Detail publikace

Implementation of polycyclic cycloalkane systems: a path to highperforming, soluble, versatile and sustainable organic semiconducting materials

Originální název

Implementation of polycyclic cycloalkane systems: a path to highperforming, soluble, versatile and sustainable organic semiconducting materials

Anglický název

Implementation of polycyclic cycloalkane systems: a path to highperforming, soluble, versatile and sustainable organic semiconducting materials

Jazyk

en

Originální abstrakt

Soluble organic semiconducting materials have a particular application potential for easily processed lowcost organic electronics devices. Solubility of organic pi-conjugated small molecule derivatives, such as diketopyrrolopyrroles (DPPs), indigos, epindolidiones, squaraines and many other, is usually attained by a sidechain alkyl substitution, which is meant to interrupt inter- and intramolecular H-bonds. Due to these bonds insoluble organic semiconducting materials are usually more stable; moreover as a result of tight aggregation of -conjugated cores through intermolecular H-bond insoluble materials have shown remarkable thermal stability as well as high charge carrier mobilities for both electrons and holes [1]. However insolubility brings its obverse case: such materials are difficult to purify and they can’t be deposited by coating or printing techniques, which is a promising way towards cheap production organic electronics. In this work, we offer a strategy to synthesize thermally stable and soluble high-performing materials for a wide range of organic electronics applications. The crucial component of the present approach is using adamantyl substitutions in solubilization side-groups. Ability of adamantane molecule to self-organize into crystals with unusually high melting point was used to reinforce packing of -conjugated dyes in the solid state. As a result materials with adamantyl containing sidechains possess superior electrical and optical properties, and at the same time high thermal stability. Abovementioned side chain can improve solid-state fluorescence quantum yields of the materials [2] and significantly increase the melting point. Considering electrical properties, soluble DPP derivative with ethyl-adamantyl solubilization side-groups showed abmipolar behavior with both hole and electron mobilities higher than the insoluble analogue. How it was confirmed by XRD analysis a distance between - conjugated cores is shorted than the one of insoluble material due to adamantyl-adamantyl aggregations, which resulted in high charge carrier mobilities. It has to be added that this approach can be applied for a large portfolio of the organic dyes (indigos, epindolidiones, squaraines, oligothiophenes etc.), where solubility can be reached by a side-group substitution [3].

Anglický abstrakt

Soluble organic semiconducting materials have a particular application potential for easily processed lowcost organic electronics devices. Solubility of organic pi-conjugated small molecule derivatives, such as diketopyrrolopyrroles (DPPs), indigos, epindolidiones, squaraines and many other, is usually attained by a sidechain alkyl substitution, which is meant to interrupt inter- and intramolecular H-bonds. Due to these bonds insoluble organic semiconducting materials are usually more stable; moreover as a result of tight aggregation of -conjugated cores through intermolecular H-bond insoluble materials have shown remarkable thermal stability as well as high charge carrier mobilities for both electrons and holes [1]. However insolubility brings its obverse case: such materials are difficult to purify and they can’t be deposited by coating or printing techniques, which is a promising way towards cheap production organic electronics. In this work, we offer a strategy to synthesize thermally stable and soluble high-performing materials for a wide range of organic electronics applications. The crucial component of the present approach is using adamantyl substitutions in solubilization side-groups. Ability of adamantane molecule to self-organize into crystals with unusually high melting point was used to reinforce packing of -conjugated dyes in the solid state. As a result materials with adamantyl containing sidechains possess superior electrical and optical properties, and at the same time high thermal stability. Abovementioned side chain can improve solid-state fluorescence quantum yields of the materials [2] and significantly increase the melting point. Considering electrical properties, soluble DPP derivative with ethyl-adamantyl solubilization side-groups showed abmipolar behavior with both hole and electron mobilities higher than the insoluble analogue. How it was confirmed by XRD analysis a distance between - conjugated cores is shorted than the one of insoluble material due to adamantyl-adamantyl aggregations, which resulted in high charge carrier mobilities. It has to be added that this approach can be applied for a large portfolio of the organic dyes (indigos, epindolidiones, squaraines, oligothiophenes etc.), where solubility can be reached by a side-group substitution [3].

BibTex


@misc{BUT156095,
  author="Alexander {Kovalenko} and Patricie {Heinrichová} and Stanislav {Stříteský} and Martin {Vala} and Martin {Weiter} and Jozef {Krajčovič}",
  title="Implementation of polycyclic cycloalkane systems: a path to highperforming,
soluble, versatile and sustainable organic
semiconducting materials",
  annote="Soluble organic semiconducting materials have a particular application potential for easily processed lowcost
organic electronics devices. Solubility of organic pi-conjugated small molecule derivatives, such as diketopyrrolopyrroles (DPPs), indigos, epindolidiones, squaraines and many other, is usually attained by a sidechain alkyl substitution, which is meant to interrupt inter- and intramolecular H-bonds. Due to these bonds
insoluble organic semiconducting materials are usually more stable; moreover as a result of tight aggregation of
-conjugated cores through intermolecular H-bond insoluble materials have shown remarkable thermal
stability as well as high charge carrier mobilities for both electrons and holes [1]. However insolubility brings its
obverse case: such materials are difficult to purify and they can’t be deposited by coating or printing
techniques, which is a promising way towards cheap production organic electronics. In this work, we offer a strategy to synthesize thermally stable and soluble high-performing materials for a wide range of organic electronics applications. The crucial component of the present approach is using adamantyl substitutions in solubilization side-groups. Ability of adamantane molecule to self-organize into crystals with unusually high melting point was used to reinforce packing of -conjugated dyes in the solid state. As a result materials with adamantyl containing sidechains possess superior electrical and optical properties, and at the same time high thermal stability. Abovementioned side chain can improve solid-state fluorescence quantum yields of the materials [2] and significantly increase the melting point. Considering electrical properties, soluble DPP derivative with ethyl-adamantyl solubilization side-groups showed abmipolar behavior with both hole and electron mobilities higher than the insoluble analogue. How it was confirmed by XRD analysis a distance between - conjugated cores is shorted than the one of insoluble material due to adamantyl-adamantyl aggregations, which resulted in high charge carrier mobilities. It has to be added that this approach can be applied for a large portfolio of the organic dyes (indigos, epindolidiones,
squaraines, oligothiophenes etc.), where solubility can
be reached by a side-group substitution [3].",
  address="Vysoké učení technické v Brně, Fakulta chemická",
  booktitle="7th Meeting on Chemistry and Life 2018. Book of abstracts",
  chapter="156095",
  howpublished="print",
  institution="Vysoké učení technické v Brně, Fakulta chemická",
  year="2018",
  month="september",
  pages="93--93",
  publisher="Vysoké učení technické v Brně, Fakulta chemická",
  type="abstract"
}