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METHODS FOR DETECTION AND CLASSIFICATION IN ECG ANA LYSIS

Abstract

The first part of the presented work is focusedr@asuring of QT intervals. QT interval can
be an indicator of the cardiovascular health ofghgent and detect any potential abnormalities.
The QT interval is measured from the onset of tHeSQomplex to the end of the T wave.
However, measurements for the end of the T wave adten highly subjective and the
corresponding verification is difficult. Here wegmose two methods of QT interval measuring -
wavelet based and template matching method. Methoelsompared with each other and tested
on standard QT Database.

The second part of the presented work is focusednodelling of arrhythmias using
McSharry’s model followed with classification usiag artificial neural network. The proposed
method uses pre-processing of signals with Linggpréximation Distance Thresholding method
and Line Segment Clustering method for establisloigpitial parameters of McSharry’s model.
The ECG data is taken from standard MIT/BIH Arrhigih Database. The modelling was tested
on the whole MIT Arrhythmia Database signals, |&&dll (modified limb lead Il). All signals
could be modelled with 10 Gaussians functions watlsignificant distortion.

The third part of the presented work is focusedE@e classification. Premature Ventricular
Contraction (PVC) beats are of crucial importanteevaluating and predicting life threatening
ventricular arrhythmias. An algorithm is proposed the identification of PVC beats. Signals
modelled with 30 Gaussians parameters were suppigde input of artificial neural network.
Multilayer perceptron was used with classificateecuracy of 93.10% for premature ventricular
contractions (PVC) and 96.43% for normal beats.
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Abstrakt

Prvni ¢ast prace je zafena na rdreni QT intervalu. QT interval ée byt pouZit
k hodnoceni kardiovaskularniho zdravi padiemtdetekovat potencialni abnormality. QT interval
je meten od zaatku QRS komplexu az po konec T viny. Nicraémeieni konce T viny je&asto
vysoce subjektivni a jeho verifikace je obtiznged3tavujeme dvmetody ndieni QT intervalu -
vinkovou a Sablonovou metodu. Metody byly porovnérezi sebou a testovany na QT databazi.

Druha ¢ast prace je zattena na modelovani arytmickych sigh&cSharryho modelem
nasledovana klasifikaci s pouZzitim &lgth neuronovych siti. Metoda pouzivéegzpracovani
signali linearni aproximaci a shlukovani linearnich seginpro stanoveni gatesnich parametr
McSharryho modelu. Byly pouzity EKG signdly stardtdr MIT/BIH Arrhythmia Databaze.
Modelovani bylo testovano na celé databazi a swddli (modifikovany svod I1l). VSechny
signaly mohou byt modelovany 10 Gaussovymi funkdeezi vyznamného zkresleni.

Treti ¢ast prace fedstavuje klasifikaci EKG do dvotiid. Fredtasné komorové kontrakce
(PVC) maji vysoky vyznamiphodnoceni a predikci Zivot ohroZujicich ventréulich arytmii.
Predstavujeme algoritmus pro detekéegtasnych komorovych kontrakci s pouzitim McSharryho
modelu a neuronovych siti. Signaly modelované 30s&avymi parametry bylyipdloZeny na
vstup unglé neuronové sit Pouzity vicevrstvy perceptron dosahl klasifikatsgsnosti 93,10%
pro predtasné komorové kontrakce (PVC) a 96,43% pro nornsaiy.

Kli¢ova slova

EKG, QT interval, vinkova transformace, neuronoi& $1cSharryho model
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1 INTRODUCTION

In the last ten years, huge part of the researchbde®n focused on the processing of
biomedical signals. Daily clinical practice genegiany amount of biomedical signals during
monitoring of patients and for diagnostic purposBserefore automatic processing systems are
frequently used in medical data analysis. New nahzan simplify and speed up the processing
of large volumes of data. The physician very fredlyehas to decide a patient's diagnosis on the
basis of a number of numerical values measureag@xamination. Orientation in this volume of
data is not always easy and unambiguous. Ther#iere exist consultation systems that help and
minimise human errors.

Cardiac arrhythmias can affect electrical systenthef heart muscles and cause abnormal
heart rhythms, which can lead to insufficient pungpof blood and death risks. Conventional
arrhythmia diagnosis is based on human observaiidot of automatic arrhythmia detectors were
developed in last ten years, because of requireamehtintensive care units for permanent
monitoring of the patients. These methods reachd gesults but provide only limited information
about a signal and ignore its hidden nonlinear oyos. Most of these techniques also need a lot
of computational time for feature extraction anassification and are able to classify only a small
number of arrhythmias (usually two or three tyd@§), [21], [19], [3]. It is necessary to enlarge
classification on more types of arrhythmias andonanplementation in real time [16]. Existing
approaches generally suffer for high sensitivitynmmse and unreliability in access to new or
ambiguous patterns. For clinical practise we havdevelop classifiers, which enable nonlinear
discrimination between classes, uncompleted oreancéhput patterns.

2 AIMS OF THE DISSERTATION

The main objective of the thesis is to design,izeaand verify algorithms for analysis of
electrocardiogram signals. The work is orientedielneation in ECG signals and classification in
analysis of arrhythmic signals. These two tasksimgortant in many situations from ambulant
ECG examinations to intensive care monitoring.

Based on our previous experience and results, mamis wavelet transform, McSharry’s
model, and artificial neural networks were usedhie work. Their selection was not random -
combination of methods results in high efficien@tettions and classifications. Algorithms are to
be implemented in Matlab and tested on standarchrldgs of ECG signals for objective
comparison.

The proposed thesis framework sets the followirsgaech goals:
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1. A comprehensive review of the state of the drEGG detection and classification
methodology.

