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Abstract 

 

Constitutive modelling of fibre reinforced solids is the focus of this work. To account for the 

resulting anisotropy of material, the corresponding strain energy function contains additional terms. 

Thus, tensile stiffness in the fibre direction is characterised by additional strain invariant and 

respective material constant. In this way deformation in the fibre direction is penalised. 

Following this logic, the model investigated in this work includes the term that penalises 

change in curvature in the fibre direction. The model is based on the large strain anisotropic 

formulation involving couple stresses, also referred to as “polar elasticity for fibre reinforced 

solids”.  Mechanical tests are carried out to confirm the limits of applicability of the classical 

elasticity for constitutive description of composites with thick fibres.  

The specific simplified model is chosen, which involves new kinematic quantities related to 

fibre curvature and the corresponding material stiffness parameters. In particular, additional 

constant k3 (associated with the fibre bending stiffness) is considered. Within the small strains 

framework, k3 is analytically linked to the geometric and material properties of the composite and 

can serve as a parameter augmenting the integral stiffness of the whole plate. The numerical tests 

using the updated finite element code for couple stress theory confirm the relevance of this 

approach.   An analytical study is also carried out, extending the existing solution by Farhat and 

Soldatos for the fibre-reinforced plate, by including additional extra moduli into constitutive 

description. 

Solution for a pure bending problem is extended analytically for couple stress theory. Size 

effect of fibres is observed analytically. 

Verification of the new constitutive model and the updated code is carried out using new exact 

solution for the anisotropic couple stress continuum with the incompressibility constraint. Perfect 

agreement is achieved for small strain case. Large strain problem is considered by finite element 

method only qualitatively. 

Three cases of kinematic constraints on transversely isotropic material are considered in the 

last section: incompressibility, inextensibility and the double constraint case. They are compared 

with a general material formulation in which the independent elastic constants are manipulated in 

order to converge the solution to the “constraint” formulation solution. The problem of a thick plate 

under sinusoidal load is used as a test problem. The inclusion of couple stresses and additional 

bending stiffness constant is considered as well. The scheme of determination of the additional 

constant d31 is suggested by using mechanical tests combined with the analytical procedure. 
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1. INTRODUCTION  

Fibre reinforced composite materials are widely used in automotive and aerospace industries. 

In particular, fibre-reinforced rubber is being used in pneumatic tyres, air springs, tubings and belt 

structures. Effective properties of a composite are generally influenced by the properties of 

constituents, volume fraction and directions of fibres, and quality of adhesion between rubber and 

fibres. Strength and stiffness in a preferred direction of the composite relate to properties of fibres, 

while properties of matrix determine material strength under shear, compression, tension 

perpendicularly to the fibres, and resistance of the composite to fatigue. 

In the present work, fibres in the composite are regarded as slender beams embedded in the 

nonlinear or linear elastic matrix. Employing the kinematics and general constitutive formulation 

presented in [2] and some newer findings [3], [4], [5], [6], [7], [8], [9] the author investigates a 

homogeneous model taking both tensile and bending stiffness contributed by fibres into account. 

The effect of individual fibres is “smeared – out” so that the bending stiffness of the homogeneous 

model simulates bending behaviour of the real heterogeneous structure. 

1.1. Goals of the thesis 

The broad objective of the thesis is to extend the existing research concerning constitutive 

modelling of the fibre-reinforced materials with elastomer matrix with the use of couple stress 

theory. In this objective the following issues are included: 

- realization of mechanical tests to illustrate the limits of applicability of the classical large 

strain elasticity for constitutive description of composites with thick fibres; 

- choice of the strain energy density model on the basis of polar elasticity theory; 

- new analytical solutions for polar elasticity or the extension of existing ones; 

- modification of FEM formulation; 

- verification of FE solutions for some analytically solvable problems; 

- theoretical study of the additional elastic constants and their influence. 

