Detail předmětu

Funkcionální analýza I

FSI-SU1Ak. rok: 2016/2017

Předmět se zabývá základními pojmy funkcionální analýzy a jejich ilustrací na konkrétních metrických, normovaných lineárních a unitárních prostorech. Probrána je i Lebesgueova míra a Lebesgueův integrál. Výsledky jsou využity pro řešení úloh matematické a numerické analýzy.

Jazyk výuky

čeština

Počet kreditů

5

Zajišťuje ústav

Výsledky učení předmětu

Znalost základních pojmů metrických, lineárních, normovaných a unitárních prostorů, Lebesgueova integrálu a schopnost tyto pojmy využívat.

Prerekvizity

Diferenciální a integrální počet, numerické metody, obyčejné diferenciální rovnice.

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.

Způsob a kritéria hodnocení

Zápočet: aktivní účast ve cvičeních, úspěšné napsání kontrolní práce.
Zkouška - praktická část: ilustrace pojmů na konkrétních příkladech.
Teoretická část: otázky z přednesené látky.

Osnovy výuky

1. Metrický prostor - základní pojmy, některé podmnožiny, separabilní metrické prostory, konvergence, úplné metrické prostory, kompaktnost, kompaktní množiny v některých speciálních prostorech.
2. Míra a integrál - Lebesqueova míra, měřitelné funkce, Lebesgueův integrál, věty o limitním přechodu.
3. Lineární prostor - defnice a příklady, normovaný prostor, unitární prostor, Besselova nerovnost, Riesz-Fischerova věta, Hilbertův prostor, charakteristická vlastnost unitárních prostorů.
4. Funkcionály - geometrický význam lineárního funkcionálu, konvexní množiny, konvexní funkcionály, Hahn-Banachova věta, spojité lineární funkcionály, Hahn-Banachova věta v normovaném prostoru.
5. Adjungovaný prostor - prostor adjungovaný k Hilbertovu prostoru, druhý adjungovaný prostor, slabá konvergence, Banach-Steinhausova věta, slabá konvergence a ohraničené množiny v adjungovaném prostoru.

Učební cíle

Seznámit a naučit studenty pracovat se základními pojmy a postupy funkcionální analýzy, které jsou využívány v dalších matematických předmětech.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

V případě nepřítomnosti si student musí doplnit zameškanou látku samostudiem z literatury.

Základní literatura

F. Burk, Lebesgue measure and integration: An introduction, Wiley 1998. (EN)
C. Costara, D. Popa, Exercises in functional analysis, Kluwer 2003. (EN)
J. Franců, Funkcionální analýza 1, FSI VUT 2014. (CS)
D. H. Griffel, Applied functional analysis, Dover 2002. (EN)
A. N. Kolmogorov, S. V. Fomin: Základy teorie funkcí a funkcionální analýzy, SNTL, Praha 1975. (CS)
J. Lukeš, Zápisky z funkcionální analýzy, Karolinum 1998. (CS)
B. Rynne, M. Youngson, Linear functional analysis, Springer 2008. (EN)
E. Zeidler, Applied functional analysis: Main principles and their applications, Springer, 1995. (EN)

Zařazení předmětu ve studijních plánech

  • Program B3A-P bakalářský

    obor B-MAI , 2. ročník, letní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Metrický prostor - základní pojmy, některé podmnožiny, separabilní metrické prostory, konvergence, úplné metrické prostory, kompaktnost, kompaktní množiny v některých speciálních prostorech.
2. Míra a integrál - Lebesqueova míra, měřitelné funkce, Lebesgueův integrál, věty o limitním přechodu.
3. Lineární prostor - defnice a příklady, normovaný prostor, unitární prostor, Besselova nerovnost, Riesz-Fischerova věta, Hilbertův prostor, charakteristická vlastnost unitárních prostorů.
4. Funkcionály - geometrický význam lineárního funkcionálu, konvexní množiny, konvexní funkcionály, Hahn-Banachova věta, spojité lineární funkcionály, Hahn-Banachova věta v normovaném prostoru.
5. Adjungovaný prostor - prostor adjungovaný k Hilbertovu prostoru, druhý adjungovaný prostor, slabá konvergence, Banach-Steinhausova věta, slabá konvergence a ohraničené množiny v adjungovaném prostoru.

Cvičení

26 hod., povinná

Vyučující / Lektor

Osnova

Procičování látky z přednášek na konkrétních příkladech prostorů konečné dimenze, prostorů posloupností a prostorů spojitých a integrovatelných funkcí.