2. R peak detection and QT interval measurement.

3. McSharry’'s modelling of ECG signals to providésadimination parameters for
arrhythmia analysis.

4. Classification of arrhythmias using artificiakural networks with McSharry’s model
parameters.

5. Realization and verification of the developegbaithms. Results evaluation.

3 ECGANALYSIS

3.1 DETECTION OF QRS COMPLEX

For the detection of QRS complex [12], input datxrevtransformed by continuous wavelet
transform (CWT)

CWT(s,7) = % jt/l(%) f (t)dt, 3.1.1

wheres is a scale and is a time shift. Time-scale spectrum enables tosoreatime-frequency
changes in the analysed signal with certain tintefeaquency resolution. Interpretation of a time-
frequency resolution by CWT is following: CWT repeess time-frequency decomposition
realized by correlation of signgt) with basic functions derived from the mother wave\(t).

The transform is documented in Fig. 3.1.1 (b). @bifunction was used as the mother
wavelet . QRS detector is not so sensitive to chosen ofpae wavelet, but Coiflet function
produced best results during testing. Scales waween within an interval of <1; 32>.

The image ofWTads, 7) can be simplified by taking a z-axis slice forchosen value
L<0; 1>. Thus, contour imag€, is created (Fig. 3.1.2 (b))

(S T)O(L-& L+¢)

C T)=
(s7) 0 if otherwise

1 if WT
3.1.2

whereg is a small value.
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Fig. 3.1.1 Continuous wavelet transform of ECG.
(@) Raw ECG data, (b) CWT.

Only that part of the contour, which is the closwsthe highest frequency, is considered.
Such a contour is called a contour envele@eand is defined as

EC(r)= min )¢O[s]

S, C (s,7

3.1.3

for all 7's.

Scale [-]
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251

@ 100 180 200 280
Samples [-]

Fig. 3.1.2 Continuous wavelet contour image.
(a) CWT with Coiflet wavelet, (b) corresponding tmur imageC, .

The contour envelop&C is a 1D function, which is processed by classitaie-domain

processing algorithms. An example of the contowetpe is in Fig. 3.1.8b). QRS-complex is
easy to distinguish from the T-wave and other camepts INEC as a local maximum of the
contour envelopeECis finally filtered by a low-pass Lynn's filterifthe better performance.
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Fig. 3.1.4 Detection of QRS-complex.
(a) Raw ECG data, (b) contour envelope, (c) filleczentour envelope.

3.2 QT DELINEATION

QT interval is difficult to measure with sufficieptecision. First, there is imperfection in the
T-wave end identification because of lacking un@derding of the recovery process and its
projection on the body surface. The end of T-wawag mot be recognizable at all due to missing
inflexion point, insufficient change in slope ofetlcurve, or any other reliably detectable point.
Second, there are variations both in the onseh®fQRS complex and the end of the T-wave
among ECG leads and QT values depend on the |ledeisted for the measurement. Therefore,
measurements for the end of the T-wave are oftghlisubjective and the corresponding
objective verification is difficult. ECG signals mde labelled by experts and manually checked,
but it is inappropriate for long-term studies. Mamgthods of QT interval detection have been
published [17],[4]. Usually, results from more medls and more leads are used at the same time
for verification. We present comparison of wavehsthod and a template matching method.

In the first approach [11] the contour envel&f@ (Eq. 3.1.3) is used for the detection of the
R wave and Q by using time domain algorithms. Tingé @ the T wave was found by searching
for a local extremes in the ECG signal transforig@ single experimentally chosen scale - scale
20 and Mexican Hat wavelet, which is defined assdcderivative of the Gaussian probability
density function with following equation

%) =(% ﬂ'”“j(l-tz)e’tz’z- 321
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Mexican Hat wavelet had the best results for T wevé detection in comparison with other
wavelets and it has one of the best time-frequarsplution. Searching for a local extreme
consists of searching for modulus maximum pairs z& crossing in between. Searching for
minima or maxima depends on the T wave morpholidy,documented in the following figures.
Algorithm includes protection measures, based e finterval to reject anomalous deflections in
ECG signal. Examples of different T wave morphodésgand their wavelet transform at scale 20
with Mexican hat wavelet are in the Fig. 3.2.1 &gl 3.2.2.
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Fig. 3.2.1 Positive T wave
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Fig. 3.2.2 Negative T wave

Black curve is ECG signal and grey curve is CWTndg.overtical lines show T end
annotations while horizontal line is zero level aedtangles denote CWT modulus maximums
pairs.

In the second template matching (TM) approach tfi4, operator defines the template QT
interval by selecting the beginning of the QRS clax@nd the end of the T wave in one heart
cycle (Fig. 3.2.3 (a)).
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Fig. 3.2.3 Template matching.
(a) Selection of template boundaries by operamrigmplate matching.

The algorithm then determines the QT interval dfo#ther beats by matching them to the
template. It calculates the sum of squared diffeesrbetween template and entire stretched or
compressed T wave (Fig. 3.2.3 (b)). The algoritheesuonly the ST segment and T wave.
Blanking period behind R wave % ms and signal amplitudes are normalized. EagtaRe is
detected with an automatpdak detection algorithm (proposed wavelet methadhapter 3.1). If
the operator selects the end of the template T wavieer or later after the true end, all computed
QT intervals will have stable offset but the beabeatvariability will be relatively unaffected.

The third compared method developed by ASCR empllogdeast square optimized time
shift of the regression model (RM) [11], see Fid.8. The thick black curve(t) represents the
regression model of T-wave (so called regressiomave) computed as the average of selected
segments(t) (light grey). The right limit of the regressioronel and the end of the regression T-
wave at the same time is defined as the pointtefsection of the descending regression T-wave
tangent and the mean level of the foot - baselme (end mark). The left limit is given by the
maximum of the regression T-wave.

The end of each T-wave is computed as the leastreauptimized time shift

e(i) = [s(t) - xt -i))° 3.2.2

of the regression model (black rectangle A in Big.4.) in the region defined by the visible time
window (black rectangle B in Fig. 3.2.4).
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Fig. 3.2.4 T-wave end detection by the regressiodehmethod.
Two thousand heart beats drawn one over another.

