PROBLEMATIKA NAKLÁDÁNÍ S DEŠŤOVÝMI VODAMI Z KOMUNIKACÍ

PROBLEMS OF DISPOSAL WITH RAINWATER FROM A COMMUNICATION

Zkrácená verze Ph.D. Thesis
Klíčová slova
Odlučovač lehkých kapalin, dešťové vody, zaolejované vody, separace ropných látek

Keywords
Separator systems for light liquids, rainwater, oily water, separator of oil substances

Místo uložení práce
Knihovnické informační centrum, Fakulta stavební, Vysoké učení technické v Brně, Veveří 331/95, Brno
OBSAH

1 ÚVOD ... 5

2 CÍL DISERTAČNÍ PRÁCE .. 6

3 ZNEČIŠŤUJÍCÍ LÁTKY VLIHEM DOPRAVY ... 7
 3.1 Lehké kapaliny .. 7
 3.2 Polycyklické aromatické uhlovodíky ... 7
 3.3 Těžké kovy .. 8
 3.4 Chloridy .. 8

4 MOŽNOSTI MINIMALIZACE ZNEČIŠŤUJÍCÍCH LÁTEK .. 9
 4.1 Odlučovače lehkých kapalin .. 9
 4.2 Dešťová usazovací nádrž (sedimentační nádrž) .. 13
 4.3 Jednoúčelové speciální objekty (např. rozdělovací objekty) 14
 4.4 Retenční filtrační nádrž ... 14
 4.5 Kombinace objektů ... 14

5 POROVNÁNÍ ÚČINNOSTI ODLUČOVAČE LEHKÝCH KAPALIN 16
 5.1 Metodika ... 16
 5.2 Provedení testů .. 18

6 VÝZNAM DISERTAČNÍ PRÁCE PRO PRAXI A ROZVOJ VĚDNÍHO OBORU 23

7 ZÁVĚR ... 24

8 SUMMARY ... 25

9 SEZNAM POUŽITÉ LITERATURY ... 26

10 PŘÍLOHY ... 28
 10.1 Seznam publikovaných prací .. 28
 10.2 Životopis .. 29

11 ABSTRACT ... 30
1 ÚVOD

Působením člověka neustále dochází ke snižování kvality povrchových a podzemních vod. Jedním z negativních faktorů ovlivňujícím právě jejich kvalitu jsou nejrůznější druhy dopravy. Znečištění silniční dopravou může mít charakter náhodný, v podobě havárií automobilů, kdy dochází k úniku pohonných hmot, motorových olejů, provozních kapalin a dalších škodících látek, ale také dlouhodobým vlivem výfukových plynů, obrusů pneumatik a svrchní konstrukce vozovky a úkapů pohonných hmot.

Znečištění povrchových vod je způsobeno splachy srážkových vod z povrchu komunikací s vysokou intenzitou dopravu, zejména dálnic a rychlostních komunikací. V povrchovém odtoku byla identifikována celá řada škodlivin, včetně kovových prvků a suspendovaných pevných látek vznikajících při dopravním provozu, zejména obřušováním povrchu vozovek a pneumatik.

Škodliviny mohou rovněž pocházet z materiálů používaných k údržbě silnic, ploch odpočívané, od parkovišť, zejména v zimním období, kdy může být kontaminace spojena s aplikací rozmrzovacích prostředků a nemrznoucích směsí.

Další významné riziko možné kontaminace životního prostředí představují čerpací stanice, v jejichž blízkosti a na přilehlých parkovištích byly stanoveny nejvyšší koncentrace PAU. Silniční komunikace jsou podle řady studií rovněž hlavním zdrojem chloridů, které neodtékají vodním tokem, ale převážně se vsakují do půdního a horninového prostředí, kde za vhodných podmínek může docházet k jejich akumulaci a následnému postupnému vymývání. (Adamec a kol., 2008)

Srážkové povrchové vody, které nejsou odpadními vodami, ale u kterých může existovat riziko kontaminace ropnými látkami se před začátkem do stoky pro veřejnou potřebu nebo do vod povrchových doporučují odvádět přes objekt havarijního zabezpečení. (ČSN 75 6551, 2008)

Česká republika má závazky vyplývající z přístupové smlouvy k EU a splnění těchto závazků závisí i na vyřešení některých druhů znečištění z povrchových vod, přičemž právě vody odčítající z komunikací patří k těm zdrojům znečištění, které nelze opomenout. Legislativně se problematikou zabývá Rámová směrnice pro vodní politiku 2000/60/ES (WFD), ze které vyplývají pro členské státy důležité požadavky na dobrý a ekologický stav vodních útvarů, snižování a zastavení úniků nebezpečných látek do vodního prostředí.

Znečišťující látky obsažené v dešťových vodách z dopravy:
- lehké kapaliny;
- polycyklické aromatické uhlovodíky;
- těžké kovy;
- chloridy.
2 CÍL DISERTAČNÍ PRÁCE

Zpracovávané téma: „Problematika nakládání s dešťovými vodami z komunikací“ je velice obsáhlé. Nezabývá se tedy stejnou podrobností vůči všem typům opatření, ale zkoumá pouze technologické varianty jednoho způsobu řešení a to předčištění znečištěných povrchových vod z dopravy, prostřednictvím různých koalesčních systémů na mechanickém odlučovači lehkých kapalin.

U legislativních požadavků na vypouštění výčištěných vod s obsahem uhlovodíků C10-C40 do recipientu je nutné respektovat zákon č. 254/2001 Sb., o vodách, v platném znění a navazující předpisy a zvlášť nařízení vlády č. 61/2003 Sb., o ukazatelích a hodnotách přípustného znečištění povrchových vod a odpadních vod, náležitostech povolení k vypouštění odpadních vod do vod povrchových a do kanalizací a o citlivých oblastech, ve znění pozdějších předpisů. Jako imisní standard přípustného znečištění povrchových vod v ukazateli C10-C40 je stanovena hodnota 0,1 mg/l.

Předpisy implementují také přístupové smlouvy k EU, kde jedním z hlavních úkolů je zamezení zhoršení stavu povrchových a podzemních vod a zlepšení stavu vodních ekosystémů. Prevence je zaměřena na omezování znečištění zejména u jejich zdrojů.

