Detail publikace

Fourth Fundamental Circuit Element: SPICE Modeling and Simulation

BIOLEK, D. BIOLEK, Z.

Originální název

Fourth Fundamental Circuit Element: SPICE Modeling and Simulation

Anglický název

Fourth Fundamental Circuit Element: SPICE Modeling and Simulation

Jazyk

en

Originální abstrakt

This chapter deals with two possible stages of exploring the memristor as the fourth fundamental circuit element: (1) generation of the model and (2) simulation of the element behavior with the aid of the model. The initial stage, i.e. modeling of the two-terminal device, belonging to the family of memristors, should be based on the basic rules of a correct modeling as proposed by L. Chua. These rules are brought up in the introductory part of the chapter. The characteristics, defining the memristor, in particular the port and state equations, the constitutive relation, and the parameter-vs.-state-map, are the starting points of such a "correct modeling." Several memristor fingerprints (FPs), which can be deduced from the above characteristics, are summarized. Their knowledge can be useful for determining whether the memristor model, irrespective of its nature (mathematical, software- or hardware-implemented) behaves correctly. Some methods for the implementation of memristor models in the SPICE-family programs are also described.

Anglický abstrakt

This chapter deals with two possible stages of exploring the memristor as the fourth fundamental circuit element: (1) generation of the model and (2) simulation of the element behavior with the aid of the model. The initial stage, i.e. modeling of the two-terminal device, belonging to the family of memristors, should be based on the basic rules of a correct modeling as proposed by L. Chua. These rules are brought up in the introductory part of the chapter. The characteristics, defining the memristor, in particular the port and state equations, the constitutive relation, and the parameter-vs.-state-map, are the starting points of such a "correct modeling." Several memristor fingerprints (FPs), which can be deduced from the above characteristics, are summarized. Their knowledge can be useful for determining whether the memristor model, irrespective of its nature (mathematical, software- or hardware-implemented) behaves correctly. Some methods for the implementation of memristor models in the SPICE-family programs are also described.

Dokumenty

BibTex


@inbook{BUT104979,
  author="Dalibor {Biolek} and Zdeněk {Biolek}",
  title="Fourth Fundamental Circuit Element: SPICE Modeling and Simulation",
  annote="This chapter deals with two possible stages of exploring the memristor as the fourth fundamental circuit element: (1) generation of the model and (2) simulation of the element behavior with the aid of the model. The initial stage, i.e. modeling of the two-terminal device, belonging to the family of memristors, should be based on the basic rules of a correct modeling as proposed by L. Chua. These rules are brought up in the introductory part of the chapter. The characteristics, defining the memristor, in particular the port and state equations, the constitutive relation, and the parameter-vs.-state-map, are the starting points of such a "correct modeling." Several memristor fingerprints (FPs), which can be deduced from the above characteristics, are summarized. Their knowledge can be useful for determining whether the memristor model, irrespective of its nature (mathematical, software- or hardware-implemented) behaves correctly. Some methods for the implementation of memristor models in the SPICE-family programs are also described.",
  address="Springer New York",
  booktitle="Memristors and Memristive Systems",
  chapter="104979",
  doi="10.1007/978-1-4614-9068-5_4",
  edition="X",
  howpublished="print",
  institution="Springer New York",
  year="2014",
  month="january",
  pages="105--162",
  publisher="Springer New York",
  type="book chapter"
}