4 ARRHYTHMIA CLASSIFICATION BY ARTIFICIAL
NEURAL NETWORKS

4.1 MODEL OF ECG

We tested McSharry‘'s model ability to model arrimyit signals for the next approach of
using model parameters for classification, becalessification of the waveform in terms of the
values ofa;, b, and § of McSharry's model has not been explored in-deptbut data were
filtered before further analysis by Lynn’s filteanain goal of this filtration is subtracting of the
baseline drift. We used general model [15], whicdswapplied to ECG generation, blood pressure
and respiratory waveforms; this model is charaoteriby Gaussian functions describing each
ECG waveform (PQRST) by three parameters: an amdigljtwidth, and phase. Vertical deflection
of the ECG,z from the isoelectric line (at = 0) is expressed by the following ordinary
differential equation [15]

_Aglz
Z(ai)buei) == ZaIAHIe zqz ' 411
i{P,Q,R,ST}

whereg; is an amplitudgh; width, phased=2 7#t;, 46; = (6 — 6;) relative phasdor relative position
with respect to the R-peak). If we continue withhauical integration of the above-mentioned
differential equation by the application of the graetersa;, by and 6;, the well-known ECG
waveform appears. After analytical integration bé tequation 4.1.1 we receive the following
result

- 10 -
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_Agiz

2
2a.h,6) = Y 2a0be ™
if{P,Q,R,S,T}

)
: 4.1.2

We intend to adjust this ECG model to the ECG digid by minimization of the squared
error betweeis andz. Therefore, we seek minimal error

2
i’ 4.1.3

min  =|s(t) - z(t)
a.b .6

over all ten.

The solution to the equation 4.1.2 may be foundgisin 30-dimensional nonlinear gradient
descent [6] on the parameter space (ten Gaussiae-plarameter functions). Matlab function
Isgnonlin.m was used for nonlinear least-squaresnggation. We can average beats centred on
their R-peaks to minimize the search space fandjitthe parametersy( b;, andd;) and reduce the
noise. The template window length is not importastlong as all the PQRST features remain in
the window and does not expand into the next lgests which are too far from the reference beat
can be removed if the linear cross-correlation fa@eht calculated between each beat and the
template is less than 0.95. Initials positighend amplitudes; of the waveforms were obtained
by using linear approximation and line segmenttehiisg technique [18] described below.

Linear Approximation Distance Thresholding Method (LADT)

LADT method is an automatic clustering method [18sed on the distances between the
approximating line and approximated signal points.

7/
/X0 \\ /) AN ’ X(i+k) X(i+m)

Fig. 4.1.1 The LADT method.
Alis the start point anB is the end point of the signal segmeltis the maximum distance between the
approximatingAB line and the original signal (dashed linke)s the maximum distance position. If the maximum
distance is below the threshold value, the origaighal is replaced by thB line.

- 11 -



METHODS FOR DETECTION AND CLASSIFICATION IN ECG ANA LYSIS

The method is used as a noise reduction pre-praice$te results can provide input
information for the line segment clustering. Distarthreshold was set to 0.1. We used fixed
length of the segment of 15 points (depending @ensdimpling rate). Procedure starts with the
segment from the beginning of the ECG signal artdrdenes start and end point of the segment
and calculates linear equation between them (Eig1¥ Distance between segment of data and
linear equation is calculated. Maximum of all dstes is found. If maximum distance is larger
than threshold, this segment is considered as fiigni, we save start point, end point and
maximum distance point and ignore the other poifftamaximum distance is smaller than
threshold, this segment is not considered as irapgrive save only start point and end point and
ignore other points. Whole algorithm is repeatetil time end of the signal is reached.

Upon this procedure, the noise can be eliminatetimost important message is extracted.
This method was followed by line segment clusteteahnique described below.

Line Segment Clustering (L SC) technique

LSC technique is a clustering method [18], basedhenline area of the signal. Clustering
threshold which depends on how many important seggna signal we want to preserve was set
to 11. Every 3 neighbouring LADT extracted pointe Bnked and forms triangle. Area of those
triangles is calculated and minimum is found. Medbint of minimum area is removed from data
points set. These steps are repeated until the emuoflbsegments is smaller than threshold (see
Fig. 4.1.2).

Step 1

Original
wiaveform
Step 2

(al

Step 3

Final
wavefarm

Step 4

Fig. 4.1.2 The LSC method.
(a) The original wave form; (b) LSC technique stdp¥the final waveform.

After preceding procedure the significant points BEG signals, represented by line
segments, are obtained. Number of segments wasimgmeally set to 11. Line points are used as
initial positions @), amplitude of signal on these positionsaaand widthof triangles ady; of the
Gaussian functions of the model. Due to noise fietence, the positions of the break points are

- 12 -
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not accurate. It is eliminated during nonlineatirfig of the model to real ECG. By combination of
these known methods we will receive 30 input patarmsdor neural network classification.

4.2 COMPARISON OF TRAINING ALGORITHMS

It is not easy to choose which training algorithril Wwe faster for certain application. It
depends on many factors and types of applicatiomeSalgorithms are suitable for recognition
and another for approximation. Therefore we tesliffidrent algorithms for our application. We
found as the best algorithm for our purpose RegilBackpropagation RPROP algorithm followed
with Scaled Conjugate Gradient Backpropagation (€58 Powell-Beale (CGBP), because of
speed of convergence. Fletcher-Powell (CGBP) andabla Learning Rate algorithm did not
converge during 6000 learning epochs.