Ke splnění legislativně požadovaných hodnot na kvalitu vypouštěných vod se k separaci volných lehkých kapalin u zdrojů znečištění pro svou jednoduchost, cenovou dostupnost a nenáročnou obsluhu využívají znečištění mechanické odlučovače lehkých kapalin s koalesčním filtrem. Návrh technického řešení OLK, včetně doplnění o sorpčině stupeň, pak závisí na konkrétních podmínkách v území, např. na velikosti odvodňové plochy, klimatických poměrech, velikosti návrhového deště, na druhu a vlastnostech kontaminujících ropných látek, na charakteru recipientu, na požadavku jakosti výčištěných vod a na úrovní znečištění vstupních vod (ČSN 75 6551, 2008). Je nutno rovněž počítat s konkrétními postoji vodoprávních úřadů, správců vodních toků a ČIZP.

Předmětem této práce bylo testování možnosti zvýšení účinnosti mechanického OLK pomocí různých typů vestaveb. Cílem bylo zjistit účinnost této konvenční technologie, která je energeticky a technicky nenáročná a její využitelnost pro předčištění (předúpravu) před případným dalším stupněm čištění.

Závěry se vztahují na kontaminaci především oleji, tedy řetězci o vyšším počtu C v molekule. Využitelně jsou i pro kontaminaci naftou a benziny s nižším počtem C v molekule jako prvního stupně separace lehkých kapalin s tím, že vyšší rozpustnost těchto ropných látek, které mohou být metodikou analýzy C10-C40 identifikovány, vyžaduje pro dosažení v řadě případů požadované kvality odtoku OLK další stupně čištění.
3 ZNEČIŠŤUJÍCÍ LÁTKY VLIVEM DOPRAVY

3.1 LEHKÉ KAPALINY

Lehké kapaliny jsou definovány v ČSN EN 858-1 „Odlučovače lehkých kapalin“ jako kapaliny s hustotou do 0,95 g.cm$^{-3}$, které jsou nerozpustné a nezmýdelnitelné, např. motorový benzin, motorová nafta, topný olej a jiné oleje minerálního původu, avšak s vyloučením (mazacího) tuku a olejů rostlinného a živočišného původu.

Protože uhlovodíky ve vodách nemusí být vždy ropného původu, ale mohou být i původu přírodního (mohou vznikat biologickými pochody), upustilo se od pojmu „stanovení ropných látek“ a hovoří se o stanovení nepolárních extrahovatelných látek (NEL).

Hlavním zdrojem uhlovodíků jsou produkty získané z ropy: benzíny, petrolej, motorová nafta, topné mazací oleje, mazut a asfalt. Směsi uhlovodíků jsou asi od C$_4$-C$_{12}$ benziny, asi od C$_{12}$-C$_{18}$ petroleje, asi od C$_{16}$-C$_{24}$ topné oleje a od C$_{24}$-C$_{40}$ mazací oleje. Samostatnou skupinu tvoří polycyklické aromatické uhlovodíky (PAU). (Pitter, 1999)

Uhlovodíky se vyskytují především:
- v odtocích srážkových vod z otevřených ploch zařízení a provozů, které mají spojitost s automobily (např. z velkých parkovišť, umývacích míst, dílen, šrotišť a podobně)
- v odpadních vodách z čištění, údržby a oprav automobilů a jiných strojů
- v odpadních vodách z obrábění a zpracování kovů (například řezací olejové emulze a odmašťovací roztoky) (Plotěný, 2004)

3.2 POLYCYKLICKÉ AROMATICKÉ UHLOVODÍKY

Původ PAU je především ze spalování fosilních paliv. Typicky se tyto látky uvolňují při nedokonalém spalovacím procesu. Do prostředí se tedy dostávají zejména při výrobě energie, spalování odpadů, ze silniční dopravy např. motorová nafta, opotřebování asfaltových vozovek a pneumatik, výrobky z černouhelného dehtu, asfalt a materiály používané při pokryvání střech a při stavbě silnic.

Pro svou schopnost dlouhodobě přetrvávat v životním prostředí a zdravotní závažnost (projevují toxické, karcinogenní a mutagenní vlastnosti) jsou považovány za typické představitele persistentních organických polutanů (POPs – jsou to látky, které se do životního prostředí dostávají pouze vlivem lidské činnosti, a to buď úmyslně nebo jako únik z antropogenních aktivit (výroba, transport, doprava, chemické havárie)). (Pavlíková a kol., 2007)
3.3 TĚŽKÉ KOVY

Znečištění způsobené provozem dopravních prostředků zahnuje i některé těžké kovy. Opotřebováním pneumatik se uvolňuje zinek a uhlovodíky. Při korozii vozidel se uvolňuje železo, chrom, olovo a zinek. Další znečištění zahnuje částečky kovu, zejména měď a nikl, vznikající opotřebováním spojky a brzdového obložení. (Krejčí a kol., 2002)

Kovy jsou zpravidla prvky, a proto se nemohou rozložit nebo zmizet. Mohou se však slučovat s jinými látkami, a tak získávat jiné vlastnosti a mít různý vliv na životní prostředí.

Těžké kovy jako např. Cd, Zn, Pb, Cu a Fe se nacházejí jak v rozpuštěných, tak i v nerozpuštěných formách, což je ovlivněno různými fyzikálními, chemickými a biologickými interakcemi. Koncentrace partikulárně vázaných kovů jsou významnější oproti rozpuštěné fázi. Hlavními složkami kovových enstabilizací jsou železo a hliník. (Beránková a kol., 2008)

Např. olovo, jeho stále významným antropogenním zdrojem jsou výfukové plyny motorových vozidel. Olovo se hromadí na vegetaci v okolí komunikací a dostává se do atmosférických vod a odtud i do vod povrchových a podzemních. (Pitter, 1999)

3.4 CHLORIDY

Při zajišťování sjíždnosti komunikace během zimního období se používají obecně dva základní druhy posypových materiálů:

- chemické rozmrazovací materiály – to jsou látky, které svými vlastnostmi způsobují fyzikálně chemickou změnu sněhu a ledu přítomného na povrchu vozovky, přičemž dochází k jejich tání.
- zdrsnějící (inertní) posypové materiály – to jsou látky, které mechanickým způsobem zvyšují součinitel tření zleďovatelného povrchu vozovky. (Melcher, 2001)

Posyp dálnic a rychlostních komunikací se provádí zásadně chemickými rozmrazovacími materiály. K nejvíce používaným patří soli. Při teplotách mezi 0 a -8°C se v ČR používá chlorid sodný (NaCl, kuchynská sůl). Při nižších teplotách se solný roztok míchá s chloridem vápenatým nebo hořčnatým a při teplotách pod -20°C není již účinek posypových solí dostávající.

