

1900

Pages count

17

Documents

BibTex


@article{BUT140805,
  author="Pavel {Řehák} and Naoto {Yamaoka}",
  title="Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales",
  annote="We are concerned with the oscillation problem for second-order nonlinear dynamic equations on time scales of the form $x^{\Delta \Delta} + f(x)/(t \sigma(t)) = 0$, where $f(x)$ satisfies $x f(x) > 0$ if $x \neq 0$. By means of Riccati technique and phase plane analysis of a system, (non)oscillation criteria are established. A necessary and sufficient condition for all nontrivial solutions of the Euler-Cauchy dynamic equation $y^{\Delta \Delta} +\lambda/(t \sigma(t))\, y = 0$ to be oscillatory plays a crucial role in proving our results.
",
  address="Taylor and Francis",
  chapter="140805",
  doi="10.1080/10236198.2017.1371146",
  institution="Taylor and Francis",
  number="11",
  volume="23",
  year="2017",
  month="september",
  pages="1884--1900",
  publisher="Taylor and Francis",
  type="journal article in Web of Science"
}