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Abstrakt
Tato diplomová práce se zabývá transportńımi a optickými vlastnostmi grafenu, a to zejména v kon-
texu jejich možné ovládáńı pomoćı elektrostatického gatováńı. Autor představuje návrh experimentu,
který by demonstroval praktické možnosti využit́ı grafenu v oblasti aktivńı plazmoniky. Těžǐstě práce
spoč́ıvá v poč́ıtačových simulaćıch rozptylu světla na hybridńıch strukturách na bázi grafenu a drahých
kov̊u. Rozptylové vlastnosti těchto struktur jsou diskutovány v závislosti na hustotě volných nosič̊u
náboje v grafenu. Autor docháźı k závěru, že navrhovaný zp̊usob ř́ızeńı odezvy osamocené plazmon-
ické antény elektrostatickým gatováńım je nedostačuj́ıćı a k zvýšeńı tohoto efektu bude potřeba naj́ıt
jinou vhodněǰśı konfiguraci.

Summary
The diploma thesis provides an introduction to electronic and optical properties of graphene, empha-
sizing thier tunability through the ambipolar field effect. Furthermore, an experiment, which would
demonstrate the possible utilization of graphene in active plasmonics, is presented. The author fo-
cuses on light scattering simulations involving hybrid plasmonic structures made of noble metals and
graphene. The scattering properties of those structures and their dependence on the density of free
charge carriers in graphene are investigated. The author concludes that the proposed tuning of the
response of a single metallic antenna through the electrostatic doping of graphene proves to be in-
efficient, and a more elaborate configuration will be required to enhance the effect and achieve the
desired control.
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Introduction
Graphene is a transparent, two dimensional crystal composed of carbon atoms arranged into a hexag-
onal lattice and it can be basically viewed as a limiting case of a graphite crystal only one monolayer
thick. Due to its planar structure, graphene possesses several interesting properties like high ten-
sile strength, flexibility and superb free charge carrier mobility. The last property follows from the
graphene’s unique electronic band structure, in which the valence and the conduction bands are touch-
ing each other in a single point, to which it is usually referred as to the Dirac point. Interestingly,
the electrons in the vicinity of the Dirac point can be described as massless Dirac fermions, making
graphene an intriguing material even for high energy physicists.

In the fields of plasmonics and photonics, graphene draws attention especially due to the possibility
of changing dynamically the density of free charge carriers, thus allowing one to tune both its electronic
and optical properties. Such ability can find a utilization not only in the current technology of optical
modulators, photodetectors, high-frequency transistors and other electric and optoelectronic devices,
but it might also lead to a major progress in the area of active plasmonics and optical computation.

This thesis concerns mainly with the intriguing concept of hybrid plasmonic structures with a
tunable response to the external electromagnetic radiation. The control is achieved through the
electrostatic doping of graphene using the ambipolar field effect. The author attempts to estimate
theoretically the strength of the interaction between a single plasmonic antenna made of a noble metal
and electrostatically doped graphene by means of light scattering simulations. The calculations take
into account neither the influence of the gating electrode nor the possible changes in the electronic
structure of graphene due to the presence of the metal. Especially the latter might be of great impor-
tance and the scientific community is currently striving to shed some light on the issue. Nevertheless,
the author believes that the presented results capture the main features of the response of such hybrid
structures and that this thesis might help to determine the future course of the research in this area
at our institute.

Since the theory behind the optical properties of graphene is quite extensive and the author did
not encounter a text, which would present their complete description in a comprehensible and compact
form, Chapter 1 provides the reader with an easy to follow derivation of the dynamical conductivity
and optical properties of graphene, with emphasis on its metallic character enabling the existence of
plasmonic surface modes.

Chapters 2 and 3 present a short overview of the fabrication methods and possible applications of
graphene.

One of the goals of this thesis is to propose an experiment, which would demonstrate the possible
control over the plasmonic resonance of ordinary metallic antennas through the variations of the
doping level in graphene. Chapter 4 introduces a hypothetical device allowing one to tune the angle
of refraction at interfaces by means of graphene based plasmonic structures.

The core of the thesis resides in the light scattering simulations involving hybrid structures made
of noble metals and graphene. Chapters 5 and 6 give the reader a brief introduction to two different
techniques, which were employed to calculate the scattering properties of several model structures.
The results of the simulations are summarized in Conclusion.
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1. OPTICAL PROPERTIES OF GRAPHENE

1. Optical properties of graphene
For a long time, graphene was considered to be an unstable, hypothetical material, interesting only
from the theoretical point of view. Presently, it is one of the most intensively researched objects with
a possibly far-reaching impact on the future development of electronic and optoelectronic devices.
This chapter concerns with the electronic band structure and derivation of the frequency-dependent
conductivity of graphene, which is necessary for calculations of radiation scattering from structures
involving graphene.

1.1. Crystal lattice and reciprocal lattice

Graphene consists of carbon atoms, the elementary building block of organic molecules and living
organisms. In the ground state, the electronic structure of a carbon atom is in the language of
chemistry standardly written as 1s22s22p2 so that two of the total of six electrons are enclosed in the
inner K shell and the four remaining valence electrons occupy the L shell and ensure the bonding with
surrounding atoms.

K ′

b1

b2

K ′ K ′

KK

K

1th BZ

A B

a1

a2 aC−C = 0.142 nm

(b)(a)

Figure 1.1: (a) The honeycomb arrangement of carbon atoms in graphene with spacing aC−C =
0.142 nm. The primitive unit cell contains two inequivalent carbon atoms (marked A and B) and
it is defined through the lattice vectors a1 and a2. (b) The reciprocal lattice of graphene. The
high-symmetry corner points of the first Brillouin zone (1th BZ) are marked K and K ′.

The carbon atoms in graphene are arranged into a honeycomb (hexagonal) lattice with a distance
aC−C = 0.142 nm between each two carbon atoms (Fig. 1.1 (a) ). They are found to be in the state of
sp2 hybridization, which means that the 2s, 2px and 2py orbitals superpose to form three equivalent
σ orbitals (Fig. 1.2) oriented in the xy plane and ”protruding” in the directions mutually separated
by an angle of 120◦. Those three σ orbitals (each of them occupied by one electron) interact with the
σ orbitals of the three closest carbon atoms and form strong covalent σ bonds, which are responsible
for the high durability and tensile strength of graphene. The remaining electron occupying the 2pz
orbital, unaffected by the hybridization and oriented out of the crystal plane, interacts with the 2pz
orbitals of neighbouring carbon atoms forming weaker and delocalized π bonds.

Although the crystal structure of graphene is commonly described by the honeycomb lattice,
its vertices do not form the basis of primitive vectors of a Bravais cell, since the lattice appears
differently from two adjacent carbon sites. There exists a suitable primitive unit cell with a basis

containing the two inequivalent carbon atoms (marked A and B) and primitive vectors a1 =
(√

3a
2 , a2

)
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1.2. TIGHT BINDING METHOD

s - orbital p - orbitals sp2 - hybridization

+ =

σ

σ

σ

pypx

pz

pz
Figure 1.2: Illustrutation of the sp2 hybridization in carbon atoms. The s, px and py orbitals superpose
to form three equivalent σ orbitals. The pz orbital remains unaffected by this process.

and a2 =
(√

3a
2 ,−a

2

)
as depicted in Figure 1.1 (a) (the magnitude of the vectors has been denoted

a = |a1| = |a2| =
√

3 aC−C). The reciprocal lattice vectors b1 and b2 can be derived from the primitive
vectors

b1 = 2π
a2 × a3

a1 · (a2 × a3)
=

(
2π√
3a
,
2π

a

)
, (1.1)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
=

(
2π√
3a
,−2π

a

)
, (1.2)

where the out-of-plane primitive vector tends to infinity a3 → ∞. The first Brillouin zone, resp. the
primitive unit cell in the reciprocal space, is then obtained by the Wigner-Seitz construction, where
the boundary of the cell for the respective lattice point is given by the region of the reciprocal space
that is closer to that point than to any other point of the lattice (Fig. 1.1 (b) ).

1.2. Tight binding method

The band structure of graphene within the first Brillouin zone can be calculated using the so called
tight binding method, which relies on the Bloch’s theorem and which is in many aspects similar
to the calculations of band structure for nearly free conducting electrons in metals. The following
introduction to this method and its application to graphene are built mainly on certain passages from
Mermin and Ashcroft [4] (Chap. 10) and Saito et al. [29] (Chap. 2).

First let us assume a periodic crystal potential U (r + R) = U (r), where r is a position vector
and R spans over all the crystal lattice points. Then according to the Bloch’s theorem, the electron
wavefunction Φ satisfying the one-electron Hamiltonian H = − h̄2

2m∇
2 + U (r) can be chosen in the

form

Φ(k)(r + R) = eik·RΦ(k)(r) , (1.3)

where k is a wavevector associated with the particular wavefunction. Clearly, Equation (1.3) satisfies
the requirement that the probality density of finding an electron |Φ|2 is periodic over the lattice.

The tight binding approximation is based on the assumption that the electron wavefunctions ψ
satisfying the full periodic crystal Hamiltonian H differ only slightly from those of a single atom, thus
they can be approximated by an appropriate superposition of atomic wavefunctions ϕ. This is quite
the opposite compared to the case of the nearly free electron model for metals, where the wavefunctions
are expressed in terms of plane waves. The assumptions for the tight binding approximation mentioned
above are met for crystals, where the electrons are tightly bound to their respective atoms and the
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1. OPTICAL PROPERTIES OF GRAPHENE

crystal potential H does not substantially deviate from the atomic potential Hat within the range of
the electron wavefuntion ϕ.

A suitable electron wavefunction satisfying the Bloch’s theorem and having the form prescribed
by the tight binding approximation can be written as

Φ
(k)
j (r) =

1√
N

N∑
Rj

eik·Rjϕj(r−Rj) , (1.4)

where ϕj is the j-th atomic wavefunction, Rj is the position vector spanning all the associated atomic
sites and N is the number of the respective atoms in the crystal (this can differ from the total number
of atoms in the crystal, since we can have a multiple-atomic basis). The fact that the wavefunction
given by Equation (1.4) indeed obeys the Bloch’s theorem can be straightforwardly shown by inserting
it into Equation (1.3)

Φ
(k)
j (r + R) =

1√
N

N∑
Rj

eik·Rjϕj(r + R−Rj) =
1√
N

N∑
Rj

eik·(Rj−R)eik·Rϕj(r− (Rj −R)) =

= eik·R 1√
N

N∑
Rj

eik·Rjϕj(r−Rj) = eik·RΦ
(k)
j (r) ,

where we have used the property
∑

Rj−R =
∑

Rj
.

Finally, the crystal wavefunction ψ is given by a linear combination of all the Bloch’s atomic
wavefunctions (Eq. (1.4))

ψ
(k)
i (r) =

n∑
j

C
(k)
ij Φj(r) , (1.5)

where coefficients C
(k)
ij are yet to be determined and index i spans over the n bands, which are formed

as the result of the superposition of n different atomic wavefunctions.
The desired band structure described by the energy dispersion e(k) is now obtained as the expec-

tation value of the crystal Hamiltonian

E
(k)
i =

〈
ψ

(k)
i

∣∣H∣∣ψ(k)
i

〉〈
ψ

(k)
i

∣∣ψ(k)
i

〉 . (1.6)

Expressing the wavefunction ψ
(k)
i in terms of the Bloch’s atomic wavefunctions (Eq. (1.4) ) leads to

E
(k)
i =

〈 n∑
j
C

(k)
ij Φ

(k)
j

∣∣H∣∣ n∑
j′
C

(k)
ij′ Φ

(k)
j′
〉

〈 n∑
j
C

(k)
ij Φ

(k)
j

∣∣ n∑
j′
C

(k)
ij′ Φ

(k)
j′
〉 =

n∑
j,j′
C
∗(k)
ij C

(k)
ij′
〈
Φ

(k)
j

∣∣H∣∣Φ(k)
j′
〉

n∑
j,j′
C
∗(k)
ij C

(k)
ij′
〈
Φ

(k)
j

∣∣Φ(k)
j′
〉 =

n∑
j,j′
C
∗(k)
ij C

(k)
ij′ H

(k)
jj′

n∑
j,j′
C
∗(k)
ij C

(k)
ij′ S

(k)
jj′

, (1.7)

S
(k)
jj′ =

〈
Φ

(k)
j

∣∣Φ(k)
j′
〉
, H

(k)
jj′ =

〈
Φ

(k)
j

∣∣H∣∣Φ(k)
j′
〉
, (1.8)

where the elements of the overlap matrix S
(k)
jj′ and the transfer matrix H

(k)
jj′ assess the orthogonality

and the energy transfer between the pair of states Φ
(k)
j , Φ

(k)
j′ respectively.
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1.3. BAND STRUCTURE OF GRAPHENE

In the spirit of the variation principle (Griffiths [15], p. 293), the ground state of the system is

obtained by looking for the minimal value of the energy E
(k)
i with respect to the coefficients C

(k)
ij

∂E
(k)
i

∂C
∗(k)
ij

=

n∑
j′
C

(k)
ij′ H

(k)
jj′

n∑
j,j′
C
∗(k)
ij C

(k)
ij′ S

(k)
jj′

− E(k)
i

n∑
j′
C

(k)
ij′ S

(k)
jj′

n∑
j,j′
C
∗(k)
ij C

(k)
ij′ S

(k)
jj′

= 0, (1.9)

leading to a homogenous system of n linear equations for each i

n∑
j′

(
H

(k)
jj′ − E

(k)
i S

(k)
jj′

)
C

(k)
ij′ = 0, j = 1, 2 . . . n. (1.10)

Rewriting the above set of equations in terms of matrices and column vectors simplifies the notation

H(k) =

 H
(k)
11 H

(k)
12 . . .

H
(k)
21 H

(k)
22 . . .

...
...

. . .

 , S(k) =

 S
(k)
11 S

(k)
12 . . .

S
(k)
21 S

(k)
22 . . .

...
...

. . .

 , C(k)
i =

 C
(k)
i1

C
(k)
i2
...

 , (1.11)

(
H(k) − E(k)

i S
(k)
)
C(k)
i = 0. (1.12)

Equation (1.12) has a nontrivial solution only if the determinant of the expression in the brackets is
equal to zero

det
(
H− E(k)

i S
)

= 0. (1.13)

Equation (1.13) is known as the secular equation and for given values of the transfer and overlap

matrices it allowes one to directly calculate the energy dispersion E
(k)
i .

1.3. Band structure of graphene

Application of the tight binding method to graphene is straigtforward. Since electric and optical
properties of materials are governed mainly by the electronic states at Fermi level, one needs to take
into account only those atomic orbitals, which contribute to the density of states near the Fermi level.
In the case of graphene, the electronic bands arising from the strongly bound σ electrons are found to
be well below the Fermi level, thus calculations incorporating only π orbitals should capture all the
important features of the graphene’s electrodynamical response.

The graphene’s primitive unit cell contains two inequivalent carbon atoms (see Section 1.1), each
contributing to the crystal wavefunction by one atomic π orbital. Invoking Equations (1.4) and (1.5),

the crystal wavefunction ψ
(k)
i can be written as

ψ
(k)
i (r) = ai(k)

N∑
RA

eik·RA

√
N

ϕA(r−RA) + bi(k)
N∑

RB

eik·RB

√
N

ϕB(r−RB) , (1.14)

where the coefficients ai(k) and bi(k) account for the coefficients C
(k)
ij , RA, RB are the position vectors

of the two inequivalent atomic sites and ϕA, ϕB are the respective atomic π orbital wavefunctions.
The next step is the evaluation of the transfer and overlap matrices. Insertion of the crystal

wavefunction ψ
(k)
i into Equations (1.8) leads to

8



1. OPTICAL PROPERTIES OF GRAPHENE

H
(k)
αβ =

N∑
Rα,R′

β

eik·(R′
β−Rα)

N

〈
ϕα(r−Rα) |H|ϕβ

(
r−R′β

)〉
, (1.15)

S
(k)
αβ =

N∑
Rα,R′

β

eik·(R′
β−Rα)

N

〈
ϕα(r−Rα) |ϕβ

(
r−R′β

)〉
, (1.16)

where the indices α, β = A,B run over all the four possible combinations.
Since the atomic wavefunctions ϕA,B are appreciable only in a limited region around their respective

atomic cores, one does not have to calculate the interaction with all the carbon atoms in the crystal,
but to some extent it will suffice to take into account only the nearest neighbours. In mathematical
terms

ϕα(r−Rα) ≈ 0 for Rα 6= 0, (1.17)

ϕα(r−Rβ) 6= 0 for Rβ = δαβν , α 6= β, ν = 1, 2, 3, (1.18)

δAB1 =

(
a√
3
, 0

)
, δAB2 =

(
− a

2
√

3
,
a

2

)
, δAB3 =

(
− a

2
√

3
,−a

2

)
, δBAν = −δABν , (1.19)

where δαβν are the position vectors of the nearest atoms with respect to the central atom (Fig. 1.3).

A B
δAB1

δBA3δAB2

δBA1

δAB3 δBA2

Figure 1.3: The nearest neighbour carbon atoms and their position vectors δαβν with respect to the
central atoms marked A and B.

Adopting the above assumptions, the diagonal elements of the transfer and overlap matrices are readily
evaluated

H
(k)
AA = H

(k)
BB =

1

N

N∑
Rα=R′

α

eik·(R′
α−Rα)

〈
ϕα(r−Rα) |H|ϕα

(
r−R′α

)〉
=

=
1

N

N∑
Rα

〈ϕα(r−Rα) |H|ϕα(r−Rα)〉 = E2p, (1.20)

S
(k)
AA = S

(k)
BB =

1

N

N∑
Rα=R′

α

eik·(R′
α−Rα)

〈
ϕα(r−Rα) |ϕα

(
r−R′α

)〉
=

=
1

N

N∑
Rα

〈ϕα(r−Rα) |ϕα(r−Rα)〉 = 1, (1.21)

9



1.3. BAND STRUCTURE OF GRAPHENE

where E2p denotes the energy, which the 2p orbital acquires in the crystal potential. Furthermore,
the assumption that the atomic wavefunctions ϕA,B are normalized to one has been made.

According to Equation (1.18), for the evaluation of the off-diagonal elements of the transfer and
overlap matrices one needs to consider only the three closest carbon atoms with position vectors δαβν

H
(k)
AB =

3∑
ν=1

1

N

N∑
RA,RA+δABν

eik·δABν
〈
ϕA(r−RA) |H|ϕB

(
r−RA − δABν

)〉
=

=
3∑

ν=1

eik·δABν
〈
ϕA(r) |H|ϕB

(
r− δABν

)〉
, (1.22)

S
(k)
AB =

3∑
ν=1

1

N

N∑
RA,RA+δABν

eik·δABν
〈
ϕA(r−RA) |ϕB

(
r−RA − δABν

)〉
=

=
3∑

ν=1

eik·δABν
〈
ϕA(r) |ϕB

(
r− δABν

)〉
. (1.23)

Due to the spatial symmetry of the 2pz orbital and the fact that
∣∣δAB1

∣∣ =
∣∣δAB2

∣∣ =
∣∣δAB3

∣∣, the two terms〈
ϕA (r) |H|ϕB

(
r− δABν

)〉
and

〈
ϕA (r) |ϕB

(
r− δABν

)〉
have the same value for all the three position

vectors δABν and they can be taken out of the summation over the index ν. By denoting those two
terms t and s, one can rewrite Equations (1.22), (1.23) as

H
(k)
AB = t

3∑
ν=1

eik·δABν = tf (k), (1.24)

S
(k)
AB = s

3∑
ν=1

eik·δABν = sf (k), (1.25)

f (k) =
3∑

ν=1

eik·δABν = exp

(
−i

kxa

2
√

3

)[
2 cos

(
kya

2

)
+ exp

(
i
kxa
√

3

2

)]
, k = (kx, ky) , (1.26)

where the factor f (k) has been introduced.

The matrix elements H
(k)
BA and S

(k)
BA might be obtained in a similar manner, but because both

H
(k)
αβ and S

(k)
αβ are Hermitian, they can be derived from the matrix elements H

(k)
AB and S

(k)
AB using the

property

H
(k)
BA = H

∗(k)
AB = t∗f∗(k), (1.27)

S
(k)
BA = S

∗(k)
AB = s∗f∗(k). (1.28)

Since the atomic wavefunctions ϕA (r) and ϕB (r) are identical, their order of appearance in the
integral t =

〈
ϕA (r) |H|ϕB

(
r− δABν

)〉
, resp. s =

〈
ϕA (r) |ϕB

(
r− δABν

)〉
should be interchangeable

without a change of its value, which means both t = t∗ and s = s∗ have to be real. Their values can
be determined by fitting the energy dispersion curves obtained through the tight binding method to
those acquired from the first principle calculations of the graphite band structure. Within this thesis
the values t = −3.033 eV and s = 0.129 shall be used.

10



1. OPTICAL PROPERTIES OF GRAPHENE

Once all the elements of the transfer and overlap matrices are known, one can proceed with the

calculation of the graphene’s energy dispersion E
(k)
i using the secular equation (Eq. (1.13) )

det
(
H− E(k)

i S
)

=

∣∣∣∣∣ E2p − E(k)
i tf (k) − E(k)

i sf (k)

tf∗(k) − E(k)
i sf∗(k) E2p − E(k)

i

∣∣∣∣∣ =

=
(
E2p − E(k)

i

)2
−
∣∣∣f (k)

∣∣∣2 (t− sE(k)
i

)2
= 0. (1.29)

The above equation has two solutions marked as + or −, reflecting the chosen sign of the square root

E
(k)
± =

E2p ± t
√∣∣f (k)

∣∣2
1± s

√∣∣f (k)
∣∣2 . (1.30)

This expression can be further simplified by setting the zero energy level to E2p and neglecting the

term s
√∣∣f (k)

∣∣2 in the denominator against one leading to

E
(k)
± = ±t

√∣∣f (k)
∣∣2 = ±t

√√√√4 cos2

(
kya

2

)
+ 4 cos

(
kya

2

)
cos

(
kxa
√

3

2

)
+ 1. (1.31)

The band structure of graphene throughout the first Brillouin zone given by Equation (1.31) is
plotted in Figure 1.4. It consists of two bands, each of which contains the same number of states, that
is the number of primitive unit cells in the crystal. Since each of those contributes with two electrons
and there can be only two electrons with the same E and k (spin ±1

2), the lower bonding band will
be fully occupied in the ground state, whereas the upper antibonding band will be completely empty.
The Fermi energy EF is, therefore, equal to E2p = 0 and situated at the corner points of the first
Brillouin zone labeled as K and K ′, where the lower band touches the upper band, making graphene a
semiconductor with a zero bandgap. The reason for marking the corner points by two different labels
is explained later in the text.

Notice that the two energy bands are symmetrical with respect to the Fermi energy only when
the terms containing the off-diagonal elements sf (k) of the overlap matrix are neglected. Inclusion of
these terms or terms accounting for the higher order interaction with more distant carbon atoms will
lift the electron-hole symmetry.

1.4. Band structure at the Dirac points

As stated in the previous section, graphene is in the natural state a zero bandgap semiconductor (as
we shall see it is not entirely the truth), thus its electrodynamical response will be governed mainly
by the optical processes taking place just at the Fermi level and in its vicinity. Furthermore, to
make the calculations of the electrodynamic response feasible, it is necessary to express the electron
wavefunctions in terms of simple functions. For these reasons it is wise to focus only on the small
regions around the points K and K ′ of the first Brillouin zones and approximate the energy dispersion
curves and electron wavefunctions by appropriate expansions around those points.

