Detail publikace

Spatial CT/MRI of Children's Spine Processing and Modeling of Mechanical Forces

Originální název

Spatial CT/MRI of Children's Spine Processing and Modeling of Mechanical Forces

Anglický název

Spatial CT/MRI of Children's Spine Processing and Modeling of Mechanical Forces

Jazyk

en

Originální abstrakt

Scoliosis embodies the most frequent three-dimensional spinal deformity in children. Only timely treatment during the growth of the spine may significantly reduce related health problems inflicted by the deformity on adults. The results obtained via conservative therapy are problematic, and a certain degree of curvature already requires surgical treatment that currently consists in repeated spinal surgeries posing a high risk of complications. The aim is to use a spine model for computer based simulation of changes in the stress on the spine during idiopathic and syndromic deformity correction via vertebral osteotomy. In the given connection, further development of the spine is estimated to verify the proposed procedure. If congenital deformity is found in the 3D model of a child patient’s spine, precise osteotomy is to be planned in order to facilitate the correction of the disorder in all the planes. This paper demonstrates developed tools for advanced segmentation of CT and MR images of children’ spine, three-dimensional modeling and spine printing. Both the CT and MR images of spine are evaluated and compared, and an image data processing procedure is proposed that allows use of non-ionizing MRI instead of ionizing CT imaging.

Anglický abstrakt

Scoliosis embodies the most frequent three-dimensional spinal deformity in children. Only timely treatment during the growth of the spine may significantly reduce related health problems inflicted by the deformity on adults. The results obtained via conservative therapy are problematic, and a certain degree of curvature already requires surgical treatment that currently consists in repeated spinal surgeries posing a high risk of complications. The aim is to use a spine model for computer based simulation of changes in the stress on the spine during idiopathic and syndromic deformity correction via vertebral osteotomy. In the given connection, further development of the spine is estimated to verify the proposed procedure. If congenital deformity is found in the 3D model of a child patient’s spine, precise osteotomy is to be planned in order to facilitate the correction of the disorder in all the planes. This paper demonstrates developed tools for advanced segmentation of CT and MR images of children’ spine, three-dimensional modeling and spine printing. Both the CT and MR images of spine are evaluated and compared, and an image data processing procedure is proposed that allows use of non-ionizing MRI instead of ionizing CT imaging.

BibTex


@inproceedings{BUT159716,
  author="Jan {Mikulka} and Daniel {Chalupa} and Kamil {Říha} and Milan {Filipovič} and Marek {Dostál}",
  title="Spatial CT/MRI of Children's Spine Processing and Modeling of Mechanical Forces",
  annote="Scoliosis embodies the most frequent three-dimensional spinal deformity in children. Only timely treatment during the growth of the spine may significantly reduce related health problems inflicted by the deformity on adults. The results obtained via conservative therapy are problematic, and a certain degree of curvature already requires surgical treatment that currently consists in repeated spinal surgeries posing a high risk of complications. The aim is to use a spine model for computer based simulation of changes in the stress on the spine during idiopathic and syndromic deformity correction via vertebral osteotomy. In the given connection, further development of the spine is estimated to verify the proposed procedure. If congenital deformity is found in the 3D model of a child patient’s spine, precise osteotomy is to be planned in order to facilitate the correction of the disorder in all the planes. This paper demonstrates developed tools for advanced segmentation of CT and MR images of children’ spine, three-dimensional modeling and spine printing. Both the CT and MR images of spine are evaluated and compared, and an image data processing procedure is proposed that allows use of non-ionizing MRI instead of ionizing CT imaging.",
  booktitle="2019 Progress In Electromagnetics Research Symposium",
  chapter="159716",
  howpublished="online",
  year="2019",
  month="june",
  pages="1--6",
  type="conference paper"
}