Ostatní rozmrazovací látky jako alkoholy, glykoly, močovina, CMA (Kalcium Magnesium Acetate), KA (Kalium Acetáte) apod. nejsou běžně rozšířeny. (Cyhelská, 2009)
4 MOŽNOSTI MINIMALIZACE ZNEČIŠŤUJÍCÍCH LÁTEK

V praxi se převážně používají jednotlivě nebo v kombinaci následující objekty:
- Odlučovače lehkých kapalin.
- Dešťové usazovací nádrže (sédimentační nádrže).
- Vyrovňávací nádrže.
- Akumulační nádrže.
- Retenční filtrační nádrže.
- Jednoúčelové speciální objekty (např. rozdělovací objekty).

4.1 ODLUČOVAČE LEHKÝCH KAPALIN

Odlučovače lehkých kapalin slouží pro zachycení a odloučení volných lehkých kapalin ze znečištěných vod. Jedná se zejména o ropné látky, charakterizované ukazatelem C_{10}-C_{40}. Slouží k čištění odpadních vod z průmyslových provozů, mechanizačních středisek, odstavných a parkovacích ploch, zkrátku všude tam, kde dochází k úkapech lehkých kapalin nebo by mohlo dojít k jejich úniku do povrchových vod. (Asio, spol. s.r.o., 2011)

Technické parametry odlučovačů lehkých kapalin jsou stanoveny normami:
- ČSN EN 858-1 (75 6510). Odlučovače lehkých kapalin (např. oleje a benzinu) – Část 1: Zásady pro navrhování, provádění a zkoušení, označení a řízení jakosti,

Odloučení ropných látek je dvoustupňové, tj. nejdříve dojde ke gravitační separaci plovoucích materiálů na hladině a k sedimentaci těžších částic, a následně k dočištění takto předčištěné vody na speciálním koalescenčním případě i sorpčním filtru.

Voda natéká přívodním potrubím do usazovacího prostoru, kde je u nátoku osazena normá stěna. V tomto prostoru dochází k odstranění plovoucích a sedimentovatelných nečistot gravitačním způsobem. Následně takto upravená odpadní voda natéká přes horní část rozdělovací přepážky do druhého prostoru.

V druhém prostoru jsou osazené koalescenční filtry. Při průtoku odpadní vody koalescenčním filtrem dochází ke shlukování ropných látek, které posléze vyplavou na hladinu a jsou z této hladiny odstraňovány sběrem. Pokud je osazen sorpční filtr dochází k učiněnějšímu odstraňování vzplývavých a dispergovaných ropných látek. Sorpční hmota je vložena do polypropylenových košů, které jsou osazené v nosném rámu odlučovače lehkých kapalin. (Hydroclar, s.r.o., 2009)
Legenda:
U - usazování pevných částic – především písku a prachu
G - gravitační odlučování lehkých kapalin
K - koalescenční odlučování lehkých kapalin na koalescenčním filtru
S - odlučování lehkých kapalin adsorpcí na materiálu sorpčního filtru

Odlučovač LK se kromě zabezpečení odpadních vod z technologických procesů, zpravidla používají na kanalizacích odvádějících srážkovou vodu ze zpevněných ploch s existující velkou pravděpodobností kontaminace ropnými látkami tj. z:

- parkovišť určených pro parkování nákladních a speciálních vozidel (např. zemědělských a stavebních strojů);
- parkovišť určených pro parkování havarovaných a poškozených vozidel;
- z velkocapacitních parkovišť osobních vozidel a to v případech, kdy je na kanalizaci umístěna odlehočovací komora a část odváděné vody tak v případě větších srážek odtéká přímo do toku. Odlučovač musí být osazen mezi parkovištěm a odlehočovací komorou. (Plotěný, 2004)

4.1.1 Druhy odlučovače lehkých kapalin

Odlučovače se dodávají v následujícím sortimentu:
- Odlučovače gravitační.
- Odlučovače gravitačně – koalescenční.
- Odlučovače gravitačně – koalescenční se sorpčním dočištěním.
Odlučovače gravitační

Gravitační metoda odstranění ropných uhlovodíků využívá nižší specifické hmotnosti těchto látek oproti vodě a jejich vysměšení omezené rozpustnosti ve vodě. Za vhodných podmínek spočívajících ve snížení průtokové rychlosti vystupují látky lehčí než voda na hladinu, odkud mohou být odstraněny, přičemž vzestupnou rychlost kapky lze vypočítat ze Stokesova zákona. *(MM spektrum, 2001)*

Jedná se zpravidla o velmi jednoduché objekty stavebně a technicky upravené k oddělení a zachycení plovoucí olejové fáze. Systém sloužící k oddělení lehkých kapalin z vod odtékajících např. z pozemních komunikací musí být doplněn i záhybným prostorem pro sedimentující částice. Odlučovací prostory jsou většinou odděleny vhodně uspořádanými přepážkami. Pro správnou funkci je důležité především optimální uspořádání vnitřního prostoru odlučovače z hlediska předpokládaných průtoků, stanovení průtoků mezních a určení minimální doby zdržení. Odlučovače jsou funkční pouze pro oddělení volně rozptýlených olejových podílů, v případě obsahu olejových emulzí k zachycení olejového podílu nedojde. *(Krátký, Nekolný, 2009)*

Odlučovače gravitační - koalescenční

Zařízení je doplněno mechanickým stupněm schopným odlučit olejový podíl z nestabilní olejové emulze (mechanicky emulgované). K tomuto účelu slouží tzv. „koalescenční vložka“ zhotovená např. z vhodně tvarovaných lamel nebo textilních prvků. *(Krátký, Nekolný, 2009)*

