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Abstrakt

Tato diplomová práce se věnuje výrobě vrstev grafitu/grafenu a meřeńı jejich

transportńıch vlastnost́ı v závislosti na relativńı vlkosti. Grafenové šupinky byly

nanášeny pomoćı mechanického odlupováńı. Pro kontaktováńı grafenových šupinek

byla využita elektronová litografie a na pozorováńı byly využity optická mikroskopie,

mikroskopie atomárńıch sil a elektronová mikroskopie. V práci jsou popsány

jednotlivé kroky výroby, analýzy a meřeńı transportńıch vlastnost́ı nanesených

grafenových šupinek.

Abstract

This diploma thesis deals with the fabrication of graphite/graphene layers and

measurement of their transport properties as a function of relative humidity.

Graphene flakes were deposited by mechanical exfoliation. For contacting the

graphene flakes the electron beam lithography was used. Additional characteriza-

tion was performed by optical microscopy, atomic force microscopy and scanning

electron microscopy. The thesis describes the steps for the production, observation

and characterization of the deposited graphene flakes.

Kĺıčová slova

grafen, AFM, EBL, SEM, grafit, litografie, čtyrbodová metoda, V−A meřeńı

Keywords

graphene, AFM, EBL, SEM, grafit, lithography, four point probe method, V−A

measurement
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Chapter 1

Introduction

The ultimate goal of nanosensors is the ability to detect individual quanta of

a measured value. In case of sensing gas and chemical vapors, the quantum is

one molecule. The limiting factors of current sensors are the fluctuations due

to thermal motion of charge carriers and defects because the intrinsic noise ex-

ceeds the signal from individual target molecules by an order of magnitude [1].

Additionally since conventional sensors are three dimensional (3D), the change of

conductivity of the topmost layer after adsorption of the target molecule does not

affect the overall conductivity enough to detect it. Currently, the highest reso-

lution of all nanosensors was reported using carbon nanotube−based (CNT) and

graphene−based sensors.

Graphene, a single layer of sp2 hybridized carbon atoms arranged in a honeycomb

lattice, was prepared by Geim and Novoselov in 2004 [2]. Unlike charge carriers in

traditional semiconductor materials, electrons and holes in graphene have linear

energy dispersion relation; their behavior is similar to massless particles, so−called

Dirac fermions. This unique electrical property, and the fact that graphene is

transparent, conducting, bendable and is one of the strongest materials known,

makes it a promising material for future electronic applications like nanosensors.

Graphene−based nanosensors are capable of detecting individual molecules at-

taching (adsorbing) or detaching (desorbing) from the surface. The extraordinary

sensitivity was promoted by Prof. Andre Geim: ”Graphene has the ultimate sensi-

tivity because in principle it cannot be beaten−you cannot get more sensitive than

a single molecule [3]. Since every atom of the graphene layer is a surface atom,

1



Chapter 1. Introduction 2

with the possibility of interacting with one molecule of the target gas or chemi-

cal vapor, graphene has an ultrasensitive sensor response, which should allow for

high detection range; from a single molecule to a high concentration of target

molecules. The adsorption and desorption of molecules changes the free electron

concentration (increases or decreases depending if the target molecule behaves like

a donor or an acceptor), which leads to a change in electrical conductivity of the

graphene−based nanosensor. Through this change of conductivity we detect the

concentration of adsorbed molecules.

Since pristine graphene has no specific functionalization to detect only one kind

of molecule, the surface needs to be functionalized by polymers or metals to en-

hance specific molecule detection. Thin film of a functionalizing material creates

trapping centers for target molecules; the adsorption at such location changes the

local conductivity of the measured sensor. Different types of nanosensors based on

using a single layer or a multilayer graphene are used for gas and chemical vapor

measurements. Most common configurations are resistive sensors [1], field effect

transistors (FET) [4], the surface acoustic wave (SAW) [5], the quartz crystal mi-

crobalance (QCM) [6], micro electrochemical systems (MEMS) [7], and metal oxide

hybrid sensors [8].

Graphene in nanosensors is produced using a CVD metod, micromechanical and

chemical exfoliation of graphite, reduction of graphene−oxide and epitaxial growth.

In this thesis, the measurement of transport properties of an exfoliated graphene

sensor as a function of relative humidity will be studied. The review of the current

state of graphene−based nanosensors can be found in Chapter 2. Fabrication

and characterization is mentioned in Chapter 3, the setup for transport properties

measurement is in Chapter 4 and the results can be found in Chapter 5.



Chapter 2

Graphene−based nanosensors

2.1 Preparation and utilization

First graphene was prepared using micromechanical exfoliation by Novoselov and

Geim in 2004 [9]. Since then a lot of effort has been spent to develop faster and

more efficient ways of graphene production on small and large area scale.

2.1.1 CVD graphene

Chemical vapor deposition (CVD) of a single or multilayered graphene is a very

popular method for nanosensing applications. The fabrication procedure is per-

formed in a vacuum furnace using either crystal quartz plates [10] or a polycrys-

talline copper foil (99.999%) [11]. The foil is heated up to 800-1200 ◦C annealed in

Ar/H2 [11] for 30 minutes and then pure CH4 or a mixture of CH4 and Ar is used

to grow the graphene on top of the substrate. The top side of the copper foil is

usually covered with PMMA and the copper foil is etched away in FeCl3 solution.

After the etching is complete, graphene with PMMA is washed in deionized water

and transferred to the surface of thermally oxidized Si substrates [11].

3



Chapter 2. Graphene−based nanosensors 4

2.1.2 Micromechanical cleavage of graphite

Graphite consists of many stacked layers of graphene bonded together by weak van

der Walls force. By exfoliation (cleavage) using mechanical or chemical energy, it

is possible to break these bonds and prepare a pristine layer of graphene.

The graphene is prepared by two methods: the standard mechanical exfoliation of a

highly ordered pyrolytic graphite (HOPG) using a low adhesion scotch tape [1, 12–

15], or by stamping method using PDMS stamps on HOPG dry etched in oxygen

plasma, so that the graphene flakes could be transfered to a specific place on the

surface of thermally oxidized Si substrates [16] with a considerably less amount of

residue left on the surface than when using the scotch tape method.

2.1.3 Reduced graphene oxide

Formerly known as graphitic oxide or graphitic acid, it consists of carbon, oxygen

and hydrogen in different ratios. Graphene oxide is obtained by treating graphite

using strong oxidizers. As an example, graphite may be reacted with sulfuric acid,

nitric acid and potassium chlorate for 96 hours. After the oxidation it is washed

with a HCl solution and with deionized water to neutralize the solution. The

neutral solution is poured on the surface of thermally oxidized Si substrate and

then the thermal reduction forms the final reduced graphene oxide [17, 18].

2.1.4 Epitaxially grown graphene

Epitaxial graphene has attracted a lot of attention by the semiconductor indus-

try due to post−CMOS (Complementary Metal Oxide Semiconductor) technology

applications. Epitaxial growth of graphene requires epitaxially prepared surface

like SiC or Si substrate and consists of 2 steps. The first step, a 3C−SiC thin film

is formed on the silicon substrate by using a molecular−beam epitaxy (MBE), is

followed by the second step: graphitization. The SiC thin film is annealed in a vac-

uum at ≈ 2000 ◦C [19]. This method produces between 1 and 3 layers of graphene.

The height depends on the decomposition temperature.
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2.1.5 Localization and analysis

Graphene flakes and layers can be observed and analysed using different observa-

tion techniques such as: optical microscopy [1, 13, 16], electron microscopy (SEM,

TEM) [11, 15–18], atomic force microscopy (AFM) [10, 14–16, 19] and Raman spec-

troscopy [10, 11].

Figure 2.1 shows an optical image of a graphene flake on top of thermally oxidized

Si substrate without any modification of the graphene shape. Figure 2.2 shows a

graphene flake modified using plasma etching to pattern the Hall bar geometry.

Figure 2.1: Schematic diagram of a sensor based on exfoliated graphene (Insets
are pictures of the real structure imaged by an optical microscope) [13].

Figure 2.2: Optical image of a graphene flake modified to a Hall bar shape [1].

Images obtained by TEM (Fig 2.3A) show a wrinkled graphene sheet with no aggre-

gation, the inset is an image taken by selected−area electron diffraction (SAED)

yielding a double six−spot−ring pattern; that confirms the benzene pattern of
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graphene [17]. Figure 2.3B shows a wrinkled graphene film on top of the substrate

observed by SEM.

