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1  INTRODUCTION 

Fractional calculus, the branch of mathematics regarding differentiations and integrations to non-
integer orders, is a field that has been introduced 300 years ago [1]. Inspiring from the fractal 
models in the environment, from integer to non-integer models was explored. It origins from 30th 
of September in 1695 between Leibniz and L’Hopital correspondance, with L’Hôpital inquiring 
about Leibniz’s notation, dny/dxn where n is a positive integer. L’Hôpital addressed in this letter 
the question [2]: what happens if this concept is extended to a situation, when the order of 
differentiation is arbitrary (non-integer), for example, n = 1/2? Since then the concept of fractional 
calculus has drawn the attention of many famous mathematicians, including Euler, Laplace, 
Fourier, Liouville, Riemann, Abel, and Laurent. 

Considering the non-integer order n, such as 1.3, √2, 3j-4 or any other real or imaginary order, 

the differentiation dnf(t)/dtn is solved by fractional calculus. Understanding the solutions of 
fractional-order differential equations is the key to building better models for fractional order 
dynamic systems. The most significant definitions are Riemann-Liouville, Grünwald-Letnikov 
approaches and Caputo definition [1] which is described as:  
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where n-1 < α < n. The main advantage of Caputo’s approach is that the initial conditions for 
fractional differential equations take on the same form as integer-order differential equations. 
Mathematical expressions such as difference or differential equations may be considered as 
advanced mathematical or analytical models and they are preferred to the simpler models once the 
application becomes complicated. Mathematical models are categorized into groups such as time 
continuous or time discrete, lumped or distributed, deterministic or stochastic, linear or nonlinear. 
Each of these adjectives marks a property of the used model for the dynamic system and thus 
determines the type of the equation. 

1.1 Fractional Calculus in Electrical Engineering 

Time has proven Leibniz as the applications of fractional calculus e.g., differentiation or 
integration of non-integer order, has seen explosive growth in many fields of science and 
engineering. These mathematical phenomena allow us to better characterize many real dynamic 
systems. The first applications were in the tautochrone problem, electromagnetic theory [3], semi-
infinite lossy transmission line [3]. Other systems that are known to display fractional-order 
dynamics are electrode-electrolyte polarization [4], [5], dielectric polarization [6], electromagnetic 
waves, an ideal capacitor model [7], [8] etc. As many of these systems depend upon specific 
material and chemical properties, it is expected that a wide range realization of fractional-order 
behaviors are also possible using different materials.  

There are two methods for realization of fractional-order integral and derivative operators. First 
one is digital realization based on microprocessor devices and appropriate control algorithm and 
the second one is analogue realization based on analog circuits. An analog circuit emulating 
fractional-order behavior is often modeled by fractional-order differential equations based on the 
current-voltage relationship of the electrical circuits. They are called as fractional-order elements 
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(FOE), and fractional-order capacitor (FOC) or fractional-order inductors (FOI) defining the 
integrator and differentiator operators, respectively. Since their mathematical representations in the 
frequency domain are irrational, direct analysis methods and corresponding time domain behavior 
seem difficult to handle. Therefore, design of FOEs is done easily using any of the rational 
approximations [9]-[14]. However, no specific method for recovering a fractional process model 

was provided. These methods also have computational difficulties in higher orders thus their 
practical realization becomes more complex. 

Fractional-order systems, or systems containing fractional derivatives and integrals, have been 
studied in many engineering areas [15]-[19]. These systems constructed using n number of FOEs 

are described with an nth-order fractional systems of fractional differential equations. For instance, 
fractional-order oscillators are designed considering the FOEs with an order of less than one, thus 
the total system order decreased from two or three as known from the integer-order systems. 
However, the oscillation criterion is still sustained.  

Identification on real systems has shown that fractional-order models can be more intrinsic and 
adequate than integer-order models in describing the dynamics of many real systems [20], [21]. 
Indeed, the fractional derivatives provide an excellent tool for the description of memory and 
hereditary properties of various materials and processes. This is the main advantage of fractional-
order models (fractional derivatives) in comparison with classical integer-order models, in which 
such effects are in fact neglected. Moreover, defining a system as fractional is that the fractional-
order gives an extra degree of freedom (coming from its arbitrary order) in controlling the system's 
performance. It leads researchers to believe that the future of discrete element circuit design and 
fabrication of single solid-state components will undergo a paradigm shift in favor of FOEs. 

1.2 Research Objectives 

Particular importance is the use of fractional-order models and their applications in analog circuit 
design. Studies show that a huge portion of FOEs realizations — about 90% — are of 
multicomponent FOEs; moreover, it was found that about 80% of these existing FOEs are realized 
on FOC part with poorly control of constant phase angle [22]. Some of the challenges generally in 
fractional-order systems are shortly described in Fig. 1.1. Since the application of FOCs in analog 
domain offer tunability, independent control of parameters between each other, it is expected that 
their integrated circuit design will result in considerable benefit. Therefore, the main contribution 
of the author of the thesis is the development of optimum design for passive FOEs for systems 
described by fractional dynamic models and increasing their availability in analog electronic 
circuit design. This contribution comprises three consecutive parts: 

• Optimization: Instead of approximating the rational functions of irrational transfer functions 
using the approximations at a certain frequency (or bandwidth), the phase and/or impedance 
responses of RC/RL networks in the whole desired frequency range is optimized. This is 
achieved with a new approach based on the mixed integer-order genetic algorithm (GA) to 
obtain accurate phase and magnitude response with minimal branch number and optimum 
passive values [23]. Standardized, IEC 60063 compliant commercially available passive 
component values are used; hence, no correction on passive elements is required which leads 
us to a decrease of phase angle deviation and overall enhancement of the performance of the 
FOE. 
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Fig. 1.1: Challenges in fractional-order dynamic systems 

 

This approach is also used in modelling of filler in double layer capacitor [24] to find the 
best fit of fabrication of FOC with hexagonal-boron nitride (hBN) over a frequency range of 
five decades.  