In the following chapter the works done on these issues are specified in greater detail.  
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2.  STATE OF THE ART 

 In general, the fibre composite described above can be modelled in two ways. The first way implies 

explicit geometrical modelling of (linear elastic) fibres embedded in the (hyperelastic or elastic) 

matrix. Such models will be referred to as “bimaterial models” in this proposal. Alternatively, a so 

called “unimaterial” model can be employed − it is based on geometry of the whole composite body 

only (without distinguishing its structural details) and includes phenomenological anisotropic 

constitutive model. The effect of tensile stiffness contributed by fibres is included mathematically 

into constitutive equations. Such model is computationally advantageous, but its application is 

limited.   

The use of phenomenological anisotropic models started with Spencer [10]. Anisotropic 

hyperelastic models typically include strain-energy density as a function of strain invariants with 

some of the invariants depending on the unit vector (vectors) of the reference fibre direction [11] 

[12], [13], [14]. In this way an intrinsic assumption of infinitesimally thin, densely and uniformly 

distributed fibres is implied, leading to their zero bending stiffness. The closer the composite 

structure is to these assumptions, the better agreement can be provided by the model. Such 

unimaterial finite strain models have been successfully employed for modelling of rubber reinforced 

by thin textile or carbon fibres [15], [16], [17], [18], [19], [5], [20]. In general, these models are not 

applicable if the characteristic length scale of non-homogeneity is comparable with dimensions of 

the specimen [21] and so called size effects arise. It is often the case when microscale problems  

[22], [23], [24],[25], [26], [27], [28] or composite materials [21], [29], [30], [31] are considered. 

The applied classical Cauchy continuum theory is not able to account for the influence of the 

characteristic size of substructure on material behaviour.  

In order to deal with the presence of size effects, non-classical continuum mechanics theories are 

typically employed. There are two classes of generalized continuum theories: higher-grade and 

higher-order theories [32]. In brief, higher-grade theories employ higher order gradients of the 

displacements, while higher-order continuum theories include additional kinematic variables 

attached to the material point. In particular, Cosserat theory [33], [34] (also known as micropolar) 

adds independent rotational degrees of freedom to the classical continuum; a detailed review and 

bibliography of this theory can be found e.g. in Altenbach [35].  Couple stress theory [36], [37] can 

be regarded as a special case of Cosserat theory, where a connection between the field of rotations 

and the displacement gradients is present. 

In this work the focus is on the fibre reinforced materials with one family of fibres – 

transversely isotropic material, generally hyperelastic.  For such solids with the size effects related 

to the bending stiffness, a new constitutive framework using CST was developed by Spencer and 
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Soldatos  in 2007 [2]. The authors intended the model to represent the behaviour of the fibre 

reinforced elastomers when the fibre thickness is comparable with the lowest lateral dimension of 

the specimen. Constitutive formulation is mathematically based on the notion of deformed fibre 

curvature, in addition to invariants of the deformation gradient. The introduced theoretical 

framework allows taking into account the contribution of the individual fibres to the bending 

stiffness of composite by employing the continuum capable of bearing couple stresses. A 

subsequent progress in that area was made by Soldatos  [37], [38], [39]. This is the framework 

adopted in the present work. 

The latest contribution by Farhat et al [7] should be mentioned as well; it deals with some important 

analytical solutions within the linear polar elasticity for fibre-reinforced solids.  

Adopting the framework of Spencer and Soldatos, Lasota [3] develops a finite element formulation 

and implementation aimed at solving large strain polar elasticity problems. He also proposes a 

specific simplified strain energy description. 