4.3 ANN CLASSIFICATION OF TIME SERIES

ECG signals from MIT/BIH Arrhythmia Database wen#tefed by Lynn’s filter and
extracted 200 ms (72 samples) before R peak andmb6§128 samples) behind R peak which
presents 200 samples for 360 Hz sampling frequeWsy.used known multilayer perceptron
network (MLP) mostly used for classification purpssfor distinguishing of normal beat and
premature ventricular contraction. A MLP networkshbeen adapted for the classification
procedure and trained by the Scaled Conjugate &maiackpropagation algorithm [7] due to fast
convergence. It was designed with four layers: gut layer, two hidden layers, and an output
layer.

Neurons in the input layer act as buffers for disiing the input signals to neurons in the
hidden layer. The backpropagation algorithm wadopered for 200-dimensional input vectors
and one output for two feature sets. Desired oufpwd. normal beat, premature ventricular
contraction) is represented by the binary-codedrelvalues 0, 1. The MLP was trained several
times using different number of hidden neurons|ugygiting the best accuracy. The results of
changing the number of hidden neurons on the pedonce were evaluated on the basis of a
performance improvement that was obtained whemtineber of hidden neurons was increased to
50. However, no significant increase in the perfange was observed for the higher number of
hidden neurons. Thus, the number of hidden neun@ssset to 50 in both layers both in training
and testing procedures.

Training set had 1000 N (normal) beats and 666rgnfature ventricular contraction) beats,
20 beats from nearly each signal and 60 beats feswnof complicated signals as 105, 108, 203
and 233. Testing results are summarized in Ch&pber

- 13 -
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4.4  ANN CLASSIFICATION OF MCSHARRY'’S MODEL PARAMETERS

After McSharry’s modelling (Chapter 4.1) we obtalnaput parameters for neural network
training and classification. ECG time series frofiTABIH Arrhythmia Database were first filtered
by Lynn’s filter, extracted as 100 samples beforpeRk and 150 behind R peak and after that
modelled by Gaussian functions.

We used 10 Gaussian functions which are enoughdaddehdifferent ECG morphology.
They are described by 3 parameters - position,hwaitd amplitude, therefore we obtained 30
input parameters. We used known multilayer perospinostly used for classification purposes.
We classified two types of beats - normal beats @edhature ventricular contractions. Training
Resilient Backpropagation algorithm (RPROP) wassehodue to fast convergence of training
(Chapter 4.2). It was designed with three layensingut layer, one hidden layer, and an output
layer contrary to raw time series. The number dfiBih neurons was set to 200 both in training
and testing procedures.

Training set had 3996 N beats and 2079 V beatsp#&a@ from nearly each signal and less
beats from signals with smaller number of beatspamticular category. Testing results are
summarized in Chapter 5.6.

5 EXPERIMENTS AND RESULTS

5.1 DETECTION OF QRS COMPLEX

The method was implemented in MATLAB with WaveledaSignal Processing toolboxes.
The algorithm was tested on 48 signals (100-23©fMIT-BIH Arrhythmia library in full length
(each approximately 30 minutes). In total, 24 hafrsignals were analyzed with 99555 QRS-
complexes. The average detection ratio was 99.4%f lowest ratio was found in signal No. 207
(88.63%) with large periods of ventricular fibriilen, where it was difficult to determine
individual QRS-complexes from chaotic signal. 2gnsils were analyzed with detection ratio
higher than 99.9%. In 43 of 48 signals, detectation exceed 99.0%.

This algorithm is relatively noise-resistant anthust as it is documented in Fig. 5.1.1. On
the upper panel, a signal No. 105 processed byptbposed algorithm is depicted with stars
marking detected QRS-complexes. The lower panelvsitbe same signal with original QRS-
complex notation from MIT-BIH database.

The detection and delineation of QRS-complexes skowigh independence of the
algorithm on the type of the used wavelet. Howetleg, best performance for signals with noise
and artefacts was obtained for Coiflet4 wavelet. tdgted most of common wavelets: Haar wave,
Symlet, Daubechies, Morlet, Biorthogonal waves Wwith Coiflet wavelet we received the best

- 14 -
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detection accuracy and contour envelope which wagyeanalysed in time domain. The detection
accuracy is comparable to the recently publishedlte
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Fig. 5.1.1 Detection of QRS-complexes - signal1@b.
(a) The signal with the algorithm output, (b) tlaere signal with MIT-BIH notation.

5.2 QT DELINEATION

The CWT and TM methods were implemented in MATLAB/eonment with Wavelet and
Signal Processing toolboxes. The methods weredtesiel9 signals from healthy probands with
following parameters (500 Hz, a 16-bit AD converminutes in supine position, 15 minutes in
75 degree tilt, 5 minutes in supine, paced bregtbiper minute (0.1 Hz)). Data were collected at
the 1st Internal Department, Saint Anne’s Univgrkibspital, Brno, Czech Republic [11].

5.2.1 Comparison of CWT versus TM

The comparison of these methods had similar resuilis documented in Fig. 5.2.for
different patients from testing set. The upper aigiblack line) was processed by the proposed
wavelet algorithm and the lower signal (grey lingith the template matching method. The
wavelet method showed the same progress but slightiger QT interval. The progress of
template matching method was less smooth and tgekihdispersion for less quality data (Fig.
5.2.1 right panel), but in comparison with wavel&gorithm it does not incline to high escaped
values. Wavelet method is fully automatic whereasplate matching method requires operator’s
input.
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Fig. 5.2.1 Comparison of QT trends between CWT H¥id
Upper curve - CWT method, lower curve - templatéamiag method.

5.2.2 Comparison of CWT versus RM

The CWT algorithm for the detection of the QT intdr has been developed in the
MATLAB environment using Wavelet Toolbox. Data wet@itized and methods compared by
ScopeWin ANNAIlab ANS software developed at Insétof Scientific Instruments, Brno, Czech
Republic with their results [11].