• Integration: The main objective of this part is to introduce a new analogue implementation of 
FOEs and their applications in oscillator design using compact CMOS active building blocks 
(ABBs) with reduced transistor count. The first implementation is the design of fractional-
order integrator, which is a synonym of FOC in analog design, using cascade of first-order 
BTSs. The performance of this circuit is used in fractional-order proportional-integral 
(FOPIλ) control [25] for a speed control system of an armature controlled DC motor, which 

is often used in mechatronic and other fields of control theory. The second implementation is 
the fractional-order oscillators. The increased circuit complexity, the power dissipation of 
the active cells becomes quite high. In order to overcome this obstacle, novel very simple 
voltage–mode (VM) fractional-order oscillator topologies are introduced [26]-[28].  

• Experimental verification: The accuracy and stability of proposed FOEs and their primary 
versions are experimentally verified on real-life analog electronic circuits. The solid-state, 
PCB compatible polymer composite based FOCs [24], [29] are tested in circuit network 
connections considering the identical- and arbitrary-orders of the elements. The theory of 
fractional-order circuit network connections is formulated and experimentally verified [30], 
[31]. This study helps to show the stability of the solid-state FOCs. Moreover, the PCB-
compatible FOCs fabricated using molybdenum disulfide (MoS2)-ferroelectric polymer 
composites [32] are used in Wien oscillator [33]. 

2  A SURVEY ON FRACTIONAL-ORDER ELEMENTS AND DEVICES 

In electrical engineering in particular, the constant-phase behavior of capacitors is explained as the 
frequency dispersion of the capacitance by dielectric relaxation, where the electric current density 
follows changes in the electric field with a delay. In 1994, to express this phenomenon of “off the 
shelf” real capacitors mathematically, the capacitance current in the time domain was given as [8] 
 

( )
( )d u t

i t C
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=
α

α
,              (2.1) 
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Fig. 2.1: Description of fractional-order elements in four quadrants [34] 

where ( )d u t dtα α  denotes the “fractional-order time derivative”. In same way, the given 

relationship for FOI is expressed as: 
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where ( )
t

u t dt
−∞

∫
α  denotes the “fractional-order time integral” with having the order 0 < α < 1. 

Fig. 2.1 shows these fundamental components in frequency domain and possible FOEs in four 
quadrants [34]. Their impedance is described as Z(s) = Ksα, where ω is the angular frequency in 
s = jω, and the phase is given in radians (φ = −απ/2) or in degrees (°) (φ = −90α). Obviously the 
impedance of the FOE has a real part dependent on the non-zero frequency and its magnitude 
value varies by 20α dB per decade of frequency. In particular, the impedance of Type IV FOEs, 
i.e. FOCs in quadrant IV, is provided with an order of −1 < α < 0 and pseudocapacitance of 
Cα = 1/K, whereas FOIs in quadrant I (Type I) have an order of 0 < α < 1 and pseudoinductance of 
Lα = K. Their units are expressed in units of farad·secα−1 (F·sα−1) and henry·secα−1 (H·sα−1). The 
higher order FOCs and FOIs with the described impedances then matched in quadrant II and III 
(Type II and III), respectively. Their characteristics such as pseudocapacitance, pseudoinductance, 
constant phase zone (CPZ), constant phase angle (CPA – defined phase angle in CPZ), and phase 
angle deviation (PAD – maximum difference between a designed/measured phase and a target 
phase) profoundly impact the transfer function of the fractional systems [35]-[37]. Therefore, in 

order to practically realize fractional operators, a finite, infinite, semi-infinite dimensional integer-
order system resulting from the approximation of an irrational function can be used. This 
equivalent integer-order transfer functions then can be used also in design of analog integrator and 
differentiator circuit by selecting proper time constant or correct distribution of zeros and poles of 
the function. 
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2.1 Discrete Element Realizations of Fractional-Order Elements 

Numerous methods for synthesis of FOEs have been proposed. They differ by the approximation 
of their functions. They are expanded using analytical methods to calculate the parameters of their 
equivalent circuits. They consist of capacitors and resistors, which are described by conventional 
(integer) models; however, the circuit itself may have non-integer order properties, becoming a so-
called constant phase element, or fractional-order capacitor. The realization of fractional order 
inductors using resistive/inductive networks are limited due to their size, cost and limited 
operating frequency range. Therefore, the research on this area remained limited. A number of 
mathematicians and scientists have proposed various models [1], [22] e.g. Vaschy and Heaviside 
(1890), M. I. Pupin (1899), George A. Campbell (1903), Karl Willy Wagner (1915), 
Wilhelm Cauer (1930-1940), Sidney Darlington (1939), Ralph Morrison (1959), 
Donald C. Douglas (1961), Robert M. Lerner (1963), G. E. Carlson and C. A. Halijak (1964), , 
Suhash C. Dutta Roy (1966), K. Steiglitz (1967), C. A. Hesselberth (1967), Keith B. Oldham 
(1973), J. C. Wang (1987), A. Charef (1992), M. Nakagawa and K. Sorimachi (1992), K. Matsuda 
(1993), A. Oustaloup (1995), M. Sugi (2002), D. Xue (2006), P. Yifei (2005), A. A. Arbuzov 
(2008), J. Valsa (2011), D. Sierociuk (2011), R. El-Khazali (2014). However, there are several 
drawbacks on these proposed methods/models: 

• Approximated rational functions require complex mathematical analysis. 
• Constrained optimization to identify the network. 
• The value of the components are not well-scaled and negative values may be obtained, in 

which case one would need to use negative impedance converters. 
• Obtained values have to be approximated to closest a standardized value which leads to 

overall degradation of the performance of the FOE.  
• High numbers of elements are used for low phase error, in which clearly requires increased 

branch number thus high-order transfer functions. 
• High numbers of elements also requires large circuit layout which results in extra parasitic 

due to the transmission line effects especially at high frequencies. 

2.2 Development of Fractional-Order Devices 

An ideal dielectric in a capacitor would violate causality. Thus, it is typical to look for dielectrics 
for instance “low-loss" dielectrics for the order “α” of s as close to unity as possible, as the 
exponent is directly related to the constant phase angle. This can be explained in electrical 
engineering as the frequency dispersion of capacitance by dielectric relaxation, where the electric 
current density follows the change of an electric field with a delay [38]. This statement clearly 
shows that an ideal capacitor cannot exist in nature. Considering also the definition of Warburg 
impedance, the impedance varying as the square-root of frequency, several FOCs are designed and 
fabricated. Many of the studies are done after 1990s [31], [36], [39]-[46] since the connection 

between math’s and physical properties of materials established after this year [8]. However, to 
make such components as widely used as the conventional passive components, it is necessary to 
satisfy the design and the technology with the following requirements: 

• Compatibility with manufacturing technology of semiconductors or thin-film integrated 
circuits. 