Figure 2.3: TEM (A) and SEM (B) image of a graphene flake [17].

The height of different graphene flakes was measured using the AFM (Fig. 2.4

shows an example of a graphene layer with 2 contacts observed using AFM), the

graphene grown using CVD had height of 1.5 nm [10], the mechanically cleaved

graphene‘s height was 0.8 nm [14–16], and from 3.5 nm to 5 nm corresponding to

7−10 layers of graphene [13].

2.2 Nanosensor types

Several types of sensors based on different detection mechanism are being used.

Some are based on the change of resistance or operation frequency.
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Figure 2.4: AFM image of a graphene device [14].

2.2.1 Resistive graphene−based nanosensor

Recently, the most common type of sensor is based on resistive response. The

change of conductivity is measured after the exposure to the target molecules of

gas or chemical vapor. The resistance−based sensor is easy to fabricate. The

resistance is measured directly or from current/voltage characteristics between

two contacts on top of a graphene layer [1, 12, 20–23]. Substrate plays an im-

portant role influencing graphene−based nanosensor properties [19]. For example,

SiC dopes electrons into the graphene layer and makes it an n−type with a very

low carrier concentration. In case of multilayer graphene sensor, however, the in-

terlayer between the SiC and the surface, screens the effect of substrate and makes

the sensor p−type with higher concentration of charge carriers.

2.2.2 Field effect transistor (FET) nanosensor

Source−drain current of the FET depends on the externally applied gate voltage.

Adsorption of gas or chemical vapor molecules changes the carrier concentration,

which can be measured in transistor−like devices [4, 19].

The detection levels of parts−per−million (ppm), or even a single molecule with

fast response time, determine the graphene FET sensors to be a great choice for low

cost commercial applications. Using pristine graphene showed a lower sensitivity

compared to modified graphene as well as graphene with defects. Most effective

for large−scale production with sufficient sensitivity proved to be using graphene



Chapter 2. Graphene−based nanosensors 8

oxide and subsequently reducing it to obtain graphene for a graphene−based FET

sensor [24].

2.2.3 Surface acoustic wave (SAW) nanosensor

The basic operation principle of a SAW sensor is that the resonance frequency

(operation frequency) changes with adsorption of target molecules of gas or chem-

ical vapor. In principle, it is a mass detection sensor, sensitive to change of mass

caused by the adsorption of a target molecule. The shift in frequency is directly

proportional to the mass of the gas or chemical vapor adsorbed on the surface.

The basic device of a SAW sensor consists of a delay line with the propagation

path covered with graphene which adsorbs the target molecules, causing a delay

in the path and changing the frequency. SAW sensors can detect the change of

mass and the change of surface conductivity. Acoustic wave velocity changes with

a decrease in frequency caused by the adsorption of the gas or chemical vapor

molecule [5, 25].

A graphene oxide−based SAW sensor‘s response to CO and H2 was observed, and

it can be concluded that exposure to CO decreased the frequency, on the opposite

hand, the exposure to H2 increased it. Since the mass of the H2 molecule is 14

times smaller than CO, the main factor for H2‘s detection on graphene is the

conductivity change, while in the case of CO it is the mass change.

2.2.4 Quartz crystal microbalance (QCM) nanosensor

Another type of a mass sensitive sensor is the bulk acoustic wave (BAW) sensor,

in which the mass is detected by the corresponding shift of frequency, quite similar

to the SAW sensor. Acoustic sensors are becoming more and more popular due to

their high sensitivity and stability. Most popular BAW sensors are QCM sensors

because even a small change in order of a nanogram in the electrode−mass can

be detected. The additional mass changes momentum of the propagation of the

acoustic wave and decreases the resonance frequency [6]:

∆f = −2.26× 10−6f0
∆m

A
(2.1)
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where ∆f is the resonance frequency shift, f0 is the base resonance frequency for

the QCM, ∆m is the change of electrode−mass and A is the surface area of the

electrode.

A graphene oxide−based QCM sensor was able to detect humidity changes in the

range from 6.4 to 93.5 % at room temperature [6].

2.2.5 Micro electromechanical systems (MEMS) nanosen-

sor

The MEMS is based on the CMOS technology, which has been recently used

for sensor fabrication to miniaturize sensors and lower their energy requirements.

The main features are fast response time, fast production and high sensitivity.

First MEMS−based sensor was designed using a micro−hotplate based on CMOS

processes [7]. The sensor consists of finger−like structure on micromachined silicon

substrate with a controlled temperature using a micro−hotplate with graphene

oxide films [26]. Current−to−voltage characteristics were found to be linear and

ohmic in all cases. The resistance was found to be from 70 to 700 Ω depending

on the number of layers and the distance between the electrodes. Sensors using

monolayer of graphene show higher sensitivity and higher resistance.

The MEMS technology was also used in FET−based graphene sensors. Chen et.

al., [27] shows that fabrication of back−gated graphene FET array on microchan-

nels is possible (see fig. 2.5).

Figure 2.5: (a.) Scheme of the graphene FET. (b.) Fabrication process of the
3D graphene FET array [27].
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2.2.6 Metal oxide hybrid nanosensor

Recently Yi et. al., [8] attempted to combine the advantages of conventional

semiconducting metal oxides with graphene to improve its gas sensing proper-

ties. The sensor consisted of a metallic bottom electrode with vertically aligned

ZnO nanorods deposited on top with graphene used as a top conductive electrode.

They also demonstrated that the sensor can be bend below the radius of 0.8 cm

and still show no mechanical or electrical failures. This kind of hybrid sensor

shows promising results in selective detection of electron donor gases like CO and

NH3 and efficient detection of NO.

2.3 Graphene−based sensor fabrication methods

Prefabricated structures on top of the substrate are mostly used for easier orienta-

tion, localization of the graphene flakes on the surface of a sample and for the elec-

trical connection of nanostructures, created using shadow mask with Cr/Au (10 nm

/ 250 nm) [19] or Ti/Au (3 nm / 60 nm) [11], and with prefabricated gold alignment

markers[14, 16]. After the deposition of the graphene flakes, the electron beam

lithography (EBL)[1] was used to patern the conductive contacts between the lo-

calization structures and the graphene flakes. PMMA (polymethyl methacrylate)

C4 950 [14, 15], or alternatively a double layer of PMMA A8 495 and PMMA A4

950 [16], tend to be used as the resist layer for the fabrication. The conductive

metallic layer was sputtered using Ti/Au (5 nm/40 nm) [1, 12], Cr/Au (5 nm/50 nm) [14,

16] and suggested that by utilizing noble metals, the sensitivity of a graphene sen-

sor can be enhanced, particularly with the use of Pd/Au (20 nm/80 nm) [13]. For

an easy lift−off aceton is used, in some cases chloroform was used to dissolve all

of the residual PMMA to prepare a clean surface. Chen [27] fabricated a 3D FET

graphene sensor by deposition of a graphene layer on SiO2/Si substrate by chemical

reduction of graphene oxide. On separate substrate horizontal walls from SU−8

with metal layer on top were fabricated using standard lift−off proces. Then they

were pressed against the graphene layer in such a manner the electrodes create

source and drain electrodes for the measurement. The SU−8 walls formed mi-

cro channels, which served as a passage for the gas and chemical vapors. This

fabrication method avoided contamination of the graphene by resist residue.
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After the EBL procedure graphene flakes showed evidence of contamination by

a residual resist layer. The cleaning by heating the sample in flowing H2/Ar at

400 ◦C for 1 hour was proven to be effective in removing residuals of the resist [14].

The metal oxide hybrid sensor created by Yi [8] uses vertical ZnO nanorods on top

of a metallic electrode using graphene as a top conductive electrode (Fig. 2.6).

Figure 2.6: Scheme of the ZnO nanorod and graphene hybrid sensor fabrica-
tion [8].

2.4 Detection of Gas molecules

Individual gas molecules are detectable by sensors using graphene because of its

main characteristics. Graphene is a two−dimensional material and has its whole

volume exposed to surface adsorbents, maximizing their effect. As a highly con-

ductive material graphene has rather low Jonhson noise. A low level of excess (1/f)

noise caused by thermal switching is very low due to graphene‘s few crystal defects.