The aim of the present work is to progress further in understanding and application of the 

polar elasticity and hyperelasticity for fibre-reinforced solids. The emphasis is on verification and 

enhancement of both the constitutive model and its FEM implementation.  
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3. PRELIMINARY STUDY: SPECIMENS WITH NEGLIGIBLE FIBRE BENDING 

STIFFNESS 

3.1.  Experimental methods 

Uniaxial tension tests of composite specimens with a rubber matrix and single family of textile 

fibres in the middle layer of the specimen are carried out. Four groups of specimens with different 

declination of fibres were tested: 0°, 30°, 45°, 90°. All the specimens had dimensions approximately 

110×22×2.5 mm and diameter of the fibres 0.8 mm. Tension tests were realized using universal 

testing machine ZWICK Z020-TND. Elongation in the middle region of the specimen was recorded 

by extensometers (Fig. 3.1); the distance between extensometer levers was 20 mm.  

  

Fig. 3.1. Tension test of fibre 

composite with rubber matrix 

Fig. 3.2. Bending test of fibre 

composite with rubber matrix 

 

Bending tests were realized also with the ZWICK testing machine as a three point bending. 

Also pure rubber specimens were tested. During the test each specimen was placed in the test 

preparation and pushed against its middle part (Fig. 3.2). The dependency between the force and the 

middle deflection was recorded. 

3.2. Results of bending simulations 

The figures below present results of bending tests and their simulations. The tests were carried 

out with three groups of three specimens each: for 45° and 90° declination of fibres and for pure 

rubber. The same material parameters were set as for the tension test simulations.  
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Fig. 3.6. Results of the bending test and its simulation for 45° declination of fibres. 

 

Fig. 3.7. Results of the bending test and its simulation for 90° declination of fibres. 

 

Fig. 3.8. Results of the bending test and its simulation. Specimens made of pure rubber. 

As a result of the tests and simulations carried out it is verified that anisotropic hyperelastic 

constitutive model (in polynomial form) is able to simulate credibly results of tension and bending 

tests of fibre composites showing large strains under the following conditions: elastomer matrix 

shows negligible Mullins effect; bending stiffness of fibres is negligible. This result supports the 

earlier suggestion that in the case of not infinitely thin fibres the main reason of discrepancy 

between the unimaterial model and experiment lies in inability of the model to account for the 

bending stiffness and size effect of fibres. 
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4. EFFECTIVE ANISOTROPIC CONSTANTS WITHIN SIMPLIFIED MECHANICS OF 

MATERIALS 

In this section, the “rule of mixtures” approach is recapitulated for the approximate derivation 

of effective constants within the classic linear elastic mechanics. Then we proceed to apply a similar 

simplifying approach of mechanics of materials to include the additional parameter within the linear 

couple stress theory.  

 

4.1. Effective properties of fibre composite within the linear elasticity  

             We review now the derivation of the effective material properties within the framework of 

linear elastic mechanics of materials. Specifically, long fibre composites are still considered. 

Assumptions and simplifications used in linear elastic mechanics of materials are employed. This 

approach sets the relationships between the effective properties and properties of the constituents. 

Engineering constants of an equivalent homogeneous material are derived using  characteristics of 

the given composite and its components - volume fraction and geometric arrangement of fibres, 

matrix and fibre properties. Elementary models employ representative volume element (RVE) based 

on the following simplifications: 

- RVE consists of fibre and matrix ; 

- both fibre and matrix materials are linear elastic and isotropic; 

- RVE geometry does not change in the 3
rd

 direction; 

- area fractions in the direction of fibres represent volume fractions; 

- strains and stresses due to the Poisson’s ratio mismatch at the fibre-matrix interface are 

neglected; 

- the actual fibre arrangement in space (hexagonal, tetragonal, random) is of no consequence; 

- the round fibre is replaced with rectangular block with the same volume fraction; 

- perfect bonding at fibre/matrix interface is assumed; 

- cross-sections of both the matrix and fibre remain planar under any deformation; 

- the composite is macroscopically homogeneous  and transversally isotropic. 

 

4.2. The inclusion of the fibre bending stiffness parameter 

Generally the notation for couple stress components acting on the plane is as shown below: 
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Fig. 4.1. RVE (a, b) [3] 

But in this section only m13 is considered (plain strain problem for the unidirectional material). 

