• Události
  • Sem patřím
  • Centrum sportovních aktivit VUT v Brně
  • Výzkumná centra
  • Zvut.cz

  • Pravděpodobně máte vypnutý JavaScript. Některé funkce portálu nebudou funkční.

Detail předmětu

Optimalizace II

Kód předmětu: FSI-SO2
Akademický rok: 2016/2017
Typ předmětu: povinný
Typ studia: magisterský navazující (druhý cyklus)
Ročník: 1
Semestr: zimní
Počet kreditů:
Výsledky učení předmětu:
Předmět je určen pro studenty matematického inženýrství, je užitečný pro studenty aplikovaných věd. Studenti prohloubí své znalosti teoretických základů optimalizace a osvojí si pokročilé algoritmy řešení optimalizačních úloh a rozvinou svoji představu o uplatnění optimalizačních modelů v typických aplikacích.
Způsob realizace výuky:
90 % kontaktní výuka, 10 % distančně
Prerekvizity:
Přednášená látka vyžaduje znalosti základů optimalizace v rozsahu předmětu SOP. Dále se předpokládají standardní znalosti pravděpodobnosti a matematické satistiky.
Korekvizity:
Není specifikováno.
Doporučené volitelné složky programu:
Není specifikováno.
Obsah předmětu (anotace):
Předmět je zaměřen na pokročilé optimalizační modely a metody pro řešení inženýrských úloh. Předmět zahrnuje zejména stochastické programování (deterministické reformulace, jejich vlastnosti a vybrané algoritmy) a vybrané okruhy z celočíselného a dynamického programování. Kurs byl sestaven na základě zkušeností autora s obdobnými kursy na zahraničních školách.
Doporučená nebo povinná literatura:
Kall, P.-Wallace,S.W.: Stochastic Programming, Wiley 1994.
Klapka, J. a kol: Metody operačního výzkumu, VUT, 2000.
Birge,J.R.-Louveaux,F.: Introduction to Stochastic Programing, Springer, 1997.
Prekopa, A: Stochastic Programming, Kluwer, 1996.
Plánované vzdělávací činnosti a výukové metody:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení:
Zkouška je udělena na základě hodnocení předložené písemné práce a
jejího přednesení v kolektivu zúčastněných studentů.
Jazyk výuky:
čeština
Pracovní stáže:
Není specifikováno.
Osnovy výuky:
Není specifikováno.
Cíl:
Důraz je kladen na získání znalostí o pokročilých optimalizačních modelech.
Důležité je porozumění a rozvíjení schopnosti osvojené poznatky používat.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast je kontrolována pomocí aktivní účasti studentů na řešených problémech,
zameškaná výuka je nahrazována samostatným řešením zadaných úloh.

Typ (způsob) výuky:
Přednáška: 26 hod., nepovinná
Vyučující / Lektor: RNDr. Pavel Popela, Ph.D.
Osnova: 1. Původní úloha stochastického programování.
2. WS a HN přístup.
3. IS a EV reformulace.
4. EO, EEV, EVPI a VSS.
5. MM a VO, řešení rozsáhlejších úloh.
6. PO a QO, souvislosti s celočíselným programováním.
7. Deterministická a pravděpodobnostní omezení, použití kompenzace.
8. WS teorie - konvexnost a měřitelnost.
9. WS případ - určení rozdělení.
10. Dvojstupňové úlohy, jejich klasifikace a modelování.
11. Základní výsledky v oblasti konvexnosti.
12. Aplikace dvojstupňového programování.
13. Dynamické programování a vícestupňové modely.
Cvičení s poč. podporou: 13 hod., povinná
Vyučující / Lektor: RNDr. Pavel Popela, Ph.D.
Osnova: Příklady na:
1. Původní úlohu stochastického programování.
2. WS a HN přístup.
3. IS a EV reformulace.
4. EO, EEV, EVPI a VSS.
5. MM a VO, řešení rozsáhlejších úloh.
6. PO a QO, souvislosti s celočíselným programováním.
7. Deterministická a pravděpodobnostní omezení, použití kompenzace.
8. WS teorie - konvexnost a měřitelnost.
9. WS případ - určení rozdělení.
10. Dvojstupňové úlohy, jejich klasifikace a modelování.
11. Základní výsledky v oblasti konvexnosti.
12. Aplikace dvojstupňového programování.
13. Dynamické programování a vícestupňové modely.

Zařazení předmětu ve studijních programech