And the possibility to measure a four−probe method on a single−crystal with low
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resistance contacts. All these characteristics maximize the signal−to−noise ratio,

enabling the detection of concentration changes lower than one electron charge at

room temperature [1].

One mono−layer and also several layers of graphene are able to detect gas molecules

and have the appropriate resistance change [1]. Multilayers allow a much lower

contact resistance (≈ 50 Ω) in comparison with a monolayer (≈ 4 kΩ). The typical

noise in such devices is ∆ρ/ρ≈ 10−4, which means a detection limit of 1 ppb.

The graphene used by Schedin et. al., [1] was in pristine state, using field−effect

measurements at varying temperatures from 4 to 400 K in magnetic fields up to

12 T. This allowed to recognize a single, bi and multi−layer graphene and finding

out the moblity of charge carriers mobility (µ)(typically ≈ 5000 cm2V−1s−1). Lon-

gitudinal resistivity exhibited a peak at zero gate voltage (Vg), indicating that the

graphene is in its pristine, undoped state.

2.4.1 NO2 detection

The devices were exposed to different concentrations of NO2: strongly diluted in

pure helium or nitrogen at atmospheric pressure (1 ppm) [1], a mixture of NO2

and carrier gas of N2 and 20 % O2 [19], diluted in N2 (100 ppm) [12] and varying

from 100 ppm up to 500 ppm in the air [13] at room temperature. The graphene

reacts to even small concentrations of NO2 very quickly as seen in the Figure 2.7,

however, the desorption of NO2 from the surface is very slow. Figure 2.8 shows

the same response at zero electric−field. In region II we can see rapid change in

the resistivity, after some time it is followed by a region of saturation with very

slow change of resistivity. The evacuation of the gases led only to a small change

of resistivity, suggesting very strongly attached adsorbed gas molecules on the

surface of graphene. The initial state was recovered by annealing at temperatures

of 140− 150 ◦C in vacuum (Fig. 2.7 part IV). UV illumination for a short periods

of time had the same effect as thermal annealing [1, 13].

The most important requirement on a gas detector is reproducibility. The graphene

−based nanosensors were repeatedly exposed to NO2 and air to study any dete-

rioration caused by any gas molecules not desorped from the surface. All the
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Figure 2.7: The time response and decay of graphene−based gas using and
ambient NO2 concentration (1 %) [13].

experiments from references [1, 12, 13] suggest no change in sensitivity of the de-

vice as can be seen in Figure 2.9. The sensitivity can be defined as:

S(%) =
RAir −RNO2

RAir

× 100% (2.2)

where RAir and RNO2 are graphene resistance in air and NO2 gas. Sensitivity

reported for 100 ppm was 9 % and for 500 it was 14 % [13].

The NO2 gas acts as an acceptor on the surface of the graphene.

2.4.2 H2O detection

Graphene can be prepared as with hydrophilic (GO) but also with hydropho-

bic (rGO) properties [28]. Bi et. al. [29] show that the sensitivity of a graphene

oxide sensor to humidity is higher than the sensitivity of exfoliated and CVD

grapehene, making the graphene oxide a viable material for humidity sensors [30].

Water vapors on the graphene surface act as acceptors, increasing the sensor con-

ductivity. Figure 2.8 shows a response of the graphene to water vapors, but also as

in the case of NO2, water vapors are strong adsorbate on the surface of graphene.

For a reproducible measurement the device has to be annealed in vacuum or UV

illuminated to desorbe the molecules. Dan et. al. [14] observed dramatic changes

in the electrical response after the cleaning procedure, heating in H2/Ar at 400 ◦C



Chapter 2. Graphene−based nanosensors 14

Figure 2.8: Graphene is exposed to gases diluted in concentration of 1 ppm.
Region I− in vacuum, II− exposure to gases, III− evacuation of the gases and

IV− annealing at 150 ◦C [1].

for 1 hour to get rid of the resist residues. Figure 2.10 illustrates the difference in

the response of the graphene sensor before (black line) and after cleaning (red line).

The responses decrease sharply in the clean samples, suggesting a functionalization

of the sensor using the residual resist contamination [14].

2.4.3 CO2 detection

Yoon [16] exposed the graphene sensor to CO2 at different temperatures. Fig-

ure 2.11a shows the conductance response of the graphene nanosensor on the pres-

ence of CO2 in time at 22, 40 and 60 ◦C. After 30 seconds, 100 ppm of CO2 was

let into the chamber, quickly increasing the conductance of the graphene. After

a short time the conductance reaches a stable value. The change of conductance

indicates a charge transfer between the CO2 molecule and the graphene, showing

that the physical adsorption of the CO2 molecule is the dominant sensing mech-

anism. After the supply of the gas was cut off, the sensor is recovered in a few

seconds (around 10 s), meaning the interaction between CO2 and graphene is very

different compared to NH3 or NO2. The sensor does not require high temperature
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Figure 2.9: The reversibility for the graphene device using NO2 (100 ppm) and
air [13].

Figure 2.10: Measured sensor response before (black) and after (red) sample
cleaning [14].

annealing in vacuum to desorb all of the molecules. Figure 2.11b shows the ratio

between the conductance change and the CO2 concentration. The estimated sen-

sor sensitivity for CO2 was 0.17%/ppm for concentrations from 10 to 100 ppm of

CO2 gas.
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Figure 2.11: (a) Time response of the graphene CO2 gas sensor in the presence
of 100 ppm CO2, at different temperatures; (b) changes of conductivity as the

function of CO2 concentration [16].

2.4.4 Impurities

The V−shaped σ(Vg)−curves characteristic for graphene (Fig. 2.12), more impor-

tantly their slopes, suggest that the chemical doping did not affect scattering rates.

Analysis of the chemically−induced ionized impurities performed by Schedin F.,

et. al., [1] in graphene for concentrations >1012 cm−2, indicates that charged im-

purities should not limit the mobility (µ) until it reaches ≈ 105 cm2V−1s−1. This

is in contrast with another 2D system in which such high densities are destructive
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for the ballistic transport. All these observations suggest that charged impurities

are not the current limiting factor for µ in graphene.

Figure 2.12: Conductivity σ of single−layer graphene away from the neutrality
point changes approximately linearly with increasing Vg [1].

2.5 Doping of graphene

The type and concentration of charge carriers can be controlled by changing the

gate voltage or dopant concentration [12]. In Figure 2.13 we can see the change

of the resistivity in graphene depending on the applied gate voltage, shifting the

Fermi level below/above the Dirac point with the negative/positive gate voltage.

As was previously said, the graphene with its honeycomb lattice can be doped

heavily without a significant loss of mobility. Adsorbed gas molecules on the

graphene’s surface act as donors or acceptors, thus changing the electrical conduc-

tivity σ of graphene. Even one gas molecule interacting with the surface changes

the local carrier concentration, which leads to step−like changes in resistance.

Based on the highest occupied molecular orbital (HOMO) and lowest unoccupied

molecular orbital (LUMO) of the adsorbed gas molecule we can distinguish two

charge transfer mechanisms. If the HOMO/LUMO of the adsorbate is above/below

Dirac point, there is a negative charge transfer to/from graphene. Hybridization

between HOMO and LUMO of the adsorbate with the graphene orbitals partially
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influences the charge transfer between the gas molecule and graphene [31]. Most

focused gas molecules are nonmagnetic H2O, NH3 and CO, followed by param-

agnetic NO2 and NO. As shown in Figure 2.14 there are 3 different position for

the gas molecule to be adsorbed on the surface of graphene and each molecule can

have different orientations in each position. Table 2.1 shows different gas molecules

and their effect on the graphene with their orientations. In conclusion with the

reference [31] the adsorption site changes the doping only slightly on the other

hand the orientation of the gas molecule influences the doping strongly.

Figure 2.13: Ambipolar electric field effect in single-layer graphene. The
insets show its conical low−energy spectrum E(k), indicating changes in the
position of the Fermi energy EF with changing gate voltage Vg. Positive (nega-
tive) Vg induce electrons (holes) in concentrations n=αVg where the coefficient
α≈ 7.2×1010cm−2/V for field−effect devices with a 300 nm SiO2 layer used as
a dielectric. The rapid decrease in resistivity ρ with additional charge carri-
ers indicates their high mobility (in this case, µ≈ 5000 cm2/Vs and does not

noticeably change with temperature up to 300K) [32].
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Figure 2.14: 4×4 super−cell of graphene with the adsorption positions C
(Center of the honeycomb), T (Top of the C atom) and B (Between the C

atoms), with H2O molecule [31].