Odlučovače gravitační – koalescenční se sorpčním dočištěním

Zařízení obsahuje navíc tzv. „sorpční filtr“. Jedná se o koncový stupeň odlučovače s obsahem selektivního hydrofobního sorbentu, schopného pohltit gravitačně neoddělitelný olejový podíl. Odlučovač je schopen oddělit podobně jako odlučovače gravitačně – koalescenční olejový podíl z nestabilní olejové emulze (mechanicky emulgované). Stabilní olejovou emulzi vniklou např. použitím chemických emulgátorů odlučovač neoddělí, naopak po průchodu vody s obsahem stabilní chemicky vázané emulze se z odlučovače vyplatí dříve nasorbovaný olejový podíl. *(Krátký, Nekolný, 2009)*

Pro návrh sorpčního filtru je rozhodující filtrační rychlost, množství suspendovaných látek, délka filtračního cyklu a sorpční kapacita použitého sorbetu. Musí být konstruován tak, aby nasycený sorbent byl snadno vyměnitelný. Pro čištění srážkových povrchových vod se použití sorpčního filtru doporučuje s ohledem na jeho provozní náročnost (ekonomickou a ekologickou) pouze v odůvodněných případech. *(ČSN 75 6551, 2008)*
Lamelový odlučovač lehkých kapalin

Účinnost gravitačních odlučovačů se zvýší při vložení štěrbinových vložek šikmo uloženým deskám do odlučovacího prostoru nebo vložením lamelového bloku. Malé ropné kapky se při pomalém vertikálním vzestupu zachytí na stropní stěně lamely a splynou s již odloučenou ropnou látkou. Tato volná ropná látka se pak sune po šikmé stropní stěně lamely vzhůru a shromažďuje se na hladině. Zvýšeného efektu se dosahuje lamelovým uspořádáním, kde každá lamelová štěrbiná funguje jako samostatný odlučovač o tenké vrstvě čištěné vody.

Ke konstrukci lamelových bloků se používá vhodného plastu, ocelového plechu atd. Aby toto čištění bylo účinné je nutné, aby čištěná voda byla přiváděna rovnoměrně, aby nedocházelo k turbulenci a aby čištěná voda odtékala rovnoměrně. (Dvořák a kol., 1982)

Podle průtoku čištěné vody lamelovým blokem rozeznáváme:

- vzestupné odlučovače;
- sestupné odlučovače;
- příčné odlučovače.
4.2 **DEŠŤOVÁ USAZOVACÍ NÁDRŽ (SEDIMENTAČNÍ NÁDRŽ)**

Jedná se zpravidla o objekty osazené na koncových profilech systémů odvodnění např. pozemních komunikací s velkou plochou (např. ucelených úseků rychlostních pozemních komunikací, velkých parkovišť apod.). K základní funkcí nádrže, tj. oddělení nerozpustěných sedimentujících látek jsou obvykle přiřazeny i funkce další, tj. zachycení havarijních úniků závodných látek, akumulace vody, vyrovnávání průtoků a separace sedimentů. V případě multifunkční nádrže je velmi důležité navržení hydraulických podmínek, provoz a údržba objektu. Součástí těchto nádrží mohou být i odlučovače lehkých kapalin integrovaných přímo do technologie nádrže s funkcí separace drobných havarijních úniků převážně ropných produktů. *(Krátký, Nekolný, 2009)*

Toto řešení předpokládá, že veškerá voda odtékající z plochy je pro navrženou intenzitu mezního deště akumulována v nádrži s dobou zadržení zaručující zachycení případné havárie i v případě maximálního průtoku. Voda je pak postupně vypouštěna přes odlučovací zařízení, přičemž je logické, že samotný odlučovač se navrhuje na menší průtok než je odtok z plochy. Pro návrh DUN se využívá ustanovení normy ČSN 75 6261:2004 – „Dešťové nádrže“.

Praxe ukazuje, že ještě vhodnější uspořádání s využitím DUN je předřadit před nádrž odlehlé odlučovací komoru, která odvádí menší průtoky (až do předem stanovené hranice možného rizika) na odlučovací zařízení a větší průtoky potom odlehuje do DUN. Tzn., že větší průtoky, které obtékají odlučovací zařízení, nejsou odváděny přímo do toku, ale přes retenční nádrž. Přednost tohoto řešení je v tom, že malé průtoky jdou do toku přes odlučovač. V případě havárie v bezdeštném období nebo při malém dešti se ropné látky zachytí v odlučovači, a proto je jejich likvidace jednodušší, a samozřejmě i ekonomičtější. *(Pírek, 2007)*

![Diagram DUN s předřazenou odlehlou komorou](image-url)
4.3 JEDNOUČELOVÉ SPECIÁLNÍ OBJEKTY (NAPŘ. ROZDĚLOVACÍ OBJEKTY)

Vkládají se do systému oddílné dešťové kanalizace především z důvodu úpravy hydraulických poměrů. Rozdělovacích objektů se např. používá k oddělení malých průtoků nebo prvních oplachů z komunikačních ploch. Tyto povrchové vody jsou obvykle více znečištěny. (Krátký, Nekolný, 2009)

4.4 RETENČNÍ FILTRAČNÍ NÁDRŽ

Nádrže se nejvíce uplatňují při potenciálně velmi znečištěných plochách a zvýšeném riziku technických poruch, např. při dotocích z dálnic. Filtrační jímky a retenční filtrační nádrže spojují účinek zadržení vody s určitou čistící schopností.

Retenční filtrační nádrž má smysluplné použití při plochách větších než 1ha pro předčištění srážkových vod z tendenčně více znečištěných ploch (např. při velkém riziku technických poruch - odtoky z dálnic). (Mifková, 2009)

Výhody:
• Optimální kontrola vsakovacích opatření.
• Dobré čistící schopnosti (olejové a ropné látky).
• Dobré zásobní možnosti vlivem vzdutí.
• Filtrační nádrž může být velmi dobře začleněna do přírody.

Nevýhody:
• Při naplněné nádrži vzniká eventuální nebezpečí pro hrající si děti - vyžaduje se oplocení.
• Žádné vsakování.