• Constant phase response for a wide frequency spectrum. 
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• Fractional impedance dependence on the maximum range of allowed order “0 < α < 1”. 
• Precise adjustment of the fractional impedance parameters and characters, especially the 

control on pseudocapacitance “Cα”. 
• Capability of parameter dynamical adjustment. 
• Suitable packaging for circuit applications. 
• Size in terms of electrodes. 
• Longevity of the lifetime. 

3  SYNTHESIS AND OPTIMIZATION OF FRACTIONAL-ORDER 
ELEMENTS USING A GENETIC ALGORITHM 

Up until now, evolutionary computing algorithms have been used to reduce the drawbacks in 
traditional optimization methods and to solve complex problems where conventional techniques 
fail in many areas of the fractional-order domain. In this chapter, a mixed integer-order GA in 
MATLAB® is employed [47]. Instead of approximating sα at a certain frequency (or bandwidth), 
the phase and/or impedance responses of RC/RL networks are optimized in the whole desired 
frequency range. Furthermore, the required values are obtained with GA, even if the passive 
component values are restricted to commercially available kit values defined by standard IEC 
60063. Hence, this chapter aims to introduce an FOE optimization method that achieves a broad 
operating frequency range with CPA deviation of approximately ±1° using commercially available 
passive component values in RC and RL structures with five branches. Most crucially, the 
presented approach avoids the use of negative component values, GICs, or random passive 
element values. Thus, the best optimal emulation of an FOE is introduced currently available in 
the literature. In particular, Foster-II and Valsa networks [23] are selected as our main objective, 
because the former offers a minimum total capacitance value and the latter provides a minimum 
CPA deviation. Here it is also worth noting that, to the best knowledge of the author, an FOI 
design using the listed five RL networks is studied for the first time in the open literature. 

3.1 Optimization and Verification of FOC 

The measurement results of α = −0.5 order FOCs, that designed with six branches of the Valsa 
network, using an ENA Series Network Analyzer E5071C (300 kHz–20 GHz) in three different 
frequency ranges [case study (a) in 1 MHz–100 MHz, (b) 5 MHz–500 MHz, and (c) 50 MHz–
1 GHz] are shown in Fig. 3.1. Two variants of the FOE device with dimensions of 
20 mm × 20 mm were designed (for 0402 and 0603 size passive components) employing a 
subminiature version A (SMA) coaxial RF connector. The fabricated printed circuit board for 0402 
size kit values is shown in Fig. 3.1(c) as an inset. Considering an input impedance 50 Ω of the 
connector, the phase is measured by defining the equation of impedance as Z = 50·[(1 + S11)/(1 –
 S11)]. As passive elements, RF-type resistors from Vishay [48] and capacitors from Kemet [49] 
are used. Because of the producers fabrication boundaries, used passive components having CPA 
in limited frequency range, operate up to a maximum of 5 GHz. In addition, this frequency range 
is inversely proportional to the resistance values. For instance, a 100 Ω resistor works until 8 GHz, 
whereas a 1 kΩ resistor has a constant zero-degree phase response up to 800 MHz and so forth. At 
high frequencies, the transmission line effect becomes dominant; therefore, we maintain the  
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(a) (b)    (c) 

Fig. 3.1: Measurement results of an α = −0.5 order FOC implemented using the Valsa network 
optimized using GA for two decades in different frequency ranges: (a) 1 MHz – 100 MHz, (b) 
5 MHz – 500 MHz, and (c) 50 MHz – 1 GHz 

 

 (a)       (b) 
Fig. 3.2: Measurement results of an α = 0.5 order FOI from Fig. 3.8 and the fabricated device with 
dimensions of 15 mm × 17 mm as in inset (blue line - impedance response; red line - phase 

response) 

distance between passive elements the least. Despite the above mentioned limitations, we obtained 
the results until 1 GHz with low phase angle deviations as shown in Figs. 3.1(a)−(c). 

3.2 Optimization and Verification of FOI 

The most popular technique to mimic an inductor is using a GIC employing Op-Amps, resistors, 
and capacitors [50], [51]. However, the performances of these GIC-based active inductance 
simulators often suffer from the non-idealities of Op-Amps. Therefore, this section deals with the 
optimal emulation of an FOI for the first time in the literature. The FOI design using the GA is 
studied numerically and experimentally verified. 

The Valsa RC network is modified to RL-type structure by replacing all capacitors with 
inductors. The behavior of an α = 0.5 order FOI was verified using the Agilent 4294A precision 
Impedance Analyzer. Standard calibration tests (open and short circuits) of the 16047E Test 
Fixture were performed to calibrate the instrument. During the experimental validation in the 
frequency range 400 kHz − 40 MHz (801 logarithmically spaced points in two decades), a 
sinusoidal input signal with a default AC voltage of 500 mV and a frequency of 1 MHz was 
applied, while one of terminals was grounded. The measurement results and a photograph of the 
fabricated device with dimensions of 15 mm × 17 mm are depicted in Fig. 3.2. The measured PAD 
in two decades of the frequency range of our interest is ±5.82°. 
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3.3 Discussions 

The GA generally provides the minimum total capacitance value and can be limited in any range 
of the designer’s choice. As the order increases, the total capacitance increases and the resistance 
decrease, as shown in Fig. 3.3(a). Maintaining the order constant and increasing the capacitance 
value provides the same results as in the previous case. The frequency effect on the values is 
shown in Fig. 3.3(b). At high frequencies, small R and C values are used, whereas larger passive 
values are used at low frequencies. This fact can be explained by the dissipation factor (DF) 
expressed as DF = ESR / XC, where ESR and XC denote the equivalent series resistance and 
capacitors reactance, respectively, or as a tangent of the loss angle [52]. 