Adsorbate Doping ∆Q [e] Orientation
H2O Acceptor -0.025 First O−H bond paralel to the surface

Second O−H bond pointing to the surface
NH3 Donor 0.027 H atoms pointing away from the surface
CO Donor 0.012 C−O bond almost paralel to the surface
NO2 Acceptor -0.099 N−O bonds pointing to the surface
NO Donor 0.018 N−O bond almost paralel to the surface

Table 2.1: Gas molecules on graphene surface doping as acceptors or donors,
with the charge transfer from the molecule to graphene (∆Q) and their orienta-

tion.





Chapter 3

Experimental setup

3.1 Design of structures for transport measure-

ment

It is very important to have a suitable configuration of electrodes for transport

properties measurement of graphene/graphite layers. They can be measured in a

2−point probe or a 4−point probe configuration, depending on the performed type

of measurement. Using a 2−point probe configuration, the resistance of graphene

can be measured easily and directly, however, the added resistance of the contacts

is included. The 4−point probe configuration allows to measure the resistivity of

the layer without the resistance of the contacts, but it needs a defined configuration

of contacts and the knowledge of the surface area.

3.1.1 2−point probe structures

Previously, the most significant problem related to graphene nanostructures trans-

port measurement consisted in the fact that all of them were destroyed after the

connection of the wires and applying the voltage. This problem was contributed to

the residual PMMA (poly methyl methacrylate) left on top of the graphene layer

after the electron beam lithography used for fabrication of top contacts. Following

the deposition of gold contacts, PMMA was found between the graphene and the

gold contact, increasing the resistance of the contact and heating up the graphene

layer.

21
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To overcome this problem, the gold contacts were fabricated before the exfoliation

of graphene on them. Since PMMA does not leave any residue on top of gold

contacts, and can be easily removed from the SiO2 surface using acetone and

plasma etching, there is no graphene/PMMA/gold interface to interfere with the

resistance measurement.

Figure 3.1 shows interdigitated finger electrodes with bond pads designed for the

2−point probe measurement, taking into consideration the random dispersion of

graphene flakes on the sample surface during exfoliation.

Figure 3.1: Interdigitated finger−like electrodes for 2−point probe measure-
ments with bond pads.

3.1.2 4−point probe structures

For 4−point probe measurements it is not possible to design an array of electrodes

relying on the random dispersion of graphene flakes during exfoliation. Such struc-

tures would be too complicated to fabricate and would have a low success rate of

graphene layer sticking to all four required contacts.

Structures with universal array of electrodes were designed to fulfill all the needs

to create four or more contacts for a 4−point probe transport measurement (see

fig. 3.2). Five big bonding pads were developed with dimensions 100µm× 150 µm

on each side of the square, with alignment symbols in each corner and small marks

inside the structure, to be used during subsequential electron beam litography to

create the contacts between a graphene flake and bonding pads.

In this kind of structures the graphene/PMMA/gold interface is not excluded,

hence the lithography process needs to be altered using special PMMA (lower

molecular weight) to overcome the problem.
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Figure 3.2: Universal array of electrodes for 4−point and 2−point probe trans-
port measurements.

3.1.3 Sample holder

In cooperation with the Department of Microelectronics (Faculty of Electrical En-

gineering and Communication, BUT) sample holders for the transport measure-

ments were designed and fabricated. Ceramic plate with conductive contacts and

boding pads on one end, and pins for cables on the other. A big conductive elec-

trode was situated in the middle, for the sample to be placed in and glued to it

with conductive silver paste, and used for a back gate electrode (see Fig. 3.3).

3.2 Fabrication of structures for transport mea-

surement

The whole process starts with cutting silicon wafer with thermally grown layer of

silicon dioxide, the thickness of SiO2 is ≈ 280 nm, into samples of a rectangular

shape with dimensions ≈ 1 cm× 1,5 cm. Their size is slightly bigger than what

is necessary for the structures designed for 2−point and 4−point probe measure-

ments, but the additional edge was necessary because the samples would undergo

a lot of different fabrication and measurement processes, so there was a substantial

chance of cleaved edges which could damage the structures.
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Figure 3.3: Sample holder with one big central electrode and conductive con-
tacts with bonding pad on one end and pin for cables on the other.

3.2.1 Spincoating of PMMA

Electron beam lithography (EBL) requires a suitable resist; this case a positive

resist 495 PMMA A4 (495 000 is the molecular weight of the polymethyl metacry-

late and A4 denotes concentration of 4 % solution in anisole). The term positive

resist means that any area which was exposed to electron beam would be washed

away, because an exposure to electron beam causes the molecules to untangle.

The whole process starts with acetone, isopropyl alcohol and demineralized water

bath, followed by plasma etching to ensure that the surface of the sample is clean

of any unwanted organic or inorganic matter. In the following step, a process

called spincoating is utilized to deposite a thin layer of material onto a sample

surface using high speed spinning [33]. Figure 3.4 shows the dependency of the

PMMA height on the spinning speed during the process.

The sample has been blown with nitrogen to ensure there are no dust particles on

the surface before the resist is applied. After the prebake at 180 ◦C, usually 35 µl

of 495 PMMA A4 is used for each spincoating. The spincoating process consists of

2 steps: 30 seconds at 500 rpm and 50 seconds at 4000 rpm, making the height of

the resist ≈ 180 nm, after which the sample is postbaked for 90 seconds to harden

the resist.
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Figure 3.4: Dependence of the PMMA height on the spin speed for 3 different
concentrations A6, A4 and A2 [33].

The same procedure is used to create the contacts for the 4−point probe, but with

another resists. Because the resist comes into contact with the graphene flakes, a

special PMMA was picked up with the molecular weight of only 50 000 (50 PMMA

A3), which should leave no residue after the electron beam lithography on top of

the graphene layer. The whole layer of resists is a sandwich of 50 PMMA A3 and

495 PMMMA A4, because only one layer of 50 PMMA A3 would not be enough

for electron beam lithography.

3.2.2 Electron beam lithography

Since UV lithography could not be used for fabrication of big nanostructures pre-

sented in this work, the electron beam lithography was utilized to create both the

big and small structures. For bigger structures the UV lithography is the bet-

ter option because it is much faster with resolution down to 2µm; to expose any

structure with critical dose it takes in order of seconds compared to electron beam

lithography‘s 40 minutes up to 7 hours.

Usually the electron beam lithography is carried out by an electron lithograph or a

modified scanning electron microscope with the possibility to control the movement
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of the beam on the sample surface with a pattern generator. The scanning electron

microscope consists of an electron source, electron optics and a sample chamber.

Most used electron sources are thermal emission, cold field emission and Schot-

tky cathode. Thermoemission cathode has high current stability but it is very

difficult to focus the beam into a small spot and get a good resolution because

the high chromatic aberration. The main advantages of autoemission cathode is

high emission current density, small beam spot and low chromatic aberration, but

the overall emission current is very low making it unsuitable for lithography. On

the other hand the Schottky cathode has high overall emission current with small

beam spot making it ideal for lithography.

After the emission from the electron source, the electrons are accelerated and

focused with the electron optics. Scanning electron microscopes have deflection

electrodes to allow the beam to scan the surface; in comparison, with a scanning

electron microscope suitable for lithography has to have a fast possibility to deflect

the electron beam outside the sample, so called beam blanker. The electron optics

providing the possibility of magnification is present to correct the aberrations of

the electron source and the optics itself. Uncorrected electron beam affects the

quality of the final structure. The main aberrations which have to be corrected

are: spherical, astigmatism and chromatic.

Interaction of the electron beam with resist leads to untangling of the molecular

bonds, in case of the positive resist, and allows to be washed away by the developer.

Every resist has its critical dose (units µC cm−2), it is the maximum of exposed

energy which causes the breakdown of the molecular bonds of the resist with

contrast defined as [34]:

c = log
D1

D2

(3.1)

in which D1 is the highest dose, not to cause any modification of the resist and

D2 is the lowest dose which causes the complete removal of the resist. With

acceleration voltage of 30 kV the dose D2 is ≈ 350µC cm−2.

