• Sem patřím
  • Centrum sportovních aktivit VUT v Brně
  • Výzkumná centra
  • Zvut.cz

  • Pravděpodobně máte vypnutý JavaScript. Některé funkce portálu nebudou funkční.

Detail předmětu

Variační počet

Kód předmětu: FSI-S1M
Akademický rok: 2016/2017
Typ předmětu: povinný
Typ studia: magisterský navazující (druhý cyklus)
Ročník: 1
Semestr: letní
Počet kreditů:
Výsledky učení předmětu:
Variační počet umožní studentům osvojit si široké spektrum
klasických výsledků variačního počtu. Studenti se naučí výsledky
aplikovat při samostatném řešení technických úloh.
Způsob realizace výuky:
90 % kontaktní výuka, 10 % distančně
Prerekvizity:
Kalkulus v obvyklém rozsahu, okrajové úlohy ODR a PDR.
Korekvizity:
Není specifikováno.
Doporučené volitelné složky programu:
Není specifikováno.
Obsah předmětu (anotace):
Variační počet. Klasická teorie variačního počtu: první a druhá variace, konjugované body, zobecnění pro vektorové funkce, vyšší derivace, funkce více nezávislých proměnných. Úlohy s vazbou, izoperimetrický problém, hledání geodetik a minimálních ploch. Četné aplikace: mechanika, optika.
Doporučená nebo povinná literatura:
Fox, Charles: Introduction to the Calculus of Variations, New York: Dover, 1988
Kureš, Miroslav, Variační počet, PC-DIR Real Brno 2000
Kureš, Miroslav, Variační počet, PC-DIR Real, Brno 2000
Plánované vzdělávací činnosti a výukové metody:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení:
Klasifikovaný zápočet: účast, referát, semestrální práce
Jazyk výuky:
čeština
Pracovní stáže:
Není specifikováno.
Osnovy výuky:
Není specifikováno.
Cíl:
Studenti získají základní znalosti z variačního počtu. Budou schopni je aplikovat v různých technických problémech.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Cvičení: povinná
Přednášky: doporučené

Typ (způsob) výuky:
Přednáška: 26 hod., nepovinná
Vyučující / Lektor: doc. RNDr. Miroslav Kureš, Ph.D.
Osnova: 1. Úvod. Pomocné výsledky.
2. Základní lemma. První variace. Eulerova rovnice.
3. Druhá variace.
4. Klasické aplikace.
5. Zobecňování základní úlohy.
6. Metody řešení parciálních diferenciálních rovnic 1. řádu.
7. Kanonické rovnice a Hamiltonova-Jacobiho rovnice.
8. Úlohy s vazbami.
9. Izoperimetrické problémy.
10. Geodetiky.
11. Minimální plochy.
12. Problém n těles.
13. Existence řešení. Obecnější prostory funkcí.
Cvičení: 13 hod., povinná
Vyučující / Lektor: doc. RNDr. Miroslav Kureš, Ph.D.
Osnova: Cvičení vycházejí z přednášky v předchozím týdnu.

Zařazení předmětu ve studijních programech

25.04.2017 08:44:06
php 0.14s, sql 0.07s
shreck2, cdbx3