The first step is to determine the positions of the K and K ′ points within the first Brillouin zone

by solving the equation E
(K)
± = EF = 0, which is the same as searching for the roots of the equation

f (K) = exp

(
−i
Kxa

2
√

3

)[
2 cos

(
Kya

2

)
+ exp

(
i
Kxa
√

3

2

)]
= 0. (1.32)
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1.4. BAND STRUCTURE AT THE DIRAC POINTS

κx

κx

E
(k

)
±

[t
]

K

K ′

K ′
K ′

K
K

Figure 1.4: The band structure of graphene. The conduction band and the valence band are touching
each other at the corner points of the first Brillouin zone marked as K and K ′.

The left-hand side of the equation is zero if at least one of the factors is equal to zero. The
exponential factor in front of the brackets is always different from zero, leaving as the only option the
expression in the brackets

2 cos

(
Kya

2

)
+ exp

(
i
Kxa
√

3

2

)
= 2 cos

(
Kya

2

)
+ cos

(
Kxa
√

3

2

)
+ i sin

(
Kxa
√

3

2

)
= 0. (1.33)

The values of Kx and Ky are obtained by demanding both the real and imaginary parts on the
left-hand side of Equation (1.33) to be equal to zero

sin

(
Kxa
√

3

2

)
= 0 ⇒ Kx =

2nπ

a
√

3
, n ∈ Z, (1.34)

2 cos

(
Kya

2

)
= ±1 ⇒ Ky =


±4π

3a
+ 2mπ, n even,

±2π

3a
+ 2mπ, n odd

. (1.35)

The above equations describe two superimposed nets of inequivalent points marked K and K ′ as
depicted in Fig. 1.1. The remark inequivalent comes from the fact that there is no lattice transforma-
tion by which one net could be obtained from the other. The shape of the first Brillouin zone might
suggest that it contains six inequivalent corner points, but one has to remember that any two points
which can be connected by a reciprocal lattice vector are equivalent and correspond to one and the

12



1. OPTICAL PROPERTIES OF GRAPHENE

same electronic state, leaving us with only two inequivalent points K and K ′ described by the vectors
K =

(
0, 4π

3a

)
and K′ =

(
0,−4π

3a

)
.

Having those two position vectors, one can proceed with the approximation of the energy dispersion
curves given by Equation (1.31) in the vicinity of K and K ′ using the Taylor’s expansion. Rather than
to work directly with the expression for energy, it is more convenient to apply the Taylor’s expansion
on the factor f (k) given by Equation (1.26)

f (k+κ) = f (K) + q · ∇kf
(k)
∣∣∣
k=K

= i

√
3a

2
(κx + iκy) , (1.36)

f (K′+κ) = f (K′) + κ · ∇kf
(k)
∣∣∣
k=K′

= i

√
3a

2
(κx − iκy) , (1.37)

where κ = k − K, resp. κ = k − K′. The energy dispersion near the band extrema is now easily
obtained through Equation (1.30)

E±(κ) = E
(K+κ)
± = E

(K′+κ)
± = ±

√
3

2
at |κ| . (1.38)

The above equation corresponds to a band structure in the shape of two cones touching at their
apexes as depicted in Fig. 1.5. The linear energy dispersion has intriguing consequences for the
physics of the electrons. By comparing the outcome of Equation (1.38) with the energy-momentum

dependence E =
√
m2

0c
4 + h̄2|k|2c2 of a relativistic particle

E±(κ) = ±
√

3

2
at |κ| = ±h̄vF|κ| = ±

√
m2

0v
4
F + h̄2|κ|2v2

F

∣∣∣∣
m0=0

, (1.39)

one can see that the electrons in graphene can be described as relativistic massless charged particles

moving with speed vF =
√

3at
2h̄ ≈ 106 m · s−1, which has no analogy in the realm of ordinary elementary

particles. Furthermore, the proper description of their behaviour requires a treatment within the
relativistic Dirac equation, which might be also the reason, why are the two cones in the bandstructure
often called the Dirac cones and the point at their apexes the Dirac point.

K’

B

b1

b2

K’ K’

KK

K

1th BZ

κx

κy

E

EF

Figure 1.5: The band structure of graphene near the Dirac points. The energy dispersion of electrons is
linear and reminds of the dispersion for massless relativistic particles. Furthermore, the Fermi energy
is shifted from its default position at the Dirac point, giving graphene a metallic character.
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1.5. ELECTRON WAVEFUNCTIONS AT THE DIRAC POINTS

As already mentioned, the Fermi energy of graphene in its natural state lies just at the Dirac point,
but a contact with other materials with a different work function, doping or application of an external
voltage can slightly shift the Fermi level both to the lower and higher energies, having a dramatic
effect on the electric and optical properties. The peculiar behaviour of the electrons in graphene in
the vicinity of the Dirac points is further emphasized by the Klein tunneling, which is basically the
absence of the scattering from impurities, making graphene a very good conducter even for modest
values of the free charge carrier density.

The density of free charge carriers n can be calculated from the Fermi energy EF and vice versa
using the well known quantity, the density of states D(E), which is defined as the number of electronic
states per a unit area within a small energy interval dE. Let us first calculate the number of states
enclosed by a circle of radius κ and centered at the Dirac point, which is given by the area of the circle
divided by the area of the region in the reciprocal space assigned to one state

N(κ) =
πκ2

(2π)2

Ω

, (1.40)

where Ω is the total area of the graphene surface. The density of states is then obtained as the
derivative with respect to the energy E divided by Ω

D(E) =
1

A

dN(κ)

dκ

dκ

dE
=
gsgv|E|
2πh̄2v2

F

, (1.41)

where gs = 2 and gv = 2 account for the spin and valley degeneracies, since one electronic state can
accomodate two electrons with opposite spins and there are two pairs of the Dirac cones within the
first Brilloiun zone (at K and K ′). The density of free charge carriers n is now obtained by integration
of the density of states over the occupied, resp. unoccupied electronic states of the conduction, resp.
valence band

n (EF) =

EF∫
0

dE D(E) =
gsgvE

2
F

4πh̄2v2
F

. (1.42)

The above equation suggests that graphene becomes a perfect zero bandgap semiconductor, when
the Fermi level is set exactly at the Dirac point. Interestingly, thorough calculations show that the
peculiar nature of electrons near the Dirac points results in a non-zero DC conductivity even for
EF = 0, thus the previous designation is slightly incorrect and graphene should be referred to as a
metal.

1.5. Electron wavefunctions at the Dirac points

In order to find the expressions for the electron wavefunctions near the Dirac points, one has to return

to the matrix equation
(
H(k) − E(k)

i S(k)
)
C(k)
i = 0 (Eq. (1.12) ) for the coefficients ai(k) and bi(k)

(Eq. (1.14) ), which can be rewritten using the following notation(
−E(k)

α tf (k)

tf∗(k) −E(k)
α

)(
aα(k)
bα(k)

)
=

(
−αt

∣∣f (k)
∣∣ tf (k)

tf∗(k) −αt
∣∣f (k)

∣∣ )( aα(k)
bα(k)

)
= 0, (1.43)

where α = ± denotes the upper, resp. lower band. These two equations are not independent and
therefore allow only to express bα(k) in terms of aα(k)

bα(k) = α
aα(k) f∗(k)∣∣f (k)

∣∣ . (1.44)
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1. OPTICAL PROPERTIES OF GRAPHENE

Another equation can be acquired from the requirement that the wavefunction ψ
(k)
α (r) = aα(k) Φ

(k)
A (r)+

bα(k) Φ
(k)
B (r) should be normalized to one

〈
ψ(k)
α (r)

∣∣∣ψ(k)
α (r)

〉
= |aα(k)|2 S(k)

AA + |bα(k)|2 S(k)
BB + a∗α(k) bα(k)S

(k)
AB + aα(k) b∗α(k)S

(k)
BA =

= |aα(k)|2 + |bα(k)|2 = 1. (1.45)

Finally, by combining Equations (1.44) and (1.45), the expressions for the coefficients aα(k) and bα(k)
are procured

aα(k) =
1√
2
, bα(k) =

1√
2
α
f∗(k)∣∣f (k)

∣∣ , (1.46)

and the wavefunction ψ
(k)
α (r) becomes

ψ(k)
α (r) =

1√
2

Φ
(k)
A (r) +

1√
2
α
f∗(k)∣∣f (k)

∣∣Φ(k)
B (r) . (1.47)

The above expression for the wavefunction is still rather complicated and calculations with it
would become too involved. It turns out that using the so called k · p method, one can expand the
wavefunction around the Dirac points in a similar manner as in the case of the energy dispersion. Here
we will not pursue the whole derivation, but we shall satisfy with its result. Detailed calculations can
be found in [23]. After the application of the k ·p method, the wavefunction in the vicinity of the two
Dirac points can be expressed as

ψ(K+κ)
α (r) = eiκ·r

[
1√
2

Φ
(K)
A (r) +

1√
2
α
f∗(K+κ)∣∣f (K+κ)

∣∣Φ(K)
B (r)

]
, (1.48)

ψ(K′+κ)
α (r) = eiκ·r

[
1√
2

Φ
(K′)
A (r) +

1√
2
α
f∗(K

′+κ)∣∣f (K′+κ)
∣∣Φ(K′)

B (r)

]
, (1.49)

where the wavevector κ is measured from the respective Dirac point. Replacing the factors f (K+κ)

and f (K′+κ) with their approximated forms given by Equations (1.36) and (1.37), the above equations
become

ψ(K+κ)
α (r) = eiκ·r

[
αF

(K)
A (κ) Φ

(K)
A (r) + αF

(K)
B (κ) Φ

(K)
B (r)

]
, (1.50)

ψ(K′+κ)
α (r) = eiκ·r

[
αF

(K′)
A (κ) Φ

(K′)
A (r) + αF

(K′)
B (κ) Φ

(K′)
B (r)

]
, (1.51)

where for lucidity the following coefficients have been introduced

αF
(K)
A (κ) =

1√
2
, αF

(K)
B (κ) =

1√
2
α
κx − iκy√
κ2
x + κ2

y

, αF
(K′)
A (κ) =

1√
2
, αF

(K′)
B (κ) =

1√
2
α
κx + iκy√
κ2
x + κ2

y

.

Equations (1.50) and (1.51) represent approximated expressions for the electron wavefunctions in the
neighbourhood of the Dirac points K and K ′, suitable for further calculations. The above derivation
relies on the work of Ando [2, 3], who extensively contributed to the present knowledge of graphene’s
electronic and optical properties.
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1.6. SELF CONSISTENT FIELD METHOD

1.6. Self consistent field method

In order to capture all the aspects of the electrodynamical response of graphene including interband
transitions, non-local effects and temperature dependence, one has to treat it fully within the frame-
work of quantum statistical mechanics and quantum electrodynamics, making it a non-trivial issue.
An approximate solution to this problem of mutually interacting electrons moving in a periodic crystal
potential and exposed to a time-varying external electromagnetic field is provided by the self consistent
field method [11].

It relies on the assumption that the interaction between electrons can be expressed in terms of a
self-consistent potential V (r, t), or more precisely its induced part. One can look at this as though the
fluctuations in the electron density produced by the external field give rise to an induced field, which
then acts back on the electrons, making corrections to the electron density and so on. Adopting this
assumption, one can write the one-particle Hamiltonian Ĥ in the form

Ĥ = Ĥ0 + V̂ (r, t) , (1.52)

where Ĥ0 is the unperturbed crystal Hamiltonian and V̂ (r, t) = V̂ind(r, t) + V̂ext(r, t) corresponds to
the aforementioned induced and external potentials (in this context the potential has to be interpreted
as the potential energy). For clarity, the hat above a quantity indicates that it is an operator.

Since we are dealing with a system, which is presumably in a thermal equilibrium with its sur-
roundings, repeated measurements on this system (assuming an identical initial preparation) will not
generally give, due to chaotic processes, identical results (the same distribution of the possible out-
comes). One must, therefore, treat the system on the footings of quantum statistical mechanics using
the concept of a one-particle density matrix [13].

First let us assume an ensemble of Z identical systems (a construction equivalent to Z repeated
measurements on one system), which, in this particular case, consists of an electron moving in a
periodic crystal potential. Furthermore, each system is found to be in a thermal equilibrium with a
reservoir, in this case the surrounding electron sea, and each system is described by a wavefunction∣∣ψ(α)

〉
, which in terms of the eigenstates

∣∣ϕk〉 of some operator Â reads∣∣ψ(α)
〉

=
∑
k

C
(α)
k

∣∣ϕk〉, (1.53)

where the index α = 1, 2 . . . Z distinguishes the different systems of the ensemble. Using the represen-
tation given by the above equation, the expectation value of another operator B̂ is calculated as the
statistical average over the expectation values obtained separately within each system of the ensemble.

〈
B̂
〉

ensemble
=

1

Z

Z∑
α=1

〈
ψ(α)

∣∣B̂∣∣ψ(α)
〉

=
1

Z

Z∑
α=1

〈∑
k

C
(α)
k ϕk

∣∣B̂∣∣∑
l

C
(α)
l ϕl

〉
=

=
∑
k,l

(
1

Z

Z∑
α=1

C
(α)
l C

∗(α)
k

)〈
ϕk
∣∣B̂∣∣ϕl〉 =

∑
k,l

ρlkBkl, (1.54)

where ρlk = 1
Z

Z∑
α=1

C
(α)
l C

∗(α)
k determines the statistical probability that the outcome of the measure-

ment will be Bkl =
〈
ϕk
∣∣B̂∣∣ϕl〉. The elements ρlk form together the so called density matrix, which

fully captures the chaotic aspects of the system’s behaviour and enables to calculate the expectation
value of an arbitrary quantity.

More importantly, considering the presented problem of mutually interacting electrons, the diago-
nal elements of the density matrix ρkk determine the statistical probability of finding an electron in the
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1. OPTICAL PROPERTIES OF GRAPHENE

eigenstate
∣∣ϕk〉, thus the density matrix itself can be directly related to the Fermi-Dirac distribution

of electrons (assuming a time-independent Hamiltonian).
Later it will prove itself useful to be able to express the density matrix in the form of an operator,

which can be done by expanding the matrix element ρlk in terms of the eigenstates
∣∣ϕk〉

ρlk =
1

Z

Z∑
α=1

C
(α)
l C

∗(α)
k =

1

Z

Z∑
α=1

(∑
i

C
(α)
i

〈
ϕl
∣∣ϕi〉∑

i

C
∗(α)
j

〈
ϕj
∣∣ϕk〉

)
=

=
〈
ϕl
∣∣ [ 1

Z

Z∑
α=1

(∑
i

C
(α)
i

∣∣ϕi〉∑
i

C
∗(α)
j

〈
ϕj
∣∣)] ∣∣ϕk〉 =

〈
ϕl
∣∣( 1

Z

Z∑
α=1

∣∣ψ(α)
〉〈
ψ(α)

∣∣) ∣∣ϕk〉 =

=
〈
ϕl
∣∣ρ̂∣∣ϕk〉. (1.55)

Since the derivation of the final expression for the dynamical conductivity of graphene is lengthy
and not entirely straightforward, it might be reasonable to briefly outline the course of the derivation
so that the reader does not get lost. The first step is to express the induced fluctuations of the density
operator ρ̂ due to an external field in terms of the self-consistent potential and electron wavefunctions
derived in the previous section. This extensive part relies on the first order time-dependent self-
consistent perturbation theory. The density operator can be subsequently employed to calculate the
induced electron density n2D using the formalism presented above. Then comes the task of relating
the induced electron density to the non-local dynamical susceptibility χ2D(q, ω). Taking the local
limit of this quantity, one can finally obtain the expression for the frequency-dependent dynamical
conductivity σ(ω).

The presence of a time-varing external electromagnetic field distorts the equillibrium distribution
of the electrons given by the Fermi-Dirac statistics. The new distribution can be fully described by
the time-dependent density operator ρ̂ (Eq. (1.55)), which is tied to the external perturbation through
the quantum-mechanical Liouville equation (also known as the von Neumann equation)

ih̄
∂ρ̂

∂t
=
[
Ĥ, ρ̂

]
, (1.56)

where Ĥ is the one-particle Hamiltonian from Equation (1.52) and
[
Ĥ, ρ̂

]
= Ĥρ̂− ρ̂Ĥ is the commu-

tator of the Hamiltonian and the density operator. The above equation can be easily derived from
the time-dependent Schrödinger equation (see Apendix A).

According to Equation (1.55), the matrix elements of the operator ∂ρ̂
∂t are obtained by wrapping

it with the respective eigenstates

ih̄
〈
ϕl
∣∣∂ρ̂
∂t

∣∣ϕk〉 =
〈
ϕl
∣∣[Ĥ, ρ̂]∣∣ϕk〉, (1.57)

Furthermore, by recognizing the eigenstates
∣∣ϕk〉 and

∣∣ϕl〉 as the electron wavefunctions given by
Equations (1.50) and (1.51), we arrive at the quantum-mechanical Liouville equation for graphene,
the starting point for further calculations. Introducing the following notation

∣∣ϕk〉 = ψ(k)
α (r) = ei(k−Λ)·r

[
αF

(Λ)
A (k) Φ

(Λ)
A (r) + αF

(Λ)
B (k) Φ

(Λ)
B (r)

]
=
∣∣αk

〉
, (1.58)∣∣ϕl〉 = ψ

(k+q)
β (r) = ei(k+q−Λ)·r

[
βF

(Λ)
A (k+q) Φ

(Λ)
A (r) + βF

(Λ)
B (k+q) Φ

(Λ)
B (r)

]
=
∣∣β k+q

〉
, (1.59)

where α = ± and β = ± indicate, whether are the respective states
∣∣αk

〉
and

∣∣β k+q
〉

situated in the
valence or the conduction band of graphene, the symbol Λ = K,K′ marks the two inequivalent Dirac
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points and the wavevector q corresponds to the momentum mismatch between those two states, the
Liouville equation for graphene becomes

ih̄
〈
β k+q

∣∣∂ρ̂
∂t

∣∣αk
〉

=
〈
β k+q

∣∣[Ĥ, ρ̂]∣∣αk
〉
, (1.60)

In the spirit of the first order time-dependent perturbation theory, one can expand the density
operator into an unperturbed component ρ̂(0) and a correction part ρ̂(1) accounting for the perturbation
term V̂ (r, t) in the one-particle Hamiltonian (Eq. (1.52) )

ρ̂ = ρ̂(0) + ρ̂(1). (1.61)

Adopting the above expansion and expressing the Hamiltonian by means of the unperturbed crystal
Hamiltonian Ĥ0 and the self-consistent potential V̂ (r, t) (Eq. (1.52)), the Liouville equation acquires
the form

ih̄
〈
β k+q

∣∣∂ρ̂(0)

∂t
+
∂ρ̂(1)

∂t

∣∣αk
〉

=
〈
β k+q

∣∣[Ĥ0 + V̂ (r, t) , ρ̂(0) + ρ̂(1)
]∣∣αk

〉
. (1.62)

As pointed out earlier, the equillibrium energy distribution of electrons prescribed by the unper-
turbed part of the density operator ρ̂(0) should be the same as that given by the Fermi-Dirac statistics.
Furthermore, considering the unperturbed crystal Hamiltonian Ĥ0, the energy assigned to an electron
in the eigenstate

∣∣αk
〉

should correspond to the energy of an electron in unperturbed graphene, that
is one should recover the energy dispersion of graphene derived in Section (1.4). Put into language of
the quantum-mechanical formalism

ρ̂(0)
∣∣αk

〉
= f0

(
E(k−Λ)
α

)∣∣αk
〉

= fαk
0

∣∣αk
〉
, (1.63)

Ĥ0

∣∣αk
〉

= E(k−Λ)
α

∣∣αk
〉

= Eαk
0

∣∣αk
〉
, (1.64)

where fαk
0 = f0

(
E

(k−Λ)
α

)
stands for the Fermi-Dirac distribution function and Eαk

0 = E
(k−Λ)
α is

the energy assigned to the eigenstate
∣∣αk

〉
in unperturbed graphene (Eq. (1.31)). Moreover, the

unperturbed part of the density operator ρ̂(0) characterizing the equillibrium state of the system
should not depend on time, leaving on the left-hand side (LHS) of Equation (1.62) only the term

LHS = ih̄
〈
β k+q

∣∣∂ρ̂(1)

∂t

∣∣αk
〉
. (1.65)

Utilizing the assumptions about the eigenvalues of the operators ρ̂(0) and Ĥ0 given by Equa-
tions (1.63) and (1.64) and decomposing the commutator into separated terms, one can rewrite the
right-hand side (RHS) of Equation (1.62) as

RHS =
〈
β k+q

∣∣ (Ĥ0 + V̂
)(

ρ̂(0) + ρ̂(1)
)
−
(
ρ̂(0) + ρ̂(1)

)(
Ĥ0 + V̂

) ∣∣αk
〉

=

=
〈
β k+q

∣∣Ĥ0ρ̂
(0) − ρ̂(0)Ĥ0 + Ĥ0ρ̂

(1) − ρ̂(1)Ĥ0 + V̂ ρ̂(0) − ρ̂(0)V̂ + V̂ ρ̂(1) − ρ̂(1)V̂
∣∣αk

〉
=

=
(
fαk

0 Eαk
0 − Eαk

0 fαk
0

) 〈
β k+q

∣∣αk
〉

+
(
Eβk+q

0 − Eαk
0

) 〈
β k+q

∣∣ρ̂(1)
∣∣αk

〉
+

+
(
fαk

0 − fβk+q
0

) 〈
β k+q

∣∣V̂ (r, t)
∣∣αk

〉
+
〈
β k+q

∣∣[V̂ (r, t) , ρ̂(1)
]∣∣αk

〉
, (1.66)

where the property of the Hermiticity of the operators ρ̂(0) = ρ̂(0)† and Ĥ0 = Ĥ†0 has been exploited
in the following way
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〈
β k+q

∣∣Ĥ0ρ̂
(1)
∣∣αk

〉
=
〈
Ĥ†0 (β k+q)

∣∣ρ̂(1)
∣∣αk

〉
=
〈
Ĥ0 (β k+q)

∣∣ρ̂(1)
∣∣αk

〉
=

= Eαk
0

〈
β k+q

∣∣ρ̂(1)
∣∣αk

〉
(1.67)〈

β k+q
∣∣ρ̂(0)V̂

∣∣αk
〉

=
〈
ρ̂(0)† (β k+q)

∣∣V̂ ∣∣αk
〉

=
〈
ρ̂(0) (β k+q)

∣∣V̂ ∣∣αk
〉

=

= fαk
0

〈
β k+q

∣∣V̂ ∣∣αk
〉
. (1.68)

Putting the left-hand (LHS) and right-hand side (RHS) of Equation (1.62) back together and
retaining only the terms up to the first order in the perturbation (assuming the perturbation is small),
an equation containing only three yet unknown factors is acquired (one of them being the sought
density matrix element

〈
β k+q

∣∣ρ̂(1)
∣∣αk

〉
)

ih̄
〈
β k+q

∣∣∂ρ̂(1)

∂t

∣∣αk
〉

=
(
Eβk+q

0 − Eαk
0

) 〈
β k+q

∣∣ρ̂(1)
∣∣αk

〉
+
(
fαk

0 − fβk+q
0

) 〈
β k+q

∣∣V̂ (r, t)
∣∣αk

〉
.

