Detail předmětu
Modelování a identifikace
FEKT-MMIDAk. rok: 2019/2020
Předmět je zaměřen na:
- metody identifikace dynamických systémů
- postupy při neparametrické a zejména při parametrické identifikaci
- on-line a off-line identifikaci
- spektrální estimaci, ocenění vlivu šumu a poruch při identifikaci
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Absolvent předmětu je schopen provádět identifikaci a základní analýzu dynamických systémů zejména s pomocí univerzálního programového vybavení MATLAB-Simulink a jeho toolboxů.
Prerekvizity
Jsou požadovány znalosti na úrovni bakalářského studia.
Doporučená nebo povinná literatura
Ljung, L.: System Identification, Theory for the User, Prentice Hall, 1987 (EN)
Noskievič, P.: Modelování a identifikace systémů. Montanex Ostrava 1999 (CS)
Fikar, M-Mikleš J.: Identifikácia systémov. STU Bratislava 1999 (SK)
Soderstrom T., Stoica P.: System Identification. Prentice Hall International, 1989 (EN)
Šimandl, M.: Identifikace systémů a filtrace. Západočeská univerzita v Plzni, 2001, ISBN 80-7082-170-1. (CS)
Isemrann R., Munchhof M. : Identification of Dynamic Systems - An Introduction with Applications. Springer 978-540-78878-2, 2011. (EN)
Plánované vzdělávací činnosti a výukové metody
Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT. Podklady k přednáškám a ke cvičení jsou pro studenty dostupné z webových stránek předmětu. Student odevzdává jeden samostatný projekt.
Způsob a kritéria hodnocení
Numerická cvičení- Max 15 bodů.
Individuální projekt - Max. 15 bodů.
Závěrečná zkouška - Max. 70 bodů.
Jazyk výuky
čeština
Osnovy výuky
1. Úvod do problematiky identifikace dynamických systémů
2. Neparametrické metody identifikace, korelační metody, získávání frekvenční charakteristiky.
3. Vstupní signály, stupeň persistentního buzení, binární pseudonáhodná posloupnost.
4. Metoda nejmenších čtverců, odvození metody, geometrický význam, vlastnosti.
5. Modely dynamických systémů. ARX, ARMAX, ARARX, obecný model, pseudolineární regrese.
6. Rekurzivní MNČ. Numericky stabilní metody založené na odmocninové filtraci.
7. Metody pomocných proměnných. Metoda se zpožděnými pozorováními, metoda s pomocným modelem.
8. Metody založené na vybělení chyby predikce. Identifikace šumového modelu.
9. Praktické poznámky k identifikaci. Předzpracování signálů.
10. Identifikace pomocí neuronových sítí a fuzzy modelování.
11. Další přístupy k identifikaci.
12. Identifikace nelineárních dynamických systémů.
13. Zopakování poznatků.
Cíl
Seznámit posluchače se základními technikami používanými pro identifikaci dynamických systémů a s možnými úskalími. Získat představu o vlivu šumu působícího na soustavu na výsledky identifikace
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.
Zařazení předmětu ve studijních plánech