Presently, let us focus on a two-dimensional representative element of the composite.  We consider 

the RVE consisting of a fibre element and matrix element; fibre is regarded as a simple beam; 

matrix material is assumed to be significantly softer. Such approach implies inextensibility of 

fibres, or the problem formulation in which fibre elongation is negligible. 

Below we consider a general stress state of the composite. In Fig. 4.2  below, the stress components 

acting on fibre and matrix elements represent an average of the actual stress distribution. 

 

Fig. 4.2.  RVE at a substructure scale: resultant loads for each constituent (matrix in the upper part and fibre in the 

lower part) 
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The actual stress distribution in the fibre cross-section (Fig. 4.3) is linked to the resultant  loads in 

Fig. 4.2  by averaging the function throughout the fibre element height. 

 

Fig. 4.3.  Substructure scale: distributed load for the constituents  

If we focus on the normal stress distribution )x(~ f
211

  acting in the fibre cross-section, we can see 

that it contains a constant part which corresponds to the resulting traction 
f

11
  and another linear  

part which corresponds to resulting couple stress 
f

m
13

 (see Fig. 4.4) 

 

Fig. 4.4.  The normal stress distribution and the resulting loads 

 Now we can transform the real stresses to the equivalent homogenised cell below (Fig. 4.5) (by 

averaging the function throughout the whole representative element hight h): 

)x(f~
211


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Fig. 4.5.  EVE (macro-scale) 

The equivalent strains can be obtained by averaging as well, similarly to the equivalent stresses 

depicted above. In a current desciption, we accept that on the substructure scale the fibres behave as 

simple beams; on a macro scale (Fig. 4.5 above) when we consider an equivalent element of the 

homogenised continuum, the only independent degrees of freedom are displacements.   

 A more complicated model of the unit cell is used by Fleck and Shu in [30]. There the fibre 

element is modelled as Timoshenko beam experiencing both bending and shear deformation. Such 

behaviour on a substructure scale corresponds to the general Cosserat theory with presence of the 

additional degree of freedom - rotation in the point.  



11 
 

5. COMPOSITES REINFORCED WITH FIBRES RESISTANT TO BENDING: 

MATHEMATICAL MODEL FOR LARGE STRAINS AND ITS IMPLICATIONS 

5.1.   Introduction of the modified invariants and energy density function 

To construct computationally applicable strain energy form suited for the rubber-like composites 

reinforced with stiff fibres, simplifying assumptions were employed by Lasota [3]. The strain 

energy density W was restricted to be at most quadratic function of the components of Λ. Such 

assumption, as pointed out in [2], implies that the fibre radius of curvature is large compared to the 

substructure dimensions (fibre diameters or fibre spacing). To reduce the amount of invariants, the 

coupling between Λ and C is ignored.  For simplicity the strain energy density function is chosen to 

contain only one additional invariant accounting for the bending stiffness of fibres.  

Modified invariants can be introduced on the basis of modified tensors.  

,AA

2/3

AA1 CJCI                                                     (5.1)        

      ,CCBB

2/3

CCBB4 ACAJACAI                                          (5.2) 

In the present work the form of the energy density is modified and the invariant 
6I is included: 



,CAFG
3

1
ΛAGFΛACAGF

3

1

AΛΛAJAΛΛAI

ORO

1

CBBCRNNKO

1

OKRSSLRLKO

1

OK

COCOBB

3/4

COCOBB6





















          (5.3) 

      .
2

1 1J
d

1
Ik1Ik3IkW 63

2

421                                     (5.4) 

  

5.2. Parameter k3 for the fibre reinforced incompressible material 

We continue to consider a beam reinforced by parallel fibres subjected to pure bending with respect 

to X2 axis. For simplicity, material incompressibility is assumed. Fibres are initially aligned along 

the X1 direction, so vector A=(1;0;0)
T
. In this case it holds for the energy density 

     63

2

421 Ik1Ik3I
2

W 


                                                   (5.5) 

where unmodified invariants 1I , 4I , 
6I can be used. 