882 882 884

trigger

e g;!'-,g..‘ = i\/'!M

| ] MWNN
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Fig. 5.2.2 On the left panel: example of graphioapection of detected T- wave ends in a segmeb@@ signal (R

wave as trigger). Black marks define T-wave en@cted by the RM method, grey mark T-wave end detiloy the

CWT method. On the right panel: ECG re-segmentatiagger: T-wave end detected by RM method without
undesirable deflection.

The results of T-wave detection by the CWT and Rbthuds were compared by QT time
series analysis and by the multiple segmentaticmigue (Fig. 5.2.2). Time series comparison of
RM and CWT method showed almost identical resdlisie progress (trend) of the series and
their dynamics were same. Slight amplitude offsaswystematic and stable. It can be easily
eliminated by setting of the methods - subtractibthe offset.
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There are only sporadic artefacts in all experimemding both detection methods. The
artefacts were analysed in more detail by visugpéction of critical heart cycles (see Fig. 5.2.2).
It leads to typical findings: the RM method is m@ensitive to the distorted end of the T-wave
than the CWT method. It is most probably causedrioye robust analysis in time-frequency
domain in CWT method rather than time measurement®M. Further, the CWT method
provides a longer QT interval than RM. However, thlongation is constant and thus
removable.

5.3 COMPARISON OF QT DELINEATION WITH QT DATABASE

5.3.1 Template method versus QT Database

The template method (TM) results were compared daually and automatically annotated
QT intervals from QT Database from www.physiongf.dBeventy-three representative signals
were used with total 2255 beats. We present me&nrevaand standard deviations of T end
difference between template method and manual atioos (file .qlc - manually determined
waveform boundary measurements for selected beatsofator 1 only -- second pass)). Mean
error is relatively low (offset depends on operpatehnile standard deviation is high in a number of
cases. Detailed manual studies have shown thdaethglate method produced significantly more
stable results comparing to the manual annotaiioi3T Database. In other word, T ends in QT
Database express significantly higher beat-by-besiability possibly due to low quality
annotations by experts. This fact is documentedvb@i text and Fig. 5.3.1 - Fig. 5.3.4.

Following Fig. 5.3.1 presents examples of diffeest manual annotations positions, as a
consequence of high difference between semi-autortenplate method and database. Manual
annotations often provide higher variability.

@
T i
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| . L . r . M
1 1 1 1 L L L ' It TN " : 1° TN ' 1
100 200 300 400 500 600 00 200 300 400 500 600 70

samples [-] samples [-]

Fig. 5.3.1 Comparison between TM detection and mbdatabase annotations on signal sel16539 andlsgi808.
Filled triangle mark is TM detection point, unfilériangle is a manual mark from QT Database.
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Template method marks have much more stable posnithin T wave ends and marks
from database are more fluctuating. It is visidEodrom QT trends which are smoother for TM

method (Fig. 5.3.2). Offset difference is deterrdibg operator’s initial template selection.

QTtrend
T

L L L
15 20 25

samples [-]

L
10

450

440

an

Fig. 5.3.2 Comparison between TM QT trends andbdesta on signal sel808.
Solid line represents our detection points, dadinedepresents manually marked points from QT Dasa.

In comparison with automatic annotations from das&b (files .pu0 with automatically

determined waveform boundary measurements for edksbbased on signal 0 only), we also

received smoother results (Fig. 5.3.3 - Fig. 5.3.4)

QTtrend
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200

400 600 800 1000 1200 1400

200
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Fig. 5.3.3 Comparison between TM QT trends andies@ on signals sel891 and sel308. Black solidrépessents

our detections, dashed grey line represents autb@atdetections from database.
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Fig. 5.3.4 Comparison between TM detection andraatic database annotations on signal sele041&dRillangle
mark is our detection point, unfilled triangle is @automatic mark from QT Database.

Template method QT interval trends are smoothem thends from QT Database. Stable
offset is determined by operator during templatect®n. This method works perfectly for signals
with low variability. Changeable morphology is migtected so precisely.

5.3.2 CWT method versus QT Database

The CWT method results were compared to manualty amomatically annotated QT
intervals from QT Database from www.physionet.ddg@venty-three representative signals were
used with total 2198 beats. We present mean valndsstandard deviations of T end difference
between CWT method and manual annotations (file .gImanually determined waveform
boundary measurements for selected beats (anndtataty -- second pass)). As it can be seen
from the table, mean error is relatively low whslandard deviation is high in a number of cases.
81% of signals fulfils criteria from [14] and hathsdard deviation lower than 30.6 msec. Detailed
manual studies have shown that the CWT method pemtlsignificantly more stable results
comparing to the manual annotations in QT Databbs@ther word, T ends in QT Database
express significantly higher beat-by-beat vari&pipossibly due to low quality annotations by
experts. This fact is documented below in text fgures.

High values for signal sel102, sel213, sel223,%e$8139 and sel45 are caused by different
T wave end position definition as we documente®ig 5.3.5, where we can compare opposite
behaviour of CWT detection and manual annotations.
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Fig. 5.3.5 Comparison between CWT detection andualagiatabase annotations on signal sel213 on fiheaeel and
signal sel223 on the right panel. Filled trianglarknis our detection point, unfilled triangle isr@nual mark from QT
Database.

High values for signal sell104, sel307, sel31, sl caused by fluctuation of manual T
wave end annotations as we documented in Fig. fftpanel). High value for signal sel14172
is caused by difficultly defined end of T wave [rigpanel). Amplitude of T wave is low and
signal is noisy.
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Fig. 5.3.6 Comparison between CWT detection andualagiatabase annotations on signal sel307 on fiheaeel and
signal sel14172 on the right panel. Filled trianglark is our detection point, unfilled trianglesisnanual mark from
QT Database.

In Fig. 5.3.7 we compare QT interval trend with malhy annotated trend from database.
Wavelet method has smoother progress of QT intetvaln manual annotations, because of their

high dispersion.
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Fig. 5.3.7 Comparison between CWT QT trends andbdeste on signal sel103. Dotted line representQdur
detection, dashed line represents our T end deteatid manually annotated Q wave from QT Datatsadig, line
represents manually marked points from QT Database.