4.5 KOMBINACE OBJEKÝŮ

Pro zachycení uhlovodíků ze splachů a srážkových vod může být OLK navržen samostatně nebo v kombinaci s dešťovou usazovací nádrží, retenční filtrační nádrží, akumulační nádrží nebo zasakovacími průlehy s retenčním prostorem. U průmyslových odpadních vod opět samostatně nebo v kombinaci s dalšími stupni čištění buď na bázi fyzikálně-chemických procesů, např. koagulací, elektrokoagulací, flotací, sorpcí, adsorpcí, stripováním, membránovou separací a nebo biologickým čištěním.

4.5.1 Lamelový odlučovač s usazovací a retenčně filtrační nádrží

Tato kombinace zařízení je použita ve Švýcarsku v dálničního úseku Erstfeld – Amsteg.
Tří-stupňová kombinace lamelového odlučovače s usazovací a retenčně filtrační nádrží se skládá z oddělení částic a adsorpční vrstvy, která je realizována ve 2 krocích. Oddělení částic nastává jednak v lamelovém odlučovači a na druhé straně v pískové vrstvě. Rozpuštěné těžké kovy jsou zadržovány aktivní adsorpční vrstvou, která je vložena pod vrstvu písku. V usazovací nádrži se zadržují větší usaditelné částice (>20-30µm), stejně jako olej a jiné plovoucí látky. Tím je následující retenční filtrační nádrž chráněna před častým zanášením. Druhá retenční filtrační nádrž, která se skládá z kombinované pískovo - a adsorpční vrstvy, která filtruje drobné částečky (<20 µm) z povrchových vod a adsorbuje rozpuštěné látky. Retence v této nádrži, která vzniká díky filtračnímu odporu, redukuje hydraulické zatížení odtoků. Akumulace vody tak umožňuje úpravu většího množství vody. V obou retenčně filtračních částech nádrže je nastaveno vypouštění, které bude spuštěno u kompletně naplněné nádrže. V případě přetížení, je vypouštěná voda vyčištěná už jen díky činnosti sedimentace v lamelovém odlučovači. Odtok usazovací nádrže a retenčně filtrační nádrže je dálkově řízen automatickým uzávěratelným ventilem. (Herman, Dinger a kol, 2010)

Obr. 4.4 – Přehled rozmístění zařízení tří-stupňové kombinace

Překlad:
Zulauf – Přítok Ablauf – Odtok
Entlastungsbauwerk – Odlehčovací objekt Vorentlastung – Předvypouštění
Retentionsfilterbecken mit Zeolithfilter – Retenční filtrační nádrž se zeolitem
Absetzbecken mit Lamellenabscheider – Usazovací nádrž s lamelovým odlučovačem
Retentionsfilterbecken mit Eisenhydroxidfilter - Retenční filtrační nádrž s hydroxidem železitým
5 POROVNÁNÍ ÚČINNOSTI ODLUČOVAČE LEHKÝCH KAPALIN

5.1 METODIKA

Metodika testování OLK vychází z normy ČSN EN 858-1 a rakouské normy ÖNORM B 5104.

Podle ČSN EN 858-1, kde se pro testování využívá neemulgovaného topného oleje, je hodnota koncentrace LTO (stanovená jako ukazatel C_{10-C_{40}}) na výstupu z OLK pro třídu I. max. 5 mg/l, pro třídu II. max. 100 mg/l. Podle rakouské normy ÖNORM B 5104, ve které je popsáno použití směsi oleje a dalšího znečišťení (viz. Zkušební tekutina), by neměla koncentrace uhlovodíků na výstupu z OLK přesáhnout 80 mg/l.

Porovnáváno je tak zároveň i chování dvou různých stavů oleje – neemulgovaného a emulgovaného navíc ve směsi s nerozpuštěnými látkami.

Zkušební tekutina

Testování proběhlo:

- se zkušební tekutinou (ČSN-EN 858-1).
 Byla použita lehká kapalina - topný olej podle ISO 8217, s označením ISO-F-DMA, o objemové hmotnosti (0,85 ± 0,015) g/cm³ při teplotě 12°C.
- se znečištěnou směsí (ÖNORM B1504).
 Směs se skládala z lehkého topného oleje, motorového oleje 15W40, přípravku na studené mytí motorů ARVA, vápenec a kaolin.

Zkušební zařízení

V rámci testování bylo sestaveno modelové zařízení (viz. Obr. 5.1), které svou konstrukcí umožňovalo výměnu separačních vestaveb za účelem zjištění účinnosti OLK při konstantních nátokových podmínkách.

Zkušební zařízení se skládalo z akumulační nádrže č.1 s čerpadlem, přítokového potrubí do OLK s instalovaným průtokoměrem, usměrňovače proudu, OLK s různě měnitelnou vestavbou, odtokového potrubí s možností odběru vzorků a akumulační nádrže č.2 s vypouštěním.
Druhy vestaveb

Pro měření byl použit odlučovač lehkých kapalin s prostou sedimentací a tyto druhy vestaveb:

- Lamely (se sklonem 60°).
- Voštiny (prostorová několikrát zalomená trubice, typ 2H).
- Koalescenční filtr (PUR pěna tl. 5 cm).
- Koalescenční filtr (PUR pěna tl. 15 cm).

Stanovení obsahu uhlovodíků ve vzorcích

Vzorky byly analyzovány pomocí chromatografické metody (detektorem plynové chromatografie HP 5890 série II s FID, ČSN EN ISO 9377-2). Tato metoda je vhodná pro zjišťování obsahu lehkého topného oleje v případě, kdy je koncentrace LTO vyšší než 1 mg/l.

Provedení a vyhodnocení veškerých analytických stanovení zpracovala laboratoř Fakulty chemicko-technologické, Univerzita Pardubice.
5.2 PROVEDENÍ TESTŮ

Testování proběhlo v laboratoři Ústavu vodního hospodářství obcí, Vysoké učení technické v Brně.

5.2.1 Testování dle ČSN EN 858-1

Lehký topný olej byl dávkován do OLK pomocí peristaltického čerpadla v množství 90 ml/min, což odpovídá vstupnímu znečištění 5 ml/l (cca. 4250 mg/l). Čistý LTO byl dávkován do uklidňovacího válce takovým způsobem, aby nedocházelo k jeho emulgaci.

