Detail předmětu

Analysis of Signals and Images

FEKT-NASOPovinnýMagisterský navazující (druhý cyklus)Ak. rok: 2017/2018Zimní semestr1, 2 ročník5  kreditů

Časově frekvenční analýza, vlnková transformace. Spojitá a diskretní reprezentace obrazů, 2D transformace, náhodný obraz. Zvýrazňování a edice obrazů, úvod do restaurace poškozených obrazů. Metody rekonstrukce obrazů z paralelních a vějířových tomografických projekcí. Analýza obrazu: detekce hran, hranic a oblastí, segmentace obrazu. Morfologické transformace, vizualizace 2D a 3D obrazových dat. Technické, medicínské a ekologické aplikace.

Výsledky učení předmětu

Absolvent předmětu je schopen:
- se orientovat v teoretických principech metod analýzy signálů a zejména obrazů i v praktických aspektech jejich implementace
- navrhovat postupy a poskytnout v těchto záležitostech konzultace,
- aplikovat související programy včetně komerčního softwaru a příp. programovat samostatně navržené související algoritmy,
- být platným členem interdisciplinárního týmu ve věci analýzy obrazů a signálů.

Prerekvizity

Jsou požadovány znalosti na úrovni bakalářského studia, zejména matematiky a číslicového zpracování signálů

Doporučená nebo povinná literatura

Jan, J.: Medical Image Processing, Reconstruction and Restoration. CRC Press 2005

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT. Metody vyučování zahrnují přednášky a počítačové cvičení, popř. samostudium. Předmět využívá e-learning (Moodle). Student odevzdává samostatný projekt.

Způsob a kritéria hodnocení

Podmínky pro úspěšné ukončení předmětu upřesňuje každoročně aktualizovaná vyhláška garanta předmětu;
v zásadě
- získání zápočtu na základě aktivní účasti na demonstračních cvičeních (až 24 bodů, min. 12 bodů),
- úspěšné složení písemné závěrečné zkoušky (až 76 bodů)

Jazyk výuky

angličtina

Osnovy výuky

1. Časově-frekvenční analýza signálů, vlnkové transformace.
2. Spojitá reprezentace obrazů, 2D transformace, náhodný obraz.
3. Diskretní reprezentace obrazů, vzorkování, 2D diskretní transnformace, diskretní operátory.
4. Zvýrazňování a edice obrazů - transformace kontrastu a barevné stupnice.
5. Maskové operátory, zostřování, potlačování šumu a rušení, geometrické operace.
6. Úvod do restaurace zkreslených obrazů.
7. Lokální parametry, texturní analýza a parametrický obraz.
8. Segmentace obrazů podle homogenity, regionově orientovaná segmentace.
9. Segmentace obrazů na základě hranové reprezentace a Houghova transformace.
10. Segmentace metodou rozvodí, pružnýni konturami a úrovňovými množinami (level sets)
11. Zobecněné morfologické transformace.
12. Metody rekonstrukce obrazů z paralelních a vějířových tomografických projekcí v originální a spektrální oblasti.
13 Nelineární analýza a filtrace obrazů, neuronové klasifikátory.

Cíl

Cílem předmětu je poskytnout studentům znalosti o časově frekvenční analýze signálů a zejména o číslicovém zpracování a analýze obrazů.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu (viz Rozvrhové jednotky).
V zásadě:
- povinné počítačové cvičení
- nepovinná přednáška

Typ (způsob) výuky

 

Přednáška

39 hod., nepovinná

Vyučující / Lektor

Cvičení na poč.

13 hod., povinná

Vyučující / Lektor