• JobChallenge 2017
  • Události
  • Sem patřím
  • Centrum sportovních aktivit VUT v Brně
  • Výzkumná centra

  • Pravděpodobně máte vypnutý JavaScript. Některé funkce portálu nebudou funkční.

Detail předmětu

Matematická analýza II

Kód předmětu: FSI-SA2
Akademický rok: 2016/2017
Typ předmětu: povinný
Typ studia: bakalářský (první cyklus)
Ročník: 1
Semestr: letní
Počet kreditů:
Výsledky učení předmětu:
Uplatnění metod diferenciálního a integrálního počtu více proměnných ve fyzikálních a technických úlohách.
Způsob realizace výuky:
90 % kontaktní výuka, 10 % distančně
Prerekvizity:
Matematická analýza I, Lineární algebra.
Korekvizity:
Není specifikováno.
Doporučené volitelné složky programu:
Matematické výpočty pomocí MAPLE.
Obsah předmětu (anotace):
Předmět Matematická analýza II přímo navazuje na kurz Matematická analýza I. Jeho obsahem je diferenciální a integrální počet funkcí více reálných proměnných. Studenti v jeho průběhu získají teoretický aparát nezbytný k řešení složitějších úloh v matematice a technických disciplínách.
Doporučená nebo povinná literatura:
V. Jarník: Diferenciální počet II, Academia, 1984. (CS)
J. Karásek: Matematika II, skripta FSI VUT, 2002. (CS)
V. Jarník: Integrální počet II, Academia, 1984. (CS)
D. M. Bressoud: Second Year Calculus, Springer, 2001. (EN)
J. Škrášek, Z. Tichý: Základy aplikované matematiky I a II, SNTL Praha, 1989. (CS)
Plánované vzdělávací činnosti a výukové metody:
Předmět je vyučován formou přednášek a navazujících cvičení. Náplní přednášek je teoretický výklad k dané problematice. Cvičení potom mají charakter praktického/početního zvládnutí látky z přednášek.
Způsob a kritéria hodnocení:
Zápočet: aktivní účast ve cvičeních, úspěšné absolvování dvou písemných prací (tj. získání alespoň poloviny z maximálního počtu bodů z každé z nich).

Zkouška: bude mít písemnou a ústní část, podmínkou pro připuštění k ústní části je alespoň 50% bodový zisk z písemné části.
Jazyk výuky:
čeština
Pracovní stáže:
Není specifikováno.
Osnovy výuky:
Není specifikováno.
Cíl:
Cílem je seznámit studenty se základy diferenciálního a integrálního počtu funkce více reálných proměnných tak, aby byli schopni aplikovat probranou látku ve vybraných úlohách fyzikální a inženýrské praxe.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Cvičení: povinná
Přednášky: doporučené

Typ (způsob) výuky:

Přednáška: 52 hod., nepovinná
Vyučující / Lektor: doc. Ing. Luděk Nechvátal, Ph.D.
Osnova: 1. Metrické prostory;
2. Zobrazení metrických prostorů, funkce více proměnných;
3. Limita a spojitost;
4. Parciální derivace, derivace ve směru, gradient;
5. Totální diferenciál, Taylorův polynom;
6. Lokální extrémy;
7. Vázané a absolutní extrémy;
8. Funkce definované implicitně;
9. Dvojný a trojný integrál;
10. Aplikace dvojného a trojného integrálu, křivky a jejich orientace;
11. Křivkové integrály, Greenova věta;
12. Nezávislost integrálu na integrční cestě a související pojmy, plochy a jejich orientovatelnost;
13. Plošné integrály a jejich aplikace, Gaussova-Ostrogradského věta a Stokesova věta.
Cvičení: 33 hod., povinná
Vyučující / Lektor: doc. Ing. Luděk Nechvátal, Ph.D.
Mgr. Viera Štoudková Růžičková, Ph.D.
Osnova: Cvičení vycházejí z přednášky v předchozím týdnu.
Cvičení s poč. podporou: 6 hod., povinná
Vyučující / Lektor: doc. Ing. Luděk Nechvátal, Ph.D.
Osnova: Toto cvičení bude využito jako počítačová podpora ke standardnímu cvičení.

Zařazení předmětu ve studijních programech