(1.69)

The next step is the evaluation of the last term on the right-hand side
〈
β k + q

∣∣V̂ (r, t)
∣∣αk

〉
characterizing the transition rate between the states

∣∣αk
〉

and
∣∣β k+q

〉
. Let us start by writing it in

the integral form using the representation of the electronic states given by Equations (1.58) and (1.59)

〈
β k+q

∣∣V̂ (r, t)
∣∣αk

〉
=

∫
Ω

d2r e−i(k+q−Λ)·r ei(k−Λ)·r
[
βF

(Λ)∗
A (k+q) αF

(Λ)
A (k)

∣∣∣Φ(Λ)
A (r)

∣∣∣2 +

+ βF
(Λ)∗
A (k+q) αF

(Λ)
B (k) Φ

(Λ)∗
A (r) Φ

(Λ)
B (r) + βF

(Λ)∗
B (k+q) αF

(Λ)
A (k) Φ

(Λ)∗
B (r) Φ

(Λ)
A (r) +

+ βF
(Λ)∗
B (k+q) αF

(Λ)
B (k)

∣∣∣Φ(Λ)
B (r)

∣∣∣2]V (r, t) =

∫
Ω

d2r e−iq·r Γαβk,q(r) V (r, t) (1.70)

where the function Γαβk,q(r) accounts for the microscopic distribution of the electron density with a
higher probability of finding an electron at the atomic sites and a lower between them, just as follows
from the tight binding model of graphene.

The above expression for
〈
β k+q

∣∣V̂ (r, t)
∣∣αk

〉
is still too complicated and difficult to work with.

Provided that the self-consistent potential V̂ (r, t) does not significantly vary within one unit cell of the
graphene’s crystal lattice, one can overlook the microscopic variations in the electron distribution and
replace the function Γαβk,q(r) by its average over the unit cell. This approximation should be justified
for the external perturbation in the form of an electromagnetic wave with a wavelength many times
larger than the dimensions of the unit cell.

Γαβk,q =
1

Ω0

∫
Ω0

d2r

[
βF

(Λ)∗
A (k+q) αF

(Λ)
A (k)

∣∣∣Φ(Λ)
A (r)

∣∣∣2 + βF
(Λ)∗
A (k+q) αF

(Λ)
B (k) Φ

(Λ)∗
A (r) Φ

(Λ)
B (r) +

+ βF
(Λ)∗
B (k+q) αF

(Λ)
A (k) Φ

(Λ)∗
B (r) Φ

(Λ)
A (r) + βF

(Λ)∗
B (k+q) αF

(Λ)
B (k)

∣∣∣Φ(Λ)
B (r)

∣∣∣2] =

=
1

NΩ0

[
βF

(Λ)∗
A (k+q) αF

(Λ)
A (k)S

(Λ)
AA + βF

(Λ)∗
A (k+q) αF

(Λ)
B (k)S

(Λ)
AB+

+ βF
(Λ)∗
B (k+q) αF

(Λ)
A (k)S

(Λ)
BA + βF

(Λ)∗
B (k+q) αF

(Λ)
B (k)S

(Λ)
BB

]
=

=
1

Ω

[
βF

(Λ)∗
A (k+q) αF

(Λ)
A (k) + βF

(Λ)∗
B (k+q) αF

(Λ)
B (k)

]
, (1.71)
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where Ω0, resp. Ω = N Ω0 is the area of the unit cell, resp. the area of the whole graphene sheet

and where the normalization condition for the overlap integrals S
(Λ)
AA = S

(Λ)
BB =

∫
Ω0

d2r |ΦA|2 =∫
Ω0

d2r |ΦB|2 = 1
N has been used.

Employing the above approximation, the integral in Equation (1.70) can be readily evaluated by
the means of the Fourier analysis

〈
β k+q

∣∣V̂ (r, t)
∣∣αk

〉
= Γαβk,q

∫
Ω

d2r e−iq·r V (r, t) = Γαβk,q V (q, t) , (1.72)

with the Fourier transform and the inverse Fourier transform defined in the following way

F (q) =

∞∫
−∞

dnr e−iq·r f(r) , (1.73)

f(r) =
1

(2π)n

∞∫
−∞

dnr eiq·r F (q) . (1.74)

Let us now focus on the expression on the left-hand side of Equation (1.69) containing the time
derivative of the density operator. It is reasonable to assume that the time-dependence of the fluc-
tuations in the electron density and the self-consistent potential should reflect the time-dependence
of the external perturbation. By making an Ansatz that the perturbing force acting on the system
evolves in time as eγte−iωt, where ω is the angular frequency and γ→0 corresponds to the adiabatic
turning on of the perturbation, the left-hand side of Equation (1.69) becomes

ih̄
〈
β k+q

∣∣∂ρ̂(1)

∂t

∣∣αk
〉

= (h̄ω + ih̄γ)
〈
β k+q

∣∣ρ̂(1)
∣∣αk

〉
. (1.75)

Applying the above assumption about the time-dependence of the potentials and density operators
also on the right-hand side of that equation and employing the expression for

〈
β k+q

∣∣V̂ (r, t)
∣∣αk

〉
given by Equation (1.72), one finally obtains, after some elementary operations, an equation for the
elements of the density matrix

〈
β k+q

∣∣ρ̂(1)
∣∣αk

〉
=

fαk
0 − fβk+q

0

Eαk
0 − E

βk+q
0 + h̄ω + ih̄γ

V (q) (1.76)

Notice that the argument t in the self-consistent potential has been dropped, leaving only the spatial
dependence, since the whole equation has been divided by the common exponential factor eγte−iωt

corresponding to the time-evolution of the system.
Having the equation relating the elements of the density matrix directly to the corresponding

Fourier components of the self-consistent potential V̂ (q), the last missing ingredience necessary for
the derivation of the dynamical conductivity of graphene is the induced electron density n2D. Invoking
the formalism of the quantum statistical mechanics (Eq. (1.54) ), it can be calculated as the expectation
value of the electron density operator n̂ defined as n̂(r) = δ2(r−r′).

n2D(r, ω) =
〈
n̂
〉

=
∑

k,q,α,β,Λ

〈
β k+q

∣∣ρ̂(1)
∣∣αk

〉〈
αk
∣∣n̂∣∣β k+q

〉
. (1.77)

The summation must be performed over all the possible pairs of eigenstates including the different
bands and one should take into account also the contributions from both the Dirac points. Matrix
elements

〈
αk
∣∣n̂∣∣β k + q

〉
are acquired by a conversion into integral forms and their subsequent eval-

uation. Since the procedure is more or less the same as for
〈
β k+q

∣∣V̂ (r, t)
∣∣αk

〉
obtained earlier in

Equation (1.72), the detailed derivation is omitted here and only its outline is provided.
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n2D(r, ω) =
∑

k,q,α,β,Λ

〈
β k+q

∣∣ρ̂(1)
∣∣αk

〉 ∫
Ω

d2r′ δ2
(
r−r′

)
eiq·r′ Γαβ∗k,q

(
r′
)
≈

≈
∑

k,q,α,β,Λ

〈
β k+q

∣∣ρ̂(1)
∣∣αk

〉
Γαβ∗k,q

∫
Ω

d2r′ δ2
(
r−r′

)
eiq·r′ =

∑
k,q,α,β,Λ

eiq·r Γαβ∗k,q

〈
β k+q

∣∣ρ̂(1)
∣∣αk

〉
,

(1.78)

where Γαβ∗k,q stands for the complex conjugate of Γαβk,q given in Equation (1.71).
The above expression for the induced electron density can be already used for a direct derivation

of the dynamical susceptibility χ2D, but it will prove to be more convenient to work in the domain
of spatial frequencies rather than in the direct space. The conversion into the Fourier domain is
straightforward, since the above expression, apart from a yet unknown prefactor, already has the
sought form. Replacing the discrete summation with a continuous integration (with emphasis on the
proper normalization), Equation (1.78) becomes

n2D(r, ω) =

∞∫
−∞

d2q eiq·r Ω

(2π)2

∑
k,α,β,Λ

Γαβ∗k,q

〈
β k+q

∣∣ρ̂(1)
∣∣αk

〉
=

1

(2π)2

∞∫
−∞

d2q eiq·rn2D(q, ω) . (1.79)

Knowing the relations for the Fourier components of the induced electron density, one can proceed by
replacing

〈
β k+q

∣∣ρ̂(1)
∣∣αk

〉
and Γαβk,q with their full forms provided by Equations (1.71) and (1.76).

n2D(q, ω) = Ω
∑

k,α,β,Λ

Γαβ∗k,q

〈
β k+q

∣∣ρ̂(1)
∣∣αk

〉
= Ω

∑
k,α,β,Λ

∣∣∣Γαβk,q

∣∣∣2 fαk
0 − fβk+q

0

Eαk
0 − E

βk+q
0 + h̄ω + ih̄γ

V (q) =

=
V (q)

Ω

∑
k,α,β,Λ

fαk
0 − fβk+q

0

Eαk
0 − E

βk+q
0 + h̄ω + ih̄γ

∣∣∣βF (Λ)∗
A (k+q) αF

(Λ)
A (k) + βF

(Λ)∗
B (k+q) αF

(Λ)
B (k)

∣∣∣2 . (1.80)

The last step resides in recalling the original expressions for the coefficients αF
(Λ)
A (k), αF

(Λ)
B (k),

βF
(Λ)
A (k+q) and βF

(Λ)
B (k+q) and inserting them into the above equation

n2D(q, ω) =
V (q)

Ω

∑
k,α,β,Λ

fαk
0 − fβk+q

0

Eαk
0 − E

βk+q
0 + h̄ω + ih̄γ

(
1

2
+

1

2
αβ
|k|2 + |k · q|
|k| |k + q|

)
. (1.81)

Notice that in the above expression for the electron density, it does not matter anymore, whether
we consider an eigenstate in the vicinity of the K or K ′ point, the dependence on the choice of the
Dirac point has vanished. The summation over Λ then turns out to be just a multiplication of the
above expression by a factor gv = 2 (known as the valley degeneracy). Furthermore, one should
also account for the fact that one eigenstate can accomodate two electrons with opposite spins by
introducing another factor gs = 2 (spin degeneracy).

Equation (1.81), linking together the induced electron density n2D(q, ω) and the self-cosistent
potential V (q), concludes this extensive section consisting mainly of quantum-mechanical calculations
of graphene’s response to an external perturbation.

1.7. Dynamical conductivity of graphene

The theory of electromagnetism in matter comprises many intriguing effects including the non-linearity
and the anizotropy, but those phenomena are beyond the scope of this thesis. Throughout this work,
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graphene is being treated only within the boundaries of the non-local linear response theory. In spite
of this simplified description, there appears to be a plethora of effects in graphene worth of attention.

In the spirit of the non-local linear response theory (Bohren and Huffman [7], Chap. 2), the
polarization vector P(r, t) in graphene is generally calculated as the convolution of the non-local
dynamical susceptibility χ2D(r, t) with the electric field vector E(r, t)

P(r, t) =
1

(2π)3

∞∫
−∞

d2r′
∞∫
−∞

dt′ ε0 χ2D

(
r−r′, t−t′

)
E
(
r′, z′=0, t′

)
. (1.82)

where ε0 stands for the vacuum permitivity.
Apparently, the polarization vector and the dynamical susceptibility are non-zero only in the

plane of the graphene sheet set at z = 0, whereas the electric field must be defined in the whole space.
This may have some interesting consequences for the mutual relations between the susceptibility, the
conductivity and the dielectric function. The integration over the whole space and time reflects the
possibility that the polarization of the material at some point in space and time may depend not only
on the electric field at the given point and in the given time, but also on the field in the vicinity of
that point and the field in the preceding time.

Although the above formulation of the graphene’s response to an external electric field provides
us with a good understanding of the spatial and temporal non-locality, the presence of the integrals
makes further calculations cumbersome. A more suitable form is obtained by expressing the dynamical
susceptibility in terms of its Fourier spectra and changing the order of integrations

P(r, t) =
1

(2π)3

∞∫
−∞

d2r′
∞∫
−∞

dt′
∞∫
−∞

d2q

∞∫
−∞

dω eiq·(r−r′)e−iω(t−t′) ε0 χ2D(q, ω) E
(
r′, z′=0, t′

)
=

=

∞∫
−∞

d2q

(2π)2

∞∫
−∞

dω eiq·re−iωt ε0 χ2D(q, ω)

∞∫
−∞

d2r′
∞∫
−∞

dt′

2π
e−iq·r′eiωt′ E

(
r′, z′=0, t′

)
=

=

∞∫
−∞

d2q

(2π)2

∞∫
−∞

dω eiq·re−iωt ε0 χ2D(q, ω) E
(
q, z′=0, ω

)
=

∞∫
−∞

d2q

(2π)2

∞∫
−∞

dω eiq·re−iωt P(q, ω) ,

(1.83)

which is actually the well known convolution theorem.
According to the Gauss’s law of electromagnetism, the induced charge density can be obtained as

the divergence of the corresponding vector field, in this case the polarization P(r, t)

−e n2D(r, t) = −∇ ·P(r, t) , (1.84)

where e = 1.602 · 10−19 C is the elementary charge. The conversion to the Fourier domain is straight-
forward, assuming one may reverse the order of differentiation and integration
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− e
∞∫
−∞

d2q

(2π)2

∞∫
−∞

dω eiq·re−iωt n2D(q, ω) = −∇ ·

 ∞∫
−∞

d2q

(2π)2

∞∫
−∞

dω eiq·re−iωt P(q, ω)

 ,
− e

∞∫
−∞

d2q

(2π)2

∞∫
−∞

dω eiq·re−iωt n2D(q, ω) = −
∞∫
−∞

d2q

(2π)2

∞∫
−∞

dω eiq·re−iωt [i q ·P(q, ω)] ,

∞∫
−∞

d2q

(2π)2

∞∫
−∞

dω eiq·re−iωt [e n2D(q, ω)− i q ·P(q, ω)] = 0,

The last equation is fulfilled only if the integrand in the square brackets is identically equal to zero
for all the frequencies ω and wavevectors q, leading to an equation linking the Fourier components of
the induced electron density and the polarization vector

e n2D(q, ω) = i q ·P(q, ω) (1.85)

The above procedure can be repeated for another pair of quantities, namely the electric field
vector E(r, z, t) and a potential V (r, z, t) (do not confuse with the self-consistent potential V (r, t))
tied through the following equation

E(r, z, t) = −∇V (r, z, t) , (1.86)

with the result

E(q, z, ω) = −i qV (q, z, ω) . (1.87)

Notice that by omitting the vector potential both in the above definition of the electric field and
in the perturbed Hamiltonian introduced in the previous section, one neglects the retardation effects
between distant parts of the graphene, thus treats its response within the quasistatic approximation.

Equations (1.83), (1.85) and (1.88) can be combined to give

e n2D(q, ω) = i q ·P(q, ω) = i ε0 χ2D(q, ω) q ·E
(
q, z′=0, ω

)
= q2 ε0 χ2D(q, ω) V

(
q, z′=0, ω

)
, (1.88)

where q = |q| is the magnitude of the wavevector q. Finally, by summoning the expression for the
induced electron density given by Equation (1.81) and recalling that the self-consistent potential (or
more precisely the potential energy) is, apart from a prefactor, equivalent to the electrostatic potential
V (q) = −e V (q, z=0, ω), the desired expression for the non-local dynamical susceptibility is acquired

e gvgs
V (q)

Ω

∑
k,α,β

fαk
0 − fβk+q

0

Eαk
0 − E

βk+q
0 + h̄ω + ih̄γ

(
1

2
+

1

2
αβ
|k|2 + |k · q|
|k| |k + q|

)
= −q

2

e
ε0 χ2D(q, ω)V (q) ,

χ2D(q, ω) =
e2gvgs

Ωq2ε0

∑
k,α,β

fβk+q
0 − fαk

0

Eαk
0 − E

βk+q
0 + h̄ω + ih̄γ

(
1

2
+

1

2
αβ
|k|2 + |k · q|
|k| |k + q|

)
, (1.89)

with γ→ 0. Interestingly, the above equation has two degrees of freedom in the sense that there are
two parameters, the temperature T and the Fermi energy EF, which can be controlled from outside.
Both these quantities enter the equation through the Fermi-Dirac distribution functions fβk+q

0 and
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fαk
0 . Invoking the expression describing the energy dispersion in the vicinity of the Dirac points given

by Equation (1.31), one can write

fαk
0 = f0

(
Eα(k)

)
=

1

exp

(
Eα(k)− EF

kBT

)
+ 1

=
1

exp

(
αh̄vF |k| − EF

kBT

)
+ 1

(1.90)

where kB is the Boltzmann constant and k is measured from the respective Dirac point Λ (this does
not affect the susceptibility nor any other related quantity, since the summation over k is performed
over the whole Brillouin zone so that

∑
k−Λ =

∑
k). Equation (1.89) is in many aspects very similar

to the Linhard equation describing the electron screening in metals (Ashcroft and Mermin [4], p.
343, [25]).

The temperatute T evidently affects the distribution of electrons in the vicinity of the Fermi
level. Higher the temperature, the more is the distribution distorted from the Heaviside step function
θ(EF − Eα(k)). As mentioned earlier, the adjustment of the Fermi level EF has much more profound
effect, since it can completely alter the optical properties of graphene. This can be seen by a detailed
analysis of Equation (1.89).

First of all, the expression for the dynamical susceptibility is non-zero only if the difference of
the two Fermi-Dirac distribution functions in the numerator is non-zero as well, which is equivalent
to the statement that the scattering of electrons takes place only between occupied and unoccupied
electronic states. The amplitude of the scattering is, besides other things, determined by the value
of the denominator, which tends to infinity, when the difference in the energies assigned to those
states is equal to the energy of the impinging photons, leading to a strong absorption of the incoming
radiation. Figure 1.6 illustrates, how the adjustment of the Fermi level can supress those strong
optical transitions by setting a minimal energy required to overcome a newly created barrier between
the occupied and eligible unoccupied states, where by eligible one means those states satisfying both
the energy and the momentum conservation laws.

Since the momentum h̄k carried by photons is comparatively small (within the scale of the present
diagram of graphene’s energy dispersion the light line h̄ω = h̄ck practically coincides with the vertical
axis), they can not induce lossy intraband transitions, in Figure 1.6 represented by the blue arrows.
The only allowed optical transition is the vertical promotion of an electron from the lower to the upper
band denoted by the red arrow.

First let us look, what happens if we shift the Fermi level from its default position at the Dirac
point to higher energies (Fig. 1.6 (b) ). Some of the previously vacant states are now occupied and the
corresponding transitions are therefore forbidden. Clearly, only those electrons with energy −EF and
less can be now scattered into the conduction band, provided that the energy of photons is at least
twice the Fermi energy h̄ω = 2EF. If the energy of photons does not reach this threshold value, there
are no vertical interband transitions and the electrodynamical response of graphene is similar to that
of a Drude metal (Maier [20], p. 11).

Shifting of the Fermi level to lower energies (Fig. 1.6 (c) ) leads to the formation of the barrier for
the low energy interband transitions as well, only in this case it is due to an electron depletion in the
valence band in the vicinity of the Dirac point.

Equation (1.89) describes the electrodynamical response of graphene, capturing both the intra-
band and interband processes. The effects of other types of scattering (impurities, phonons) can be
incorporated through a phenomenological relaxation time constant τ . Curiously, it can not be simply
introduced to the present expressions as a small imaginary part of the frequency ω + i

τ , because such
model would violate the local conservation of the electron number [24].

Mermin showed that the proper treatment provides a relaxation time approximation, where the
collisions with impurities and phonons do not relax the electron density to its uniform distribution,
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EF

(a) (b) (c)

EF

EF

Figure 1.6: Optical transitions in graphene. (a) The allowed vertical interband transitions in undoped
graphene. (b) By shifting the Fermi level to higher energies the low-energy transition become for-
bidden. (c) A depletion of the top of the valence band has a similar effect as in (b). The intraband
transitions represented by blue arrows can not be induced by photons due to a large momentum
mismatch.

but to a local equillibrium with respect to a local chemical potential, which may due to the external
perturbation vary in space. Referring the reader for further information on this topic to [24], the
dynamical susceptibility χτ2D(q, ω) accounting for the scattering by impurities and phonons can be
calculated in the following way

χτ2D(q, ω) =

(
1 +

i

ωτ

)
χ2D

(
q, ω+

i

τ

)
1 +

i

ωτ
χ2D

(
q, ω+

i

τ

)[
χ2D(q, 0)

]−1
. (1.91)

Although the above expressions for χ2D(q, ω) and χτ2D(q, ω) provide a general and very illustrative
description of the graphene’s electrodynamical response, they are not that much suitable for calcula-
tions of the light scattering from systems involving graphene and other plasmonic structures, mainly
because of the troublesome incorporation of the spatial dispersion into the current algorithms. These
difficulties are usually solved by taking the q→0 limit, entirely disregarding the spatial non-locality in
graphene’s response. Such approximation is perfectly justifiable for free-space electromagnetic waves
with negligible in-plane momentum, but one has to be careful while dealing with structures with sharp
edges and corners, where the fields may contain the high-q Fourier components.

The local dynamical susceptibility χτ2D(ω) is obtained by evaluating the three sums over the
wavevector k and band indices α, β in Equation (1.89) within the aforementioned limit q→0. Referring
the reader for the detailed derivation to [12], the final expression for the local dynamical susceptibility
reads

χτ2D(ω) = − 2kBTe
2

πε0h̄
2ω
(
ω + i

τ

) ln

[
2 cosh

(
EF

2kBT

)]
+ i

e2

4h̄ε0ω

H(ω
2

)
+

4iω

π
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H(ε)−H

(
ω
2

)
ω2 − 4ε2


(1.92)

H(ε) =

sinh

(
h̄ε

kBT

)
cosh

(
EF

kBT

)
+ cosh

(
h̄ε

kBT

) . (1.93)
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1.7. DYNAMICAL CONDUCTIVITY OF GRAPHENE

Interestingly, there exists an analytical solution even for the non-local case provided that the
temperature is approaching zero and the Fermi-Dirac statistic thus becomes a step function. The
expressions for the non-local dynamical response of graphene in the T → 0 limit can be found for
example in [32, 16, 18].

The dynamical susceptibility itself represents a suitable input for the light scattering calculations,
but the response of graphene is, for some reasons, usually described in terms of the dynamical con-
ductivity σ(ω). Invoking the Maxwell’s equations and constitutive relations, the conductivity links
together the induced current density j and the electric field E through

j(r, t) =
1

2π

∞∫
−∞

dt′ σ
(
t−t′

)
E
(
r, z=0, t′

)
, (1.94)

where only the non-locality in time is being considered. Employing the convolution theorem from

Equation (1.83) and summoning the continuity equation ∇ · j +
∂

∂t
(−∇ ·P) = 0, one recovers the

relation between the conductivity σ(ω) and the dynamical susceptibility χτ2D(ω)

σ(ω) E
(
r, z′=0, ω

)
= j(r, ω) = −iωP(r, ω) = −iω ε0 χ

τ
2D(ω) E

(
r, z′=0, ω

)
σ(ω) = −iω ε0 χ

τ
2D(ω) (1.95)

Eventually, replacing χτ2D(ω) with its full form

σ(ω) =
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 (1.96)

where H(ε) is given by Equation (1.93). The crucial aspects of the local response become more lucid,
if one decides to neglect the thermal effects by taking the T→0 limit,

σ(ω) =
e2EF

πh̄2

i(
ω + i

τ

) +
e2

4h̄

[
θ(h̄ω − 2EF) +

i

π
ln

∣∣∣∣ h̄ω − 2EF

h̄ω + 2EF

∣∣∣∣] . (1.97)

The first term on the right-hand side of Equation (1.97) represents the Drude-like response of
graphene, reflecting its metallic character when the Fermi level is shifted from its defualt position and
the conduction band is partially filled (resp. the valence band is partially vacant). This term also
accounts for the lossy intraband transitions due to impurities and lattice vibrations. The second term
captures the influence of the interband transitions and their onset as the energy of impinging photons
exceeds the threshold value 2EF.