If we compare our detection with automatic databasmotations (files .pu0 with
automatically determined waveform boundary measargsifor all beats based on signal 0 only),

we also receive smoother result, but wavelet methasl different stable offset for different T
wave morphologies.
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| ‘ i B wm‘ﬂjﬂ‘mq A ‘d H|‘w‘u|i ‘“I‘{“MWH il NM»WM ”i JIid Wm |
\

QT [ms]
'y
2
Q

\ ! ! | !
o 200 400 800 800 1000 1200
samples [-]

Fig. 5.3.8 Comparison between CWT QT trends andbdese on signal sel820. Black line represents dur Q
detection, light grey line represents our T eneclidn and automatically annotated Q wave from Qifabase, dark
grey line represents automatic QT detection frotaluse.

In the figures Fig. 5.3.8 and Fig. 5.3.9 we showttbur T wave ends are detected
permanently on the same T end positions contrarguimmatic and manual marks from QT
Database, therefore our QT trend has smaller digper
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Fig. 5.3.9 Comparison between CWT detection andualagiatabase annotations on the left panel (sggiaD210,
approximated T ends show higher dispersion of mahead annotations than our annotations). Compargetween
CWT detection and automatic database annotatiomiseoright panel (signal sel820, filled trianglering our

detection point, unfilled triangle is a manual médm QT Database).

Different offset for different T wave morphologissexplained in the following Fig. 5.3.10.
Wavelet method mostly provide longer QT intervatdngse it detects T wave end on the T wave
end minimum. However, the prolongation is constartt thus removable.

T-wave end T-wave end
by tangent by tangent
method method
T-wave end T-wave end
by wavelet by wavelet
, transform
transform

Fig. 5.3.10 Explanation of the offset differenceTiend detection by classical method and by ourele\method.

In order to quantify and compare TM and CWT methgdhumbers and classify correctness of T
end location (with manual annotations), we divideghal results into following groups:

Group 1: well detected signals with reasonable mean amtiatd deviation (mean<40 ms,
standard deviation<50 ms),

Group 2: signals with morphology identification errors sgymatic errors (mean>40 ms,
standard deviation <50 ms),

Group 3: signals with noise or too small T wave amplitudee&n<40 ms, standard
deviation>50 ms),

Group 4: combination of groups 2 and 3 (mean>40 ms, standieviation>50 ms). Usually
morphology identification error together with pdR and high variability of signal.
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Classification results are summarized in tablewelo

Comparison results show that performance of botthaus is similar96% (TM) and95%
(CWT) of signals belong into group 1 or 2. CWT neetthas more systematic errors and is fully
automated, whereas TM is semi-automatic and sysierraors are eliminated by operator during
template selection. Most of systematic errors cobéd eliminated with deeper cardiologic
experience. Majority of systematic errors for CWTethod is caused by biphasic T wave
morphology.

Tab. 5.1 TM and CWT method results classification

™ CWT
Number of Number of
Group signals Percentage Group signals Percentage

1 69 94,52% 1 60 82,19%

2 1 1,37% 2 9 12,33%
Subtotal 70 95,89% Subtotal 69 94,52%

3 2 2,74% 3 1 1,37%

4 1 1,37% 4 3 4,11%
Subtotal 3 4,11% Subtotal 4 5,48%
Total 73 100,00% Total 73 100,00%

We verified annotations variability for severalrsads also on Physionet website automatic
graphical outputs.

In case of well detected morphology, progress of TCQT detection is smoother that TM
progress. We obtained 81% of records (CWT) witharere in T end location within manual
referees variance (standard deviation 30.6 ms T8l is minimal value that could be requested to
any automatic algorithm.

For further improvement of CWT algorithm cooperatiwith cardiologists is necessary.
Contrary to template method the algorithm doeskmotv any reference input and does not have
any prior knowledge about morphology. With deepexdival knowledge most of systematic
errors can be eliminated.

Main objective of CWT method was to test if T endasurement using only one scale of
wavelet transform is suitable for continuing in lgses. Processing time of 15 minutes long ECG
signals was in average 8 minutes without any optation and with a lot of graphical outputs for
visual inspection. This method is suitable for nalprocessing.

5.4 MCSHARRY’S MODELLING

We have applied this method to ECG records from NH&/BIH Arrhythmia Database,
which include several types of beats: normal simepression of SEegment, multiform PVCs
and fusion beats, left bundle blocks, right burallecks, etc. These signals were samplefi at
360 Hz. Fig. 5.4.1 illustrates the results of theny model to a segment of arrhythmic signals.
The locations of the P, Q, R, S and T peaks mdtehunderlying signal. The error around the iso-
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electric point and ST-level are insignificant irtlanical sense< 0.1 mV, or about 5% to 10% of
the QRS amplitude).

We tested our approach on the whole MIT/BIH Arrtmgth Database on the lead MLII and
we can model all signals with 10 Gaussians funstwithout significant distortion. Average time
for processing of one beat is 7s. Note that ther emound the ST-segment is extremely small. The
application of the method to ECG signals from MIIHBArrhythmia Database has shown
performance of MSg=(0.49+£1.06)%. The majority of authors use the M&fr as an objective
method to analyze the performance of data modelieghods. But in this way the impact on

cardiological diagnosis is not evaluated. We prepbe analysis in main points of ECG obtained
by LADT and LSC.

12p

08l [6)

(0}
[010] 0.5-
@
0.6

)]
5
\ s \ |
100 150 200 250

Fig. 5.4.1 Fitting of model to a segment of ECCGetakrom the MIT-BIH Arrhythmia Database. Solid gilae
represents modelled ECG and black circles areareabged ECG. It is visible that modelled signalaeed original
signal.