Testování dle ČSN EN 858-1 bylo provedeno ve dvou pokusech.

Testování 1

Konzentrace LTO na odtoku ze zkušebního zařízení jsou uvedeny v Tab. 5.1. Vzorky byly odebrány v 10 minutě do 1 litrových skleněných zábrusových lahví od celkového napuštění OLK vodou.

<table>
<thead>
<tr>
<th>Označení vzorku</th>
<th>Druh vestavby</th>
<th>Koncentrace LTO na výstupu z OLK [mg/l]</th>
<th>Účinnost [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prostá sedimentace</td>
<td>29,16</td>
<td>99,31</td>
</tr>
<tr>
<td>2</td>
<td>Lamely</td>
<td>4,05</td>
<td>99,90</td>
</tr>
<tr>
<td>3</td>
<td>Voštiny (2H)</td>
<td>5,7</td>
<td>99,86</td>
</tr>
<tr>
<td>4</td>
<td>PUR 15 cm</td>
<td>28,5</td>
<td>99,33</td>
</tr>
<tr>
<td>5</td>
<td>PUR 5 cm</td>
<td>12,5</td>
<td>99,70</td>
</tr>
</tbody>
</table>
Při této zkoušce byla ve všech odebraných vzorcích dosažena téměř 100 % účinnost OLK, jak u prosté sedimentace, tak i s vestavbami.

Bylo očekáváno, že nejlepší účinnost OLK bude dosažena použitím vestavby s koalescenčními filtry (PUR pěna). Při analýzách však byla zjištěna u této vestavby vyšší koncentrace LTO na výstupu z OLK, než například u vestavby z voštin. Tento jev byl pravděpodobně způsoben vymýváním organických látek (monomerů) během testovacího provozu OLK s tím, že větší tloušťka PUR pěny způsobila větší množství zbytkové lehké kapaliny ve vodě.

Pro zlepšení účinnosti testovacího zařízení byl při dalším měření filtr z PUR pěn před použitím proprán ve vodě.

Testování 2

Průběh zkoušení na OLK zůstal stejný, jen analýzy vzorků byly odebrány u jednotlivých vestaveb vždy v časovém limitu po 10, 20, 30 minutách od napuštění OLK vodou s příměsí LTO, aby byl lépe znázorněn průběh odloučení zkušební kapaliny v odlučovači. U prosté sedimentace byly z technických důvodů odebrány pouze dva vzorky. Všechny vzorky byly odebrány do 250 ml skleněných zábrusových lahví.
Na základě porovnání účinnosti jednotlivých vestaveb OLK lze konstatovat, že pokud je LTO v neemulgované formě, nezáleží na typu vestavby a OLK dosahuje odtokových koncentrací nižších než 1 mg/l při dosahovánoch účinností téměř 100 %. Nejnižší účinnosti dosahoval odlučovač bez vestavby s odtokovou koncentrací LTO nižší než 10 mg/l a účinností téměř 99,8 %.

Protože na základě těchto výsledků nebylo možné posoudit, která z vestaveb je nejúčinnější, byly provedeny testy se zkušební tekutinou, která byla namíchána podle rakouské normy s obsahem motorového oleje, mycího přípravku a nerozpustěných látek.
5.2.2 Testování dle ÖNORM B1504

Voda se směsí zkušební tekutiny byla dávkována v množství 150-180 ml/min (cca. 3250 mg/l) peristaltickým čerpadlem. Směs byla po celou dobu zkoušky míchána hřídelovým míchadlem při cca. 230 ot/min. Opět byly provedeny dva testovací pokusy. Míchání směsi bylo spuštěno 5 minut před spuštěním testu.

Testování 3

Směs znečištění byla namíchána podle rakouské normy, tj. směsi lehkého topného oleje, motorového oleje 15W40, přípravku na studené mytí motorů ARVA v poměru 2000:150:100, vápenec (110 g) a kaolin (110 g). Průtok směsi znečištění byl nastaven na 2,5 ml/s. Vzorky byly odebrány po 20 a 30 minutách od začátku zkoušení.

<table>
<thead>
<tr>
<th>Označení vzorku</th>
<th>Čas [min]</th>
<th>Druh vestavby</th>
<th>Koncentrace uhlovodíků [mg/l]</th>
<th>Účinnost [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>Prostá sedimentace</td>
<td>246</td>
<td>92,43</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>Prostá sedimentace</td>
<td>240</td>
<td>92,62</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>Lamely</td>
<td>149,3</td>
<td>95,41</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>Lamely</td>
<td>146,3</td>
<td>95,50</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>Voštiny (2H)</td>
<td>137,2</td>
<td>95,78</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>Voštiny (2H)</td>
<td>115</td>
<td>96,46</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>PUR 15 cm</td>
<td>106,2</td>
<td>96,73</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>PUR 15 cm</td>
<td>91,3</td>
<td>97,19</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>PUR 5 cm</td>
<td>140,7</td>
<td>95,67</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>PUR 5 cm</td>
<td>127</td>
<td>96,09</td>
</tr>
</tbody>
</table>

Na základě naměřených hodnot lze testované varianty OLK seřadit podle vzrůstající účinnosti separace uhlovodíků. Jako nejméně účinný se opět ukázal OLK bez instalované vestavby s účinností 92,5 % a odtokovou koncentrací LTO kolem 240 mg/l. Naopak nejvyšší účinnosti dosahoval koalescenční filtr z PUR pěny tloušťky 15 cm s účinností téměř 97 % a odtokovou koncentrací LTO nižší než 100 mg/l. Navíc lze předpokládat, že při běžném provozu OLK budou ustálené hodnoty pro všechny vestavby nižší, než byly námi naměřené hodnoty pouze po 30 minutách.
Testování 4

Průběh zkoušení na OLK zůstal stejný, ale směs byla míchána při vyšších otáčkách (270 ot/min). Analýzy vzorků byly opět odebrány u jednotlivých vestaveb vždy v časovém limitu po 20, 30 minutách od spuštění testu.

