Detail publikace

Ultrathin manganese oxides enhance the electrocatalytic properties of 3D printed carbon catalysts for electrochemical nitrate reduction to ammonia

GAO, W. PERALES RONDON, J. MICHALIČKA, J. PUMERA, M.

Originální název

Ultrathin manganese oxides enhance the electrocatalytic properties of 3D printed carbon catalysts for electrochemical nitrate reduction to ammonia

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

Electrochemical nitrate reduction reaction (NO3RR) is a promising approach to remedying the environmental pollution from nitrate, and simultaneously a sustainable alternative to traditional Haber-Bosch process especially for decentralized ammonia production. Here, we firstly explore the electrocatalytic activity of two 3D printed carbon frameworks consisting of 0-dimentional (0D) carbon black and 1-dimentional (1D) carbon nanotubes towards cost-efficient electrocatalysts for NO3RR. Different from the electrocatalytic inert properties of 0D carbon framework, 1D carbon framework exhibits the electrocatalytic activity for NO3RR with a Faradaic efficiency of more than 50% at - 1.21 V vs. RHE. Control experiments suggest that such activity originates from the synergistic electrocatalytic contributions between intrinsic surface features of carbon nanotubes and metallic impurities. Since the content and distribution of these metallic impurities are unpredictable, an ultrathin deposit of electrocatalytic manganese oxides is further deposited by atomic layer deposition on 1D carbon framework to ensure well defined surfaces for effective NO3RR. The proposed strategy by integrating 3D printing of conductive carbon framework with atomic layer deposition of an electrocatalytic layer provides a feasible electrode fabrication for electrochemical NO3RR and shows a promising prospect in the electrocatalytic field.

Klíčová slova

3D printing; Atomic layer deposition; Carbon materials; Manganese oxides; Ammonia; Electrocatalysts

Autoři

GAO, W.; PERALES RONDON, J.; MICHALIČKA, J.; PUMERA, M.

Vydáno

5. 8. 2023

Nakladatel

ELSEVIER

Místo

AMSTERDAM

ISSN

1873-3883

Periodikum

Applied Catalysis B: Environmental

Ročník

330

Číslo

122632

Stát

Nizozemsko

Strany počet

11

URL

BibTex

@article{BUT186965,
  author="Wanli {Gao} and Juan Victor {Perales Rondon} and Jan {Michalička} and Martin {Pumera}",
  title="Ultrathin manganese oxides enhance the electrocatalytic properties of 3D printed carbon catalysts for electrochemical nitrate reduction to ammonia",
  journal="Applied Catalysis B: Environmental",
  year="2023",
  volume="330",
  number="122632",
  pages="11",
  doi="10.1016/j.apcatb.2023.122632",
  issn="1873-3883",
  url="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0926337323002758?via%3Dihub"
}