Detail publikace

Near-field study of hot spot photoluminescence decay in ZnS:Mn nanoparticles

Originální název

Near-field study of hot spot photoluminescence decay in ZnS:Mn nanoparticles

Anglický název

Near-field study of hot spot photoluminescence decay in ZnS:Mn nanoparticles

Jazyk

en

Originální abstrakt

The local spatial distribution of photoluminescence due to the creation of hot luminescence centers was measured in the optical near-field by Scanning near-field optical microscope at emission peaks of materials (lambda =595nm), which is due to the luminescence of Mn2+ in ZnS. The excitation bandgap of ZnS forms exitons, and these excitons get the center of Mn2+ through nonradiation dominates, by means of transition of 4T1 - 6A1 luminescence. This spectrum is evidence that Mn2+ has been incorporated into the ZnS nanoparticles. In comparison with the bulk ZnS:Mn phosphors these nanoparticles have clearly higher luminescent efficiency with its luminescent decay time at least 4 orders of magnitude slower. It means that the oscillator intensity of luminescent centers in ZnS:Mn nanocrystal enhances at least 4 orders of magnitude than that in corresponding bulk ZnS:Mn. The local spatial distribution of photoluminescence due to the creation of hot luminescence centers was measured in the optical near-field by Scanning near-field optical microscope at emission peaks of materials (lambda =595nm), which is due to the luminescence of Mn2+ in ZnS. The excitation bandgap of ZnS forms exitons, and these excitons get the center of Mn2+ through nonradiation dominates, by means of transition of 4T1 - 6A1 luminescence. This spectrum is evidence that Mn2+ has been incorporated into the ZnS nanoparticles. In comparison with the bulk ZnS:Mn phosphors these nanoparticles have clearly higher luminescent efficiency with its luminescent decay time at least 4 orders of magnitude slower. It means that the oscillator intensity of luminescent centers in ZnS:Mn nanocrystal enhances at least 4 orders of magnitude than that in corresponding bulk ZnS:Mn.

Anglický abstrakt

The local spatial distribution of photoluminescence due to the creation of hot luminescence centers was measured in the optical near-field by Scanning near-field optical microscope at emission peaks of materials (lambda =595nm), which is due to the luminescence of Mn2+ in ZnS. The excitation bandgap of ZnS forms exitons, and these excitons get the center of Mn2+ through nonradiation dominates, by means of transition of 4T1 - 6A1 luminescence. This spectrum is evidence that Mn2+ has been incorporated into the ZnS nanoparticles. In comparison with the bulk ZnS:Mn phosphors these nanoparticles have clearly higher luminescent efficiency with its luminescent decay time at least 4 orders of magnitude slower. It means that the oscillator intensity of luminescent centers in ZnS:Mn nanocrystal enhances at least 4 orders of magnitude than that in corresponding bulk ZnS:Mn. The local spatial distribution of photoluminescence due to the creation of hot luminescence centers was measured in the optical near-field by Scanning near-field optical microscope at emission peaks of materials (lambda =595nm), which is due to the luminescence of Mn2+ in ZnS. The excitation bandgap of ZnS forms exitons, and these excitons get the center of Mn2+ through nonradiation dominates, by means of transition of 4T1 - 6A1 luminescence. This spectrum is evidence that Mn2+ has been incorporated into the ZnS nanoparticles. In comparison with the bulk ZnS:Mn phosphors these nanoparticles have clearly higher luminescent efficiency with its luminescent decay time at least 4 orders of magnitude slower. It means that the oscillator intensity of luminescent centers in ZnS:Mn nanocrystal enhances at least 4 orders of magnitude than that in corresponding bulk ZnS:Mn.

BibTex


@inproceedings{BUT25961,
  author="Lubomír {Grmela} and Pavel {Tománek} and Pavel {Škarvada}",
  title="Near-field study of hot spot photoluminescence decay in ZnS:Mn nanoparticles",
  annote="The local spatial distribution of photoluminescence due to the creation of hot luminescence centers was measured in the optical near-field by Scanning near-field optical microscope at emission peaks of materials (lambda =595nm), which is due to the luminescence of Mn2+ in ZnS. The excitation bandgap of ZnS forms exitons, and these excitons get the center of Mn2+ through nonradiation dominates, by means of transition of 4T1 - 6A1 luminescence. This spectrum is evidence that Mn2+ has been incorporated into the ZnS nanoparticles. In comparison with the bulk ZnS:Mn phosphors these nanoparticles have clearly higher luminescent efficiency with its luminescent decay time at least 4 orders of magnitude slower. It means that the oscillator intensity of luminescent centers in ZnS:Mn nanocrystal enhances at least 4 orders of magnitude than that in corresponding bulk ZnS:Mn.
The local spatial distribution of photoluminescence due to the creation of hot luminescence centers was measured in the optical near-field by Scanning near-field optical microscope at emission peaks of materials (lambda =595nm), which is due to the luminescence of Mn2+ in ZnS. The excitation bandgap of ZnS forms exitons, and these excitons get the center of Mn2+ through nonradiation dominates, by means of transition of 4T1 - 6A1 luminescence. This spectrum is evidence that Mn2+ has been incorporated into the ZnS nanoparticles. In comparison with the bulk ZnS:Mn phosphors these nanoparticles have clearly higher luminescent efficiency with its luminescent decay time at least 4 orders of magnitude slower. It means that the oscillator intensity of luminescent centers in ZnS:Mn nanocrystal enhances at least 4 orders of magnitude than that in corresponding bulk ZnS:Mn.


",
  address="ttp Trans Tech Publications",
  booktitle="Materials Structure and Micromechanics of Fracture V",
  chapter="25961",
  edition="567-568",
  howpublished="print",
  institution="ttp Trans Tech Publications",
  year="2008",
  month="march",
  pages="421--424",
  publisher="ttp Trans Tech Publications",
  type="conference paper"
}