Detail publikace

Design of catalytic oxidation unit for elimination of VOC and CO

Originální název

Design of catalytic oxidation unit for elimination of VOC and CO

Anglický název

Design of catalytic oxidation unit for elimination of VOC and CO

Jazyk

en

Originální abstrakt

Treatments of waste gas as well as solid and liquid wastes are important activities for environmental protection. A thermal oxidation is most used method for VOC abatement from process off-gases. But the consumption of natural gas is often considerable and running costs of such equipment are very high. This is the main reason, why companies are searching for technologies that decreases the consumption of natural gas but still meeting current emission limits. In many cases, the thermal oxidation is appropriate replace to the catalytic oxidation technology. A mathematical model of an ideal plug flow packed bed adiabatic reactor for catalytic oxidation of VOC and CO was created to support a design of catalytic oxidation unit (pilot plant reactor). Industrial catalyst EnviCat based on Pt and Pd applied on the Al2O3 support was used. In the 1st proposed mathematical model, the maximum working temperature of the catalyst was exceeded. Thus, the catalytic bed had to be divided into two parts. Cooling air was injected between the two catalytic beds. Catalytic oxidation unit (pilot plant reactor) was designed according to the results of the mathematical model. The experimental data are in good agreement with the results of the mathematical model, although a very simplified model was used.

Anglický abstrakt

Treatments of waste gas as well as solid and liquid wastes are important activities for environmental protection. A thermal oxidation is most used method for VOC abatement from process off-gases. But the consumption of natural gas is often considerable and running costs of such equipment are very high. This is the main reason, why companies are searching for technologies that decreases the consumption of natural gas but still meeting current emission limits. In many cases, the thermal oxidation is appropriate replace to the catalytic oxidation technology. A mathematical model of an ideal plug flow packed bed adiabatic reactor for catalytic oxidation of VOC and CO was created to support a design of catalytic oxidation unit (pilot plant reactor). Industrial catalyst EnviCat based on Pt and Pd applied on the Al2O3 support was used. In the 1st proposed mathematical model, the maximum working temperature of the catalyst was exceeded. Thus, the catalytic bed had to be divided into two parts. Cooling air was injected between the two catalytic beds. Catalytic oxidation unit (pilot plant reactor) was designed according to the results of the mathematical model. The experimental data are in good agreement with the results of the mathematical model, although a very simplified model was used.

Dokumenty

BibTex


@article{BUT103956,
  author="Pavel {Leštinský} and Vladimír {Brummer} and David {Jecha} and Pavel {Skryja} and Petr {Stehlík}",
  title="Design of catalytic oxidation unit for elimination of VOC and CO",
  annote="Treatments of waste gas as well as solid and liquid wastes are important activities for environmental protection. A thermal oxidation is most used method for VOC abatement from process off-gases. But the consumption of natural gas is often considerable and running costs of such equipment are very high. This is the main reason, why companies are searching for technologies that decreases the consumption of natural gas but still meeting current emission limits. In many cases, the thermal oxidation is appropriate replace to the catalytic oxidation technology. A mathematical model of an ideal plug flow packed bed adiabatic reactor for catalytic oxidation of VOC and CO was created to support a design of catalytic oxidation unit (pilot plant reactor). Industrial catalyst EnviCat based on Pt and Pd applied on the Al2O3 support was used. In the 1st proposed mathematical model, the maximum working temperature of the catalyst was exceeded. Thus, the catalytic bed had to be divided into two parts. Cooling air was injected between the two catalytic beds. Catalytic oxidation unit (pilot plant reactor) was designed according to the results of the mathematical model. The experimental data are in good agreement with the results of the mathematical model, although a very simplified model was used.",
  chapter="103956",
  doi="10.1021/ie402158c",
  number="2",
  volume="53",
  year="2014",
  month="january",
  pages="732--737",
  type="journal article in Web of Science"
}