The constant k3 is  determined from the condition of equality of the bending stiffnesses of the 

homogeneous and heterogeneous models: 



12 
 

S

JEJEJE
k

homffmm



8

3
3                                              (5.6) 

This formula is analogous to the rule of mixture in application to the bending stiffness. The 

effective bending stiffness of the initial heterogeneous model is “smeared out” uniformly 

throughout the section of the homogeneous model by means of the couple stress theory.  

5.3. Numerical examples  

 The new finite element code developed in Matlab software by Lasota [3] is used below for 

computations within polar theory, and Ansys software is used for computations within conventional 

theory. The new code has been undergoing changes and modifications; the modifications introduced 

by me included: 

- the change of the constitutive model and all the related finite element equations in 

accordance with (5.3, 5.4); 

-  reformulation of code equations in the matrix form instead of index form which reduced the 

computational time substantially. 

As an illustrative example, let us consider a fibre reinforced thin rectangular plate with two 

rows of unidirectional fibres undergoing four-point bending (Fig. 5.1). As the fibre diameter is 

comparable to the dimensions of the specimen, size effect is to be expected. The given specimen is 

modelled in three different ways: 

- via a heterogeneous FE model with explicitly modelled fibres embedded in matrix; 

- via equivalent homogeneous transversally isotropic FE model in accordance with the classic 

elasticity (later referred to as classic model); 

- via equivalent homogeneous transversally isotropic FE model in accordance with the couple 

stress theory (later referred to as CST model). 

5.3.1. A thin composite plate with 0 degrees fibre declination: four-point bending 

   

Fig. 5.1 Four-point bending 

X2 

P 

a 

L 

P 
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The classical model with fibre direction defined by vector A (1,0,0)
T
 is based on the strain energy 

density 

     2
421 1J

d

1
1Ik3I

2

μ
W                                       (5.7) 

In the CST model a new term I6 is added related to the curvature of the deformed fibres. The 

corresponding hyperelastic anisotropic potential is as follows: 

     21J
d

1
Ik1Ik3I

2

μ
W 63

2

421                                     (5.8) 

The objective of setting all the constants is to simulate correctly both tensile and bending behaviour 

of the given heterogeneous model. Results of all the three simulations are compared in Fig. 5.2. 

 

Fig. 5.2 Comparison of FE simulations of 4-point bending using different constitutive models. 

5.3.2. A thin composite plate with 30 degrees fibre declination: four-point bending 

 The example above is a standard linear problem which can be solved analytically with respect 

to the deflection which can be assumed constant throughout the plate thickness. This simplicity 

occurs due to the fibres being aligned along the X1 axis. In the present example, we consider the 

case when the fibres have 30 degrees declination angle which renders the problem unsolvable 

analytically. The plate is loaded as shown in Fig. 5.1. The constant k3 is determined using (5.6) on 

the basis of the corresponding representative periodic element containing two fibres in the cross-
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section (Fig. 5.3).  

 

Fig. 5.3 Representative periodic element 

The values of the material parameters are as follows: k2 =12.75 MPa, k3 =-25.27 Pa·m
2
. 

Negative value of the constant k3 indicates that the bending stiffness of the classical homogeneous 

model, generated by the averaged tensile stiffness of the heterogeneous plate, is higher than the 

actual plate’s bending stiffness. So the CST model is constructed by augmenting the classic model 

with the additional term that, roughly speaking, subtracts the excessive bending stiffness without 

affecting the tensile properties of the model in any way (which are in complete agreement with the 

heterogeneous structure already).   

