Detail předmětu

Virtuální prototypy

FSI-QVPAk. rok: 2023/2024

Využití virtuálních prototypů významně redukuje čas nutný na vývoj motorových vozidel. Prototypy dovolují ověřit a optimalizovat vlastnosti vozidla před tím, než je postaven prototyp. Student v tomto předmětu nejen získá teoretické, ale i praktické znalosti v této oblasti. Pro praktickou část výuky je zvolen software ADAMS, který je jedním z nejvýznamnějších a nejrozšířenějších programů pro výpočty v oblasti dynamiky vozidel.

Jazyk výuky

čeština

Počet kreditů

6

Vstupní znalosti

Maticový počet. Základní znalost numerické matematiky. Základy technické mechaniky, kinematiky a dynamiky.

Pravidla hodnocení a ukončení předmětu

Podmínky udělení zápočtu:
Znalost podstaty probíraných problémů a praktické realizace výpočetních prací s využitím
výpočetní techniky a potřebného softwarového vybavení. Aplikace znalostí je prověřována na zadaných příkladech. Podmínkou udělení zápočtu je samostatné vypracování zadaných úloh bez závažných nedostatků. Průběžná kontrola studia je prováděna na příkladech.
Zkouška:
Během zkoušky jsou prověřovány a hodnoceny znalosti, týkající se podstaty probíraných problémů, způsobů řešení a jejich aplikace v řešených úlohách.
Zkouška se skládá z písemné části (kontrolního testu) a z části ústní. Do klasifikačního hodnocení se zahrnují: 1. Hodnocení práce ve cvičeních (hodnocení vypracovaných úloh). 2. Výsledek písemné části zkoušky (kontrolního testu). 3. Výsledek ústní části zkoušky.
Výuka ve cvičení je povinná, kontrolu účasti provádí vyučující. Forma nahrazení výuky zameškané z vážných důvodů se řeší individuálně s vyučujícím předmětu.

Učební cíle

Cílem předmětu je získání teoretických a praktických znalostí v oblasti virtuálních prototypů. Studenti se seznámí s multi-body software a s jejich vývojovými trendy.
Studenti získají přehled o tom, které problémy je možné řešit s využitím multi-body software, která data potřebují k vytvoření modelu a jaké výsledky mohou získat. Studenti rovněž získají nezbytné znalosti, které jim umožní samostatně tvořit multi-body modely s použitím softwarových nástrojů.

Základní literatura

STEJSKAL, V., VALÁŠEK, M. Kinematics and dynamics of machinery. Marcel Dekker, Inc. 1996. ISBN 0-8247-9731-0 (EN)
BLUNDELL, M., HARTY, D. The multibody systems approach to vehicle dynamics. Second edition. Boston, MA: Elsevier, 2015. ISBN 978-008-0994-253. (EN)
SCHIEHLEN, W. (ed.) Multibody Systems Handbook. Berlin: Springer-Verlag, 1990 (EN)
ADAMS/View. [on-line Adams software manual] MSC.Software Corporation. (EN)
ADAMS/Solver. [on-line Adams software manual] MSC.Software Corporation. (EN)

Doporučená literatura

Getting Started Using ADAMS/View. [on-line Adams software tutorial] MSC.Software Corporation. (EN)
STEJSKAL, V., VALÁŠEK, M. Kinematics and dynamics of machinery. Marcel Dekker, Inc. 1996. ISBN 0-8247-9731-0 (EN)
SCHIEHLEN, W. (ed.) Dynamics of High-Speed Vehicles. Wien-New York: Springer-Verelag, 1982 (EN)
BLUNDELL, M., HARTY, D. The multibody systems approach to vehicle dynamics. Second edition. Boston, MA: Elsevier, 2015. ISBN 978-008-0994-253. (EN)
PACEJKA, Hans B. Tire and vehicle dynamics. Third Edition. Amsterdam: Elsevier, 2012. ISBN 9780080970165. (EN)
Road vehicles - Vehicle dynamics and road-holding ability – Vocabulary, ISO8855 : 2011 (E/F), International Organization for Standardization, Switzerland (EN)

eLearning

Zařazení předmětu ve studijních plánech

  • Program N-ADI-P magisterský navazující, 1. ročník, letní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Úvod (multi-body formalismus a ostatní technologie).
2. Základní typy modelů.
3. Základní prvky multi-body simulačních programů a proces modelování.
4. Základní prvky multi-body simulačních programů a proces modelování.
5. Souřadné systémy, metody určení polohy a orientace.
6. Uzavřené kinematické řetězce – problém nadbytečných souřadnic.
7. Numerické řešení – soustava diferenciálních rovnic a algebraických rovnic.
8. Numerické řešení – soustava diferenciálních rovnic a algebraických rovnic.
9. Počet stupňů volnosti – Vliv na způsob modelování mechanismu.
10. Typy analýz.
11. Typy analýz.
12. Speciální modelovací prvky (pneumatiky).
13. Softwarové řešení a nové trendy.

Cvičení s počítačovou podporou

26 hod., povinná

Vyučující / Lektor

Osnova

1. Vzorový příklad - návrh uzavírajícího mechanizmu (1.-7. týden).
Studenti řeší přiklad za přímého vedení vyučujícího. K dispozici je rovněž detailní příručka průvodce řešením.
2. Příklad k samostatnému řešení - pětiprvková náprava (8.-12. týden).
Studenti řeší příklad samostatně a konzultují problémy s vyučujícím.
3. Přehled modulů programového systému ADAMS (13. týden).

eLearning