Fig. 3.4 shows the distribution of R and L values depending on an order and the frequency range 
for FOI design. Different to the FOC evaluation, resistance and inductance vary linearly with an 
order. It is also clear that an increasing FOI order has the effect of increasing passive values. This 
result can be explained by the quality factor (Q) definition Q = XL/R, where XL is the inductive 
reactance and R is the DC resistance [53]. Maintaining the Q constant, increasing an order (effecting 
XL) has the effect of increasing the R. At low frequencies and within limits, both passive values 
become much greater than their equivalents at high frequencies. 

  
 (a) (b) 

Fig. 3.3: (a) Order and (b) frequency effect on R and C values on each rung of the Foster-II and 
Valsa structures for FOC design 

  
 (a) (b) 

Fig. 3.4: (a) Order and (b) frequency effect on R and L values on each rung of the Valsa structures 
for FOI design 
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4  ANALOG IMPLEMENTATION OF FRACTIONAL-ORDER PIλ 
CONTROLLERS 

In this chapter, particularly, fractional-order integral operator s−λ (integrator Iλ, where 0 < λ < 1) is 

implemented employing two-stage Op-Amps. Cascade of first-order bilinear transfer segments 
(BTSs) is used, which is a two-port network with a single pole and a single zero. The behavior of 
both proposed analogue circuits employing two-stage Op-Amps is confirmed by SPICE 
simulations using TSMC 0.18 µm level-7 LO EPI SCN018 CMOS process parameters with ±0.9 V 
supply voltages. The cascade of BTSs creates so-called constant phase block, which generates 
desired magnitude and phase response by proper setting of both polynomial roots (zero and pole 
frequencies) of each BTS [54]. This approach ensures direct emulation of the behavior of an Iλ, 
which is very beneficial for fractional-order PIλ (FOPIλ) design. FOPIλ controller, which is used as 
an application of Iλ in this chapter, are widely used in industrial applications because of their 

simplicity and applicability to wide range of industrial control problems. In recent years, the 
survey [55] indicates fractional-order controllers become an emerging research topic. While 
design, these controllers have an additional degree of freedom and thus offer potential reduction of 
the control effort, which also results in reduction of wasted energy. Furthermore, their analog 
implementation allows us to integrate full design in chip and tune the control parameters easily. 

4.1 Fractional- Order PIλ Controller Design 

Block diagram of a proposed integrator Iλ by cascade connection of first-order BTSs and first-

order low-pass filter (LPF) is depicted in Fig. 4.1 and can be expressed as: 
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where m denotes total number of BTS needed for the design of constant phase block and n = m + 1 
will be mathematical order of the final circuit due to use of an additional LPF. The usefulness of 
LPF is described below. 

Proposed realization of BTS using two ideal Op-Amps (assuming open loop gain A → ∞) and a 
set of passive components is shown in Fig. 4.2(a), while the non-inverting LPF is depicted in 
Fig. 4.2(b). Hence, transfer function (TF) of cascade of m BTS and LPF in our particular case as 
depicted in Fig. 4.1 can be expressed as: 
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Fig. 4.1: Block diagram of a fractional-order integrator using BTSs and LPF 
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 (a) (b) 
Fig. 4.2: (a) Realization of a bilinear transfer segment and (b) low-pass filter using  
Op-Amps 
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Generalized TF (4.2) of a fractional-order Iλ has feature to set m pairs of zeros and poles 

independently and an additional pole as our design requires. The main advantage of this approach 
is an easy and low-cost realization of Iλ using discrete passive components and on the shelf 

available Op-Amps. 
Ones the Iλ is designed, its integration constant KI must be also realized. For this purpose the 

inverting Op-Amp configuration was selected, which closed loop voltage gain using an ideal Op-
Amp can be calculated by ratio of two resistors in the path as KI = −RI2/RI1. The minus sign (–) 

comes from the inverting Op-Amp configuration and indicates a 180° phase shift. 

4.2 Simulation Results 

Firstly, the Iλ of order 0.89 (i.e. the time constant τλ
−λ) was designed. The five-branch Valsa 

structure [56] was used, which provides a minimum PAD. Required R and C values were 
calculated via approach implemented in Matlab with the following inputs: pseudo-capacitance 
Cλ = 20 µF·sec–0.11, bandwidth (CPZ) from 30 mHz up to 100 Hz (> 3 decades), CPA −80.1° (i.e. 
λ = 0.89), and PAD = ±1°. Preliminary calculations showed that five BTSs (m = 5) and a LPF are 

required in the constant phase block shown in Fig. 4.2 in order to achieve the design specification. 
Note that the LPF is used for correction purposes of additional pole in Valsa structure. As the next 
step, zero and pole frequencies were recalculated and corresponding passive component values of 
Rzm, Rpm, Rpm+1, Cm, and Cpm+1 obtained via Matlab algorithm and optimized using modified least 
squares quadratic method. 

Ideal and simulated gain and phase responses of the Iλ in frequency domain are given in 
Fig. 4.3. Selected zooms and equivalent equations for fitting the gain and phase in CPZ 45 mHz −

 115 Hz via natural logarithm and linear regressions, respectively, are provided inside Figures. 
Following [57], design parameters of the FOPIλ controller: KP = 1.37, KI = 2.28, and λ = 0.89. As 
the Iλ is designed, the remaining design parameters can be recalculated, which are the  
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 (a) (b) 
Fig. 4.3: Ideal, simulated, and fitted (a) gain and (b) phase responses of 0.89-order integrator 

 

Fig. 4.4: Ideal and simulated gain and phase responses for the proposed FOPIλ controller 

  
 (a) (b) 
Fig. 4.5: Time-domain responses of proposed (a) Iλ and (b) FOPIλ controller with applied square 

wave input voltage signal with frequency 100 mHz 
following: R = RP1 = RP3 = 10 kΩ, RP2 = 13.7 kΩ, RPI1 = 27.4 kΩ, RPI2 = 1.3 kΩ, and 
RPI3 = 24.9 kΩ. An ideal and simulated gain and phase responses of the FOPIλ are given in Fig. 4.4 

confirming the accurate operation of the controller. 
Moreover, in order to illustrate the time-domain performance of Iλ and FOPIλ controller, 

transient analyses were performed and results are depicted in Fig. 4.5. A square wave input signal 
with amplitude 150 mV and frequency 100 mHz (TD = 0, TR = 1 ms, TF = 1 ms, TPW = 10 s, 
TPER = 20 s, i.e. 12τλ

−λ) was applied to both circuits. Hence, following the theory, in Fig. 4.5(a) the 
simulated output signal of the Iλ has triangular waveform, while Fig. 4.5(b) indicates increasing 
gain in the proposed FOPIλ controller as the effect of the KP. 