By fitting a set of ten Gaussians (each definedtlmee parameters) in an ordinary
differential equation, we verified that we can miogiehythmic ECG signals with mathematically
tractable compact representation. As a result,ait be used as a generalized technique for
processing of any semi-periodic signal. This models successfully verified on arrhythmic
signals of MIT-BIH Arrhythmia Database. We also mened possibilities of evaluating of the
models and we suggest computing of local errorr@a a@f significant points, obtained by Line
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Segment Clustering method. Our further intentiors watest parameters of McSharry‘'s models
for classification, because classification of theveform parameters;, b, and g of McSharry's
model has not been explored in-depth.

5.5 ANN CLASSIFICATION USING TIME SERIES

We tested the ANN classification system using tsedes on whole MIT/BIH Arrhythmia
Database. We distinguished between two classesnatobeats N and premature ventricular
contractions V. Classification process was perfanrethree stages: 1. pre-processing (Lynn’s
filter for baseline drift removing), 2. data extiiaa, and 3. non-linear classification (MLP).
Topology of the used network contained 200 inputroes (corresponding to samples of the
filtered ECG), 50 neurons in the first hidden lay®sd neurons in the second hidden layer, and a
single output neuron (200-50-50-1 topology). Hypédéitangent (tansig, which maps output into
the range of -1,1) was used as an activation fandti the input layer while a sigmoid function
(logsig, which maps output into the range of Odureed for binary classification) was used in the
hidden and the output layers. Training goal of miean squared error was set 0.001, which was
selected experimentally as sufficient for succdssfining while keeping low computational
costs. The network was trained with Scaled (CGB&)rahm described in Chapter 4.2 on 1000
normal beats (N) and 666 ventricular prematuredh@ét Testing set had 74054 N beats and 6444
V beats.

The used ANN was implemented in Matlab 7.1 envirentrand tested on a common PC
Pentium 4, 2.6GHz with 512MB RAM. Training phasekabout 120 sec, testing took about 320
sec for the above described dataset and the meanesijerror. We obtained overall accuracy for
whole testing datas€18.82%, accuracy for normal bea@8.89% and accuracy for premature
ventricular contraction87.94%.

5.6 ANN CLASSIFICATION USING MCSHARRY'S MODEL

We tested the ANN classification system using MeBfs model on whole MIT/BIH
Arrhythmia Database. We distinguished between tfasses: normal beats N and premature
ventricular contractions V. Classification processs performed in four phases: 1. pre-processing
(Lynn’s filter for baseline drift removing), 2. @atextraction, 3. feature selection (McSharry’'s
model), and 4. nonlinear classification (MLP). Egidtase was carefully chosen to enhance the
performance of the system.

We tested different network topologies, differentber of neurons in one hidden layer and
also 2 hidden layers. We chose topology 30-200-ictwhad the highest accuracy for normal
beats and the second highest accuracy for premaéumteicular contractions. Second alternative
could be topology 30-180-1 which had the highestigacy for premature ventricular contractions
and the third highest accuracy for normal beats.

Topology of the network contained 30 input neur(@@responding to 30 McSharry’s input
parameters), 200 neurons in a hidden layer, anthglesoutput neuron (topology 30-200-1).
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Hyperbolic tangent (tansig) was used as an aabndtinction in the input layer while a sigmoid

function (logsig) was used in the hidden and thgpuiulayers. Training goal of the mean squared
error was set to 0.01, which was set experimentdlysufficient for successful training while

keeping low computational costs. The network wasé&d with RPROP algorithm (see Chapter
4.2) on 3996 normal beats and 2079 ventricular ptera beats (approximately 100 beats from
each signal in each category). Testing set had 70V @eats and 4930 V beats. The used ANN
was implemented in Matlab 7.1 environment and testea common PC Pentium 4, 2.6GHz with
512MB RAM. Training phase took about 266 sec, mgstiook about 199 sec for the above
described dataset and the mean squared error.

We obtained overall accuracy for whole tested b8&t21%, accuracy for normal beats
96.43% and accuracy for premature ventricular contrast@$110%. Although comparison of our
system with other systems given in the literatweadally difficult due to the varieties in the
classification techniques and data properties (@ifferent number of beat types belonging to
different patients), it can be seen that our predosovel system based on McSharry’s model
parameters and MLP enables PVC and normal beasifatation. The performance of our system
is comparable with the results reported in thediigre.

6 DISCUSSION AND CONCLUSIONS

We have presented ECG signal processing that ugeslet transform for ECG delineation
and McSharry’s model with artificial neural netwoftr classification. Wavelet transform has
been extensively used in many different fields swsh image processing, etc. Regarding
classification of biological signal, the conceptdamse of McSharry’s model for classification is
quite new.

In Chapter 1 of full version we compiled the contesive state of art and looked at
different classification methods. We have foundt ttie classification with McSharry’s model
parameters has not been fully explored yet andah@eetwork as classifier is successfully used in
many applications. Pre-processing delineation @hasalmost a prerequisite of standard ECG
analysis. We use wavelet transform which is switag well for biological signals analysis.

In Chapter 2 we declare aims of dissertation.tRkirs describe methods for QT interval
measuring and QRS detection (Chapter 3 ) then wente with methods of ANN classification
and McSharry’s modelling in Chapter 4 . Resultalbimethods are summarized in Chapter 5 .

Regarding QRS complex detection we implemented leavmntour envelope technique
with comparable results tested on MIT-BIH Arrhytlantbatabase (Chapter 5.1). Concerning QT
interval measurement, we proposed an automatic adetlsing one scale of wavelet transform.
The method with other scales is able to detectlairacteristic points in ECG signal [14]. We
concluded that the proposed approach can workcgeritly (Chapter 5.2 and 5.3) and has mostly
smoother results of QT trends than manual and aatiommarks from standard QT database. We
also implemented semi-automatic template methodgtwhas less smooth results than wavelet
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method for less quality data and variable morphpldgavelet method provides mostly longer QT
interval than database, this offset is stable fool signal and can be subtracted.

