• Události
  • Sem patřím
  • Centrum sportovních aktivit VUT v Brně
  • Výzkumná centra

  • Pravděpodobně máte vypnutý JavaScript. Některé funkce portálu nebudou funkční.

Detail předmětu

Numerické metody II

Kód předmětu: FSI-3NU
Akademický rok: 2017/2018
Typ předmětu: povinný
Typ studia: bakalářský (první cyklus)
Ročník: 2
Semestr: letní
Počet kreditů:
Výsledky učení předmětu:
Studenti pochopí, že numerické metody jsou efektivní a často jediný prostředek pro řešení diferenciálních rovnic. Seznámí se s principy jednotlivých numerických metod a dozví se, kterou z nich pro řešení konkrétního problému použít. Naučí se používat kvalitní numerické a grafické nástroje Matlabu pro výpočet i zobrazování výsledků.
Způsob realizace výuky:
90 % kontaktní výuka, 10 % distančně
Prerekvizity:
Numerické metody lineární algebry, aproximace funkcí, numerické derivování a integrování, diferenciální a integrální počet, základy programování v MATLABu.
Korekvizity:
Není specifikováno.
Doporučené volitelné složky programu:
Není specifikováno.
Obsah předmětu (anotace):
Předmět je věnován numerickým metodám řešení diferenciálních rovnic. Předmět zahrnuje následující témata: Numerické metody řešení počátečních problémů pro obyčejné diferenciální rovnice. Řešení okrajového problému pro obyčejné diferenciální rovnice. Řešení parciálních diferenciálních rovnic eliptického, parabolického a hyperbolického typu. Předmět je založen na využití programovacího a vývojového prostředí MATLAB.
Doporučená nebo povinná literatura:
Čermák, L.: Numerické metody pro řešení diferenciálních rovnic, učební text FSI VUT Brno, [on-line], available from: http://mathonline.fme.vutbr.cz/Numericke-metody-II/sc-1246-sr-1-a-263/default.aspx.
Shampine, L.F.: Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, 1994.
Hlavička, R.: Numerické metody pro řešení diferenciálních rovnic. Průvodce softwarem a počítačová cvičení v prostředí MATLABu. [on-line], Available from: http://mathonline.fme.vutbr.cz/Numericke-metody-II/sc-1246-sr-1-a-263/default.aspx.
Shampine, L.F., Gladwell, S., Thompson, S.: Solving ODEs with MATLAB, Cambridge University Press, Cambridge, 2003.
LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia, 2007.
Fish, J., Belytschko, T.: A First Course in Finite Elements, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, 2007.
Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics. Pearson Prentice Hall, Harlow, 2007.
Moler, C.B.: Numerical Computing with MATLAB, Siam, Philadelphia, 2004.
Plánované vzdělávací činnosti a výukové metody:
Předmět je vyučován formou cvičení, které je zaměřeno na praktické zvládnutí látky.
Způsob a kritéria hodnocení:
Aktivní účast ve cvičeních, zpracování semestrální práce užitím programovacího a vývojového prostředí MATLAB (OCTAVE), úpěšné absolvování kontrolní práce.
KLASIFIKACE: 100--90: A (výborně), 89--80: B (velmi dobře), 79--70: C (dobře), 69--60: D (uspokojivě), 59--50: E (dostatečně), 49--0: F (nevyhovující).
Jazyk výuky:
čeština
Pracovní stáže:
Není specifikováno.
Osnovy výuky:
Není specifikováno.
Cíl:
Cílem předmětu je seznámit studenty s numerickými metodami pro řešení obyčejných a parciálních diferenciálních rovnic. Studenti si také prohloubí a rozšíří své znalosti Matlabu a to jak v technice programování tak ve schopnosti využívat pro řešení diferenciálních rovnic Matlabovské numerické funkce.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast na cvičení je konrolovaná. Výuka probíhá podle týdenních plánů rozvrhů. Stanovení způsobu náhrady zameškané výuky je v kompetenci vedoucího cvičení.

Typ (způsob) výuky:

Cvičení s poč. podporou: 26 hod., povinná
Vyučující / Lektor: doc. RNDr. Libor Čermák, CSc.
Osnova: 1. Numerické metody řešení počátečních problémů pro ODR. Explicitní a implicitní Eulerova metoda. Přesnost a stabilita.
2. Explicitní Rungovy-Kuttovy metody, řízení délky kroku, matlabovské funkce ode23 a ode45.
3. Adamsovy metody, technika prediktor-korektor, řízení délky kroku a řádu metody, matlabovská funkce ode113.
4. Tuhé počáteční problémy, metody zpětného derivování, matlabovské funkce ode23t, ode15s.
5. Řešení vybraných počátečních úloh v MATLABu.
6. Okrajová úloha pro ODR, metoda střelby, matlabovská funkce bvp4c.
7. Okrajová úloha pro ODR, diferenční metoda, metoda konečných objemů.
8. Okrajová úloha pro ODR, metoda konečných prvků.
9. Eliptická PDR, metoda sítí, metoda konečných prvků.
10. Eliptická PDR, metoda konečných prvků - pokračování.
11. Parabolická PDR, metoda přímek, matlabovská funkce pdepe.
12. Hyperbolická PDR druhého řádu, metoda přímek.
13. Hyperbolická PDR prvního řádu, metoda charakteristik.

Zařazení předmětu ve studijních programech