For completeness, the real (dashed) and imaginary (solid) parts of the graphene’s dynamical con-
ductivity at two different temperatures (blue T = 10 K, green T = 300 K) are plotted in Figure 1.7.
The Fermi level was set to EF = 0.5 eV and the relaxataion time τ = 10−13 s is assumed. There is a
perceptible transition at the energy h̄ω=2EF between the low-frequency regime with graphene acting
like a metal and the high-frequency regime, in which is the response of graphene governed by the
interband processes. Apparently, the influence of temperature resides in the blurring of the transition
between those two regimes.

Interestingly, for high frequencies the real part of the dynamical conductivity corresponding to
losses acquires a universal value σ(ω) = e2

4h̄ , which results in the constant 97.7% transparency of
graphene over a broad spectral range. The absorption of roughly 2.3% of the incoming light in the
only one mononlayer thick graphene sheet is a striking effect, although in terms of the utilization of
graphene as a transparent conductor it might be rather perceived as a slight drawback.
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1. OPTICAL PROPERTIES OF GRAPHENE

Figure 1.7: The real (dashed) and imaginary (solid) parts of the dynamical conductivity of graphene
for two different temperatures T = 10 K (blue) and T = 300 K (green). The temperature affects the
blurring of the onset of the interband transitions at the energy 2EF. The values EF = 0.5 eV for the
Fermi energy and τ = 10−13 s for the relaxataion time have been used in both cases.

The electromagnetic power transmitted through or reflected from an infinite graphene sheet can
be calculated using the Fresnel transmission and reflection coefficients. In principle, graphene could
be modeled as a thin film with a nearly zero thickness [30], but such approach would require to assign
to graphene some 3D dielectric function. Later we will derive for it an approximate expression, but
the derivation itself is based on the preceding knowledge of the Fresnel coefficients. Ruling out the
thin film approach, one can introduce the influence of the graphene sheet through surface charges and
currents [18].

The graphene sheet divides the space into two halves, each characterized by a generally different
dielectric constant ε. Without graphene, electromagnetic fields are required to satisfy the well known
customary boundary conditions at the interface between those two halfspaces

∆E‖ = 0, ∆ (ε0εE⊥) = 0, ∆H‖ = 0, ∆H⊥ = 0,

where E and H stand for the electric and magnetic fields, ε0εE = D is the electric displacement and ‖
and ⊥ denote the parallel and perpendicular components with respect to the interface. The presence
of graphene will, due to the surface charges and currents induced in it, result in a discontinuity in the
normal component of the electric displacement and the tangential component of the magnetic field.
Recalling the relations for the induced charge −en2D = −∇ ·P = −ε0χ

τ
2D ∇ ·E‖ and currents j = σE‖,

the above boundary conditions become

∆E‖ = 0, ∆ (ε0E⊥) = −i
σ

ω
∇ ·E‖, ∆H‖ = σE‖, ∆H⊥ = 0. (1.98)

Figure 1.8 illustrates how an incident plane wave with a wavevector ki =
(
k‖, 0,−k⊥1

)
is partially

reflected from, respectively partially transmitted through an interface consisting of an infinite graphene
sheet squeezed between two media characterized by real dielectric constants ε1 (upper halfspace) and
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Figure 1.8: Schematic drawing of a plane wave being partially reflected from and transmitted through a
graphene sheet squeezed between two media characterized by dielectric constants ε1 (upper halfspace)
and ε2 (lower halfspace).

ε2 (lower halfspace). The reflected and transmitted plane waves propagate in the directions given by
the wavevectors kr =

(
k‖, 0, k

⊥
1

)
and kt =

(
k‖, 0,−k⊥2

)
. Using the notation and the orientation of the

vectors as depicted in Figure 1.8, the Fresnel transmission and reflection coefficients in the presence
of graphene read

tp =
2k⊥1
√
ε1
√
ε2

ε1k⊥2 + ε2k⊥1 + σ
ωε0

k⊥1 k
⊥
2

, ts =
2k⊥1

k⊥1 + k⊥2 + σω
ε0c2

, (1.99)
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ε1k
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2 − ε2k

⊥
1 − σ

ωε0
k⊥1 k

⊥
2

ε1k⊥2 + ε2k⊥1 + σ
ωε0

k⊥1 k
⊥
2

, rs =
k⊥1 − k⊥2 − σω

ε0c2

k⊥1 + k⊥2 + σω
ε0c2

, (1.100)

where indices p and s denote the polarization of the electric field in the direction parallel and perpen-
dicular to the plane of incidence.

1.8. Plasmons in graphene

The main reason for the increased interest in graphene within the plasmonic community over the past
years is the existence of bound plasmonic modes in doped graphene, which is another manifestation
of its metallic character.

Plasmons are coupled oscillations of the free electron plasma and the electromagnetic field. They
appear in different forms, but graphene, being a planar structure, sustains only the surface mode
denoted as a surface plasmon polariton (SPP). It can be described as a travelling evanescent wave,
which propagates along the graphene sheet and decays exponentially in the directions perpendicular to
it. The energy carried by these plasmons ranges from several meV up to 1 eV, the main parameter being
the density of free charge carriers, resp. the Fermi energy EF. Their propagation distance depends,
besides other things, on the relaxation time τ , which reflects the quality of the graphene’s fabrication.
Thanks to the supression of scattering from defects and impurities due to the Klein tunneling [1], the
relaxation time is considerably longer than in ordinary metals, resulting in acceptable propagation
distances up to several microns, depending on the particular configuration [17]. Importantly, the
confinement of the plasmons in graphene is quite remarkable, since it is possible to squeeze the light
into volumes more than hundred times smaller compared to the free space.

The energy dispersion of the surface plasmon polaritons in graphene qsp can be calculated using
a standard procedure (Maier [20], p. 21), in which two surface waves, each of them exponentially
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decaying into the respective halfspace, are matched at the graphene interface using the above boundary
conditions. Here we choose an alternative approach exploiting the fact that the Fresnel reflection and
transmission coefficients are valid also for evanescent waves.

Let us start with writing down the reflected electric field amplitudes Er in terms of the incident
electric field Ei for both polarizations s and p (notice that for evanescent waves the designation
”reflected” and ”transmitted” somewhat loses its original sense)

Ep
r = rp Ep

i =
ε1k
⊥
2 − ε2k

⊥
1 − σ

ωε0
k⊥1 k

⊥
2

ε1k⊥2 + ε2k⊥1 + σ
ωε0

k⊥1 k
⊥
2

Ep
i , (1.101)

Es
r = rs Ep

i =
k⊥1 − k⊥2 − σω

ε0c2

k⊥1 + k⊥2 + σω
ε0c2

Es
i , (1.102)

Since the surface plasmon polaritons are in fact the electromagnetic eigenmodes of the system, they
should be self-sustainable and exist even if there is no external field to excite them Ep

i = Es
i = 0. But

such situation is possible only if the Fresnel coefficients in Equations (1.101), (1.102) tend to infinity
and thus the problem of finding the energy dispersion of surface plasmon polaritons in graphene
transforms into searching for the poles in the Fresnel coefficients.

First let us focus on the transverse magnetic (TM) mode associated with the p-polarization. Evi-
dently, the expression for rp diverges when the denominator is equal to zero

ε1k
⊥
2 + ε2k

⊥
1 +

σ(ω)

ωε0
k⊥1 k

⊥
2 = 0, (1.103)

ε1

k⊥1
+
ε2

k⊥2
+
σ(ω)

ωε0
= 0. (1.104)

By rewriting the above equation using the in-plane wavector component k‖ = qsp =
√
εj
ω2

c2
− k⊥ 2

j ,

j = 1, 2, the equation for the propagation constant qsp is recovered

ε1√
q2

sp − ε1
ω2

c2

+
ε2√

q2
sp − ε2

ω2

c2

+ i
σ(ω)

ωε0
= 0. (1.105)

Notice that qsp >
√
εj
ω
c so that both k⊥1 and k⊥2 are imaginary, which is necessary in order the mode

was bound to the graphene sheet.
The above equation provides a full description of the energy dispersion of TM surface plasmon

polaritons in graphene, but the general solution lacks clarity. Fortunately, the main aspects of the
dispersion are preserved if one simplifies the equation by supposing qsp �

√
εj
ω
c and h̄ω < 2EF so that√

q2
sp − ε1

ω2

c2
≈ qsp and σ(ω) ≈ e2EF

πh̄2
i

(ω+ i
τ )

. As we shall see, the first approximation is satisfied for all

the TM modes except the ones with a very small energy compared to the Fermi level. The validity of
the other approximation expires once the energy of the plasmon polaritons is large enough to induce
an interband transition. Adopting the above assumptions, the relation for the energy dispersion of
the TM plasmon polaritons becomes

qsp =
ε1 + ε2

2

2ε0πh̄
2

e2EF

(
ω2 + i

ω

τ

)
. (1.106)

The quadratic dependence of the propagation constant qsp on the frequency ω is characteristic for 2D
electron gases. Figure 1.9 shows this dependence for two substrates ε2 = 1 (black) and ε2 = 4 (green)
together with a map of eligible electronic transitions in graphene. A map in the sense that it tells us,
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1.8. PLASMONS IN GRAPHENE

which combinations of the energy and the momentum can induce intraband (blue region) or interband
(red region) transitions. Apparently, the TM surface plasmon polaritons can not directly decay into
electron-hole pairs within one band, since the dispersion curve never enters the blue region of the
energy-momentum space. On the other hand, the TM surface plasmon polaritons corresponding to
that part of the dispersion curve lying inside the red region (dashed line) are strongly damped due to
interband processes. It appears that the best propagation distance to confinement ratio is found for
plasmons with an energy h̄ωpl ≈ EF.

q [kF]

h̄
ω

[E
F
]

Dispersion of TM surface plasmon polaritons

qsp ε2 = 1

qsp ε2 = 4

Figure 1.9: The energy dispersion of the TM surface plasmon polaritons in graphene for two values of
the substrate dielectric constant ε2 = 1 (black) and ε2 = 4 (green). A strong damping of the plasmons
due to intraband (blue region) and interband (red region) transitions is indicated by the dashed line.

The last remark regards the validity of the square root dispersion for small and large values of qsp.
It would seem that the dispersion curve crosses near the origin the light line, which in this case almost
coincides with the vertical axis. But one has to keep in mind that we made some approximations and
the proper dispersion curve is tangent to the light line in the limit qsp→0 as it should be. Similarly,
the energy dispersion deviates significantly from the quadratic one for large values of the propagation
constant due to the onset of the interband transitions.

The transverse electric (TE) mode associated with the s-polarization corresponds to poles in the
Fresnel coefficients rs and ts

k⊥1 + k⊥2 +
ωσ(ω)

ε0c2
= 0, (1.107)√

q2
sp − ε1

ω2

c2
+

√
q2

sp − ε2
ω2

c2
− i

ωσ(ω)

ε0c2
= 0. (1.108)

where qsp is again assumed to be larger than
√
εj
ω
c so that the mode is bound. Unlike the TM

mode, one can not neglect εj
ω2

c2
against q2

sp or disregard the influence of interband transitions without
distorting substantially the proper general solution. In fact, the additional terms in the dynamical
conductivity enable the very existence of the TE mode in the first place. That can be seen by a
detailed analysis of the above equation.
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Apparently, Equation (1.107) can be fulfilled only if the term i
ωσ(ω)

ε0c2
is positive, which is true as

long as the imaginary part of the conductivity is negative. Referring to Figure 1.7, such requirement
is met only near the onset of the interband transitions and it corresponds to the logarithm term in
the dynamical conductivity given by Equation (1.97).

Importantly, the proper solution of the above equation indicates that the propagation constant
qsp of the TE plasmonic polaritons in graphene is close to the propagation constant of light k = ω

c ,
resulting in a large decay length in the direction perpendicular to the graphene sheet. Hence the
TM mode appears to be a more suitable candidate for applications, in which the confinement plays a
crucial role.

Let us conclude this topic with a remark that there is no counterpart to the TE modes in the
classical plasmonic materials like gold or silver, which further emphasizes the graphene’s uniqueness.
A more extensive discussion on the TE modes in graphene can be found in [26].
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2. FABRICATION OF GRAPHENE

2. Fabrication of graphene
If graphene is expected to find a utilization not only in the scientific community, but also in commer-
cial devices, it is necessary to master its fabrication on a large scale and in sufficient quality using
reliable and cheap methods. The research in this area has made a significant progress since the first
successful isolation of graphene in 2004 by Novoselov and Geim. This chapter overviews the most
promising fabrication techniques [9] and describes how one can tune the electric and optical properties
of graphene.

The original method employed by Geim and Novoselov resides in the repeated peeling of small
flakes from a piece of graphite using a Scotch tape. Although such mechanical exfoliation seems to be
somewhat primitive, the graphene flakes prepared in this way boast with superior free charge carrier
mobilities. Unfortunately, the procedure is limited to small sizes and it can not be scaled for the
industrial production.

The next technique is based on the thermal decomposition of silicon carbide SiC, where the in-
creased temperature causes the sublimation of Si atoms and the subsequent formation of a thin graphite
layer on the top of the crystal. Even though this approach enables a large scale production, there
are still several problems concerning the repeatability and the control over the number of grown
monolayers.

The currently most spread fabrication method relies on growing graphene on a copper substrate us-
ing the chemical vapour deposition (CVD), where the Cu crystal is exposed to CH4-Ar-H2 enviroment
at an increased temperature and at the atmospheric pressure. Not only that the CVD enables a large
scale production, the thickness of the grown carbon film is predominantly one monolayer regardless
of the exposure time, indicating that the process is surface mediated and self limited. Moreover, by
tuning the whole procedure, one can achieve mobilities of free charge carriers, which are comparable to
those observed in exfoliated graphene. Table 2 summarizes the typical parameters of graphene flakes,
resp. wafers fabricated using the above techniques.

Method Layers Size Mobility
(
cm2V−1s−1

)
Exfoliation 1-10+ 1 mm2 15000

Thermal SiC 1-4 50µm2 2000

Cu CVD 1 65 cm2 16000

Table 2.1: Comparison of the three, at the present most frequently used graphene fabrication tech-
niques in terms of the number of grown monolayers, the size and the mobility of free charge carriers.
(Adopted from [9])

Besides the methods described above, there exists a number of various preparation techniques such
as the molecular beam epitaxy (MBE) or the carbon nanotubes unzipping, each with its advantages
and drawbacks, but so far they remain in the shadow of the dominating CVD.

Importantly, the mobility of the free charge carriers in graphene is significantly affected by the
type of the substrate it is lying on. For example, the values presented in Table 2 correspond to
measurements on a glass substrate SiO2, but by using the boron nitride or suspended graphene one
could achieve values even several times larger. The transfer of the graphene sheet from the ”growing”
material (Cu in the case of the CVD) on other substrates can be done using the following procedure.

At first a sufficiently thick layer of photoresistive poly-methyl-methacrylate (PMMA) is deposited
onto the graphene sheet. Subsequently, the supporting material is carefully removed by etching so
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that graphene itself remains glued to the photoresist. The whole structure is then transfered on the
desired substrate and the PMMA is washed away by aceton.

As demonstrated in Section 1.8, the electrical and optical properties of graphene strongly depend
on the position of the Fermi level with respect to the Dirac points. If one was able to control it
dynamically, graphene might be used as an active element in modulators, transistors and many other
devices. Interestingly, it can be accomplished through the ambipolar field effect, where graphene is
used as an electrode in a parallel plate capacitor. The situation is illustrated in Figure 2.1. When a
voltage is applied, the electrodes of the capacitor become oppositely charged, which projects into a
slight shift of the Fermi levels within the electrodes. In the case of an electrode made of a classical
metal, the effect would be negligible due to the huge intrinsic density of free charge carriers, but in
graphene the shift can reach values up to 500 meV.

Graphene

Dielectric

Metallic electrode

Figure 2.1: Schematic drawing of a parallel plate capacitor with a graphene sheet as one of the
electrodes.

Invoking the Gauss’s law of electromagnetism, the surface charge density nS induced at the capac-
itor’s electrodes is proportional to the applied voltage V and inversely proportional to the distance d
between them

nS = −ε0εV

d
, (2.1)

where ε0 is the vacuum permitivity and ε is the permitivity of the dielectric separating those two
electrodes. Identifying the surface charge density as the density of free charge carriers n given by
Equation (1.42) multiplied by the elementary charge e, one finds that the shift of the Fermi level EF

due to the ambipolar field effect should be

EF =

√
4πε0εh̄

2v2
FV

gsgved
. (2.2)

The experimentally achieved values of the density of free charge carriers in graphene occur typically
in the range of 1011−1013 cm−2, which allows one to tune the Fermi level in the interval of roughly
10 - 400 meV (the lower limit orginates in thermal and other effects).
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3. Applications of graphene
The large number of published scientific articles and papers involving graphene reflects its huge po-
tential for applications in optoelectronics, nanophotonics and other related areas, even though a long
way has to be covered before the graphene-based devices will outperform the present ones relying
on semiconductors. This chapter provides an overview of possible applications, in which graphene is
expected to play a key role in the future.

The combination of the good conductivity and transparency makes graphene an interesting alter-
native to currently used indium-tin-oxide (ITO) as the top transparent electrode in touch screens and
photovoltaic devices. Furthermore, its flexibility and durability could enable fabrication of rollable
OLED displays and solar cells, which proves to be unfeasible with the brittle ITO [9]. Recently, 4-
layer doped graphene sheets with resistivity as low as 30 ΩW−1 and optical transmittance greater than
90% have been produced, surpassing the currently comercially available ITO sheets with comparable
transmittance and resistivity around 100 ΩW−1 [6].

Although the employment of graphene as a flexible transparent electrode will probably improve
the performance of the current devices, it can be hardly perceived as a far-reaching breakthrough. On
the other hand, the fact that graphene can act as an active element could lead to novel and disruptive
technologies. This concerns mainly the optical modulators, photodetectors, lasers, high-frequency
transistors, polarizers, optical insulators and other electric and optoelectronic devices [27].

As regards the utilization of graphene in plasmonics, there are basically two paths one can follow
at the present. The first concept directly exploits graphene for guiding and controlling the plasmons,
whereas the latter approach rather uses graphene to control the response and to enhance the perfor-
mance of ordinary plasmonic structures, or even to form hybrid devices with novel features. Let us
now inspect in a more detail some of the possible applications.

Figure 3.1: Schematic drawing of a graphene-based plasmonic waveguide. The transition between
regions, which do or do not sustain TM surface plasmon polaritons, is achieved by structuring the
dielectric layer between the graphene sheet and the gating electrode. (Adapted from [31])

Since the damping and confinement of plasmons in graphene is more favourable than in traditional
noble metals, we might experience a revival in the plasmonic circuitry and the plasmonic transforma-
tion optics. Vakil and Engheta [31] presented a simple and intriguing way how to guide and control
surface plasmon polaritons in graphene by structuring the dielectric layer between the graphene sheet
and the gating electrode as depicted in Figure 3.1. The variations in the thickness or dielectric prop-
erties of that layer project into local changes in the chemical potential of graphene, which results in
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a formation of regions with different conductivities. If the gating voltage is properly set, only certain
regions will be able to sustain the TM surface plasmonic polaritons. By structuring the dielectric
layer in the shape of stripes, one obtains plasmonic waveguides with properties tunable through the
gating voltage. The authors also proposed that the above concept could be employed to create more
sophisticated optical elements like plasmonic beamsplitters, lenses or 2D metamaterials.

The ability of graphene to influence the response of other plasmonic structures was clearly demon-
strated by Kravets et al. [19]. They transfered a single graphene sheet on the top of a regular array of
plasmonic antennas with ultranarrow diffractive-coupled plasmon resonances, which show extremely
high phase sensitivity to the external environment. The presence of graphene resulted in a significant
spectral shift of the coupled resonances and changes in other optical properties of the plasmonic array.
Subsequently, they altered the properties of graphene by the reversible hydrogenation, observing a
superb sensitivity to that process.

Those were only two examples of the possible utilization of graphene, but they should give the
reader a certain feeling of its great potential to push the boundaries and limits of the current tech-
nologies.
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4. Proposed experimental setup: Motivation
The major goals of this diploma thesis are to investigate the influence of graphene on a single plasmonic
structure and to assess, whether it is possible to dynamically tune its response by changing the chemical
potential in graphene through the electrostatic gating. Furthermore, one of the outcomes of this thesis
should be a layout of an experiment, which would demonstrate the control over the response of the
plasmonic structure.

Recently, Yu et al. [33] have presented an intriguing concept, in which plasmonic structures are
used to transform a beam of light in such a way that an impression of the anomalous refraction is
evoked. The proposed configuration is illustrated in Figure 4.1. An array of N noble metal plasmonic
nanoantennas (their shape remains for now unspecified) is deposited onto a substrate characterized
by a dielectric constant ε2, while the superstrate is described by ε1. Let us assume an incident plane
wave propagating in the direction prescribed by a wavevector ki.
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Figure 4.1: Schematic drawing of an array of N plasmonic antennas illuminated by an electromagnetic
plane wave propagating in the direction given by a wavevector ki. The incident plane wave induces
in the antennas oscillating dipoles p so that apart from the reflected (kr) and refracted (kt) waves,
radiation corresponding to scattering by the antennas (ksc) is observed.

Evidently, the incident plane wave will be partially reflected, partially refracted and some of the
power will be scattered and absorbed by the metallic antennas. If the antennas are identical, the
radiation scattered by the individual antennas will superpose to form two plane waves propagating in
the directions prescribed by the well known Snell’s law. Therefore, the far field angular distribution
consists of only two maxima corresponding to the ordinary reflection from, resp. transmission through
a planar interface, although the amplitudes of the respective waves are modified by the presence of
the plasmonic nanoarray. Let us now express the above statements in a suitable mathematical form.

For simplicity, we shall assume that the plasmonic antennas are shaped as infinitely long cylinders
with radiation patterns similar to that of a line dipole. This will reduce the problem to only two
dimensions, while preserving the main idea. The electric field at the point r = (x, z) due to the j−th
dipole positioned at rj = (xj , zj) can be written as

Ej(x, z) = iωµ0

↔
G(x, z, xj , zj) j(xj , zj) , (4.1)
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where j(xj , zj) is the induced current associated with the j−th dipole and where the 3 × 3 tensor
↔
G(x, z, xj , zj), also known as the dyadic Green’s function, captures all the aspects of the dipole’s
radiation pattern including the radial dependence and the angular distribution. At this point, we
shall use only an approximate form of the dyadic Green’s function, although later the exact expression
will be derived.