More advanced lithography software already has an optional proximity effect cor-

rection, simulating the effect and changing the exposition dose in different areas of

the structures. Proximity effect are backscattered, and secondary electrons from

the substrate or resist causing the secondary exposition of the resist and corruption

of the structure geometry.
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Figure 3.5: Scanning electron microscope Lyra 3 XMH from Tescan. The
opened sample chamber with motorized XYZ stage [35].

All of the lithography structures were created using Lyra 3 XMH FIB−SEM from

Tescan (see Fig. 3.5), with Schottky cathode as the electron source with the pos-

sibility to achieve beam spot diameter of few nm. The microscope offers the

possibility to change the acceleration voltage between 1−30 kV and uses a mo-

torized XYZ stage. Lyra uses specialized lithography software from Tescan called

Drawbeam, creating each planar structure from series of lines with the distance

between each spot in the line as a multiple of the theoretically calculated beam

diameter.

Before the electron beam lithography procedure, the electron beam was focused

and calibrated on a calibration sample containing gold islands on top of a carbon

substrate. After the beam was properly calibrated, the overall emission current

was measured using a Faraday cell (one of the parameters of EBL is the current) for

several beam intensities. After that, the sample was moved into the position and

the beam was focused on the surface of the sample, usually some contamination

in the resist or a scratch is left on the SiO2 surface (there is always a small height

difference between the calibration and lithography sample, that is why the beam

has to be refocused). In the next step the structures were created in the Drawbeam
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software, the critical dose was set (several layers with different critical doses can

be created), and the lithography process was engaged.

The first structure for electron lithography fabrication can be seen in Figure 3.6 a,

the distance between each finger−like electrode is 6 µm, not to cause any prob-

lems during lift−off, but still enough to have a mid−probability of graphene flake

landing on top of at least 2 of them during exfoliation. The distance between the

bonding pads with the dimensions of 100µm× 500µm is 300µm. The 495 PMMA

A4 resist spincoated at 4000 rpm was used to get the height of ≈ 170 nm and crit-

ical dose of 240µC cm−2 (the critical dose was optimized using several layers with

the same structure but different doses to optimize the contrast of the structures).

Figure 3.6: a) first structure created using electron beam lithography with
6 µm distance between each finger like electrode and the distance between bond-
ing pads of 300 µm, b) second structure with the same distance between the fin-
ger electrodes as in first structure but with different distance of 500 µm between

the bonding pads and shape.

The second structure (see fig. 3.6 b) was created to cover larger areas of the sample

to maximize the chance of a graphene flake landing between the two opposite

finger−like electrodes but still keeping each structure independent on each other.

The distance between the finger−like structures is the same as in the case of the

first structure, but it contributed to changes in distance between bonding pads

up to 500 µm and their shape. The finger−like electrodes are in the green layer

with dose of 240 µC cm−2 and the bonding pads are in the red layer with dose of

200µC cm−2 using 495 PMMA A4.

Lastly, the third structure (see fig. 3.7) was created with two big bondings pads

in a separated red layer, connecting several fields of structures based on the first
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structure in the green layer. The distance between the finger−like electrodes in the

green is the same 6 µm, with the distance between the interconnecting electrodes

of 300µm with dimension of 20 µm× 500µm. The red layer contains the bondings

pads and electrodes connecting the fields of finger−like structures. The dose for

the green layer was 240µC cm−2 and for the red layer the dose of 200 µC cm−2 −
almost the same as in the first two cases with proximity effect correction.

Figure 3.7: Third kind of structure with 2 big bonding pads and field of
finger−like electrodes with the distance of 6 µm.

The 4−point probe measurement requires different structures, therefore, the uni-

versal structure was created as shown in Figure 3.8: the array of nine systems with

20 electrodes and alignment marks. The green layer consists of electrodes with

dimensions of 100 µm× 150µm, alignments marks and position system require the

dose 200 µC cm−2 for the array. The small position marks and the numbers inside

the system of electrodes belong to the red layer with dose of 240µC cm−2 using

495 PMMA A4.

The position marks and the numbers inside the system of electrodes is for iden-

tifying the graphene flakes after exfoliation and during the second lithography

process. The electrodes dimensions were chosen to be capable of being used as

bonding pads in the later stages of sample fabrication.
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Figure 3.8: Universal structure with nine systems, each of them contains 20
big bonding pads and alignment marks.

The universal structures require a second lithography process − after the exfo-

liation and identification of graphene flakes on the sample surface − to connect

the graphene layers with bonding pads. First pictures of the graphene flakes were

taken (as an example see fig. 3.9) to be used for the alligment with the already

existing structures on the substrate surface (only gold electrodes are visible under

the layers of resist). After that the sample was heated up to 180 ◦C for an hour to

evaporate all of the remaining water on the substrate surface, since the remaining

water vapor lowers the adhesion between the sample surface and the resist and

can cause non−adhesion. Followed by the spincoating of 2 layers of 50 PMMA A3

and 1 layer of 495 PMMA A4, the sample was baked for 90 seconds at 180 ◦C.

As in the case of the previous structures, the beam has to be focused and corrected

before starting the actual lithography. However, during the measurement of the

overall beam current in the Faraday cell, not only the current for the beam used
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Figure 3.9: Two examples of graphene layers with alignment marks imaged
by scanning electron microscope.

during the lithography has to be found, but also a beam intensity for observing

and aligning the sample with the mask has to be found. The current must be

low enough not to expose the resist, but high enough to have a good theoretical

beam spot diameter. After all these criteria are met, the sample is moved into

the position and the beam is refocused on the surface of the sample. The correct

position has to be found using the bonding pads and the alignment marks with the

help of a selective scanning window, only parts of the scanned area are exposed (to

avoid critical exposure of the resist) and used for alignment of the mask with the

previous structures.

Figure 3.10 a) shows small contacts only 0.7 µm wide (the smaller one on the left

of the graphene flake), and bigger contacts used for source and drain wide 1.5 µm.

The alignment mark in the right top corner was scanned using the selective scan-

ning window so the same structure on the imaged (which can be still seen) can be

synchronized with it. When everything is ready the contacts are drawn and ex-

posed using the critical dose of 220µC cm−2 (the resist was already exposed during

the process of aligning the sample and image, so the critical dose is lowered not

to overexpose the structures), and the proximity effect corrected. Bigger contacts

between the bonding pads and smaller contacts are 4µm wide and created using

critical dose of 180µC cm−2 (bigger structures require smaller critical doses).
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Figure 3.10: a) Fabrication of small contacts on top of a graphene flake,the
width of the contacts on the left is 0.7 µm and the bigger contacts used for
source and drain are 1.5 µm wide. b) Contacts connecting the bonding pads

and smaller contacts created previously.

3.2.3 Development of the exposed structures

Usually a 1:3 solution of methyl isobutyl ketone (MIBK) and isopropyl alcohol (IPA)

1:3 is used for development of the exposed PMMA films. In case of this work a

solution of IPA and demineralized water was used in ratio 7:3 due to its superior

lateral resolution. Each layer was being developed for 90 seconds in this solution,

washed in demineralized water and blown dry in nitrogen to ensure that all of the

solution is removed, because the whole layer is dissolved: the exposed area dis-

solves much faster than the area which was not exposed, but the unexposed area

is still dissolved over time in the developer. After the development, the etched

areas of the resist can be observed using optical microscope in bright and dark

field mode.

3.2.4 Ion beam deposition

The sample with the developed resist is moved into a vacuum chamber in which

a metallic layer is deposited. The ion beam deposition technique was used to

deposite a 3 nm thick layer of titanium (for better adhesion of the gold on top of

SiO2) and a 60 nm thick gold layer.
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3.2.5 Lift−off process

After the metallic layer has been deposited, the remaining resist has to be removed

from the sample surface. A process called lift−off is used for this purpose. First

the whole sample is dipped in a solvent (mostly acetone) for several hours or even

days. In the areas where the metallic layer touched the surface, the gold contacts

will remain and only the areas in which the metallic layer was on top of the resist

will be dissolved. The sample is washed with a constant stream of the acetone

until last residues of resist are gone and then transfered into a neutralizer (mostly

IPA) and washed in demineralized water and blown dry using nitrogen. The whole

lift−off process can be accelerated using warm acetone (safely up to 40 ◦C) or using

an ultrasonic cleaner, but it may cause the damage of the structures.