Importantly, the fibre direction unit vector is now defined as (0.866, 0, 0.5)
T
 

 

Fig. 5.4.  Comparison of FE simulations of 4-point bending using different constitutive models for the case of fibre 

declination angle of 30 degrees. 
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6. AN EXACT SOLUTION OF THE BOUNDARY PROBLEM FOR THE THICK POLAR 

MATERIAL PLATE FOR THE LINEARIZED CASE 

In this section, thick fibre-reinforced plate under certain boundary conditions is considered. Polar 

theory equations are employed in linear formulation. The solution of the plane strain boundary 

problem of polar elasticity for the static and dynamic flexure of a thick laminated plate has been 

recently derived by Farhat and Soldatos in [7]. The authors take into account the contribution of the 

couple stresses with the help of one extra elastic modulus. In the present study, after reproduction of 

the solution presented in [7] for the case of static flexure of a single-layer plate, the solution is 

extended to different boundary conditions with three extra elastic moduli in the model. In this 

chapter some new numerical results are presented which complement those in [7].  

6.1. Problem setting 

Let us consider a planar boundary problem: a thick transversely isotropic plate, infinite in the x3 

direction, subjected to certain boundary conditions corresponding to the plane strain. In this case, 

the displacements are functions of only two coordinates 
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The following equations in terms of displacements u1, u2, obtained by Spencer and Soldatos [2] for 

the case of the plane strain problem of the plate with the fibres initially aligned with x1 direction, 

will be further employed: 
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   (6.2) 

where cii represent stiffness matrix components from classic elasticity, and ci are elastic moduli that 

characterise the substructure (c1 , c2 correspond to the resistance to “splay” mode deformation of 

fibres and c3  -  to “bending” mode deformation). 

6.2. Solution 

We make use of the method of the boundary problem solution in [7] for the case of static flexure of 

a single-layered plate and extend it to different boundary conditions (Fig. 6.1) and additional 

components of the model (terms with coefficients c1, c2 in the system (6.2)).  
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Fig. 6.1 Displacement boundary conditions 

For a plate under the above specified load, the solution in the following form can be used: 
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6.3. Results 

The elastic constants for the transversely isotropic material are set as follows: EL =40 ET , GLT 

=0.5ET ,   GTT =0.2 ET,  νTT = νLT =0.25. Adopting notation from [7] we set  

d31=c11 
~

hL                                                                    (6.17) 

where 
~

 is a non-dimensional parameter related to intrinsic material length parameter (for more 

details see  [7]). Each of the remaining moduli can be set in the similar manner (d11=c11 1

~
 hL, 

d33=c11 2

~
 hL), although the definition of these moduli is out of the scope of this study. For each 

calculation only one additional elastic modulus is considered nonzero, the other additional moduli 

are omitted from the model (i.e., not present in the system (6.10)). Thus a quantitative estimation of 

the influence of each of the additional elastic moduli is obtained. 
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7. APPLICATION OF POLAR ELASTICITY TO BENDING OF A THICK PLATE UNDER 

SMALL STRAINS. 

To gain a better understanding of the additional constant and the role of couple stress in polar 

theory [2], we focus on exact analytical (polar elasticity) solutions for the problem of pure bending 

of thick infinite plates. The solution is done for a transversely isotropic material under small strain 

assumption. 

7.1. Comparison summary  

 To briefly illustrate the differences in the equivalent models, a summary of the is presented below 

for comparison. 

classical (EC)    periodic (PS)    couple stress (EP) 

 

32211 Mdxx

h

h




                                                                                       32132211 Mdxmdxx

h

h

h

h

 


  

Fig. 7.1. Comparison of the models. Bending moment  

The heterogeneous plate (PS model) under pure bending can be modelled as effective classic (EC) 

homogenous model (option 1) or effective polar (EP) homogeneous model (option 2). The overall 

applied bending moment in all the cases has the same value, but the stress distribution is different.  

In the 1st model the moment is transferred to the material by tensile stress only, and in the 2nd 

model the moment is transferred by tensile stress as well as couple stress. While normal stress is 

related to the extension or compression of the fibre, Couple stress is directly related to the fibre 

curvature only. 