Far away from the line dipole all the near-field components of
↔
G(x, z, xj , zj) practically vanish and

the spatial dependence of the electric field is dominated by the term corresponding to an outgoing
cylindrical wave, which amplitude falls as the square root of the distance from the dipole

Ej(x, z) ∼
eikν
√

(x−xj)2+(z−zj)2

4

√
(x− xj)2 + (z − zj)2

, (4.2)

where kν =
√
εν

ω
c , ν = 1, 2 is the magnitude of the wavevector in the respective medium. Introducing

polar coordinates r =
√
x2 + z2, ϕ = arctan

(
z
x

)
and assuming that all the line dipoles are confined

to a small region near the origin of the coordinate system xj , zj � r, the total electric field E is
approximately given by

E(r, ϕ) =
N∑
j

Ej(r, ϕ) ≈
↔
Gν(ϕ)

eikνr

√
kνr

N∑
j

e−ikν(xj cosϕ+zj sinϕ) j(xj , zj) , (4.3)

where
↔
G(ϕ) accounts for the angular distribution of an individual line dipole. Notice that the binomial

theorem (1 + x)n ≈ 1 + nx, x � 1 has been used for the approximate evaluation of the exponential
factor in Equation (4.2).

Since the whole plasmonic nanoarray is illuminated by a plane wave, the induced dipole moments
should all have the same magnitude and orientation, although their phases may be mutually shifted
as the result of an oblique incidence of the plane wave. Furthermore, recalling that all the line dipoles
are positioned at the superstrate-substrate interface set at z=0, the above equation reads

E(r, ϕ) =
N∑
j

Ej(r, ϕ) ≈
↔
Gν(ϕ)

eikνr

√
kνr

N∑
j

e−ik
‖
νxj j eik

‖
i xj , (4.4)

where the exponential factor eik
‖
i xj accounts for the possible tilted illumination and where the following

notation has been introduced kν cosϕ = k
‖
ν , kν sinϕ = k⊥ν (clearly, the symbols ‖ and ⊥ stand for the

directions parallel and perpendicular to the superstrate-substrate interface).
Finally assuming that the spacing ∆xj between the individual antennas is much smaller than the

wavelength associated with the incident plane wave λ = 2π
kν
� ∆xj , one can replace (to some extent)

the discrete summation over j by continuous integration

E(r, ϕ) ≈
↔
Gν(ϕ)

eikνr

√
kνr

j
N

L

L
2∫

−L
2

dx′ e
i
(
k
‖
i −k

‖
ν

)
x′
. (4.5)

The antennas are confined in a region of a length L � λ and the factor jNL accounts for the proper
normalization of the induced current density. The above integral is readily evaluated to give

E(r, ϕ) ≈
↔
Gν(ϕ)

eikνr

√
kνr

j
2N

L

sin
[(
k
‖
i − k

‖
ν

)
L
2

]
(
k
‖
i − k

‖
ν

) =
↔
Gν(ϕ)

eikνr

√
kνr

N j sinc

[(
k
‖
i − k

‖
ν

) L
2

]
. (4.6)
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4. PROPOSED EXPERIMENTAL SETUP: MOTIVATION

The sinc(x) function (from the Latin sinus cardinalis) has only one distinct maximum at x = 0,

thus the amplitude of the scattered field will be significant only in those directions, for which k
‖
ν = k

‖
i .

Evidently, it corrensponds to the directions of the ordinary reflection and refraction given by the Snell’s
law, which can be seen by expressing the parallel components of the respective wavevectors in terms
of the angles θν , θi formed by those wavevectors and the normal vector of the superstrate-substrate
interface

k‖ν =
√
εν

ω

c
sin θν , k

‖
i =
√
ε1

ω

c
sin θi.

The conditions for the maximal amplitudes in the upper (ν = 1) and lower (ν = 2) halfspaces then
become

sin θ1 = sin θi,
√
ε2 sin θ2 =

√
ε1 sin θi. (4.7)

Apparently, the array of plasmonic antennas acts as if it was a thin homogenous metallic layer,
however with the spectral response of a single antenna. This is the consequence of the transition from
the summation over discrete dipoles to the integration over a continuous current density. In reality,
the spacing between the antennas may project into the far-field angular distribution as satellite peaks.
Furthermore, the coupling between individual antennas may smooth or even supress the resonant
features in their spectral response.

Importantly, the above derivation was based on the assumption that the antennas are identical.
Yu et al. [33] have demonstrated that by varying their shape in a certain fashion one can introduce
an additional phase shift between the induced dipoles, leading to a deviation of the scattered waves
from the directions associated with the ordinary reflection and refraction.

Denoting the additional phase shift Φ(xj), the total scattered field reads

E(r, ϕ) =

N∑
j

Ej(r, ϕ) ≈
↔
Gν(ϕ)

eikνr

√
kνr

N∑
j

e−ik
‖
νxj j eik

‖
i xj eiΦ(xj). (4.8)

Eventually, assuming the antennas are modified in such a way that the phase shift is linear in xj ,
the above equation becomes

E(r, ϕ) ≈
↔
Gν(ϕ)

eikνr

√
kνr

j
N

L

L
2∫

−L
2

dx′ e
i
(
k
‖
i −k

‖
ν+κ

)
x′

=
↔
Gν(ϕ)

eikνr

√
kνr

N j sinc

[(
k
‖
i − k

‖
ν + κ

) L
2

]
. (4.9)

where κ = ∂
∂xΦ(x) indicates how rapidly the phase shift varies between two induced dipoles. Notice,

that once more the summation was replaced by integration, which is justified for a sufficiently dense
array of plasmonic antennas. Obviously, the directions with the maximal scattering amplitude no
longer coincide with those corresponding to the ordinary reflection and refraction. This deviation can
be both positive and negative, depending on the sign of κ.

Although one can tailor the phase shift of the antennas by modifying their shape, their collective
response is set and can not be changed, once the whole array is fabricated. The novel concept, which
this thesis brings up, resides in the following idea. If the electrostatically doped graphene proved to
be capable of a control over the response of the individual antennas, one might be able to dynamically
tune the scattering properties of the whole plasmonic array including the direction of the maximal
scattering amplitude. Figure 4.2 illustrates how such a control could be achieved.

A gradual reduction in the thickness of the dielectric layer separating the graphene sheet from
the gating electrode should project into a spatial variation of the chemical potential within graphene.
Since the plasmonic structures are usually quite sensitive to the ambient environment, the non-uniform
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Figure 4.2: Schematic drawing of an array of N plasmonic antennas fabricated on top of a non-
uniformly gated graphene sheet illuminated by an electromagnetic plane wave. The variations in the
chemical potential within graphene may induce an additional phase shift between the dipoles p so
that the impression of a partial anomalous refraction is evoked.

gating of graphene might cause a variable shift in the resonant frequencies and lead to the desired
additional phase shift between neighbouring antennas. That can be seen by a detailed analysis of the
response of a single antenna near its resonance.

For simplicity, let us picture the antenna as a point dipole p driven by an external electromagnetic
field Eext(t). The dipole is characterized by its natural frequency ω0 and a damping constant γ ac-
counting for both the internal and the radiation losses. Assuming the external field varies harmonically
in time with a frequency ω, the equation of motion for the electric dipole reads

∂2

∂t2
p(t) + γ

∂

∂t
p(t) + ω2

0p(t) = α0ω
2
0 Eexte

−iωt, (4.10)

where α0 denotes the static polarizability of the dipole. Apparently, shortly after the turning on of
the external field, the natural oscillations of the system will die out due to the damping and the dipole
will adopt the time dependence of the driving force p(t)=pe−iωt. Inserting this expression back into
Equation (4.10), one acquires the frequency-dependent relation between the induced dipole moment
and the external electric field

p =
α0ω

2
0

ω2
0 − ω2 − iωγ

Eext. (4.11)

Regarding the experimental design outlined above, we are interested mainly in the phase shift Φ
of the dipole with respect to the driving electromagnetic force

cos Φ =
Re {p}
|p|

=
ω2

0 − ω2[(
ω2

0 − ω2
)2

+ ω2γ2
] 1

2

(4.12)
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4. PROPOSED EXPERIMENTAL SETUP: MOTIVATION

In Figure 4.3, the phase shift Φ (dashed line) as a function of the frequency ω is plotted for two
close values of the natural frequency ω+

0 = ω0 and ω−0 = 0.95ω0. Clearly, by shifting slightly the
resonance frequency, one can tune the phase of the dipole without a dramatic drop in its amplitude
(solid line). The following chapters concern with the answer to the question, whether electrostatically
doped graphene is capable to induce such shifts in the resonant frequencies of the antennas.

Figure 4.3: The amplitude (solid line) and phase (dashed line) of a driven electric dipole as a function
of the frequency of the external field. The dependence is plotted for two different natural frequencies
of the dipole ω+

0 =ω0 and ω−0 =0.95ω0.
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5. CALCULATIONS BASED ON THE TRANSFORMATION OPTICS METHOD

5. Calculations based on the transformation
optics method

The core of this thesis resides in the calculations of the scattering properties of hybrid devices,
in which graphene is used as an active element to control the response of surrounding plasmonic
structures. In order to perform such calculations, one needs a suitable method, which would be able
to cope with the 2D character of graphene and which would provide correct results in a broad range
of frequencies (from visible to IR).

It is possible to employ standard techniques like the FDTD (finite differences in the time-domain)
or the FEM (finite element method), but those methods usually suffer from large computation times
and considerable memory requirements for calculations in the IR. It is associated with the requirement
that the dimensions of the simulation region should be at least twice the wavelength of the incident
wave so that the evanescent components of the fields in the vicinity of the plasmonic structures do
not overlap with the PML (perfectly matched layers) regions, which prevent the propagating waves
scattered by the structures from being reflected back at the boundaries of the simulation region.

Instead, a different semi-analytical technique based on spatial transformations has been utilized.
It enables to investigate the many possible configurations of parameters like the Fermi energy, the
angle of incidence of the illuminating plane wave or the size of the plasmonic structures, all within a
reasonable amount of time. This method has, however, two important disadvantages. The first one
is the very limited set of geometries, to which it can be applied. The latter resides in the fact that it
neglects the retardation effects, which become prominent for large metallic structures in the IR part
of the spectrum. Nevertheless, the transformation optics method can be a powerful tool to estimate
the strength of the interaction between graphene and a single plasmonic antenna.

5.1. Conformal transformations

First let us introduce the mathematical concept standing behind this technique. As mentioned above,
the retardation effects shall be neglected so that the electric field is fully described by an electro-
static potential V (r, t) (static only in the sense that it satisfies the Poisson’s equation known from
electrostatics, there are no restrictions on the time dependence of the fields). Furthermore, we shall
restrict ourselves to two-dimensional problems, for which the algebra is considerably simpler and the
electromagnetic calculations less computationally demanding. Hence, the 2D Poisson’s equation for
the potential V (x, y) reads

∇2V (x, y) =

(
∂2

∂x2
+

∂2

∂y2

)
V (x, y) = −ρext(x, y)

ε0ε
, (5.1)

where x, y are the spatial coordinates, ε denotes the permitivity of the medium and ρext(x, y) stands
for the external charge density. Importantly, the two-dimensional space can be viewed as a complex
plane, where each point is described only through a single coordinate z = x + iy. Adopting such
notation, the partial derivatives from Equation (5.1) become

∂

∂x
=

∂

∂z

∂z

∂x
+

∂

∂z∗
∂z∗

∂x
=

∂

∂z
+

∂

∂z∗
,

∂

∂y
=

∂

∂z

∂z

∂y
+

∂

∂z∗
∂z∗

∂y
= i

∂

∂z
− i

∂

∂z∗
,

∇2 =
∂2

∂x2
+

∂2

∂y2
=

(
∂

∂x
+ i

∂

∂y

) (
∂

∂x
− i

∂

∂y

)
= 4

∂2

∂z∂z∗
, (5.2)

where z∗ = x − i y represents the complex conjugate to z. Let us introduce a spatial transformation
w(z) = x′ + i y′ with yet unspecified properties and express the operator ∇2 in these new coordinates
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∇2 = 4
∂2

∂z∂z∗
=

(
∂

∂w

∂w

∂z
+

∂

∂w∗
∂w∗

∂z

) (
∂

∂w

∂w

∂z∗
+

∂

∂w∗
∂w∗

∂z∗

)
=

= 4

(
∂2

∂w2

∂w

∂z

∂w

∂z∗
+

∂2

∂w∂w∗
∂w∗

∂z

∂w

∂z∗
+

∂2

∂w∂w∗
∂w

∂z

∂w∗

∂z∗
+

∂2

∂w∗2
∂w∗

∂z

∂w

∂z∗

)
. (5.3)

Apparently, the transformation will not generally preserve the simple form of the above operator
in the original cartesian coordinates, unless some assumptions regarding its properties are made. It
would seem that the above equation will reduce to a more appealing form, if one of the two following
conditions is satisfied

∂w

∂z∗
= 0 ⇒ ∇2 = 4

∂2

∂w∂w∗

∣∣∣∣∂w∂z
∣∣∣∣2 , (5.4)

∂w

∂z
= 0 ⇒ ∇2 = 4

∂2

∂w∂w∗

∣∣∣∣ ∂w∂z∗
∣∣∣∣2 . (5.5)

The first condition indicates that the function w(z) is, in the language of the complex analysis,
holomorphic, whereas the latter is satisfied by anti-holomorphic functions. Importantly, spatial trans-
formations prescribed by such functions preserve, apart from a scaling factor, the form of the Poisson’s
equation, which means that a solution to that equation in one space is automatically a valid solution
to the same equation in the transformed space. That makes them a powerful tool, since one can
work out otherwise unsolvable problems by switching to a space, where the geometry of the problem
assumes a more convenient form and in which the solution can be, therefore, analytically calculated.

To conclude this section, the transformations, for which w(z) is holomorphic or anti-holomorphic,
generally preserve angles between any two curves and they are denoted as conformal transformations.

5.2. Geometry of the problem

Aubry et al. [5] studied in their paper the light scattering from two touching infinitely long metallic
cylinders as depicted in Figure 5.1 (a). They employed the following conformal transformation to
convert the problem of the touching cylinders illuminated by a plane wave (in fact the plane wave is
replaced by a uniform electric field) into a diametrically different problem of an electric line dipole
trapped inside a multilayer structure (Figure 5.1 (b) )

η(w) =
g2

w∗
, (5.6)

where w = x + i z, resp. η = ξ + i ζ are the coordinates in the original, resp. the transformed space
and g2 is a scaling factor.

Evidently, by varying the thickness of the intermediate layer in the the transformed space one

controls the radii of the cylinders, more precisely Ra = g2

2a and Rb = g2

2b , where a and b characterize
the thickness of the intermediate layer (see Figure 5.1 (b) ).

Importantly, the above procedure can be useful for the estimation of the strength of the interaction
between graphene and ordinary plasmonic structures, although some modifications to the presented
geometry has to be introduced. If one substitutes the lower halfspace in the multilayer structure
by a dielectric material with a graphene sheet on the top, then takes the limit b → 0 and finally
performs the aforementioned transformation, the two touching metallic cylinders will be replaced with
a single cylinder lying on the top of a dielectric substrate covered by a graphene sheet as illustrated
in Figure 5.2.
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Figure 5.1: (a) Schematic drawing of two touching metallic cylinders with radii Ra and Rb inside a
uniform electric field Ei. (b) Employing the conformal transformation given by Equation (5.6), the
geometry from (a) is converted into a multilayer structure with a dipolar source p.
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Figure 5.2: (a) Schematic drawing of the geometry suitable for the purposes of this thesis. A single
metallic cylinder of radius R placed on the top of a silicon substrate covered by a graphene sheet and
illuminated by a plane wave Ei can be transformed into a multilayer structure with a dipolar source
p (b).

5.3. Potentials

Before we proceed with the calculation of the distribution of the electrostatic potential V (ξ, ζ) within
the multilayer structure, it is necessary to clarify, how the potential of an electric line dipole is
transformed into a uniform electric field. The electrostatic potential of a unit line charge Ve(ξ, ζ)
inside a medium with permitivity ε is easily acquired from the Gauss’s law of electromagnetism

Ve(ξ, ζ) = − e

2πε0ε
ln
(√

ξ2 + ζ2
)
. (5.7)

An electric dipole consists of two charges of the same magnitude but the opposite polarity, mutually
shifted by a small vector ∆ = (∆ξ,∆ζ)
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Vdip(ξ, ζ) = − e

2πε0ε
ln

√(ξ − ∆ξ

2

)2

+

(
ζ −

∆ζ

2

)2
+

e

2πε0ε
ln

√(ξ +
∆ξ

2

)2

+

(
ζ +

∆ζ

2

)2
 ≈

≈ e

2πε0ε
∇ ln

(√
ξ2 + ζ2

)
·∆ =

e

2πε0ε

ξ∆ξ + ζ∆ζ

ξ2 + ζ2
, (5.8)

where the assumption |∆| �
√
ξ2 + ζ2 has been made. Recalling that ξ and ζ can be expressed using a

single complex plane coordinate η = ξ+i ζ and employing the conformal transformation w(η) = x+i z
prescribed by Equation (5.6), one obtains

Vdip(ξ, ζ) =
e

2πε0ε

ξ∆ξ + ζ∆ζ

ξ2 + ζ2
=

e

2πε0ε

[(
η + η∗

ηη∗

)
∆ξ +

(
η − η∗

i ηη∗

)
∆ζ

]
=

=
e

2πε0ε

[(
1

η
+

1

η∗

)
∆ξ +

(
1

i η
− 1

i η∗

)
∆ζ

]
=

e

2πε0εg2

[
(w + w∗) ∆ξ + (w − w∗)

∆ζ

i

]
=

=
e

2πε0εg2
(x∆ξ + z∆ζ) = V (x, z) (5.9)

Clearly, the field of the line dipole corresponds after the transformation to a uniform electric field E
with a polarization in the direction of the original dipole

E(x, z) = −∇V (x, z) = − e

2πε0εg2
∆. (5.10)

Having the relation linking the strength of the dipole p = e∆ to the intensity of the uniform electric
field E in the transformed space, we have everything prepared for the calculation of the distribution
of the potential V (ξ, ζ) within the multilayer structure in the presence of an electric line dipole. The
procedure for solving problems with a planar geometry resides in decomposing the potentials in the
individual regions into their Fourier spectra

V (ξ, ζ) =

∞∫
−∞

dq

2π
eiqξ V (q, ζ) (5.11)

and then demanding that each Fourier component V (q, ζ) satisfies the customary boundary conditions
at the interfaces between the different media.

First let us consider a region without external charges, in which the Poisson’s equation for the
electrostatic potential reduces to the homogenous Laplace’s equation

∇2V (ξ, ζ) = ∇2

∞∫
−∞

dq

2π
eiqξ V (q, ζ) =

∞∫
−∞

dq

2π
eiqξ

[
−q2V (q, ζ) +

∂2

∂ζ2
V (q, ζ)

]
= 0. (5.12)

The above equation is fulfilled only if the term in the square brackets is identically equal to zero for
all the wavevectors q. The resulting equation for the Fourier components V (q, ζ) is then standardly
solved by assuming an exponential dependence of the potential on the spatial coordinate ζ

V (q, ζ) = V (q) eλζ ⇒ −q2V (q) eλζ + λ2eλζ = 0 ⇒ λ = ±|q|.

Evidently, there exist two solutions for the potential V (q, ζ) corresponding to λ = ±|q| and the
general solution is given by their linear combination

V (q, ζ) = A(q) e|q|ζ +B(q) e−|q|ζ , (5.13)
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where A(q), B(q) are arbitrary coefficients.
The procedure for obtaining the general solution for the inhomogenous Poisson’s equation is con-

siderably less straightforward. The starting point is again the decomposition of both the potential
V (ξ, ζ) and the external charge density ρext(ξ, ζ) into their Fourier spectra

∇2

∞∫
−∞

dq

2π
eiqξ V (q, ζ) = −

∞∫
−∞

dq

2π
eiqξ ρext(q, ζ)

ε0ε
, (5.14)

∞∫
−∞

dq

2π
eiqξ

[
−q2V (q, ζ) +

∂2

∂ζ2
V (q, ζ) +

ρext(q, ζ)

ε0ε

]
= 0. (5.15)

which is satisfied only if the expression in the square brackets is equal to zero. It will prove itself
useful to rewrite the external charge density by means of the Dirac distribution function δ(ζ)

ρext(q, ζ) =

∞∫
−∞

dζ ′ δ
(
ζ − ζ ′

)
ρext

(
q, ζ ′

)
. (5.16)

The next step is to express V (q, ζ) in terms of its Fourier components with respect to the coordinate ζ

(
−q2 +

∂2

∂ζ2

) ∞∫
−∞

dq

2π
eipζ V (q, p) =

∞∫
−∞

dζ ′ δ
(
ζ − ζ ′

) ρext(q, ζ
′)

ε0ε
(5.17)

−
∞∫
−∞

dp

2π
eipζ

(
q2 + p2

)
V (q, p) =

∞∫
−∞

dζ ′ δ
(
ζ − ζ ′

) ρext(q, ζ
′)

ε0ε
. (5.18)

Recalling that

δ
(
ζ − ζ ′

)
=

∞∫
−∞

dp

2π
eip(ζ−ζ′), (5.19)

the preceding equation becomes

∞∫
−∞

dp

2π
eipζ

(q2 + p2
)
V (q, p)−

∞∫
−∞

dζ ′ e−ipζ′ ρext(q, ζ
′)

ε0ε

 = 0. (5.20)

Once again, the equation is fulfilled only if the expression in the square brackets is identically equal
to zero for each p, hence

V (q, p) =

∞∫
−∞

dζ ′ e−ipζ′ ρext(q, ζ
′)

ε0ε (q2 + p2)
. (5.21)

Eventually, the Fourier components of the electrostatical potential V (q, ζ) are acquired by the
inverse Fourier transform

V (q, ζ) =

∞∫
−∞

dp

2π
eipζ

∞∫
−∞

dζ ′ e−ipζ′ ρext(q, ζ
′)

ε0ε (q2 + p2)
=

∞∫
−∞

dζ ′
ρext(q, ζ

′)

2πε0ε

∞∫
−∞

dp
eip(ζ−ζ′)

q2 + p2
. (5.22)
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The value of the resulting integral over p can be found in tables (Gradshteyn [14], p. 342)

∞∫
−∞

dp
eip(ζ−ζ′)

q2 + p2
=

π

|q|
e−|q| |ζ−ζ

′|. (5.23)

Inserting this expression into the previous equation, one finally obtains the desired distribution of the
electrostatic potential in the presence of an external charge density

V (q, ζ) =

∞∫
−∞

dζ ′
ρext(q, ζ

′)

2 |q| ε0ε
e−|q| |ζ−ζ

′|. (5.24)

At this point, it might be beneficial to summarize the results of the above calculations and outline
the path we shall further follow. Utilizing the aparatus of the Fourier analysis, general expressions for
the electrostatic potential in regions with a planar geometry have been derived. Both the homogenous
solution (Eq. (5.13) ) and the solution in the presence of external charges (Eq. (5.24) ) have been
presented. All that now remains to do is to calculate the Fourier components of the potential of an
electric line dipole by means of the formula given by Equation (5.24) and then find the solution for
the multilayer structure depicted in Figure 5.2 (b) by applying the customary boundary conditions at
the interfaces between the different regions.