Tab. 5.4 – Výsledky testování 4

<table>
<thead>
<tr>
<th>Označení vzorku</th>
<th>Čas [min]</th>
<th>Druh vestavby</th>
<th>Koncentrace uhlovodíků [mg/l]</th>
<th>Účinnost [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>Prostá sedimentace</td>
<td>910,2</td>
<td>71,99</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>Prostá sedimentace</td>
<td>943,6</td>
<td>70,97</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>Lamely</td>
<td>496,4</td>
<td>84,73</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>Lamely</td>
<td>571,5</td>
<td>82,42</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>Voštiny (2H)</td>
<td>210,6</td>
<td>93,52</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>Voštiny (2H)</td>
<td>264,6</td>
<td>92,41</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>PUR 15 cm</td>
<td>360,4</td>
<td>88,91</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>PUR 15 cm</td>
<td>427,0</td>
<td>86,86</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>PUR 5 cm</td>
<td>528,9</td>
<td>83,73</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>PUR 5 cm</td>
<td>665,1</td>
<td>79,54</td>
</tr>
</tbody>
</table>

Jako nejméně účinný byl opět odlučovač bez instalované vestavby s účinností 71% a odtokovou koncentrací 943 mg/l. Naopak nejvyšší účinnost dosáhly voštiny s účinností 92% a odtokovou koncentrací 264 mg/l.

Při tomto testu byly dosaženy nižší hodnoty účinnosti než v předchozím testování. Mohlo to být způsobeno postupnou emulgací vstupního znečištění, způsobené většími otáčkami míchadla nebo i postupným zanášením modelu nerozpuštěnými látkami anorganického původu.
6 VÝZNAM DISERTAČNÍ PRÁCE PRO PRAXI A ROZVOJ VĚDNÍHO OBORU

Tato práce vznikla v rámci řešení projektu TA01020730 „Separace uhlovodíků z vod a sledování jejich kvality“, řešeného s finanční podporou TA ČR.

Zařízení OLK obecně slouží pro odloučení veškerých druhů kontaminace vod ropnými látkami. V konstrukci OLK jsou pak rozdíly vzhledem k účelu, pro který je navrhnut. Zda se jedná o separaci znečištění vod průmyslového charakteru s obsahem ropných látek v řádu stovek mg/l i více nebo o separaci kontaminovaných srážkových vod z odvodňovaných manipulačních ploch nebo parkovišť s obsahem ropných látek v řádu do několika mg/l. Metodiky testování i následného srovnávání účinnosti jsou pak rozdílné.

Provádění testů pro tuto disertační práci bylo zásadní především v tom, že byla řešena efektivnost mechanického předčištění kontaminovaných vod s pozitivním dopadem na nutnost, způsob a celkovou efektivnost případných následných komplexních řešení. Tato práce je přínosná zejména pro projektanty a provozovatele zařízení OLK vzhledem k rozšíření informací z problematiky řešení čištění vod s obsahem ropných látek.

Testování mechanického OLK bude pokračovat i v další etapě řešení projektu, kdy budou srovnávány účinnosti membránových separací s konvenčními technologiemi. Zároveň bude OLK vyhodnocován jako možná předúprava nátoku na membránovou separaci, která primárně nevyžaduje dávkování chemikálií a její provozní náklady jsou minimální. Je však omezena pro separaci emulgovaných a rozpuštěných látek.

Z hlediska dalšího vývoje testování použití mechanického odlučovače s vestavbami, by bylo vhodné testovat směs podle ÖNORM B 5104 bez emulgátoru, tj. zjistit, jak se chová směs jílu a ropních látek, případně přímo modelovat reálné podmínky z praxe. Dále odebrat vzorky nerozpuštěných látek z různých ploch (co do intenzity prozvozu i typu povrchu), zjistit doby potřebné k jejich usazení a zároveň i to, jak se budou snižovat s úbytkem nerozpuštěných látek i koncentrace uhlovodíků. Popsaná měření by sloužila k individuálnímu navrhu zářízení zařízení, u kterého by následně bylo možné určitým způsobem garantovat např. maximální hodnoty koncentrací na odtoku, případně k návrhu doplnění další technologie, která by zajistila dosažení požadovaných limitů (např. sorpční kolony nebo membránové separace).
7 ZÁVĚR

Tato práce byla zaměřena na testování možnosti zvýšení účinnosti odstranění lehkých kapalin v OLK pomocí instalace různých typů vestaveb. Byly porovnány analýzy vzorků zkušebních tekutin v odlučovači s prostou sedimentací a s použitím testovaných vestaveb (lamely, voštiny, PUR pěny).

Výsledky testů jednoznačně potvrdily zvýšení účinnosti OLK instalací vestaveb, zejména u vestavby s PUR pěny, u které se uplatnil koalescenční efekt. PUR pěny s malými póry a delší dobou zdržení kapaliny v koalescenčním prostředí vykazovaly vyšší účinnost čištění, než lamelová a voštinová vestavba s většími průřezy.

Provedené testy s první zkušební tekutinou lehkou kapalinou-topný olej (ČSN EN 858-1) naznačily, že tato zařízení s vestavbami s vysokou pravděpodobností zabezpečí hodnoty požadované předpisy ČR a EU. V případě zpřísnění legislativních požadavků na výstupní hodnoty povrchovýchvod se zbytkovým obsahem lehkých kapalin charakterizovaných ukazatelem \(C_{\text{vzduch}} \), bude nutné hledat další cesty zvýšení účinnosti OLK, například doplnění o další čistící stupeň.

Testy s použitím druhé zkušební tekutiny - znečištěnou směsí (ÖNORM B 5104) potvrdily, že odstranění lehkých kapalin v případě obsahu suspenze jílovitých částic v testované kapalině je spojeno i s odstraněním těchto látek. Výsledný separační efekt je lepší tam, kde se více uplatní koalescenční efekt a logicky i tam, kde se bude prodlužovat doba zdržení. Ovšem otázkou pak je, jak rychle bude probíhat kolmatace koalescenční vestavby. Vyšší čistící efekt bude pravděpodobně společný také s vyššími nároky na údržbu. Zmenšování objemů a zjednodušování vestaveb v současné praxi tedy logicky musí vést k snížování účinnosti separace a tím i ke zvyšování znečištění recipientů.