5  FABRICATION OF A FRACTIONAL-ORDER CAPACITOR 

In this chapter, fabrication of a FOC using the hexagonal boron nitride (hBN) -ferroelectric 
polymer blends is investigated. The tunability of the constant phase is obtained using only two 
tuning knobs e.g., different volume ratio of hBN and multi-walled carbon nanotube (CNT). This 
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fabrication process is therefore quite simple rather than previously fabricated ones [24], [32]. 
Fig. 5.1 schematically shows an exemplary FOC that has fractional order impedance. The 
proposed FOC integrates layers of two conductive films, and between them polymer composite 
with significantly improved CPA, CPZ, and phase angle variation performance. The device is 
mounted PCB with having one common and nine pins while each showing a FOC characteristic. 

It can be categorized between solid-state and passive FOCs. The presented FOCs show better 
performance in terms of fabrication cost and dynamic range of constant phase angle compared to 
FOCs from already existing devices. It is important make clear here that this schematic is 
previously proposed by our collaborators [24], [29] however the study based on hBN-ferroelectric 
polymer was not investigated. 

5.1 Method 

An FOC requires an insulator with high dielectric constant, dissipation factor, and dielectric loss. 
One potential candidate with such electrical properties is P(VDF-TrFE-CFE) terpolymer. Thus, it 
is a good reason to explore the possibility of using terpolymer in FOC fabrication. They are easily 
available in the market and good candidates after a closer look at the behavior of the phase angle.  
 

 
Fig. 5.1: Illustration showing FOC fabrication from bilayer polymer. Photograph showing the final 
device [29] 

This behavior can be tracked by studying the relaxation phenomenon due to polarization, e.g. 
dipolar (orientation), ionic and interfacial polarization, in polymer dielectrics. Using the 
phenomenon above and the formulas of permittivity from [38], the hBN is selected as a good 
candidate to fabricate hBN-ferroelectric polymer based FOC. The fabrication procedure is given as 
the following:  

• 200 mg P(VDF-TrFE-CFE) is dissolved in a 2 ml solvent, N, N-Dimethylformamide (DMF), 
under constant stirring at room temperature for two days to obtain 0.1 g/ml polymer solution.  

• The hBN powders are dispersed in DMF at a concentration of {50, 100, 150, 200, 
250} mg/ml and stirred one hour using ultrasonication.  

• {5, 10, 15} mg of CNTs are suspended in 1 ml DMF, and dispersed via ultrasonication for 
1 hour.  

• The dispersed CNT solutions are poured onto the dissolved hBN:P(VDF-TrFE-CFE) 
polymer solution and mixed under continuous stirring for another 24 hours. This step is valid 
only for hBN:P(VDF-TrFE-CFE):CNT composites. 

• 10 nm Ti followed by 190 nm Au is deposited on Si/SiO2 wafers via DC sputter to define the 
bottoms of the electrodes.  
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• Then, the composite solutions are drop-casted onto the Au-deposited 2 cm x 2 cm wafers 
and dried for 12 hours 90°C under a vacuum.  

• The circular Au electrode with 3 mm diameter and 200 nm thickness is deposited by similar 
method using a shadow mask to permit the fabrication of nine individual FOCs on a 
2 cm x 2 cm sample area. The FOC fabrication process is depicted in Fig. 5.1. 

Two types of FOCs are fabricated using two different knobs. First is the hBN:P(VDF-TrFE-
CFE) polymer blend while second is its composition with CNT. Their material and electrical 
characterization with different volume ratios of hBN and CNT are given in following chapters. 

5.2 Characterization of the Device 

The transmission electron microscopy (TEM) image in Fig. 5.2 shows the P(VDF-TrFE-CFE) 
composite with fillers of hBN and CNT with a 0.5 µm and 200 nm lateral size The CNTs are 
clearly distinguished from the polymer in the TEM image of the composite provided in Fig. 5.2. 

 

 
Fig. 5.2: TEM image of the hBN polymer composites with CNT 

5.3 Results and Discussions 

A solid-state FOC design based on hBN: P(VDF-TrFE-CFE) polymer composite is presented. 
Results are optimized within a frequency range of 100 Hz – 10 MHz. The best, optimum devices 
are found and shown in Fig. 5.3 using {200, 250} mg hBN, 100 mg hBN mix with 8 mg CNT, and 
150 mg hBN mix with 6 mg CNT –polymer composites with ±2.9°, ±2.2°, ±4°, ±3.2° phase error, 
respectively. To the best of the author’ knowledge, these are best results in given bandwidth until 
now in open literature. Moreover, the advantages of this new method can be summarized as:  

• Fabrication cost of this new FOC is expected to be lower than that of the previously 
developed FOCs [43] 

• Fabrication process employs simple solution-mixing and drop-casting approach 
• Relatively small error in larger dynamic range 
• Variability of the phase reached with controlling two tuning parameter: concentration of 

hBN or CNT 
This work demonstrates that FOCs fabricated using CNT-ferroelectric polymers composites 

have the potential to become essential components for reliable/robust electrical and electronic 
systems. 
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Fig. 5.3: Constant phase angle responses of best hBN polymer composite 

6  ANALYSIS AND VERIFICATION OF IDENTICAL- AND ARBITRARY-
ORDER SOLID-STATE FRACTIONAL-ORDER CAPACITOR 
NETWORKS 

The lossy nature of the dielectric material in capacitors and their electrical conductivity does not 
allow us to treat them as ideal capacitors since their impedances show a complex frequency-
dependent behavior. Due to this fact a FOC, also called as constant phase element, possess both a 

real and imaginary impedance part ( ) 1 cos sin
2 2

Z j C j
  π π    

ω = ω +     
     

α
α

α α
while its phase is 

frequency independent. However, an ideal capacitor has only an imaginary part [8]. This is 
particularly important, if the proposed application requires a configuration using capacitors, where 
errors accumulate the metrics of the individual components. Therefore, firstly, the general 
formulas for impedance, magnitude, and phase responses of series- and parallel-connected n FOCs 
are derived. Secondly, fabrication process and experimental characterization of three types (orders 
0.69 (TP2), 0.92 (P2), 0.62 (G2)) [24], [29] of solid-state compact and stable-in-phase (in the 
measured frequency range 0.2 MHz − 20 MHz) electric passive FOCs are explained. The 
experimental results for two and three series- and parallel-, FOCs are presented in following sub-
section. 