As mentioned earlier, the charge density of a an electric line dipole corresponds to two line charges
of the same magnitude, but the oppposite polarity mutually shifted by a small vector ∆ = (∆ξ,∆ζ).
In terms of the Dirac delta functions

ρext(ξ, ζ) = e δ

(
ξ −

∆ξ

2

)
δ

(
ζ −

∆ζ

2

)
− e δ

(
ξ +

∆ξ

2

)
δ

(
ζ +

∆ζ

2

)
, (5.25)

where the center of the dipole is assumed to be at the origin of the coordinate system. The Fourier
components are easily obtained through the Fourier transform with respect to ξ

ρext(q, ζ) =

∞∫
−∞

dξ e−iqξ ρext(ξ, ζ) = e

[
e−iq

∆ξ
2 δ

(
ζ −

∆ζ

2

)
− eiq

∆ξ
2 δ

(
ζ +

∆ζ

2

)]
. (5.26)

Employing the formula given by Equation (5.24), the potential of the electric line dipole Vdip(q, ζ)
in terms of its Fourier components is acquired

Vdip(q, ζ) =

∞∫
−∞

dζ ′
ρext(q, ζ

′)

2 |q| ε0ε
e−|q| |ζ−ζ

′| =
e

2 |q| ε0ε

[
e−iq

∆ξ
2 e
−|q|

∣∣∣ζ−∆ζ
2

∣∣∣ − eiq
∆ξ
2 e
−|q|

∣∣∣ζ+ ∆ζ
2

∣∣∣]
(5.27)

Although there is no particular reason for not using the above expression for further calculations,
we shall approximate it with a more lucid and compact form by replacing the exponential factors with
their Taylor’s expansions. Assuming both q∆ξ � 1, q∆ζ � 1 and ∆ξ � ξ, ∆ζ � ζ, the previous
equation becomes

Vdip(q, ζ) ≈ e e−|q| |ζ|

2 |q| ε0ε

[(
1− iq

∆ξ

2

)(
1 + sgn(ζ) |q|

∆ζ

2

)
−
(

1 + iq
∆ξ

2

)(
1− sgn(ζ) |q|

∆ζ

2

)]
=

=
e e−|q| |ζ|

2 |q| ε0ε
[−iq∆ξ + |q|∆ζ sgn(ζ) ] , (5.28)
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where sgn(ζ) denotes the signum function defined as

sgn(ζ) =

{
−1 if ζ < 0

1 if ζ ≥ 0
. (5.29)

The fact that Equation (5.28) truly represents the correct Fourier spectrum of the potential of an
electric line dipole can be verified using the inverse Fourier transform

Vdip(ξ, ζ) =

∞∫
−∞

dq

2π
eiqξ Vdip(q, ζ) =

∞∫
−∞

dq

2π

[
cos(qξ)︸ ︷︷ ︸

even

+ i sin(qξ)︸ ︷︷ ︸
odd

] e e−|q| |ζ|

2 |q| ε0ε︸ ︷︷ ︸
even

[
− i q∆ξ︸ ︷︷ ︸

odd

+ |q|∆ζ sgn(ζ)︸ ︷︷ ︸
even

]
.

(5.30)
Apparently, only those terms in the integrand, which are even in q, shall give a nonzero value after
the integration, hence

Vdip(ξ, ζ) =

∞∫
0

dq
e e−q |ζ|

4πε0ε
[2 sin(qξ) ∆ξ + 2 cos(qξ) ∆ζ sgn(ζ)] . (5.31)

The values of the resulting integrals over q can be found in tables (Gradshteyn [14], p. 486)

∞∫
0

dq e−q|ζ| sin(qξ) =
ξ

ξ2 + ζ2
,

∞∫
0

dq e−q|ζ| cos(qξ) =
|ζ|

ξ2 + ζ2
. (5.32)

Finally, inserting these expressions into the previous equation and recalling that |ζ| sgn(ζ) = ζ, the
potential from Equation (5.8) is recovered

Vdip(ξ, ζ) =
e

2πε0ε

ξ∆ξ + ζ∆ζ

ξ2 + ζ2
. (5.33)

The next step resides in matching the solutions in individual regions by applying the customary
boundary conditions at the respective interfaces. As illustrated in Figure 5.3, the multilayer structure
consists of three regions, each characterized by a possibly different dielectric function εi. The dipolar
source p = e∆ is situated at the origin of the coordinate system ξ, ζ and the bottom interface
practically coincides with the ξ-axis.

Graphende
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ε1
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b→0

Graphene
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II

III

a

Figure 5.3: Schematic drawing of the considered multilayer structure. The space is divided into three
distinct regions characterized by frequency-dependent dielectric functions εi, where i = 1, 2, 3. The
bottom interface containing the graphene sheet is set to ζ = 0 and the dipolar source p is positioned
at the origin of the coordinate system.
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First let us write down the solutions for the electrostatic potential in the individual regions

Region I: V I
tot(ξ, ζ) =

∞∫
−∞

dq

2π
eiqξ

[
A1(q) e|q|ζ +B1(q) e−|q|ζ

]
, (5.34)

Region II: V II
ind(ξ, ζ) =

∞∫
−∞

dq

2π
eiqξ

[
A2(q) e|q|ζ +B2(q) e−|q|ζ

]
, (5.35)

V II
ext(ξ, ζ) =

∞∫
−∞

dq

2π
eiqξ e e−|q| |ζ|

2 |q| ε0ε
[−iq∆ξ + |q|∆ζ sgn(ζ) ] =

∞∫
−∞

dq

2π
eiqξA0(q) e−|q| |ζ|,

(5.36)

Region III: V III
tot (ξ, ζ) =

∞∫
−∞

dq

2π
eiqξ

[
A3(q) e|q|ζ +B3(q) e−|q|ζ

]
, (5.37)

where the total potential Vtot is the sum of the induced and external potentials Vtot = Vind + Vext.
Above all, we require that the electromagnetic fields should reach finite values, when one approaches

infinity ζ →±∞, thus the coefficients B1(q) and A3(q) has to be equal to zero. Furthermore, the
electrostatic potential should be continuous when crossing the boundaries of the regions. The last
condition prescribes that the discontinuity in the normal components of the electric displacement
ε0εiE

⊥
i at the interfaces has to be equal to the accumulated surface charge. Combining all these

requirements, one obtains a system of four linear equations for the four unknown coefficients A1(q),
B2(q), A2(q) and B3(q)

ζ = a : A1e−|q|a = A0e−|q|a +A2e−|q|a +B2e|q|a, (5.38)

−A1ε1e−|q|b = −A0ε2e−|q|b −A2ε2e−|q|b +B2ε2e|q|b, (5.39)

ζ = −b : B3e−|q|b = A0e−|q|b +A2e|q|b +B2e−|q|b, (5.40)

B3ε3e−|q|b − σS(q)

ε0 |q|
= A0ε2e−|q|b −A2ε2e|q|b +B2ε2e−|q|b, (5.41)

Notice that graphene enters the system through the Fourier components of the surface charge σS(q)
induced at the lower interface of the multilayer structure

σS(ξ) = −∇ ·P = −ε0χ
τ
2D(ω)∇ ·E‖(ξ,−b) = i

σ(ω)

ω
∇ ·∇‖

∞∫
−∞

dq

2π
eiqξ V III

tot (q, ζ)

∣∣∣∣
ζ=−b

=

= i
σ(ω)

ω
∇ ·∇‖

∞∫
−∞

dq

2π
eiqξ B3(q) e|q|ζ

∣∣∣∣
ζ=−b

=

∞∫
−∞

dq

2π
eiqξ

[
−i
q2σ(ω)

ω
B3(q) e−|q|b

]
=

=

∞∫
−∞

dq

2π
eiqξ σS(q) , (5.42)

where the label ‖ emphasizes that only the vector component parallel to the interface is taken into
account. The dynamical susceptibility χτ2D(ω) and the conductivity σ(ω) of graphene have been
introduced in Chapter 1.
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Inserting the above expression for the induced surface charge density into Equation (5.41), the
system of the four linear equations can be after few rearrangments written in the following matrix
form 

1 −1 e2|q|a 0
ε1
ε2

−1 e2|q|a 0

0 −e2|q|b −1 1

0 e2|q|b −1 ε3
ε2

+ i |q|σ(ω)
ε0ε2ω




A1

B2

A2

B3

 =


A0

A0

A0

A0

 . (5.43)

Such matrix equation can be solved either by hand or with use of a suitable mathematical software.
Taking the b→ 0 limit and adopting the following notation ε1

ε2
= ε, ε3

ε2
+ i |q|σ(ω)

ε0ε2ω
= δ, e−2|q|a = γ, the

coefficients A1(q), B2(q), A2(q), B3(q) are found to be

A1(q) =
4A0(q)

(1 + ε) (1 + δ)− γ (1− ε) (1− δ)
, (5.44)

A2(q) =
A0(q) (1− δ) [(1 + ε+ γ (1− ε))]
(1 + ε) (1 + δ)− γ (1− ε) (1− δ)

, (5.45)

B2(q) =
2A0(q) γ (1− ε)

(1 + ε) (1 + δ)− γ (1− ε) (1− δ)
, (5.46)

B3(q) =
2A0(q) [(1 + ε+ γ (1− ε))]

(1 + ε) (1 + δ)− γ (1− ε) (1− δ)
. (5.47)

Nothing hinders us now from inserting the above coefficients back into the expressions for the
electrostatic potentials given by Equations (5.34)-(5.37). Evaluating numerically the integrals over
q and employing the conformal transformation prescribed by Equation (5.6), the distribution of the
electrostatic potential, resp. the electric field within the metallic cylinder and its vicinity is recovered.

Figure 5.4 shows the profile of the electric field intensity in the neighbourhood of a golden cylinder
with a radius R = 10 nm placed on the top of a dielectric substrate covered by a single graphene sheet.
The whole structure is illuminated by a plane wave propagating in the −z direction and the graphene
sheet is doped enough to sustain TM surface plasmon modes. Notice that the scale is logarithmic,
which would suggest that one can achieve a more than thousandfold field enhancement in graphene
using only a small golden cylinder. Evidently, such effect is quite suspicious and requires a detailed
investigation.

It turns out that even though the interface between the substrate and the superstrate seems to be
perfectly planar, the source (uniform electric field) percieves it as a cylinder with a radius approaching
infinity. Thus the above solution does not describe light scattering from a single cylinder lying on a
substrate, but rather from two touching cylinders (although with diametrically different diameters).
Since the larger cylinder is coated by doped graphene, it sustains localized surface plasmons on its
own. The plasmons from both the cylinders tend to converge at their touching point, leading to the
light-harvesting phenomenon observed in Figure 5.4 and earlier proposed by Aubry et al. [5].

Importantly, one can get rid of such (for our purposes intrusive) effect by neglecting the direct
scattering of the incident plane wave from the larger cylinder and retaining only those terms corre-
sponding to the mutual interaction with the smaller metallic cylinder. The procedure developed by
the author of this thesis is based on the concept one can encounter while dealing with waveguides and
interferometers.

When a plane wave is propagating inside a thin dielectric slab with parallel planar interfaces,
it repetitively undergoes reflections on those interfaces and the total field inside, resp. outside the
slab is then calculated as the superposition of all those reflected, resp. transmitted waves. One can
straightforwardly extend this concept to the present electrostatic case of a dipolar source trapped
inside a multilayer structure. We have already decomposed the potential of the line dipole into plane
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Figure 5.4: Map of the intensity of the electric field in the vicinity of an infinitely long golden cylinder
with a radius R = 10 nm lying on the top of a dielectric substrate covered by a graphene sheet. The
whole structure is illuminated by an electromagnetic plane wave (λ = 850 nm) propagating in the −z
direction. The permitivity of the substrate was set to ε3 = 4, the superstrate is assumed to be air and
the graphene sheet is electrostatically doped to EF = 1 eV with the relaxation time τ = 10−13 s.

waves (notice that in the electrostatic case they are evanescent), all that now remains to do is to
determine the reflection rp and transmission tp coefficients at the individual interfaces. Apparently,
one can obtain them easily from the above set of boundary conditions (Equations (5.38)-(5.41) ) by
taking the b→−∞ and the a→∞ limits

r21
p =

ε2 − ε1

ε2 + ε1
, t21

p =
2ε2

ε2 + ε1
, (5.48)

r23
p =

ε2 − ε3 − i |q|σ(ω)
ε0ω

ε2 + ε3 + i |q|σ (ω)
ε0ω

, t23
p =

2ε2

ε2 + ε3 + i |q|σ(ω)
ε0ω

, (5.49)

where the superscript indicates with which interface is the particular coefficient associated.
The last step resides in summing the amplitudes of all the reflected and transmitted waves using

the above coefficients rp and tp, which also appears to be the key moment of the whole derivation. If
all the reflections are taken into account, one obtains the same expressions for the coefficients A1(q),
A2(q) etc. as before, but if all the waves created as the result of the direct reflection of the source
wave from the lower interface are omitted and retained only those reflected for the first time at the
upper interface, one shall acquire coefficients, which in the end describe the light scattering from a
single metallic cylinder placed on the top of a planar substrate. In mathematical terms
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V II
tot(q, ζ) = A0 e−|q|ζ +A0r

21
p e−|q|ae|q|(ζ−a) +A0r

21
p r

23
p e−2|q|ae−|q|ζ +A0

(
r21

p

)2
r23

p e−3|q|ae|q|(ζ−a) + . . . =

= A0 e−|q|ζ +
∞∑
n=0

(
r21

p r
23
p e−2|q|a

)n
A0r

21
p r

23
p e−|q|ζ +

∞∑
n=0

(
r21

p r
23
p e−2|q|a

)n
A0r

21
p e−|q|ζ =

= A0 e−|q|ζ +A0

r21
p r

23
p e−2|q|a

1− r21
p r

23
p e−2|q|a︸ ︷︷ ︸

A2(q)

e−|q|ζ +A0

r21
p e−2|q|a

1− r21
p r

23
p e−2|q|a︸ ︷︷ ︸

B2(q)

e|q|ζ , (5.50)

where the lower interface was from the start set to ζ = 0. Replacing r21
p and r23

p by their full forms,
one finally obtains the desired corrected expressions for the coefficients A2 (q) and B2 (q)

A2(q) =
A0(q) γ (1− ε) (1− δ)

(1 + ε) (1 + δ)− γ (1− ε) (1− δ)
, (5.51)

B2(q) =
A0(q) γ (1− ε) (1 + δ)

(1 + ε) (1 + δ)− γ (1− ε) (1− δ)
, (5.52)

Let us now repeat the above procedure for the waves transmitted through the interfaces. Abiding
by the above decision to omit the waves originating in the direct scattering from the substrate, the
potentials in the regions I,III become

V I
tot(q, ζ) = A0t

21
p e−|q|ae−|q|(ζ−a) +A0t

21
p r

21
p r

23
p e−3|q|ae−|q|(ζ−a) + . . . =

=

∞∑
n=0

(
r21

p r
23
p e−2|q|a

)n
A0t

21
p e−|q|ζ = A0

t21
p

1− r21
p r

23
p e−2|q|a︸ ︷︷ ︸

A1(q)

e−|q|ζ , (5.53)

V III
tot (q, ζ) = A0r

21
p t

23
p e−2|q|ae|q|ζ +A0

(
r21

p

)2
r23

p t
23
p e−4|q|ae|q|ζ + . . . =

=

∞∑
n=0

(
r21

p r
23
p e−2|q|a

)n
A0r

21
p t

23
p e−2|q|ae|q|ζ = A0

r21
p t

23
p e−2|q|a

1− r21
p r

23
p e−2|q|a︸ ︷︷ ︸

B3(q)

e|q|ζ , (5.54)

Substituing for r21
p , r23

p , t21
p , t23

p as before, one recovers the two remaining coefficients A1 (q) and B3 (q)

A1(q) =
2A0(q) (1 + δ)

(1 + ε) (1 + δ)− γ (1− ε) (1− δ)
, (5.55)

B3(q) =
2A0(q) γ (1− ε)

(1 + ε) (1 + δ)− γ (1− ε) (1− δ)
, (5.56)

The field profile for the same structure as in Figure 5.4, but calculated with use of the above
corrected coefficients, is shown in Figure 5.5. Evidently, the disturbing field enhancement in graphene
has been successfully supressed in exchange for an apparent discontinuity in the tangential compo-
nent of the electric field at the superstrate-substrate interface arising from the omission of the direct
scattering from the substrate.

It turns out that one can easily remedy this inconsistency by adding to the potential in the region
III an extra term At

0(q) e|q|ζ corresponding to an ordinarily transmitted plane wave. Furthermore,
in the absence of the metallic cylinder, the amplitudes and the polarization directions of the fields
should reduce to those prescribed by the Fresnel coefficients rp and tp introduced in Section 1.7. This

53



5.3. POTENTIALS

Au

ε3 = 4

EF = 1 eV

Air

E0

λ = 850 nm

Figure 5.5: Map of the intensity of the electric field in the vicinity of an infinitely long golden
cylinder with a radius R = 10 nm lying on the top of a dielectric substrate covered by a graphene
sheet. The distribution of the potential was calculated using the corrected coefficients given by Equa-
tions (5.51), (5.52), (5.55) and (5.56), otherwise the material and illumination parameters were the same
as in Figure 5.4. Obviously, the electric field does not satisfy the customary boundary conditions at
the superstrate-substrate interface.

is ensured by adjusting properly the amplitude and the orientation of the dipolar source p. Adopting
the above modifications, the coefficients A1(q), B2(q), A2(q), B3(q) eventually become

A1(q) =
2A0(q) (1 + δ)

(1 + ε) (1 + δ)− γ (1− ε) (1− δ)
, (5.57)

A2(q) =
A0(q) γ (1− ε) (1− δ)

(1 + ε) (1 + δ)− γ (1− ε) (1− δ)
, (5.58)

B2(q) =
A0(q) γ (1− ε) (1 + δ)

(1 + ε) (1 + δ)− γ (1− ε) (1− δ)
, (5.59)

B3(q) = At
0(q) +

2A0(q) γ (1− ε)
(1 + ε) (1 + δ)− γ (1− ε) (1− δ)

, (5.60)

A0(q) =
e

2ε0ε

[
−i (1 + rp)

q

|q|
∆ξ + sgn(ζ) (1− rp) ∆ζ

]
=

= πg2E0 [−i (1 + rp) sgn(q) cos θi + (1− rp) sgn(ζ) sin θi] , (5.61)

At
0(q) =

e

2ε0ε
tp

[
−i

q

|q|

√
∆2
ξ + ∆2

ζ

(
1− ε2

ε3

)
+ sgn(ζ) ∆ζ

√
ε2

ε3

]
=

= πg2E0tp [−i sgn(q) cos θt + sgn(ζ) sin θt] , (5.62)

where E0 = e
2πε0εg2

√
∆2
ξ + ∆2

ζ stands for the amplitude of the incident electric field and θi, resp.

θt = arcsin
(√

ε2
ε3

sin θi

)
denotes the angle formed by the wavevector of the incident, resp. ordinarily

refracted wave with the normal vector of the superstrate-substrate interface.
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Figure 5.6 proves that the proposed modifications indeed resolve the discussed discontinuity in
the potential. Furthermore, the amplitude and the polarization of the external fields should now
correspond to those prescribed by the Fresnel reflection and transmission coefficients. In order to
support this assertion, we present in Figure 5.7 the distribution of the electric field within the same
structure, except this time illuminated under a non-zero incident angle.

Au

ε3 = 4

EF = 1 eV

Air

E0

λ = 850 nm

Figure 5.6: Map of the intensity of the electric field in the vicinity of an infinitely long golden cylinder
with a radius R = 10 nm lying on the top of a dielectric substrate covered by a graphene sheet. The
distribution of the potential was calculated using the modified coefficients given by Equations (5.57)-
(5.62), otherwise the material and illumination parameters were the same as in Figure 5.4. Apparently,
the discontinuity in the potential has been successfully removed.

Having the tool allowing one to calculate the distribution of the electric field within the hybrid
structure consisting of a metallic cylinder lying on the top of a graphene sheet, we can turn our
attention to what happens and how the interaction between those two objects changes, when the
Fermi energy in graphene is varied through the electrostatic gating. First of all one needs a quantity,
which would reflect the changes in the response of the metallic cylinder. The amplitude and the phase
of the dipole moment induced within the cylinder appear to be a natural choice, since they can be,
besides other things, further employed to calculate the scattering and extinction efficiencies of the
plasmonic antenna.

5.4. Dyadic Green’s functions

The frequency-dependent electrodynamic response of a plasmonic antenna basically prescribes,
how much the antenna will be polarized when exposed to external electromagnetic radiation of a given
frequency ω. The state of the polarization within the antenna is characterized by the polarization
vector P(r, ω) defined as the induced dipole moment per a unit volume and within the local linear
response theory it is directly proportional to the electric field at the same position r

P(r, ω) = ε0 (ε(ω)− 1) E(r, ω) , (5.63)
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Figure 5.7: Map of the intensity of the electric field in the vicinity of an infinitely long golden cylinder
with a radius R = 10 nm lying on the top of a dielectric substrate covered by a graphene sheet. The
illumination was tilted by 30 degrees, otherwise the parameters of the calculation were the same as in
Figure 5.4.

where ε(ω) is the frequency dependent dielectric function of the material constituing the antenna. To
some extent, one can describe the response of the antenna by the total dipole moment

p(rT, ω) =

∫
Ω

d3r P(r, ω) , (5.64)

where the integration spans the whole volume of the antenna Ω and where rT denotes the dipole’s
”center of the mass” calculated as

rT =

∫
Ω

d3r |P(r, ω)| r∫
Ω

d3r |P(r, ω)|
. (5.65)

Apparently, by characterizing the antenna with a single dipole, one neglects the small scale vari-
ations in the polarization state of the antenna, but that should not play a significant role as long as
the size of the antenna is much smaller than the wavelength of the incident radiation.

In the spirit of the quasistatic approximation, we shall assume that the fields calculated by the
transformation optics method vary harmonically in time and so does the dipole moment induced
within the antenna. An oscillating dipole emits energy in the form of electromagnetic waves with a
radiation pattern we are now going to calculate.

The starting point are the Maxwell’s equations for the six unknown components of the electric and
magnetic fields E(r, ω) and (r, ω). Usually, the problem of solving them is simplified by the transition
to the scalar and vector potentials V (r, ω) and A(r, ω), which reduces the number of the equations
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and unknowns in exchange for an increase in their differential order. In homogenous non-magnetic
media, the scalar and vector potentials are required to satisfy the following equations

∇2V (r, ω) + ε(ω)
ω2

c2
V (r, ω) = −ρ(r, ω)

ε0ε(ω)
, (5.66)

∇2A(r, ω) + ε(ω)
ω2

c2
A(r, ω) = −µ0 j(r, ω) , (5.67)

where ε(ω) denotes the dielectric function of the medium, ρ and j stand for the external charge
and current densities and µ0 is the vacuum susceptibility. Notice that the Lorenz-Lorentz gauge
∇ ·A = iωε0µ0εV has been implicitly assumed. Importantly, the electric and magnetic fields can be
calculated from the potentials through

E(r, ω) = −∇V (r, ω) + iωA(r, ω) , B(r, ω) = ∇×A(r, ω) . (5.68)

The general solutions for the potentials satisfying Equations (5.67) and (5.66) can be written in the
following integral form

V (r, ω) =

∞∫
−∞

d3r′ G0

(
r, r′, ω

) ρ(r′, ω)

ε0ε(ω)
, (5.69)

A(r, ω) = µ0

∞∫
−∞

d3r′ G0

(
r, r′, ω

)
j
(
r′, ω

)
, (5.70)

where G0(r, r′, ω) is a yet to be specified Green’s function describing the response of the system to a
point source positioned at r′

∇2G0

(
r, r′, ω

)
+ ε(ω)

ω2

c2
G0

(
r, r′, ω

)
= −δ

(
r− r′

)
. (5.71)

In the present case of a single oscillating dipole, the current density is readily calculated as the
time derivative of the induced dipole moment j(r′, ω) = −iω p(ω) δ(r− rT), but one can not claim
the same concerning the charge density. Fortunately, the electric and magnetic fields can be expressed
exclusively in terms of the current density by exploiting the above gauge condition, which links together
the scalar and the vector potential

E(r, ω) =

(
iω + i

∇∇·
ωε0µ0ε(ω)

)
A(r, ω) = iω

(
1 +

1

k2
∇∇·

) ∞∫
−∞

d3r′ G0

(
r, r′, ω

)
jext

(
r′, ω

)
, (5.72)

where the wavevector k =
√
ε(ω) ωc has been introduced. Recalling that the operator ∇ acts only

on functions depending on the unprimed coordinates and assuming one can reverse the order of
differentiation and integration, the above equation becomes

E(r, ω) = iωµ0

∞∫
−∞

d3r′
{
G0

(
r, r′, ω

)
j
(
r′, ω

)
+

1

k2
∇
[
∇G0

(
r, r′, ω

)
· j
(
r′, ω

)]}
=

= iωµ0

∞∫
−∞

d3r′
[
G0 j +

1

k2

(
nx
∂2G0

∂x2
+ ny

∂2G0

∂x∂y
+ nz

∂2G0

∂x∂z

)
jx + . . .