3.2.6 Summary of the metallic contacts fabrication

Since the fabrication procedure consists of many steps, a small summary of the

processes used so far is repeated. Firstly, the whole process starts with cutting and

cleaning a Si substrate with a layer of SiO2 (see Fig. 3.11 a), followed by a spincoat-

ing of PMMA resist on top of the substrate surface (Fig. 3.11 b). After a successful

spincoating the sample is put into a scanning electron microscope and exposed to

electron beam through a predefined mask (see fig. 3.11 c), followed by ion beam

deposition of metals (Fig. 3.11 d) and lift−off process in acetone (Fig. 3.11 e). The

final result is a clean structure without rough edges (see Fig. 3.11 f).

3.3 Graphene exfoliation

Before the exfoliation, the surface was etched using plasma etching (80 % Ar to

20 % O2 at 0.5 mbar), which not only cleaned the surface, but also modified the gold

properties to hydrophilic (in case of finger−like structures there was a problem with

sticking of the graphene flakes between the hydrophilic gold finger−like electrodes),

improving the number of graphene layers exfoliated between at least 2 finger−like

electrodes. The graphene was exfoliated using scotch tape method as shown in

Figure 3.12; the process starts with a low adhesion scotch tape on which a small

piece of highly−ordered pyrolithic graphite (HOPG) is placed. After the piece of

HOPG is removed from the surface, the tape is overlaid several times to disperse
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Figure 3.11: a) Clean Si substrate with SiO2 layer. b) Spincoating of PMMA
c) Exposition of PMMA to electron beam and development in IPA: water. d)
Deposition of 3 nm Ti and 60 nm Au e) Lift−off process f) Clean structure

without any rough edges.

Figure 3.12: Exfoliation of grapehne using the scotch tape method [36].

the graphene/graphite flakes more evenly on its surface. The tape is placed over

the sample and slowly stroked with low force over the area on which the graphene

is supposed to be exfoliated for 10 minutes. When the time expires the tape

is slowly removed from the sample surface and the sample is cleaned from any

residual glue in acetone, IPA and demineralized water bath.

3.4 Atomic force microscopy

Atomic force microscopy (AFM) is based on the force interaction between surface

atoms of the sample and a mechanical probe. AFM allows us to measure the height

of a graphite flake and calculate the number of graphene monolayers, one layer

should be 0.34 nm thick, however, the real height measured by AFM approaches

to 1.5 nm [10] due to the contamination by adsorbant molecules (e. g. water). The

most frequently used modes of AFM are the contact and semicontact.



Chapter 3. Experimental setup 35

Lennard−Jones potential [37] describes the force interaction, repulsive short range

force and attractive van der Waals force, between the probe and the surface atoms:

w(r) = 4w0

[(σ
r

)12

−
(σ
r

)6
]

(3.2)

r is the distance between the atoms, σ is a constant (w(r =σ) = 0), w0 is the min-

imum of potential in the point r = 1,12σ. The corresponding interaction force

between the atoms is [37]:

F (r) = −∂w
∂r

= 24w0

(
2
σ12

r13
− σ6

r7

)
(3.3)

Figure 3.13 shows a graph representing the coarse of the force function.

Figure 3.13: The coarse of the interaction force [37].

Each sample was measured in contact mode which works in the repulsive area of

the force interaction. The probe deflection is measured using a laser beam reflected

from the probe surface back to a PSPD (position sensitive photo detector). Using

the contact mode, the surface height can be measured and also the friction using

lateral force microscopy.

The height measured by AFM of the graphite/graphene layer can be affected by

many factors, like for example by the contamination on the sample surface, the

type of used AFM probe, set point of the AFM probe, or the relative humidity.

All the measurements show that LFM has better contrast between the graphene

flake and SiO2 surface and the graphene layer. That is why LFM is used beside
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the AFM during the measurements to recognize and identify the graphene flakes

on top of the sample surface.

Figure 3.14: AFM image of a multilayer graphene flake with height pro-
file (height between the 2 points marked by vertical lines is ≈ 2.5 nm).

Figure 3.15: AFM image of a multilayer graphene flake with height pro-
file (height between the 2 points marked by vertical lines is ≈ 8.7 nm).

The approximated height of the graphene flake shown in the Figure 3.14 is≈ 2.5 nm

and the different roughness of the SiO2.

Another sample measured by the AFM is shown in Figure 3.15 with the height

approximately 8.7 nm with dimensions 8µm× 17 µm, big enough to create a source

and drain electrode and 4 other electrodes: 2 on each side for longitudinal and

transversal transport properties measurements.

3.5 Raman spectroscopy

Raman spectroscopy is one of the methods used to identify graphene on the

substrate surface, it can also distinguish between a monolayer and a multilayer

graphene flake.



Chapter 3. Experimental setup 37

Raman scattering is an interaction between photon of the illumination source and

the vibrational, rotational modes in atoms and molecules, in solid matter with the

lattice vibration. Monochromatic light (usually from a laser) is scattered either

elastically or inelastically.

Figure 3.16: Energy−level diagram showing the states involved in Raman
signal [38].

In the case of the inelastic scattering the energy of the incident photon and the

emitted photon is different by quantum of energy. If the incident photon interacts

with the crystal structure, part of his energy can be absorbed to create phonon

and the emitted photon has a lower energy than before. This is called Stokes

Raman scattering. Anti−Stokes Raman scattering is the opposite: the incident

photon interacts with phonon, which transfers its energy to the scattered photon,

so the emitted photon has higher energy than before. If the energy of the incident

photon is:

Ei = ~ωi (3.4)

then the photon emitted after the scattering has the energy:

Ef = ~ωf = ~ωi ± ~Ω (3.5)

Ω is the frequency of the phonon and ”−” is for Stokes and ”+” for Anti−Stokes

Raman scattering. Figure 3.16 shows each interaction of the light with the sub-

strate and the changes of energy during this process. The signal from Raman
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spectroscopy is the intensity of the light for each wavelength. Only the wave-

lengths which correspond to the energies of created/annihilated phonons and their

multiples stand out from the spectra.

3.5.1 Raman spectroscopy of graphene

Each substance has its own unique Raman spectra, even graphene.

Figure 3.17: Raman spectra for excitation energy 2.41 eV of an exfoliated
graphene on universal structures, with the positions of G, G* and 2D peaks.

Figure 3.17 shows the Raman spectrum for excitation energy 2,41 eV of an exfo-

liated graphene on top of SiO2 with G peak at 1582 cm−1, G* peak at 2450 cm−1

and 2D peak at about 2700 cm−1. The G band (peak) is associated with double

degenerated (iTO and LO) phonon mode at the Brillouin center [39]. A second

order process involving two iTO phonons near the K point is the origin of the 2D

band (peak). If there are any defects found in the graphene layer, a D band peak

at 1350 cm−1 is present which originates from a second order process, involving

one iTO phonon and one defect [39]. The intensity of the D band is proportional

to the number of defects in the layer.

The shape, Raman shift and width of the 2D band (peak) determine the number

of layers of graphene flake in Raman spectra. For a monolayer of graphene the
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2D band exhibits a single Lorentzian feature with full width at half maximum of

≈ 24 cm−1. The intensity of the 2D band is considerably large compared to the

intensity of the G band [39].
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Experimental setup 2

4.1 Transport measurement

The measurement of transport properties is carried out as a measurement of resis-

tance (2−point probe) or resistivity (4−point probe). With 2−point probe mea-

surement the resistance of the contacts has to be taken into consideration, unlike

the 4−point probe measurement which can neglect the resistance of the contacts.

4.1.1 2−point probe measurement

Figure 4.1: Scheme of a 2−point probe measurement using a current source
and a voltmeter.

2− point probe method uses 2 contacts on a sample. The current source and volt-

meter are directly connected to the contacts (Figure 4.1). The measured change of

41
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potential between source and drain allows the calculation of resistance. Resistivity

of a two dimensional material like graphene is then calculated as [40]:

ρ = R
w

l
(4.1)

where w is the width and l the length of the sample. Conductivity is then calculated

as:

σ =
1

ρ
=

1

R

l

w
(4.2)

4.1.2 4−point probe measurement

If there are 4 contacts on the sample the 4−point probe measurement method

can be used. The sample dimensions have to be bigger than the distance between

the electrodes. Figure 4.2 outlines the 2 used schemes for the 4−point probe

measurement: either measuring the change of the potential between the source

and drain, or placing one electrode between the source and drain and one behind

the drain and measuring the change of potential.

Figure 4.2: Scheme of a 4−point probe measurement with 2 variations using
a current source and a voltmeter.