6.1 Mathematical Description of n FOCs Connection 

6.1.1 Series Connection 

In particular, having multiple FOCs in a circuit, the main aim is to replace them with a single 
equivalent capacitor and/or reach a desired phase angle with a combination of arbitrary-order 
capacitors. Therefore, the general formulas for equivalent impedance, magnitude and phase 
responses of n FOCs connected in series are expressed as (6.1), (6.2) and (6.3), respectively, where 
the indexes from i to k are the numbers of FOCs, each counted from 1 to n. The function of the 
sum is valid under the condition that i < j < … < l and k ≠ i, j, … , l.  
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6.1.2 Parallel Connection 

When n FOCs with arbitrary order are connected in parallel, the equivalent total impedance, 
magnitude, and phase can be expressed as: 
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The frequency and number of capacitors influence only the magnitude, while the order affects 
both the magnitude and phase responses. Units of impedance, magnitude, and phase responses of 
FOCs remain in both the series and parallel cases the same as in the integer-order case, i.e. the 
impedance and magnitude are in units of ohms and the phase in units of degrees, respectively. 
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6.2 Experimental Verification 

6.2.1 Series Connection of Arbitrary-Order FOCs 

The results obtained, including each individual FOC, are shown in Figs. 6.1(a) (magnitude) and (b) 
(phase). To estimate the equivalent order α (or phase), the magnitude data measured are fitted to 
the function log|Z| = αlogf + log(2π)αCα using the LLS method. From the results the orders are 
evident of FOCs as single devices TP2, P2, G2, i.e. 0.69, 0.92, and 0.62, with corresponding 
phases −61.91°, −82.59°, and −55.68°, while their equivalent orders from series connections are 
found to be 0.85, 0.65, 0.85, 0.81. The equivalent magnitudes vary in ranges of (67.2 → 1.26, 
17.87 → 0.829, 61.69 → 1.16, and 72.38 → 1.69) kΩ, respectively. 

 

  
 (a) (b) 
Fig. 6.1: Two and three arbitrary-order FOCs connected in series: (a) magnitude, (b) phase 
responses 

 
6.2.2 Parallel Connection of Arbitrary-Order FOCs 

The magnitude and phase responses of the equivalent impedances are shown in Figs. 6.2(a) and 
(b). The equivalent new orders, which are achieved using the LLS fitting and given in Fig. 6.2(a) 
next to the legend, are found to be 0.74, 0.64, 0.68, and 0.66. As can be observed, the orders match 
well to those obtained from the measured phase responses, which are depicted in Fig. 6.2(b). 
Overall, the equivalent impedances have capacitive behavior and vary in ranges of 
(9.24 → 0.27) kΩ, (4.11 → 0.19) kΩ, (5.84 → 0.24) kΩ, and (3.78 → 0.16) kΩ, respectively. It is 
also worth noting that the relative phase errors at fc are again small and vary in the range of 
−2.65% to 0.10%. 

 

  
 (a) (b) 
Fig. 6.2: Two and three arbitrary-order FOCs connected in parallel: (a) magnitude, (b) phase 
responses 
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6.3 Brief Discussion of Results 

Figures 6.3(a) and (b) give a comparison of the calculated, measured, and fitted line values of the 
magnitude and phase responses of three arbitrary-order series- and parallel-connected FOCs. 
Furthermore, the equivalent pseudo-capacitance versus frequency is plotted for both circuits in 
Fig. 6.3(c). The pseudo-capacitance of both FOCs is constant in the same region as the phase is. 
The normalized histograms show low absolute error between the measured and the calculated 
equivalent integer-order capacitance values, which is less than 1 pF and 4 pF, respectively, for the 
series- and parallel-connected FOCs. It can be concluded that the equivalent impedances of 
fabricated arbitrary-order FOCs connected in series and parallel exhibit the same capacitive 
behavior as integer-order capacitors. 
 

       
 (a) (b)     (c) 
Fig. 6.3: Comparison of (a) magnitude, (b) phase, and (c) pseudo-capacitance versus frequency of 
three arbitrary-order FOCs connected in series (#4 - blue color) and parallel (#8 - orange color) 

7  DESIGN AND IMPLEMENTATION OF FRACTIONAL-ORDER 
OSCILLATORS 

In this chapter, design of voltage-mode fractional-order oscillators, fractional-order Colpitts and 
Wien oscillators are studied. Main focus of this chapter is to study the effect of FOEs in system 
equations which results in several design features such as possibility of changing the frequency of 
oscillation (FO) and condition of oscillation (CO), amplitude and phase etc.  

Their design in integrated circuit design is another study point. Many classical fractional-order 
oscillators were presented using conventional op-amps or its equivalent macromodels. Although 
the aforementioned solutions could be implemented using commercially available discrete-
component ICs, from the integration point of view they suffer from the increased transistor count 
that they are required for implementing the active. Moreover, part of attention will be on validity 
check of Barkhausen conditions. Because, an accurate oscillator models are designed with 
differential equations to be certainly nonlinear due to the lack of unstable periodic oscillations in 
the pure integer-order or fractional-order linear systems, and also insufficient oscillation condition 
according to the Barkhausen criteria.  

7.1 Compact MOS-RC Voltage-Mode Oscillators 

Replacing the ideal capacitors Ci for i = {1, 2} with a FOC (C1 ⇒ Cα, C2 ⇒ Cβ) in Fig. 7.1 with 
impedance of Zα (s) = 1/(sαCα), Zβ (s) = 1/(sβCβ), the linear fractional-order system can be 
described as: 
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Hence, the CE from (7.1) becomes in general form as: 
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By solving (7.2) the CO and FO of fractional-order oscillator can be obtained as: 

m1 m2 m2

m1 m2

( )
CO : cos cos cos 0,

2 2 2

( )
FO : sin sin sin 0.

