Detail předmětu

Pokročilé metody v biostatistice

FEKT-MPC-STAAk. rok: 2019/2020

Předmět je koncipován jako prakticky orientovaný kurz zaměřený na pokročilou aplikaci vícerozměrné statistiky a stochastického modelování na biologická a medicínská data. Předmět navazuje na základní metodologii jednorozměrné analýzy dat. Probírány jsou metody deskriptivní vícerozměrné analýzy se speciálním důrazem na možnosti grafického zviditelnění vícerozměrných dat, stochastické modelování a predikce. Teoretické aspekty jsou uváděny vždy formou příkladů a důraz je kladen i na praktickou stránku výuky. Veškeré výpočetní techniky jsou procvičovány s pomocí běžně dostupných softwarových nástrojů (Statistica for Windows, SPSS).

Výsledky učení předmětu

Po absolvování předmětu je schopen:
• vyhodnotit předpoklady vícerozměrné analýzy dat/modelování a vybrat vhodnou metodu pro řešení daného problému,
• aplikovat základy ordinačních metod a shlukové analýzy,
• použít nástroje vícerozměrné lineární a logistické regrese,
• vybrat a použít zobecněné lineární modely,
• použít vícerozměrné analýzy a modely ve statistickém softwaru

Prerekvizity

Jsou požadovány znalosti biostatistiky (ASTA) na úrovni bakalářského studia, práce s PC, práce se software Statistica.

Doporučená nebo povinná literatura

MELOUN, Milan a Jiří MILITKÝ. Statistické zpracování experimentálních dat. 1. vyd. Praha: Plus, 1994. ISBN 80-85297-56-6. (CS)
LEGENDRE, Piere a Louis LEGENDRE. Numerical Ecology 2. vyd. Elsevier Science, 1998. ISBN 978-0444892508. (EN)
ZAR, Jerrold. Biostatistical analysis. New Jersey: Prentice Hall, 1984. ISBN 978-0321656865. (EN)
HAVRÁNEK, Tomáš. Statistika pro biologické a lékařské vědy. 1. vyd. Praha: Academia, 1993. ISBN 80-200-0080-1. (CS)
ALTMAN, Douglas. Practical statistics for medical research. London: Chapman and Hall, 1991. ISBN 0412276305. (EN)

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT.

Způsob a kritéria hodnocení

Splnění požadavků pro ukončení cvičení: účast na cvičeních, 3 průběžné písemky na více než 50% bodů.
Závěrečná písemná zkouška za více než 50 % bodů. Zkouška je zaměřena na testování přehledu v oblasti vícerozměrné statistiky a stochastického modelování.

Jazyk výuky

čeština

Osnovy výuky

1. Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod
2. Vícerozměrné statistické rozdělení a testy, operace s vektory a maticemi
3. Podobnosti a vzdálenosti ve vícerozměrném prostoru, asociační matice I
4. Podobnosti a vzdálenosti ve vícerozměrném prostoru, asociační matice II
5. Shluková analýza
6. Ordinační analýzy – principy redukce dimenzionality
7. Ordinační analýzy – přehled metod
8. Diskriminační analýza
9. Principy stochastického modelování
10. Lineární modely – základy
11. Logistická regrese, analýza ROC křivek; Pokročilé metody predikce - přehled
12. Strategie analýzy vícerozměrných klinických dat, vícerozměrná data v klinických studiích, základy metaanalýzy
13. Přehled metod analýzy časových řad

Cíl

Cílem kurzu je předat studentům dovednosti v aplikaci vícerozměrné analýzy a stochastického modelování na biologická a klinická data.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na cvičení je povinná, povoleny jsou 2 absence, v případě více absencí je možné cvičení po dohodě s vyučujícím nahradit (optimálně v jiné paralelní skupině).

Zařazení předmětu ve studijních plánech

  • Program MPC-BTB magisterský navazující, 1. ročník, zimní semestr, 5 kreditů, povinně volitelný

  • Program EEKR-CZV celoživotní vzdělávání (není studentem)

    obor ET-CZV , 1. ročník, zimní semestr, 5 kreditů, povinně volitelný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Cvičení na poč.

26 hod., povinná

Vyučující / Lektor