The resistivity of a two dimensional material is then calculated as:

ρ = R
π

ln 2
(4.3)

Since each sample has different shape a correction factor c has to be used.

ρr = cρ (4.4)
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where ρr is the real resistivity of the sample and the correction factor c for rect-

angular structures is in the table 4.1 [41].

d/s a/d = 1 a/d = 2 a/d = 3 a/d≥ 4
1.0 0.9988 0.9994
1.25 0.9973 0.9974
1.5 0.9859 0.9929 0.9929
1.75 0.9826 0.9850 0.9850
2.0 0.9727 0.9737 0.9737
2.5 0.9413 0.9416 0.9416
3.0 0.8192 0.9000 0.9002 0.9002
4.0 0.7784 0.8061 0.9062 0.8062

Table 4.1: Correction factor c for various geometries as shown in Fig-
ure 4.3 [41].

Figure 4.3: Geometry of the measurement, where d is the width, a is the
length of the structure and s is the distance between the electrodes [41].

To overcome this problem the normal configuration is used in the first measure-

ment of the resistivity, and in the second measurement the dual configuration is

deployed, removing the statistical error of position and the geometrical error [42].

4.2 Setup of the transport properties measure-

ment as a function of relative humidity

Figure 4.4 shows the scheme of the humidity chamber with automatic/manual

regulation of relative humidity. The main parts of the humidity regulation system

are: N2 pressure gas bottle, flow regulator, electromagnetic valves, water reservoir,

control sensor and humidity chamber. Manual mode allows to regulate the flow of

the propulsion N2 gas through or out of the water reservoir and achieve the required

relative humidity by setting of a corresponding mixture of N2 and H2O vapors
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in the chamber. Automatic mode allows to select the required value of relative

humidity and the programmed PID controller (proportional−integral−derivative)

automatically adjusts the flow rate and the gas type (N2, H2O(g)) to achieve the

correct RH value.

Figure 4.4: Scheme of the humidity chamber with regulation mechanism.

Figure 4.5: The configurations of 2−point probe measurement using a current
source with nanovoltmeter.

Figure 4.6: The 2 configurations of 2−point and 4−point probe measurement
using a lock−in amplifier.

The transport properties of graphene inside the humidity chamber are measured

using a current source (Keithley 2661AC) and a nanovoltmeter (2182A) (Fig. 4.5)

or connected via the homebuilt protective apparatus shown in Figure 4.7 with
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the lock−in amplifier (SR830 DSP Lock−in Amplifier, Stanford research systems)

(Fig. 4.6), the homebuilt system prevents a discharge of static electricity, which

would irreversibly damage the graphene sensor. Most of the measurements were

performed by lock−in amplifier and only a few measurements were done by current

source and nanovoltmeter (scheme on Fig. 4.5).

Figure 4.6 shows a schematic (wiring) diagram of so called two point method and

diagram for the measurement of longitudinal part of resistivity. The lock−in am-

plifier has a sinus signal output and usually the following amplitude of 1 V at

frequency 13.444 Hz was used (additional settings are shown in the scheme). The

resistance of the circuit is determined mainly by the 10 MΩ resistor and the re-

sulting current for the usual voltage was 100 nA. To protect the measuring devices

a 1 kΩ resistor is placed behind the back contact.

Figure 4.7: The homebuilt protective apparatus (on the left) and the current
source (Keithley 2661AC) with the nanovoltmeter (2182A) (on the right).

The homebuilt protective apparatus (fig. 4.7) has a 25 pin cable with pins at the

end to connect the sample as an input, and 25 separate outputs for each channel

which can be separately grounded and opened, with 10 MΩ line for the source,

1 MΩ line for the gate voltage measurements, 1 kΩ line for testing of the setup and

a grounding pin for grounding the user to avoid any damage caused by discharge

of static electricity.

Both the lock−in amplifier and the current source with nanovoltmeter were con-

trolled via GPIB by a computer with a program created in the programing envi-

ronment of Labview.
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Results

5.1 2−point probe measurement of the graphene

sensor response

5.1.1 Finger like electrodes

Figure 5.1: SEM and AFM image of the graphene flake on top of 2 finger like
electrodes.

A graphene sensor (Fig. 5.1) was prepared on top of the interdigitated finger

like electrodes, FIB (focused ion beam) was used to sputter away the unusable

finger−like electrodes to make sure only one graphene layer was active during the

measurement (Figure. 5.2 shows a small scheme of the process). The sample looks

undamaged after the procedure, but the response of the sensor on the change of

the relative humidity in time in Figure 5.3 exhibits a lot of noise. A small response

47
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Figure 5.2: Scheme of 2 graphene flakes on top of gold electrodes, small part
of the electrode was sputtered away to create a non conductive disruption.

of the sensor can be seen but it is very difficult to read. The change of the resis-

tance is 0.1 % and sensitivity S is 0.1 % and the SRH is 0.071 % for the change of

RH from 10 % up to 70 %, sensitivity S is defined as:

S =
R2 −R1

R1

× 100% (5.1)

and SRH related directly to the relative humidity RH:

SRH =

R2−R1

Rp

RH2−RH1

RHp

× 100% (5.2)

where R2 is the resistance response on the higher relative humidity RH2, R1 is

the resistance response on the lower relative humidity RH1, Rp and RHp are the

mean values of resistance and relative humidity. The sensor was probably damaged

during the use of the FIB to sputter away the unwanted contacts and the surface

of SiO2 was doped with Gallium ions. Althought it is damaged it shows a certain

response on a change of relative humidity but for a stable measurement the signal

has too much noise.
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Figure 5.3: The response of the graphene sensor on a change of the relative
humidity in time.

5.1.2 Universal electrodes

The sensor measurement in the Figure 5.4 shows a certain resistance responses

on the change of relative humidity. In the first step change of relative humid-

ity (10→ 70 %), the average resistance decreases. Then, the resistance increases,

although the RH is kept constant (70 %), which is probably caused by the satura-

tion by water vapors. The increase caused by saturation becomes milder when the

RH goes down (70→ 30 %) and is again kept constant (30 %). In the second step,

change of relative humidity (10→ 70 %), the resistance increase was lower as can be

expected- The following decrease of resistance at constant relative humidity (70 %)

was not expected and in agreement with the behavior observed previously, however

in this case, the measurement is characterized by a strong noise.

The table 5.1 shows the sensitivity S and SRH for the corresponding change of

relative humidity RH. The sensitivity S shows a small decrease of sensitivity with

smaller changes of relative humidity, but the SRH which takes the RH into con-

sideration clearly shows that the sensitivity is the highest around 70 % and lowest

for the change from 70 % to 30 %.
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Figure 5.4: The dependence of the resistance and relative humidity in time of
a graphene−based sensor on universal electrodes.

Change of RH (%) S (%) SRH (%)
10−70 0,46 0,31
70−30 0,23 0,29
28−32 0,23 1,74
68−70 0,11 4,02

Table 5.1: The change of the relative humidity RH and corresponding sensi-
tivity S and SRH

5.1.3 Graphene flake with universal electrodes by applying

a gate voltage

The graph in the Figure 5.6 is a resistance measurement in time depending on the

change of the relative humidity of a graphene sensor shown in Figure 5.5. The

graphene flake was ≈ 4.5 µm long and ≈ 0.8 µm wide in the middle. The back gate

electrode was attached for field effect measurements. The measurement started at

10 % RH to desorb most of the water vapor from the graphene surface. The higher

relative humidity increased the charge carrier concentration, since the resistance

was lower. The graph at 70 % RH showed a linear decrease in resistance, which

corresponded with the saturation of the surface by water vapors, but at 30 % the
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resistance was constants, the small changes are caused by the RH fluctuations

around the set relative humidity value.

Figure 5.5: SEM image of a graphene sensor with 2 conductive contacts on
universal structures.