2 2 2

g g g

C C RC C

g g

C C

+ α

+

+ π π απ
ω − ω + ω + =

+ π π π
ω − ω + ω =

α β β

α β α β

α β β α

α β

α β β

α β β α
          (7.3) 

In fractional-order case the relation between the outputs of the oscillator is: 
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while the phase difference “φ” between two outputs Vo1 and Vo2 can be calculated as: 
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The fractional-order cases are studied for selected orders α = {0.2; 0.2} and β = {1; 0.8}, 
respectively. The fractional-order capacitors were realized using the Foster I network. The values 
of passive elements have been calculated by employing the second-order CFE method. The 
calculated oscillation start-up conditions are C2β = {6.31 n; 89.9 n}Fs(β−1) and the FOs are 
f0_theor_fract = {15.9 k; 9.64 k}Hz, while the simulated FOs are 15 kHz, and 10 kHz, respectively. 
Transient responses of the outputs for fractional-order cases are shown in Figs. 7.2(a)−(b). The 
following peak-to-peak values of oscillation amplitudes were simulated for outputs {Vo1; Vo2}: 
Case 1 {608.9; 602.8}mV, and Case 2 {575.1; 542.1}mV, respectively. Here the theoretical ratios 
of amplitudes according to (7.4) are 1; 1.05. 

 
Fig. 7.1: The proposed compact voltage-mode oscillator using OTAs and IVBs 
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 (a) (b) 
Fig. 7.2: Transient responses of the output voltages: (a) α = 0.2 and β = 1, (b) α = 0.2 and β = 0.8 

7.2 CMOS-RC Colpitts Oscillator Design Using Floating Fractional-Order 
Inductance Simulator 

Here, Colpitts oscillator implemented using two CMOS-based transconductors is shown in 
Fig. 7.3. The CE has the following general form: 

mCE : 1 0.s RC C L s C L s RC s RC Rg+ + ++ + + + + =α β γ α γ α β
α β γ α γ α β          (7.15) 

In analog electronics, due to the large silicon area, cost, and lack of electronically tunability, 
CMOS-based inductance simulators are used. The CMOS implementation of the proposed FOI 
simulator is shown in Fig. 7.4. It consists from two inverting voltage buffers (IVBs), two unity-
gain current followers (CFs), and one simple transconductor. Considering described ABBs, one 
capacitor, and assuming matching condition gm = 1/RCF_in1, while RCF_ink ≈ Rk', routine circuit 

analysis yields the following short circuit admittance matrix 
1 11

[ ]
1 1LY

s L

+ − 
=  − + 

γ

γ

γ
, from which 

Lγ = R1'R2'Cγ. As it can be seen the equivalent inductance value is adjustable by order of the FOC 
(or phase). The simulated phase (pseudo)-inductance responses of 0.75 and integer-order 
inductance simulator are shown in Fig. 7.5. In this case the circuit was simulated with C and Cγ 
given above, which in fractional-order case theoretically resulted in Lγ_theor = 17.3 mH⋅s−0.25 and 
the simulated one has a value Lγ_sim = 18.4 mH⋅s−0.25. Considering ±5 degree deviation in phase, 
the useful frequency range for L0.75 is about 138 kHz up to 2.45 MHz. 
 

 
Fig. 7.3: Voltage-mode Colpitts oscillator 
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Fig. 7.4: Proposed CMOS fractional-order inductance simulator including RC network emulating 
fractional-order capacitor 

Both 2.75th and 3rd order Colpitts oscillator were designed with CMOS transconductance and 
capacitor values were selected as C1 = C2 = 61 pF. The calculated oscillation start-up condition is 
R = 28.13 kΩ and the FO is f0_theor_fract = 1.3 MHz, while the simulated CO is R = 30 kΩ and FO is 
1.58 MHz. On the other hand, the CO is 1.8 kΩ and FO is 1.26 MHz in integer-order case. The 
steady-state output voltage waveforms of both cases are depicted in Fig. 7.6. For the output the 
generated peak-to-peak value is 1.34 V and 1.06 V for 2.75th and 3rd-order, respectively, while the 
total harmonic distortion (THD) at the outputs are about 4.1% and 5.3% for the fractional and 
integer cases, respectively. 

 

 
Fig. 7.5: Phase (left) and (pseudo)-inductance (right) responses of proposed 0.75 and integer-order 
CMOS inductance simulator 

 
Fig. 7.6: Simulated output voltage waveforms of the proposed 2.75th and 3rd-order Colpitts 
oscillator 

7.3 Fractional-Order Wien Oscillator 

A PCB-compatible FOCs using molybdenum disulfide (MoS2)-ferroelectric polymer composites 
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are first presented in [32]. In this chapter, their application in fractional-order Wien oscillator is 
shown. The values of two fabricated FOCs at 25 kHz are Cα1 = 37.2 nF⋅s−0.35 and 
Cα2 = 55.2 nF⋅s−0.34. In the circuit of Fig. 7.7, the passive element values are R1 = R2 = 10 kΩ, 
R2 = 47 kΩ.. The measured frequency of oscillation (FO) is 24.87 kHz as seen in Fig. 7.8(a) while 
the one calculated using the above values is 23.52 kHz [15]. The measurement is repeated after the 
FOCs are replaced with two conventional capacitors with a capacitance value of 30 nF and 50 nF. 
For this case the FO is measured to be 0.414 kHz as seen in Fig. 7.8(b). This demonstrates that the 
fractional-order Wien oscillator has a significantly higher FO that its conventional counterpart. It 
should also be noted here that the peak-to-peak amplitudes of the output voltage of both oscillators 
are same and equal to 1.88 V. 