]
, (5.73)
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where nx, ny and nz are the unit vectors of the cartesian coordinate system and where the arguments
of the functions have been dropped in exchange for a more compact notation. The dots indicate that
the terms containing jy and jz are analogous to that one associated with jx. The above equation can
be rewritten into a more lucid matrix form

E(r, ω) = iωµ0

∞∫
−∞

d3r′
1

k2

 k2 + ∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂x∂y k2 + ∂2

∂y2
∂2

∂y∂z
∂2

∂x∂z
∂2

∂y∂z k2 + ∂2

∂z2

G0

(
r, r′, ω

) jx(r′, ω)
jy(r

′, ω)
jz(r

′, ω)

 =

= iωµ0

∞∫
−∞

d3r′
↔
G
(
r, r′, ω

)
j
(
r′, ω

)
. (5.74)

The tensor
↔
G
(
r, r′, ω

)
is usually called as the dyadic Green’s function and having a known distribution

of currents, it allows one to calculate the electric field due to those currents at all points of the space.
In a homogenous two-dimensional space, the Green’s function G0(r, r′, ω) is represented by the

zeroth order Hankel function of the first kind H
(1)
0 [8]

G0

(
r, r′, ω

)
=

i

4
H

(1)
0

(
k
∣∣r− r′

∣∣) =
i

4π

∞∫
−∞

dkx
eikx(x−x′)+ikz |z−z′|

kz
, (5.75)

where kx and kz =
√
k2 − k2

x are the components of the wavevector k.
The above integral representation shall become handy once we start to consider the present ge-

ometry containing a superstrate-substrate interface, which disturbes the homogenity of the space and
forces us to find a modified expression for the Green’s function. Interestingly, after inserting the pre-
scription for its ”homogenous” version into Equation (5.74), the electric field becomes a superposition
of many propagating plane waves

E(r, ω) = iωµ0

∞∫
−∞

d2r′
∞∫
−∞

dkx
i

4πk2

↔
M0(kx, ω)

eikx(x−x′)+ikz |z−z′|

kz
j
(
x′, z′, ω

)
,

↔
M0(kx, ω) =

 k2
z 0 −kxkz sgn(z−z′)
0 k2 0

−kxkz sgn(z−z′) 0 k2
x

 . (5.76)

One can account for the presence of a planar interface by introducing two extra terms to the present
homogenous dyadic Green’s function. The first one should capture reflections of the emitted radiation
from the interface, whereas the latter is supposed to characterize the radiation transmitted through.
The integral form enables straightforward implementation, since one only needs to multiply the am-
plitudes of the plane waves by the Fresnel coefficients rp and tp given by Equations (1.100) and (1.99)
and to adjust properly the polarization of the reflected and transmitted waves. Adopting the above
suggestions, the dyadic Green’s function in the presence of a planar interface set at z = 0 reads
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z > 0 :
↔
G
(
r, r′, ω

)
=

i

4πk2
2

[
↔
M0(kx)

eikx(x−x′)+ik2z |z−z′|

k2z
+
↔
Mref(kx) rp(kx)

eikx(x−x′)+ik2z(z+z′)

k2z

]
,

↔
M0(kx) =

(
k2

2z −kxk2z sgn(z−z′)
−kxk2z sgn(z−z′) k2

x

)
,

↔
Mref(kx, ω) =

(
k2

2z kxk2z

−kxk2z −k2
x

)
, (5.77)

z < 0 :
↔
G
(
r, r′, ω

)
=

ik3

4πk2

↔
Mtr(kx) tp(kx)

eikx(x−x′)+ik2zz′−ik3zz

k2z
,

↔
Mtr(kx) =

(
k2zk3z kxk3z

kxk2z k2
x

)
, (5.78)

where the indices indicate, whether one should take the dielectric function of the superstrate ε2 or the
substrate ε3. Notice that for the present two-dimensional geometry, one can drop the matrix elements
associated with the y-coordinate.

The integrals contained in the above equations do not have generally a simple analytic solution
and they have to be calculated numerically, which might be computationally demanding. Fortunately,
we are interested mainly in the far-field distribution of the electromagnetic fields, which permits us to
use their approximate asymptotic representation. We successfully employed the method of stationary
phase (Mandel [21], p. 128), which is applicable to certian integrals with rapidly oscillating arguments.
Since the actual calculation of the integrals is rather a mathematical problem, we present here only the
final expressions, referring the reader for the detailed derivation to Appendix B. Hence, the scattered
electric field far away from the sources can be calculated using the following approximate form of the
dyadic Green’s function

z > 0 :
↔
G

FF(
r, r′, ω

)
=

i

4π

√
2π

k2r
eik2r e−iπ/4 e−ik2sxx′

[
e−ik2szz′

↔
M

FF

0 (sx) + rp(sxk2) eik2szz′
↔
M

FF

ref (sx)

]
,

↔
M

FF

0 (sx) =

(
s2
z −sxsz

−sxsz s2
x

)
,

↔
M

FF

ref (sx) =

(
s2
z sxsz

−sxsz −s2
x

)
,

z < 0 :
↔
G

FF(
r, r′, ω

)
=

ik3

4πk2

√
2π

k3r
eik3r e−iπ/4 tp(sxk3) e−ik3sxx′ ei

√
k2

2−s2xk2
3z

′ ↔
M

FF

tr (sx) ,

↔
M

FF

tr (sx) =

 s2
z sxs

2
z

k3√
k2

2−s2xk2
3

sxsz s2
xsz

k3√
k2

2−s2xk2
3

 , (5.79)

where the upper index FF emphasizes the fact that we used the far-field approximation, r =
√
x2 + z2 �√

x′2 + z′2 denotes the radial distance from the origin and sx = x
r , sz =

√
1− s2

x determine the direc-
tion, in which the scattered radiation is measured. Interestingly, all the plane waves cancel each other
out except the one propagating exactly in the direction of the observer and the resulting wavefront
has the form of an outgoing cylindrical wave with the angular distribution modulated by the Fresnel
coefficients rp a tp.

The amount of energy scattered by the plasmonic antenna into a particular direction is determined
by the time-averaged Poynting vector (Bohren and Huffman [7], p. 23) defined as〈

S(sx, ω)
〉

=
1

2
Re {E(sx, ω)×H∗(sx, ω)} . (5.80)
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The far-field auxilliary magnetic field H = B
µ0

can be obtained in a similar manner as the electric
field or one can take advantage of the fact that far away from the origin, the cylindrical wave can be
locally regarded as a plane wave, thus the electric and magnetic fields should be perpendicular to each

other and their magnitudes related through |H| =
√
ε

µ0c
|E|. Exploiting these properties, the far-field

magnetic field reads

H(sx, ω) =

∞∫
−∞

d2r′
↔
G

FF

H

(
sx, r

′, ω
)
j
(
r′, ω

)
, (5.81)

z > 0 :
↔
G

FF

H

(
sx, r

′, ω
)

= ny
k2

4π

√
2π

k2r
eik2r e−iπ/4 e−ik2sxx′

[
e−ik2szz′

↔
N

FF

0 (sx) + rp(sxk2) eik2szz′
↔
N

FF

ref (sx)

]
,

↔
N

FF

0 (sx) =
(
−sz sx

)
,

↔
N

FF

ref (sx) =
(
−sz −sx

)
,

z < 0 :
↔
G

FF

H

(
sx, r

′, ω
)

=
ik2

3

4πk2

√
2π

k3r
eik3r e−iπ/4 tp(sxk3) e−ik3sxx′ ei

√
k2

2−s2xk2
3z

′ ↔
N

FF

tr (sx) ,

↔
N

FF

tr (sx) =
(
sz sxsz

k3√
k2

2−s2xk2
3

)
. (5.82)

In order to calculate the total power scattered Psca by a plasmonic antenna, one has to integrate the
Poynting vector over all the possible scattering directions. Analytical integration is probably out of the
question, since the Fresnel coefficients spoil the simple and integrable form of the ”homogenous” dyadic
Green’s function. The numerical approach resides in expressing the far-field electric and magnetic
fields at the boundary of a large imaginary circle (in 3D it would be a sphere), then constructing the
Poynting vector and eventually integrating it numerically over the whole circle

Psca(ω) =

∫
circle

dsx
〈
S(sx, ω)

〉
· n(sx) , (5.83)

where n(sx) is the outer normal of the circle.
In the following section, we shall discuss the scattering properties of hybrid plasmonic structures

in terms of the scattering efficiency, which is defined as the ratio of the scattered power Psca to the
geometrical cross-section G of the structure multiplied by the intensity of the incident electromagnetic
radiation I0 = 1

2ε0
√
ε2c|E0|2

Qsca(ω) =
Psca

I0G
. (5.84)

5.5. Results

Having the tools enabling us to characterize scattering properties of plasmonic structures, we shall
proceed with their application to the present case of a metallic cylinder lying on the top of a dielectric
substrate covered by a single sheet of electrostatically doped graphene. From the viewpoint of the
device proposed in Chapter 4, the most important characteristic is whether the spectral position of
the cylinder’s plasmonic resonance is being shifted as one varies the doping level in graphene through
the gating voltage.

To estimate the strength of the interaction between those two objects, series of calculations with
a varying doping level in graphene have been performed. The distribution of the electric field within
the cylinder has been used to calcalute the total induced dipole moment (Eq. (5.63) and (5.64) ).
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Subsequently, employing the above apparatus of the dyadic Green’s functions, the angular distributions
of the electric and magnetic fields far away from the plasmonic antenna have been calculated. Finally,
by constructing the Poynting vector and integrating it over all the possible scattering directions,
the scattering efficiency of the metallic cylinder, which also takes into account the influence of the
substrate, has been obtained.

Figure 5.8 shows the spectral dependence of the scattering efficiency Qsca as a function of the
graphene’s Fermi energy EF for a golden cylinder with a radius R = 30 nm. The permitivity of the
substrate has been set to ε3 = 4 and the polarization of the incident electric field is parallel with the
superstrate-substrate interface. The dotted curve is plotted to give the reader a better impression of
the shape of the plasmonic resonance. It would seem that the variation of the graphene’s doping level
has absolutely no effect on the resonance of the cylinder. That is quite a surprise, because one would
expect at least a slight broadening of the plasmonic peak for the low values of EF due to the increased
probability of photons and localized plasmons to decay directly into electron-hole pairs in graphene.

ε3 = 4

R = 30 nm

ε1 = εAu
E0

Figure 5.8: Spectral dependence of the scattering efficiency Qsca of a golden cylinder situated on
the top of a dielectric substrate covered by a graphene sheet as a function of the graphene’s Fermi
energy EF. The dotted line reveals in a more detail the shape of the resonance peak. The radius
of the cylinder and the permitivity of the substrate have been set to R = 30 nm and ε3 = 4. The
incident electric field is polarized parallelly to the superstrate-substrate interface and the relaxation
time associated with the scattering of electrons from impurities and phonons in graphene is assumed
to be τ = 10−13 s. Evidently, the changes in the Fermi energy do not affect at all the plasmonic
resonance of the golden cylinder.

The performance of the hypothetical device from Chapter 4 is based on the assumption that one
can use graphene to control the phase shift of the ocillating dipoles induced within the plasmonic
antennas. The spectral dependence of the scattering efficiency Qsca from Figure 5.8 clearly does not
support such hypothesis. Just to be sure, we plot in Figure 5.9 the phase shift Φ of the total induced
dipole moment with respect to the incident electric field as a function of both the wavelength and
the graphene’s Fermi energy. The absence of observable changes in the phase shift with the varying
doping level confirms the preceding findings.

The characteristic yellow colouring of gold is caused by its strong absorptivity in the blue part
of the visible spectrum, reflecting the existence of optical interband transitions at these frequencies.
They also strongly affect the spectral width of the plasmonic resonances falling within their proximity.
For these reasons another series of calculations has been performed, but this time using silver instead
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ε3 = 4

R = 30 nm

ε1 = εAu
E0

Figure 5.9: The phase shift Φ of the dipole moment p induced within the golden cylinder with respect
to the incident electric field E0 as a function of the wavelength λ and the graphene’s Fermi energy
EF. The parameters of the calculation are the same as in Figure 5.8.

of gold, since the onset of interband transitions in silver is shifted to the UV part of the spectrum.
Furthermore, the polarization of the incident plane wave has been tilted by 30 degrees in order to
increase the intensity of the electric field near the substrate and hence the mutual interaction with
the cylinder (the field enhancement is apparent from Figure 5.7).

The resulting spectral dependences of the scattering efficiency and the phase shift as a function of
the doping level in graphene are plotted in Figures 5.10 and 5.11. Even though both the spectral width
of the plasmonic resonance and the range of attainable phase shifts have been improved, there are no
indications that a single graphene sheet is capable of the control over the electrodynamic response of
ordinary plasmonic structures in the visible range of the spectrum.

Such unexpected results pose a question, whether the transformation optics method is indeed
a suitable technique for the investigation of the interaction between the plasmonic structures and
graphene. In order to confirm or refute such hypothesis, we performed similar calculations using a
different, fully numerical method, which does not neglect retardation effects and allows one to consider
more complex geometries.
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ε3 = 4

R = 30 nm

ε1 = εAg
E0

Figure 5.10: Spectral dependence of the scattering efficiency Qsca of a silver cylinder situated on the
top of a dielectric substrate covered by a graphene sheet as a function of the graphene’s Fermi energy
EF. The illumination is tilted by 30 degrees, otherwise the parameters of the calculation are the same
as in Figure 5.8.

ε3 = 4

R = 30 nm

ε1 = εAg
E0

Figure 5.11: The phase shift Φ of the dipole moment p induced within the silver cylinder with respect
to the incident electric field E0 as a function of the wavelength λ and the graphene’s Fermi energy
EF. The parameters of the calculation are the same as in Figure 5.10.
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6. Calculations based on the boundary element
method

From the variety of techniques suitable for light scattering simulations, we have chosen the boundary
element method (BEM), which should not be computationally demanding and which offers a good
control over the various parameters of the simulations. The core of this method resides in expressing the
solution to Maxwell’s equations in terms of surface integrals involving interface charges and currents,
which act as sources of the induced electromagnetic field. We shall present here only the outline of
the BEM, since it has already been nicely and comprehensibly described in the paper by Abajo and
Howie [10]. More attention will be dedicated to passages, where the formalism needs to be modified
in order to ensure its applicability also to problems with a 2D geometry.

6.1. Formalism

The starting point are the second order differential equations for the scalar and vector potentials
V and A presented in Chapter 5, except this time we shall account for the possibility that the
dielectric function ε might depend on the spatial coordinates, which corresponds to the situation of
a space formed by more than one medium and containing various inhomogenities. Recalling that
E = −∇V + iωA and B = ∇×A, the Maxwell’s equations can be combined to give

∇ · [ε(r) E(r, ω)] = ∇ε(r) ·E(r, ω) + ε(r)∇ ·E(r, ω) =
ρ (r, ω)

ε0
, (6.1)

−∇2V (r, ω) + iω∇ ·A(r, ω) =
ρ (r, ω)

ε0ε(r)
− ∇ε(r)

ε(r)
·E(r, ω) (6.2)

and

∇ [∇ ·A(r, ω)]−∇2A(r, ω) = µ0j(r, ω)− iωµ0ε0ε(r, ω) [−∇V (r, ω) + iωA] , (6.3)

where the media are implicitly assumed to be non-magnetic. Employing the Lorentz-Lorenz gauge
condition ∇ ·A = iωµ0ε0ε V and dropping the arguments of functions in exchange for a more compact
notation, the above equations reduce to

∇2V + ε
ω2

c2
V = − ρ

ε0ε
− εE ·∇

(
1

ε

)
(6.4)

and

iωµ0ε0 ∇(ε V )−∇2A = µ0j + ε
ω2

c2
A + iωµ0ε0ε V, (6.5)

∇2A + ε
ω2

c2
A = −µ0j + iωµ0ε0 V ∇ε. (6.6)

Evidently, Equations (6.4) and (6.6) are coupled to each other through the terms containing the
gradient of the dielectric function. Let us now assume that the space consists of several regions
(particles, media etc.) with different dielectric properties and that they are separated by abrupt
interfaces. Then the terms associated with inhomogenities are non-zero only at the boundaries of those
regions and they can be interpreted as additional charge and current sources. Invoking the general
solutions for scalar and vector potentials in a homogenous space given by Equations (6.7) and (6.8),
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the solution in a particular region can be expressed as a sum over the contributions from the external
sources enclosed within and the additional sources induced at its boundaries

Vν(r, ω) =

∫
Ων

d2r′ Gν
(
r, r′, ω

) ρ(r′, ω)

ε0εν(ω)
+

∫
∂Ων

ds Gν(r, s, ω) σν(s, ω) , (6.7)

Aν(r, ω) = µ0

∫
Ων

d2r′ G0

(
r, r′, ω

)
j
(
r′, ω

)
+

∫
∂Ων

ds Gν(r, s, ω) hν(s, ω) , (6.8)

where σν , hν stand for the yet unknown auxilliary boundary charges and currents assigned to the ν-th
region and Ω, ∂Ω indicate, whether the integration is performed over the region’s volume or along
its boundary. As pointed out in Chapter 5, the 2D Green’s function Gν is given by the zeroth order

Hankel function of the first kind Gν(r, r′, ω) = i
4H

(1)
0 (kν |r− r′|), kν =

√
εν

ω
c .

Athough the presented formalism can be applied, in principle, to any conceivable geometry, only
for few of them there exists an analytical solution. Nevertheless, these integral solutions can become
a powerful tool when combined with the computational resources we are nowadays provided. The
transformation into a form suitable for numerical calculations relies on the discretization of the region
boundaries into a limited set of small surface elements ∆s. Assuming both the electromagnetic fields
and the auxilliary sources exhibit only small variations between two contiguous discretization points,
one can consider these quantities to be nearly constant within a single surface element and discretize
them as well. However, we have to be careful when applying such approximation to the Green’s
function, since it varies dramatically for small values of its argument (this holds both in 3D and 2D)

lim
kνr→0

H
(1)
0 (kνr) ≈ 1 + i

2

π

[
ln

(
kνr

2

)
+ γ

]
, (6.9)

with γ
.
= 0.57721 denoting the Euler-Mascherani constant. Nevertheless far away from the bound-

ary sources, where the Green’s function is ”well-behaving”, the solutions to the potentials after the
discretization assume the following form

Vν(r, ω) =

∫
Ων

d2r′ Gν
(
r, r′, ω

) ρ(r′, ω)

ε0εν(ω)
+
∑
sj

∆sj Gν(r, sj , ω) σν(sj , ω) , (6.10)

Aν(r, ω) = µ0

∫
Ων

d2r′ G0

(
r, r′, ω

)
j
(
r′, ω

)
+
∑
sj

∆sj Gν(r, sj , ω) hν(sj , ω) , (6.11)

where the summations run over all the surface elements associated with the given region.
Apparently, the auxilliary boundary charges and currents are determined through the requirement

that the potentials should satisfy the customary boundary conditions at the interfaces separating
the individual regions. Since the whole procedure has already been comprehensibly and educatively
described in the paper by Abajo and Howie [10], we shall restrict ourselves only to those parts, in which
the 2D geometry of the present problem might lead to expressions slightly different from those derived
in the aforementioned paper. It turns out, however, that the reduced dimensionality affects just the
Green’s function Gν and its surface derivative Hν , where the latter appears in connection with the
boundary conditions for the normal components of the vector potential and the electric displacement.

Let us start with an important remark concerning the evaluation of the potentials and their
derivatives at the individual elements ∆si constituting the region boundaries. As pointed out earlier,
one can not disregard the small-scale variations in the Green’s function, nor in its surface derivative
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close to the interfaces. Moreover, both these quantites diverge in the si→ sj limit. Fortunately, one
can solve these difficulties by taking the average over the small interface elements

Gν(si, sj , ω) =

∫
∆sj

ds Gν(si, s, ω) =
i

4

∫
∆sj

ds H
(1)
0 (kν |si − s|) , (6.12)

Hν(si, sj , ω) =

∫
∆sj

ds nsi ·∇Gν(si, s, ω) =
ikν
4

∫
∆sj

ds
−nsi · (si − s)

|si − s|
H

(1)
1 (kν |si − s|) . (6.13)

The divergence in the si→sj limit turns out to be analytically integrable after replacing the Hankel
functions with their asymptotic expansions for small values of the argument

Gν(sj , sj , ω) ≈ i

4

Lj
2∫

−
Lj
2

dx

(
1 +

2i

π

[
ln

(
kνx

2

)
+ γ

])
=

i

4
Lj +

1− γ
2π

L− Lj
2π

ln

(
kνLj

4

)
, (6.14)

where Lj denotes the length of the j-th interface element. The evaluation of the surface derivative
Hν(sj , sj) may be a little tricky, but following the procedure presented in [10], one finds it to be

Hν(sj , sj , ω) = ±2π (6.15)

which is the same as in 3D. The two possible signs in Equation (6.15) reflect the liberty of choosing
whether the interface normal points inside (−) or outside (+) the region in question.

Eventually, by combining together all the boundary conditions one arrives at a system of 8N
linear equations for 8N unknowns (N denotes the total number of surface elements), which can be
directly solved either by an iterative method or through the direct inversion of the matrix representing
the system. As suggested by Abajo and Howie, the computational time can be significantly reduced
by following a procedure, in which instead of inverting the large 8N × 8N matrix, one separatalely
manipulates several smaller matrices of dimension N ×N . Once the auxilliary charges and currents
are known, the electric and magnetic fields at any point in the space are readily calculated using the
above relations.

6.2. Modeling of graphene and substrates in BEM

Having prepared the grounds for light scattering calculations in arbitrary geometries, we can turn
our attention to the composite plasmonic structure presented in Chapter 5. Apparently, the current
formulation of the BEM does not take into account charge and current densities induced at the
interfaces due to a presence of 2D crystals like graphene. Fortunately, the electrodynamic response of
such planar structures is in many aspects similar to that of a very thin film with a dielectric function
constructed in the following way [30]

ε3D(ω) = 1 + i
σ(ω)

ε0ωt
, (6.16)

where σ(ω) is the 2D dynamical conductivity and t marks the thickness of the layer. The above
expression can be derived either by comparing the Fresnel coefficients obtained in Chapter 1 with
those for a thin layer sandwiched between two dielectric halfspaces (Novotny and Hecht [28], p. 342)
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or through a simple model, in which we adopt an assumption that the current density σE associated
with the 2D crystal is uniformly spread over the whole thickness of the thin film

j3D(ω) =
σ(ω)

t
E(ω) . (6.17)

The resulting current density j3D is also directly related to the polarization vector P and thus the
dielectric properties of the film

j3D(ω) = −iωP(ω) = −iω ε0 [ ε3D(ω)− 1 ] E(ω) . (6.18)

Combining those two equations, one recovers the above approximate expression for the dielectric
function.