Part 1 Part 2
Change of RH (%) S (%) SRH (%) Change of RH (%) S (%) SRH (%)

10−70 1,16 0,71 10−20 0,07 0,16
70−30 0,39 0,48 20−30 0,07 0,16
28−32 0,13 0,99 30−40 0,03 0,15
68−70 0,06 1,17 40−50 0,03 0,15

50−60 0,06 0,36
60−70 0,2 1,3

Table 5.2: The change of relative humidity RH and corresponding sensitivity
S and SRH

Table 5.2 and graph 5.7 show the sensitivity S and SRH for different RH levels

calculated from graph 5.6. The biggest SRH = 1,17 % was for RH around 70 %

and the lowest SRH was in the range of 70−30 % RH. The measurement of step

like change of relative humidity from 10 to 70 % at 10 % RH steps, sensitivity

was calculated and plotted as a function of relative humidity shown in Figure 5.7,

SRH increases exponentially from 50 to 70 % RH. This exponential increase is

contributed to the fact that at 50 % RH the graphene surface approaches saturation

from water vapor and the change of resistance is purely from the adsorption and

desorption of water molecules.
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Figure 5.6: The dependence of the resistance and relative the humidity in
time of a graphene−based sensor on universal electrodes.

Figure 5.7: Sensitivity SRH as a function of the relative humidity for the
step−like changes in part 2 of the graph 5.6, from 10 to 70 % at 10 % RH steps..
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5.1.4 Electric field effect measurement of the graphene

sensor

Electric field effect measurement using a back gate electrode on the graphene

sample was carried out before and after the measurement of resistance in time

with changing relative humidity and back gate voltages set to -40 V, 0 V, 40 V,

and the results can be seen in the Figure 5.8. The graph clearly shows the change

of the graphene Dirac point from gate voltage ≈ 40 V to 18 V. The measurement of

Dirac point indicate that measured exfoliated graphene flake was p−type, however,

during the measurement of resistance response on relative humidity was doped by

electrons.

Figure 5.8: Electric field effect measurement

Figure 5.9 shows the different responses of the graphene sensor for each back gate

voltage -40 V, 0 V and 40 V. Mostly, the resistance slightly increases/decreases

with decrease/increase of the relative humidity for all the back gate voltages. This

is very similar to the measurement presented in the chapters 5.1.2 and 5.1.3.

However, there are quite big donations from this trend in time 500−1250 s at

BG = -40 V (green curve) and in time 1250−2500 s at BG = 0 V (blue curve) in

Figure 5.9, when a considerable increase of resistance occurred. This could be
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caused by strong doping of graphene by electrons corresponding to the change of

Dirac point position presented in Figure 5.8. It is difficult to explain the origin of

this sudden n−type doping. Additionally also the increase of resistance in time

for individual back gate voltages indicate the other slow doping by electrons.

Figure 5.9: The dependance of the resistance and relative humidity in time of
a graphene−based sensor with different back gate voltages -40 V, 0 V, and 40 V.

5.2 KPFM measurement of the graphene sensor

5.2.1 Using a lock−in amplifier

Kelvin probe force microscopy (KPFM) was used to measure the surface potential

of the graphene flake (see Fig. 5.10) during the resistance in time measurement

with changing of the relative humidity using a lock−in amplifier setup. There

are numbered marks used to index events happening during the measurement in

the Figure 5.11. Events like KPFM measurement, change of humidity or AFM

measurement are highlighted. All the events are depicted in table 5.3, for exam-

ple number 1 marks the start of an AFM semicontact measurement on an area

of 5× 5 µm (detail of the graphene multilayer). There is a minor change of the

resistance in the presence of the AFM tip near the graphene surface at ≈ 4 %
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RH (number 1). The KPFM measurement was performed with bias voltage 0 V at

4 % relative humidity, the KPFM image 5.12 shows an increase of surface potential

near the area of higher number of graphene flake layers.

Ziegler, D. et. al., [43] observed the increase of the work function as a function

of graphene layers number. However, they found out the change of work func-

tion between the SiO2 substrate and first graphene layer of 150 meV, the second

graphene layer added 100 meV the third layer 30 meV and the next layers had

zero contribution, which quantitatively did not correspond to our result. Having

regard to measurement errors and other influences, the KPFM probably showed

only this information about the change of the work function with the number of

layers.

The resistance of the graphene flake decreases with increasing number of graphene

layers, because the current prefers areas with higher conductance (lower resis-

tance). The linear increase of the resistance during the measurement around 5 %

relative humidity was caused by the linear decrease of relative humidity to 3 %,

but the increase around 50 % relative humidity was caused by the water vapor sat-

uration of the graphene surface. Higher relative humidity caused higher resistance

of the graphene sensor and showed that the graphene layer could be an n−type

semiconductor.

Figure 5.10: SEM and AFM image of the measured graphene multilayer.

The resistance measurement was carried out using a lock−in amplifier with a sine

output signal, which causes fluctuations in the carrier concentrations and there is

no gradient of surface potential between the electrodes.
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Figure 5.11: Change of resistance in time dependent on the relative humidity
inside the humidity chamber with numbers marking AFM and KPFM measure-

ment events.

Number Event Number Event
1 AFM semicontact 7 KPFM at 0 V, 51,34 % RH
2 KPFM at 0 V, 4 % RH 8 KPFM at 10 V, 52,37 % RH
3 KPFM at 10 V, 3,42 % RH 9 KPFM at -10 V, 52,36 % RH

4 KPFM at -10 V, 2,55 % RH 10 KPFM at 0V̇, 51,34 % RH
5 KPFM at 0 V, 3,49 % RH 11 change of RH up to 81 % RH
6 change of RH up to 51 % 12 KPFM at 0 V, 78,56 % RH

Table 5.3: The change of relative humidity RH with the sensitivity S and SRH

Figure 5.12: AFM and KPFM image of the measured graphene multilayer
showing the distribution of potential on the surface at number 2 (RH =4 %).
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5.2.2 Using a constant current source

The same graphene flake was used as in the measurement using universal elec-

trodes with a back gate electrode, measured using Keithley 2661AC set as a con-

stant current source. In a measurement like this, the authors usually suppose the

visible linear surface potential change (KPFM) corresponding to voltage difference

between grounded and voltage supplied electrode. In the case of this work such

a behavior could not be observed due to small voltage difference (0.3 mV) corre-

sponding to small constant current of 100 nA applied during the graphene flake

measurement (resistance ≈ 3 kΩ), to prevent the sample from destruction. There-

fore , the changes of measured KPFM value should be contributed to different work

functions of the gold, SiO2 and graphene. However, without calibration of the tip

work function, the KPFM gives information only about relative changes (KPFM

measures the contact potential difference).

Graph 5.13 presents the result of resistance change in time with changing relative

humidity at constant current. As in the subsection before the marks are used

to index the events (in table 5.4) happening during the measurement, but the

bias voltage was kept 0 V throughout all of the KPFM measurements. Scan with

dimensions 8µm× 8 µm was used for KPFM measurements and a smaller scan

was carried out to avoid any influence of the source and drain electrode with

dimensions 3 µm× 3 µm.

Number Event Number Event
1 approach with the tip 8 KPFM 48,14 % RH
2 KPFM 5,46 % RH 9 sub KPFM 48,05 % RH
3 sub KPFM 4,24 % RH 10 change of RH to 5 % RH
4 change of RH up to 35 % 11 KPFM 5,48 % RH
5 KPFM 34,94 % RH 12 sub KPFM 4 % RH
6 sub KPFM 35,01 % RH 13 KPFM 4,67 % RH
7 change of RH up to 50 % 14 sub KPFM 4,17 % RH

Table 5.4: The change of relative humidity RH with the sensitivity S and SRH
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Figure 5.13: Change of resistance in time dependent on the relative humidity
inside the humidity chamber with numbers marking AFM and KPFM measure-

ments happening during the measurement.

Figure 5.14: AFM and KPFM image of the measured graphene multilayer
showing the distribution of potential on the surface at number 2 (RH =5,46 %).
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Conclusion

This diploma thesis dealt with the fabrication and characterization of exfoliated

graphene sensors of the relative humidity. On the bases of literature retrieval the

following sensors were fabricated to meet the demands of this work.

1. Top graphene sensor on interdigitated finger−like electrodes

2. Bottom graphene sensor under the universal electrodes for 2−point and

4−point probe measurement.

The sensitivity of the sensors was estimated to a value of 0.1 %−1.3 % which was

much smaller than the graphene oxide and CVD graphene published elsewhere.

The 4−point probe measurement could not be realized due to multiple destruction

of EBL structures. Moreover, the work studied the response of the sensor on the

presence of AFM probe and KPFM measurement of the sensor during AC and DC

current measurement, at different relative humidities. The leakage of the charge

with higher relative humidity was not proved. Beneficial result also consisted in

finding of the Dirac point of an exfoliated graphene in ambient conditions.
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