 

Fig. 7.7: Schematic of fractional-order Wien oscillator 

  

 (a) (b) 
Fig. 7.8: Measured steady-state output voltage waveform of (a) the fractional-order Wien oscillator 
and (b) the conventional one as an inset 

8  CONCLUSIONS  

Throughout this thesis, a wide range of problems associated with analog circuit design of 
fractional-order dynamic systems are covered: passive component optimization of resistive-
capacitive and resistive-inductive type FOEs, active realization of FOCs, analog integrated circuit 
design of fractional-order integrator, robust fractional-order proportional-integral control design, 
investigation of different materials for ultra-wide band, low phase error FOC, possible low- and 
high-frequency realization of fractional-order oscillators in analog circuit design, stability study of 
solid-state FOCs in series-, parallel- and interconnected networks. The major target of this thesis is 
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to develop novel stable and accurate solutions in the form of FOE realization, analog circuit design 
of fractional-order dynamic systems and their performance evaluation frameworks to significantly 
improve requirements of analog circuit designs. 

When discussing distributed element realization of FOEs and fabrication of FODs in Chapter 2, 
the need for joint study of precise modelling and characterizing electrical properties of dielectric 
materials is realized. Several structures have been proposed for FOEs design and studied within 
fractional-order systems. Highlighting important practical trade-off in Chapter 2, the results from 
Chapter 3, 4 and 5 indicated significant promise for future research in the area of analog circuit 
design of fractional-order systems. In particular, in Chapter 2, an optimization of passive 
component values in RC/RL networks improves the constant phase angle and makes them easily 
use in experimental verification of fractional-order systems. Extending this idea on precise 
modelling and then the fabrication of FODs, a new solid-state FOC based on hBN-P(VDF-TrFE-
CFE) polymer composites is presented in Chapter 5 and analyzed within a frequency range of 
100 Hz - 10 MHz and minimum ±2.2°, maximum ±4° phase error. 

Whereas there is a natural connection between Chapters 3 and 5, the fractional-order integral 
design using cascade of BTSs is presented in Chapter 4. The structure benefits from the rational 
approximation of irrational impedance functions and their zero-pole distributions. An example for 
the analog integrated circuit design using ABBs of BTSs is shown and studied FOPIλ controller. 

There is still need to investigate proper approximation and structure to build a low cost hardware 
for industrialization. However, the preliminary results prove the possibility of the idea and are 
currently sufficient to move on this direction.  

While improving the performance and increasing the variability of FOEs and FODs, their 
stability and accuracy becomes important. This can be simply tested in circuit network 
connections. Therefore, the series-, parallel- and interconnected identical- and arbitrary-order 
FOCs are studied mathematically in Chapter 6.  

Derived formulas are experimentally verified. I believe that this study might be one of the 
fundamental topics of electronic circuit lectures in fractional domain in the future. 

In Chapter 7, the effect of FOEs on system design equations of fractional-order oscillators is 
investigated. For that, new design structures for compact voltage-mode fractional-order oscillators 
are presented. Beside it, the classic oscillators e.g. Colpitts and Wien are studied. Some of early 
fabricated FOCs are used in application of Wien oscillator. Our analysis confirms that it is possible 
to reach extremely low- and high- frequency FO by only changing the order without necessity to 
use high value capacitors or inductors. 

The complex research summarized in this thesis results in both theoretical innovations and 
practical applications. It is expected that the proposed solutions [16], [23], [25]-[28], [30], [31], 
[33], [54], [58]-[62] and their future extensions will become of significant importance toward 

further development of analog implementation of fractional-order systems. These solutions are 
primarily intended for, but not limited to, fractional-order integrators, fractional-order 
differentiators, analog integrated circuit design, nanofabrication, and electronic component 
producers. 
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ABSTRACT 

With advancements in the theory of fractional calculus and also with widespread engineering 
application of fractional-order systems, analog implementation of fractional-order integrators and 
differentiators have received considerable attention. This is due to the fact that this powerful 
mathematical tool allows us to describe and model a real-world phenomenon more accurately than 
via classical “integer” methods. Moreover, their additional degree of freedom allows researchers to 
design accurate and more robust systems that would be impractical or impossible to implement 
with conventional capacitors. Throughout this thesis, a wide range of problems associated with 
analog circuit design of fractional-order systems are covered: passive component optimization of 
resistive-capacitive and resistive-inductive type fractional-order elements, realization of active 
fractional-order capacitors (FOCs), analog implementation of fractional-order integrators, robust 
fractional-order proportional-integral control design, investigation of different materials for FOC 
fabrication having ultra-wide frequency band, low phase error, possible low- and high-frequency 
realization of fractional-order oscillators in analog domain, mathematical and experimental study 
of solid-state FOCs in series-, parallel- and interconnected circuit networks. Consequently, the 
proposed approaches in this thesis are important considerations in beyond the future studies of 
fractional dynamic systems. 

 
 
 

ABSTRAKT 

S pokroky v teorii počtu neceločíselného řádu a také s rozšířením inženýrských aplikací systémů 
neceločíselného řádu byla značná pozornost věnována analogové implementaci integrátorů a 
derivátorů neceločíselného řádu. Je to dáno tím, že tento mocný matematický nástroj nám 
umožňuje přesněji popsat a modelovat fenomén reálného světa ve srovnání s klasickými 
„celočíselnými“ metodami. Navíc nám jejich dodatečný stupeň volnosti umožňuje navrhovat 
přesnější a robustnější systémy, které by s konvenčními kondenzátory bylo nepraktické nebo 
nemožné realizovat. V předložené disertační práci je věnována pozornost širokému spektru 
problémů spojených s návrhem analogových obvodů systémů neceločíselného řádu: optimalizace 
rezistivně-kapacitních a rezistivně-induktivních typů prvků neceločíselného řádu, realizace 
aktivních kapacitorů neceločíselného řádu, analogová implementace integrátoru neceločíselného 
řádů, robustní návrh proporcionálně-integračního regulátoru neceločíselného řádu, výzkum 
různých materiálů pro výrobu kapacitorů neceločíselného řádu s ultraširokým kmitočtovým 
pásmem a malou fázovou chybou, možná realizace nízkofrekvenčních a vysokofrekvenčních 
oscilátorů neceločíselného řádu v analogové oblasti, matematická a experimentální studie 
kapacitorů s pevným dielektrikem neceločíselného řádu v sériových, paralelních a složených 
obvodech. Navrhované přístupy v této práci jsou důležitými faktory v rámci budoucích studií 
dynamických systémů neceločíselného řádu. 

 