Srovnání postupů podle obou norem, tj. postupu s použitím čistého oleje a s použitím znečištěného a emulguvaného oleje ukázalo, že postup podle ČSN EN 858-1 na jedné straně reflektuje účinnost zařízení na odlučování lehkých kapalin, na druhé straně však nelze z tohoto testu odvozovat účinnost zařízení OLK na konkrétní lokalitě. Emulgace, koncentrace, charakter nerozpuštěných látek a sorpce lehkých kapalin na nerozpuštěné látky bude na každé lokalitě jiná. Z experimentů také vyplývá, že v extrémním případě (viz např. simulace podle ÖNORM B 5104, která se používá pro myčky aut) se koncentrace lehkých kapalin na výstupu z OLK mohou pohybovat v desítkách miligramů na litr.

Pro reálné podmínky v praxi bude proto velice záležet na navržení takového typu OLK, který bude odpovídat daným podmínkám, zaručí splnění platné legislativy a zajistí jednoduchý a finančně nenáročný provoz.
8 SUMMARY

The subject of this thesis was to test the possibilities of increasing effectiveness of mechanical separator for light liquids by installing various types of constructions. Analyses of testing samples of fluids were compared in common separator and with use of testing constructions (segment, honeycomb core, PUR foam)

Tests results definitely showed increased effectiveness of light fluid separator (LFS) with testing constructions, especially with PUR foam, where coalescence effect applies. PUR foams with small pores and longer holding period of fluid in coalescence environment showed higher effectiveness then segment LFS and honeycomb core with bigger holes.

Performed tests with first test light fluid-heating oil (ČSN EN 858-1) indicate, that this equipment with constructions will with high probability ensure values required in regulations in Czech Republic and Europien Union. In case of tighten the legislative requirements on output values of surface water with remaining light fluids characterize by index $C_{10}^{-}C_{40}$, further possibilities of increase efficiency of LFS will have to be developeped, etc. by installing another cleaning level.

Tests with use of second testing fluid – fouled mixture with suspension of clay particles (ÖNORM B 5104) confirmed, removal of light liquid fluids from mixture is connected with removing of contained particles. Result of separate effect is better with coalescence effect and also when holding time will be prolonged. Question is following: how fast will be colmatation of coalesence of construction. Higher cleaning effect will be probably conected with higher demand for maintanance. From experience volume reduction and symplifing of construction lead to decrease of efficiency of separation process and increasing polition of recipients.

Comparison of methods according both norms, i.e. menthod with use of clean oil and method with use of poluted and emulged oil showed, that process acc. CSN EN 858-1 reflects efficiency of light liquid separator but this test cannot state efficiency on particular locality. Emulagation, concentration, charactization of non-dissolved substances and sorption of light fluid to non-dissolved substances will be different in every location. Results show, that in extreme case (simulation acc. ÖNORM B 5104, used for car wash machines) the concentration of light liquid fluids can at output of LFS vary by 10 miligrams/liter.

For real conditions in praxis, design of LFS should be liable to given conditions, guarantee to fulfil valid legislation and ensure simple and cost-effective operation.
9 SEZNAM POUŽITÉ LITERATURY

Dvořák, J; Erlebach, J; Ptáček, M a kol. Čištění odpadních vod s obsahem ropných látek. Praha, SNTL, 1982. 368 s.

Směrnice 2000/60/ES Evropského parlamentu a Rady, kterou se stanoví rámec pro činnost Společenství v oblasti vodní politiky, Evropský parlament, Rada, 23. říjen 2000.

Herman, E., Dinger, M., Steiner, M., Boller, M. Behandlung von hoch belastetem Straßenabwasser. In KA Korrespondenz Abwasser, Abfall, leden 2010. www.dwa.de/KA

Hydroclar s.r.o. [online] [cit. 2009-12-5]. Dostupné z: http://www.hydroclar.cz/odlucovace-ropnych-latek/

Krátký, M., Nekolný, B., Problematika srážkových vod po dopadu na pozemní komunikace. Útvar povrchových a podzemních vod. Povodí Vltavy. [online] [cit. 2010-1-19]. Dostupné z: www.pvl.cz/
10 PŘÍLOHY

10.1 SEZNAM PUBLIKOVANÝCH PRACÍ

Oprchalová, M., Škorvan, O., Mikulášek, P. Plotěný K., Porovnání účinnosti odlučovačů lehkých kapalin, In Vodní hospodářství, Praha, 2013, roč. 63, č.9, s. 304-307. ISSN 1211-0760.

Hrabovská, M., Hlavínek, P. Problematika nakládání s dešťovými vodami z komunikací. In Vodní hospodářství, Čistírenské listy, Praha, 2009, roč. 59, č.9, s. 7-7. ISSN 1211-0760.

10.2 ŽIVOTOPIS

Osobní údaje:
Jméno, příjmení, titul: Marie Oprchalová, Ing.
Datum narození: 9. 8. 1983
Adresa: Kšírova 220, 619 00 Brno
 Kontaktátní telefon: +420 739 705 503
E-mail: m.oprchalova@seznam.cz

Vzdělání:
2007 – dosud Vysoké učení technické v Brně, Fakulta stavební, Ústav vodního hospodářství obcí – doktorské studium, obor Vodní hospodářství a vodní stavby
2002 – 2007 Vysoké učení technické v Brně, Fakulta stavební – magisterské studium, obor vodní hospodářství a vodní stavby
1998 – 2002 Střední průmyslová škola stavební ve Valašském Meziříčí, obor Technická zařízení budov

Dovednosti:
• AutoCAD 2010 a nižší, WinPlan, EPANET – uživatelsky
• MS Windows 7 a nižší, MS Office 2010 a nižší – uživatelsky

Jazykové znalosti:
• Němčina – mírně pokročilý
• Angličtina – mírně pokročilý
11 ABSTRACT

Transportation has unfavorably influence on a quality of environment. Increase of traffic leads to construction of new motorways and to intensify the traffic on current communications. A consequence is more polluted hard surfaces, when surface-wash contaminate soil, surface water and underground water. Devices for treating contaminated water, such as oil-separators, are very actual in these days.

The subject of this thesis was to test the possibilities of increasing effectiveness of mechanical separator for light liquids by installing various types of constructions. Target was to determine effectiveness of this conventional technology, which is energetically and technically simple and find out applicability for first step cleaning and further usage.