The last issue, we shall address before proceeding with the actual light scattering calculations,
concerns the shape of the used external electromagnetic field. The semi-analytical technique introduced
in the previous chapter is naturally able to cope with the infinite extent of the superstrate-substrate
interface and thus the whole structure can be illuminated by a single plane wave without any intrusive
effects. That does not hold for the BEM with a finite simulation region because of the diffraction
effects at its edges. One might supress those artifacts by including a larger portion of the superstrate-
substrate interface into the calculation, but that would also mean a substantial increase in the number
of the surface elements and hence even larger increase in the computation time. This can be avoided
by using a spatially confined beam instead of an infinite plane wave as the illumination source. The
most common and also the one we shall employ is the Gaussian beam.

Summoning the expression for the vector potential of a single plane wave with an amplitude E0

and a wavevector k, propagating under an angle θ with respect to the x-axis

A(θ) = − i

ω
E0 eik(x cos θ+z sin θ), E0 = E0 (sin θ,− cos θ) , (6.19)

the vector potential of a Gaussian beam traveling in a certain direction θ0 is calculated as a super-
position of an infinite number of plane waves with a gaussian angular distribution centered around
θ0 [22]

AGauss(θ0) = − iE0

ω

θ0+π
2∫

θ0−π2

dθ exp

[
−k

2w2

4
(θ − θ0)2

]
eik(x cos θ+z sin θ) (sin θ,− cos θ) . (6.20)

The parameter w prescribes, how much the angular distribution is smeared, and as we shall see, it also
determines the spatial confinement of the beam. Changing the integration variable to t = θ − θ0 and
assuming the angular distribution is sufficiently sharp so that the integration limits can be extended
to infinity, the vector potential acquires the following integral form

AGauss(θ0) = − iE0

ω

∞∫
−∞

dt exp

(
−k

2w2

4
t2
)

eik(x′ cos t+z′ sin t) [ sin (t+ θ0) ,− cos (t+ θ0) ] , (6.21)

where we have defined new spatial coordinates x′ = x cos θ0 + z sin θ0 and z′ = −x sin θ0 + z cos θ0.
Apparently, the above integral is still too complicated to be calculated analytically, but one can
improve the situation by replacing the sines and the cosines in the second exponential factor with the
first few terms of their Taylor’s expansions. Provided the first exponential factor approaches the zero
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fast enough, one is entitled to take into account only the terms up to the second power in t and the
previous equation becomes

AGauss(θ0) = − iE0

ω

∞∫
−∞

dt exp

[
−
(
k2w2

4
+

ikx′

2

)
t2
]

eikz′ sin t+ikx′ [ sin (t+ θ0) ,− cos (t+ θ0) ] ,

(6.22)
The solution to integrals of this form can be found in tables (Gradshteyn [14], p. 504-505)

∞∫
−∞

dx e−(ax2+bx+c) sin (px+ q) = −
√
π

a
exp

(
b2 − p2

4a
− c
)

sin

(
pb

2a
− q
)
, (6.23)

∞∫
−∞

dx e−(ax2+bx+c) cos (px+ q) =

√
π

a
exp

(
b2 − p2

4a
− c
)

cos

(
pb

2a
− q
)
, (6.24)

and one eventually obtains, after some manipulations, the final expression for the vector potential of
the Gaussian beam

AGauss(θ0) = −2i
√
π E0

ωkw

eikx′

κ
exp

(
−
z′ 2 + 1

k2

κw2

)[
sin

(
2iz′

κkw2
+ θ0

)
,− cos

(
2iz′

κkw2
+ θ0

)]
, (6.25)

where κ = 1 + 2ix′

kw2 . As mentioned earlier, the parameter w evidently controls the spatial confinement
of the beam.

x

z
z′

x′

θ0

Figure 6.1: The spatial profile of the intensity of the electric field |E|2 within the Gaussian beam. The
beam propagates in the positive direction of the x′-axis.

Since the discussion on the properties of Gaussian beams can be found in many textbooks, we
refer the reader for further information to Novotny [28], Chap. 3. For clarity, we show in Figure 6.1
the mutual orientation of the primed and unprimed spatial coordinates together with the map of the
intensity of the electric field within the propagating Gaussian beam.
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6.3. BEM calculations

Relying on the formalism presented in [10] and employing the above modifications for problems with
a 2D geometry, an algorithm for light scattering simulations based on the boundary element method
has been developed. The program operates fully within the framework of Matlab, a commercial
software from the Mathworks company (www.mathworks.com). Although programs in Matlab tend
to run slower than their equivalents written in other languages, it is partially compensated through
its user-friendly enviroment accompanied by an extensive library of built-in functions and effective
debugging tools.

To verify the proper and correct functionality of the created program, a series of benchmark
simulations with known analytical solutions has been performed. As an example, we have picked the
classical problem of scattering of light from an infinitely long cylinder embedded in a homogenous
medium. Figure 6.2 shows the comparison between the exact analytical solution provided by the
Mie theory [7] and results calculated by the BEM and the transformation optics method. Meanwhile
the latter captures only the qualitative aspects of the cylinder’s plasmonic resonance, the boundary
element method reproduces it perfectly even for a modest number of discretization points.

2R = 60 nm

Air
E0

Au

Figure 6.2: Scattering and extinction efficiencies of an infinitely long golden cylinder of radius R =
30 nm surrounded by air. Unlike the transformation optics method, the curves calculated by the BEM
correspond perfectly with the analytical solution provided by the Mie theory. The interface between
the cylinder and air has been discretized into 100 elements.

For completeness, the extinction efficiency reflects, how much power has been removed from the
incident beam due to the presence of the metallic cylinder and it can be calculated either as the sum
of scattering and absorption efficiencies, where the latter represents the amount of power dissipated
within the cylinder, or by means of the optical theorem (Bohren and Huffman [7], p. 73), which states
that the extinction efficiency depends solely on the scattering amplitude in the forward direction
(original direction of the incident plane wave).

Once we are confident that the program produces correct and physically reasonable results, noth-
ing hinders us from utilizing BEM for the calculations investigating the mutual interaction between
graphene and ordinary plasmonic structures. Recalling that the development of the whole program
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was motivated by the need to find a suitable and reliable technique, which would either confirm or
refute the hypothesis proposed in the preceding chapter, we present in Figure 6.3 the map of the
intensity of the electric field in the vicinity of a golden cylinder situated on a dielectric substrate
covered by a single graphene sheet. Except the cylinder radius, the parameters of the calculation are
the same as in Figure 5.6.

Au

ε3 = 4

EF = 1 eV

Air
E0

λ = 850 nm

Figure 6.3: The spatial profile of the electric field intensity |E|2 within a hybrid structure composed
of a golden cylinder with a radius R = 30 nm lying on the top of a dielectric substrate ε3 = 4
covered by electrostatically doped graphene (EF = 1 eV). A reasonable convergence was achieved for
approximately 800 discretization points.

The distribution of the electric field appears to be similar to that calculated by means of the
transformation optics method, including the magnitude of the enhancement factor, although the latter
predicts a slightly higher intensity close to the touching point between the cylinder and the substrate.
Importantly, the blackened regions do not represent the actual boundaries of the individual structures,
but they are created artificially to supress spikes in the intensity of the electric fields, which occur as
the result of the discretization (more precisely due to the divergence of the Green’s function, when its
argument tends to zero).

Encouraged by the agreement between those two approaches, the next series of calculations was
aimed to reproduce the spectral dependences of the scattering efficiency and the phase shift of the
induced dipole moment with respect to the excitation field for various values of the doping level in
graphene. During these simulations, the ability to control the spatial confinement of the incident
beam proved to be of great merit, because the vanishing thickness of the graphene sheet (we used
rather large value t = 3 nm) forces us to use very fine discretization and the smaller is the portion
of the graphene sheet we have to include into the simulation region, the shorter computation time is
required to obtain the results.

The spectral dependences of the scattering efficiency plotted in Figure 6.4 represent a certain
compromise between the accuracy of the model and the required computation time. In order to keep
the number of interface elements small, the graphene extends only one micron in each direction from
the golden cylinder and the width of incident beam is set to be approximately one half of the created
graphene ”ribbon”. Even though such configuration resembles only partially the original one, the
presented dependences indicate that the employment of this model is justifiable.
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E0

2R = 60 nm

Au

ε3 = 4
Graphene

ε2 = 1

Figure 6.4: The scattering efficiency of the structure presented in Chapter 5 as a function of the
wavelength for various values of the doping level in graphene. The graphene is modeled as a ribbon of
a finite width and the whole system is illuminated by a highly focused Gaussian beam. The interfaces
have been discretized into 1700 elements.

Along with the curves calculated using the BEM (solid lines), we present for comparison also one
of the spectral dependences obtained by means of the transformation optics method (dashed line).
Apparently, the BEM simulations are in concordance with those obtained earlier, in the sense that
the variation of the doping level in graphene brings no changes into the dynamical response of the
cylinder.

The substitution of the graphene sheet by a ribbon becomes especially important once the Fermi
energy reaches the threshold value, at which photons cease to decay directly into electron-hole pairs.
The finite dimensions of the graphene ribbon provide the additional momentum necessary to over-
come the wavevector mismatch between photons and plasmon polaritons, resulting in the antenna-like
behaviour observed commonly in ordinary metals. The plasmonic modes of the cylinder and the
newly formed graphene antenna can couple to each other, leading to strange features in the spectra.
Although we hoped to supress these effects in the present structure by decreasing the width of the
incident beam so that the graphene would appear to the source as infinite, the feature observed at the
wavelength λ = 630 nm for the doping level EF = 2.5 eV (yellow line) speaks otherwise. It becomes
even more prominent, when one looks at the spectral dependences of the phase shift between the
induced dipole moment and the driving electromagnetic force plotted in Figure 6.5.

The results of the BEM calculations prove to be in correspondence with those acquired through
the semi-analytical technique based on conformal transformations between various geometries, but
before making the final conclusion regarding the possibility to control the dynamical response of a
single plasmonic antenna through the electrostatic doping in graphene, the author has decided to
perform another series of simulations with a slightly modified geometry of the metallic antenna (see
Figure 6.6).

The transition from the cylindrical to an elongated rectangular antenna is motivated by the sub-
stantial increase in the contact surface area between the antenna and the substrate, which might
enhance their mutual interaction. The perceptible change in the size of the whole structure reflects
the current possibilities of graphene doping. Generally, the plasmonic resonance of a metallic antenna
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E0

2R = 60 nm

Au

ε3 = 4
Graphene

ε2 = 1

Figure 6.5: The phase shift Φ of the dipole moment induced within the golden cylinder as a function
of the wavelength λ for different values of the Fermi energy EF in graphene. The abrupt change in
the phase observed at λ = 630 nm for EF = 2.5 eV (yellow line) originates in the finite extent of the
graphene sheet. Parameters of the calculation are the same as in Figure 6.4
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Figure 6.6: Schematic drawing of a modified hybrid structure with a larger contact surface area
between the golden antenna and the graphene ribbon. The plasmonic resonance frequency of the
system falls within the near infrared part of the spectrum.

is being shifted to longer wavelengths as its size is increased, which reduces the range of doping level
in graphene one has to be able to achieve in order to switch between the different regimes of its con-
ductivity. The proportions of the new plasmonic structure and the refractive index of its surroundings
push the spectral position of the plasmonic resonance up to 4 microns so that the interval of Fermi
energies needed to ensure the functionality of such device shrinks to EF = 0.1−0.75 eV, which appears
to be a reasonable value considering the current state of the gating technology.

By embedding the whole structure in a single homogenous medium with permitivity ε = 4 we get
rid of the superstrate-substrate interface so that the source of the external electromagnetic field can
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assume the form of a single plane wave. Figures 6.7 and 6.8 and show the spatial profiles of the electric
field intensity in the vicinity of the hybrid antenna and near the edge of its golden constituent.

Au

ε = 4

EF = 0.75 eV

E0

λ = 2.8µm

Figure 6.7: The map of the electric field intensity |E|2 in the vicinity of a plasmonic antenna embed-
ded in a homogenous medium with permitivity ε = 4. The geometry of the antenna is outlined in
Figure 6.6.

Au

ε = 4

EF = 0.75 eV

E0

λ = 2.8µm

Figure 6.8: The map of the electric field intensity |E|2 at the edge of the golden antenna constituting
the hybrid structure from Figure 6.6. The large electric field enhancement indicates a strong interaction
between the golden antenna and the graphene ribbon.

As pointed out earlier, the blackened regions do not represent the real boundaries of the structures,
but they are created artificially to supress artifacts originating in the discretiazation of the interfaces.
The distribution of the electric field and its enhancement at the lower edge of the golden antenna
manifest the increased interaction between the two materials constituing the hybrid structure. The
question, whether it suffices to induce changes in the dynamical response of the system, or better to
control it through gating voltage, can be answered by running a series of calculations similar to those
performed for the golden cylinder.
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The spectral dependences of the scattering (dashed lines) and extinction (solid lines) efficiencies
of the hybrid antenna for various values of the doping level in graphene are plotted in Figure 6.9.
Clearly, the increase in the density of free charge carriers in graphene has practically no effect on
the response of the system, which is further confirmed by looking at the phase shift between dipole
moment induced within the golden antenna and the driving electromagnetic force (see Figure 6.10).
Notice the slight drop in the scattering efficiency (red line), when the structure is electrostatically
doped to EF = 0.3 eV, caused by the resonant coupling between the golden and graphene antennas.

4
0
n
m

E0

Graphene

Au

ε = 4

LAu = 0.8µm

LGph = 1µm

H
A

u
=

Qext
Qsca

Figure 6.9: The scattering (dashed) and extinction (solid) efficiencies Qsca and Qext of the hybrid
antenna as a function of the wavelength for various values of the Fermi level in graphene. Except
the slight drop in the efficienies for EF = 0.3 eV (red line) caused by a resonant coupling between
the golden and graphene antenna, the response of the systems remains unchanged as the density of
free charge carriers in graphene is increased. The boundaries of the individual structures have been
discretized into 2700 interface elements.

Relying on the above simulations, the author has eventually come to the conclusion that the
proposed control over the dynamical response of single plasmonic structures made of noble metals by
means of electrostatically doped graphene proves to be inefficient. To enhance this effect, one might
consider utilization of more complex structures with a superb sensitivity to the ambient environment
or exploit the coupling between the ordinary and graphene antennas, which seems to have, according
to Figures 6.4 and 6.9, an interesting impact on their electrodynamic response.
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E0

Graphene

Au

ε = 4

LAu = 0.8µm

LGph = 1µm

Figure 6.10: The phase shift between the dipole moment induced within the golden antenna and the
external electromagnetic field as a function of the wavelength for various values of the doping level in
graphene. The parameters of the simulation are the same as in Figure 6.9.
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7. Conclusion
Graphene has drawn attention of many researchers in the past years, including those concerned with
nanophotonics and plasmonics. The main reason for this increased interest resides probably in the
tunable electrodynamic response of graphene. In this thesis, the author attempted to estimate theoret-
ically the strength of the interaction between electrostatically doped graphene and ordinary plasmonic
structures made of noble metals and to assess how the interaction changes when the doping level is
varied.

The theory behind graphene and its response to electromagnetic radiation is rather extensive and
comprises many parts of physics including quantum mechanics, solid state physics and electrodynam-
ics. The author took the liberty to create a compact and relatively short text, which would allow the
reader to follow the key steps in the derivation of the graphene’s dynamical conductivity and to grasp
its main features including the influence of interband transitions and non-local effects.

Pursuing one of the goals of the thesis, to propose an experiment, which would demonstrate the
ability of graphene to control the response of surrounding plasmonic structures, the author presented
a hypothetical design of a hybrid structure consisting of an array of ordinary plasmonic antennas
positioned on the top of a dielectric substrate covered by an electrostatically gated graphene. It
was suggested that inhomogenously doped graphene might induce a slight phase shift in the dipole
moments of the individual antennas, leading to the anomalous refraction. Furthermore, by varying
the voltage between the graphene and the gating electrode, one would be able to tune the deviation
angle of the anomalous light ray.

Most of the effort was focused on the search for a suitable technique, which would allow us to
investigate the influence of the varying density of free charge carriers in graphene on surrounding
metallic structures. The author decided to employ the transformation optics method, which enables
to find a solution within the quasistatic approximation to problems with a complex geometry through
a transition into a space, where the geometry assumes a more appealing form.

A structure consisting of an infinitely long metallic cylinder placed on the top of a dielectric
substrate covered by a single graphene sheet and illuminated by a plane wave was chosen as the
object of the investigation. Utilizing the method of conformal transformations, analytical expressions
for the distribution of the electrostatic potential within that structure were derived. Subsequently,
the scattering properties of the metallic cylinder were calculated using the formalism of the far-field
Green’s dyadic functions.

In order to estimate, whether the variations in the doping level of graphene affect the plasmonic
resonance of the metallic cylinder, a series of calculations for different values of the Fermi energy were
performed. The absence of any changes in the response of the system with the varying density of
free charge carriers in graphene indicates that either the transformation optics method is not suitable
for such simulations or the changes in the graphene’s conductivity are not large enough to cause any
perceptible shift in the plasmonic resonance of the cylinder.

The author decided to verify the preceding findings by another, fully numerical boundary element
method (BEM), in which the solution is expressed in terms of surface integrals over the interfaces
between regions with different dielectric properties. Unlike the transformation optics method, the BEM
takes into account the retardation effects and is applicable to arbitrary geometries. Performing the
same series of calculations as before, the spectral dependences of the scattering efficiency and the phase
shift between the dipole moment induced within the metallic cylinder and the driving electromagnetic
force for various doping levels in graphene were obtained. Importantly, the results of the BEM
simulations were in concordance with those acquired by the method of conformal transformations.

Before making the final conclusion regarding the possibility to control the response of metallic
structures through electrostatically doped graphene, another series of calculations were performed,
but this time for a structure with a substantially larger contact surface area between the metallic
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antenna and graphene. Once again, the variations in the density of free charge carriers in graphene
proved to have no effect on the response of the metallic antenna.

The results of the simulations presented in this thesis suggest that one could improve the situation
by considering an arrangement of plasmonic structures more sensitive to the ambient environment or
exploiting the resonant coupling between ordinary antennas and those made of graphene.
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Appendix A
The starting point of the derivation of the quantum-mechanical Liouville equation is the time-dependent
Schrödinger equation for a state

∣∣ψ〉
Ĥ
∣∣ψ〉 = ih̄

∂

∂t

∣∣ψ〉. (7.1)

By the assumption
∣∣ψ〉 = ρ̂

∣∣ϕ〉, the above equation reads

Ĥρ̂
∣∣ϕ〉 = ih̄

∂

∂t
ρ̂
∣∣ϕ〉 = ih̄

∂ρ̂

∂t

∣∣ϕ〉+ ih̄ρ̂
∂

∂t

∣∣ϕ〉. (7.2)

Requiring that the state
∣∣ϕ〉 should satisfy the time-dependent Schrödinger equation as well and

applying the density operator ρ̂ on its both sides leads to

ρ̂Ĥ
∣∣ϕ〉 = ih̄ρ̂

∂

∂t

∣∣ϕ〉. (7.3)

Clearly, by subtracting Equation (7.3) from Equation (7.2) one recovers the quantum-mechanical
Liouville equation.

ih̄
∂ρ̂

∂t
=
[
Ĥ, ρ̂

]
. (7.4)

79



80



Appendix B
The method of stationary phase represents a useful tool for the approximate evaluation of various
integrals occuring in the light scattering problems, one of them being the finding of the far-field
expression for the dyadic Green’s function presented in Chapter 5. Let us consider an integral of the
form

F (p) =

∞∫
−∞

dt f(t) eip g(t), (7.5)

where f(t), g(t) are well-behaving functions of the real variable t. Apparently, the parameter p
determines how rapidly the integrand oscillates with varying t and in the present physical situation,
it can be associated with the dimensionless distance kr = k

√
x2 + z2 from the origin of the coordinate

system.
Assuming f(t) is a slowly varying function of t and the parameter p is very large, the individual

contributions to the above integral will tend to cancel each other out, with exception of intervals, in
which g(t) is stationary. Relying on the derivation presented in Mandel and Wolf [21] (Chap. 3.3),
the asymptotic approximation of the integral in Equation (7.5) reads

F (p) ≈
p→∞

∑
j

[
2π

p |g′′(tj)|

]1/2

f(tj) eip g(tj) e±iπ/4, (7.6)

where the sum runs over all the integration points tj , in which g′(t) = 0 (the prime denotes the
derivative with respect to t) and the sign in the last exponential factor is taken according to whether
the second derivative of g(t) is positive (+) or negative (−).

To demonstrate the applicability of the stationary phase method to the present problem of find-
ing the angular distribution of the electromagnetic field, we shall use it to derive the approximate
asymptotic expression for the 2D Green’s function given by Equation 5.75

G0

(
r, r′

)
=

i

4
H

(1)
0

(
k
∣∣r− r′

∣∣) =
i

4π

∞∫
−∞

dkx
eikx(x−x′)+ikz |z−z′|

kz
, (7.7)

where H
(1)
0 stands for the zeroth order Hankel function of the first kind and kz =

√
k2 − k2

x is the
wavevector component in the z-direction. In the far-field region, it is more convenient to use the
dimensionless radial distance kr = k

√
x2 + z2 and scattering direction sx = x

r , sz = ±
√

1− s2
x instead

of the cartesian coordinates x and z

G0

(
sx, sz, r

′) =
i

4π

∞∫
−∞

dkx
e−ikxx′e−ikzz′ sgn(szr−z′)

kz
eikr( kxk sx+ kz

k
|sz |). (7.8)

Apparently, the sources are implicitly assumed to be confined within a small region around the origin
of the coordinate system.

Identifying the normalized wavevector component kx
k , resp. the dimensionless radial distance kr

as the variable t, resp. the parameter p from Equation (7.5), the above integral acquires the form
suitable for the utilization of the stationary phase method

G0

(
sx, sz, r

′) =
i

4π

∞∫
−∞

dt
e−iktx′e−ik

√
1−t2z′ sgn(szr−z′)
√

1− t2︸ ︷︷ ︸
f (t)

eikr(tsx+
√

1−t2|sz |)

︸ ︷︷ ︸
eikr g(t)

. (7.9)
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The stationary points tj correspond to zeros in the first derivative of g(t) with respect to t

dg(t)

dt
= sx −

t√
1− t2

|sz| = 0. (7.10)

The above equation has only one solution t0 = sx with g(t0) = s2
x+s2

z = 1. According to Equation (7.6),
we shall also need the second derivative of g(t) evaluated at the stationary point t0

d2g(t)

dt2

∣∣∣∣
t=t0

= − |sz|(
1− t20

)3/2 = − 1

s2
z

. (7.11)

Finally, by inserting all the above expressions into Equation (7.6), one obtains the asymptotic approx-
imation for the 2D Green’s function

G0

(
sx, sz, r

′) =
i

4

(
2

πkr

)1/2

e−iksxx′e−ikszz′ sgn(szr−z′) eikr e−iπ/4, (7.12)

corresponding to an outgoing cylindrical wave.
The above procedure can be readily extended to the integrals involved in the angular distribution

of the electromagnetic field determined by the dyadic Green’s function.
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