The main advantages of the classification methednawdelling capabilities of McSharry’s
model enabling automatic simulation of differenthgthmia beats as we could see in Chapter 5.4.
Furthermore, we coped with the difficult task ofremt number of Gaussian functions to model
different types of arrhythmias without significatstortion.

We classified ECG beats from MIT/BIH Arrhythmia Bhtase (Chapter 5.5 and 5.6). We
were focused on two class classification of norbedts and premature ventricular contractions
which are life threatening arrhythmias. The averegje of classification accuracy for raw time
series and normal beats was 98.89% and for preenatemtricular contractions 97.94%. The
average rate of classification accuracy for McSharmodel and normal beats was 96.43% and
premature ventricular contractions 93.10%. We belighat the achieved performance of
McSharry’s model is very reasonable. Results of Ma8/'s model with ANN are lower than for
raw time series but they show ability of classifica and they still leave place for improvement.

Classification of normal beats for raw time sethesl worst results for signals 105 and 203.
Signal 105 has uniform PVCs but the predominantufeaof this tape is high-grade noise and
presence of artefacts. Signal 203 has multiform ®MBere are QRS morphology changes in the
upper channel due to axis shifts, there is conaldernoise in both channels, including muscle
artefacts and baseline shifts. This is a veryidiff record, even for humans! Without these two
signals classification accuracy for normal bea89igl5%.

Classification of premature ventricular contractidar raw time series had worst results for
signals 105, 108 and 215. Signal 108 has multifBmCs, the lower channel exhibits considerable
noise and baseline shifts. Signal 215 has alsoifomait PVCs. There are two very short
occurrences of tape slippage. Classification acyumithout these three signals for premature
ventricular contractions is 98.13%.

Classification of normal beats for McSharry’'s motladl worst results for signals 108, 114
and 203. Signal 108 and 203 are described abovgnalSNo. 114 has similar shape to normal
morphology. Without these three signals classificaiccuracy for normal beats is 97.96%.

Classification of premature ventricular contracidar McSharry’s model had worst results
for signals 215, 223 and 228. All three signalsehewltiform PVCs. Signal 223 has episodes of
ventricular tachycardia. Signal 228 has short aetwes of tape slippage. Without these three
signals classification accuracy for premature veualar contractions is 94.98%.

The performance of our system is comparable torékalts reported in the literature. The
main drawback of the used McSharry’s modelling radtls its computational costs because used
initialization steps (LADT and LSC). On the otheaanid, the fact of high computational cost is
compensated by some enhancement capacities of MgShaodelling.

Notwithstanding, we did not consider the perforneaispeed measures in the thesis, we
rather preferred to focus on the theoretical issdeselopment and consequently their
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implementation in most convenient software tootsrirthe point of view of saving programming
effort. Yet this suggestion might be pursued astaré direction.

6.1 ACHIEVEMENT OF GOALS

In the previous paragraphs, the achieved results haen described. We shall now discuss
how our research goals set in Chapter 2 have dasmmplished.

1. State of the Art. A comprehensive review of the state of the artclassification
methodology will be carried out. We have coveredemiange of used classification techniques.
Thus we have achieved the goal.

2. R peak detection and QT interval measurementThis goal consists of the two proposed
QT-interval measurement methods. We have applieceatransform on the problem of QRS
detection and QT interval measuring in Chaptera®d 3.2. We have concluded that the operator
semi-automatic is more sensitive to less qualitya dad changeable morphologies of the T wave.
Therefore, we have preferred the method based meletatransform described in Chapter 3.2.
Thus we have achieved the goal.

3. Electrocardiogram Modelling. We have illustrated the usefulness of McShamytxlel
in context of ECG modelling. We have shown in Ckeapt4 that McSharry’s framework is able to
model different arrhythmic electrocardiogram sigwéhout significant distortion. The modelling
approach has been based on a careful initializagohniques (Chapter 4.1) using pre-processing
of ECG signal by Linear Approximation Distance Tdhrelding Method and Line Segment
Clustering Technique. To sum up, we have accomgudishe goal.

4. Electrocardiogram Classification. We have shown that the McSharry’s model ANN
framework is able to solve the classification tdskleed, in Chapter 5.6 we have concluded the
usefulness of this approach on the basis of claasdn test on MIT/BIH Arrhythmia Database.
Thus we have achieved the goal of electrocardiogiassification.

5. Application of developed algorithms and results evaation. Algorithms were tested
and results evaluated in Chapter 5 . Thus we helviezed the goal.

6.2 CONTRIBUTION OF THE THESIS

Recently, a lot of aspects about ECG classificatiane been developed ([5],[13],[1], etc.),
but most of the suggested methods still leave rdomimprovement and next research. Big
amount of cardiologic signals still miss reliablassification algorithms. We think that the major
contribution of the thesis to the actual state ageah classification framework and QT interval
measuring. Mainly:
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 We have developed important pre-processing framnewising wavelet transform for

electrocardiogram characteristic points detection.

» Especially, QT interval measuring method withoetd of any pre-processing and with

ability of real time operation.

» Furthermore, we have focused our attention ongtlestion which wavelet is the most

appropriate for our T wave end detection and teabekty of its detection using only one scale of
CWT.

» We tested ability of McSharry’s model to moddfetient arrhythmic signals.

» Furthermore, we have focused our attention omgthesstion how many Gaussian functions

of McSharry’'s model are enough for arrhythmias nloggwithout significant distortion.

» We tested ability of McSharry’s model parameterslassify arrhythmic signals.

* Moreover, raw time series ANN classification hasen also applied for comparison

purposes with novel McSharry’s model parameters Aidnework. In both cases: raw filtered
data ANN classification and McSharry’s model ANNasdification were tested on MIT/BIH
arrhythmia beats with results comparable to resaftsrted in literature.
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