Publication detail

Precise Model of Multicopter for Development of Algorithms for Autonomous Flight

BARÁNEK, R. ŠOLC, F.

Original Title

Precise Model of Multicopter for Development of Algorithms for Autonomous Flight

Czech Title

Precizní model multikoptéry pro vývoj algoritmů pro autonomní let

English Title

Precise Model of Multicopter for Development of Algorithms for Autonomous Flight

Type

conference paper

Language

en

Original Abstract

This article describes precise mathematical model of multicopter. The model can be easily implemented in various simulation environments like Simulink, Xcos etc. The advantage of using mathematical models for development of navigational, control and attitude estimation algorithms lies in the impossibility to damage the real platform and in the knowledge of all state variables. The model is based on classical free rigid body dynamics driven by forces and moments. The quaternions are used for attitude representation for nonsingular operation. This rigid body dynamics are extended by precise models of inertial and magnetic sensors, by motors thrusts to forces and torques relations and by precise model of aerodynamic drag forces and torques.

Czech abstract

Článek popisuje precizní matematický model multikoptéry. Uvedený model je možné snadno implementovat do různých simulačních programů jako je Simulink, Xcos atd. Výhody v použití matematického modelu pro vývoj navigačních řídicích a estimačních algoritmů spočívají v nemožnosti zničit reálnou platformu a také ve znalosti pravých hodnot všech stavových proměnných. Model je založen na klasické dynamice volného tuhého tělesa, na který působí síly a momenty. Kvaterniony jsou použity pro reprezentaci orientace z důvodu jejich nesingularity. Tento model pohybu tuhého tělesa je dále rozšířen o precizní modely senzorů, o vztahy mezi řídicímy signály do motorů a produkovanými silamy a momenty a také o modely aerodynamického odporu.

English abstract

This article describes precise mathematical model of multicopter. The model can be easily implemented in various simulation environments like Simulink, Xcos etc. The advantage of using mathematical models for development of navigational, control and attitude estimation algorithms lies in the impossibility to damage the real platform and in the knowledge of all state variables. The model is based on classical free rigid body dynamics driven by forces and moments. The quaternions are used for attitude representation for nonsingular operation. This rigid body dynamics are extended by precise models of inertial and magnetic sensors, by motors thrusts to forces and torques relations and by precise model of aerodynamic drag forces and torques.

Keywords

mathematical model, multicopter, sensor models, aerodynamic drag

RIV year

2013

Released

07.10.2013

Publisher

Springer

Location

Switzerland

ISBN

978-3-319-02293-2

Book

Mechatronics 2013, Recent Technologycal and Scientific Advances

Edition number

1

Pages from

519

Pages to

526

Pages count

8

BibTex


@inproceedings{BUT101945,
  author="Radek {Baránek} and František {Šolc}",
  title="Precise Model of Multicopter for Development of Algorithms for Autonomous Flight",
  annote="This article describes precise mathematical model of multicopter. The model can be easily implemented in various simulation environments like Simulink, Xcos etc. The advantage of using mathematical models for development of navigational, control and attitude estimation algorithms lies in the impossibility to damage the real platform and in the knowledge of all state variables. The model is based on classical free rigid body dynamics driven by forces and moments. The quaternions are used for attitude representation for nonsingular operation. This rigid body dynamics are extended by precise models of inertial and magnetic sensors, by motors thrusts to forces and torques relations and by precise model of aerodynamic drag forces and torques.",
  address="Springer",
  booktitle="Mechatronics 2013, Recent Technologycal and Scientific Advances",
  chapter="101945",
  doi="10.1007/978-3-319-02294-9",
  howpublished="print",
  institution="Springer",
  year="2013",
  month="october",
  pages="519--526",
  publisher="Springer",
  type="conference paper"
}