1111
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In order to compare the above 3 models, the equivalent effective material parameters must be 

defined. We start with the heterogeneous (periodic) model: E1  is the function of x2, the rest of 

parameters are constants. Its periodically changing stiffness can be regarded as an approximation of 

the fibre reinforced composite. 

For the EC homogeneous model the E1 is defined by averaging, and the rest of the constants are the 

same. 

For the EP homogeneous model, all the constants are identical to the classic, but the additional 

parameter is present. Bending stiffness parameter d31 serves as a correction parameter which 

ensures that the overall bending stiffness of the plate in the EP model equals that one of the PS 

model. 

Even without going into detail, we can see that characteristics of the heterogeneous model are more 

comprehensively accounted for in the second (EP) model: particularly, the amplitude E wave is not 

present in the 1st model in any way, since it has no effect on the averaged modulus. Also the 

number N which is indicative of the number of fibres can not be included in the 1st model. 

 

Fig. 7.2. Comparison of the models. Material parameters 

1111
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8. VERIFICATION OF THE FEM CODE BASED ON THE EXACT SOLUTIONS FOR 

SMALL STRAIN PROBLEMS 

Verification is carried out using new exact solutions for the anisotropic couple stress 

continuum with the incompressibility constraint. Considerations and techniques employed in 

Section 6 are used to achieve exact solutions of the linear boundary problems below. Plane strain 

boundary problem is solved both analytically and numerically (using the new FEM code). The large 

strain problem is also examined. 

8.1. Choice of the specific form of the model – incompressible material 

The strain energy density is modified for material incompressibility: 

    1)p(JIk1Ik3IkW 63

2

421  1
                         (8.1) 

where p is Lagrange multiplier related to incompressibility and J is the volume ratio. The 

coefficients in eq. (8.1) represent material parameters: k1 is related to properties of the matrix, k2 

and k3 relate to the tensile and bending stiffness in the direction of reinforcement, respectively.  

8.2. Results 

The solver by Lasota [3] is based on finite element method (FEM) and applies the polar (couple 

stress) theory. To test the applicability of this solver, it is applied to two plane strain problems in the 

first part of this section. In order to verify the element formulation and the chosen form of strain 

energy density function, the FEM numerical results are compared with values obtained analytically. 

Since there are no analytical solutions available for large strain anisotropic polar elasticity, we 

consider a small strain case here.  

 

Fig. 8.1. Boundary value problem  
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Analytical solution of a plane strain boundary problem of polar elasticity for flexure of the thick 

plate under sinusoidal pressure load (Fig. 8.1) has been derived recently by Farhat and Soldatos in 

[7]. Complete boundary conditions are depicted in Fig. 8.1. 

Numerical and analytical results for the normal stress and the couple stress along the axis x2 (in the 

cross-section x1=L/2) are depicted in Figs. 8.2, 8.3, respectively. All the FEM results show highly 

accurate agreement with the exact analytical curves. 

 

Fig. 8.2. Distribution of first principal stress σ1  throughout the thickness of the plate in the middle section (x1=L/2).  

 

 

Fig. 8.3. Distribution of couple stress m13 throughout the thickness of the plate in the middle section (x1=L/2). 

Also, to illustrate the capability of the FEM code to solve problems under large strains, tension test 

of a fibre reinforced elastomer specimen loaded in another direction than that of the fibres was 

simulated (Fig. 8.4). The FEM applications on the basis of both classical elasticity and nonlinear 
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polar theory are compared (Fig. 8.5, Fig. 8.6)..  As expected, the non-zero parameter k3 influences 

the response by adding anisotropic bending stiffness to the model (namely, to the implicitly present 

fibres). 

 
Fig. 8.4. Specimen of fibre reinforced elastomer loaded in tension 

 
Fig. 8.5.   Comparison of the deformed fibre rotation angle in both models under the same load 

 

Fig. 8.6.  Deformed and undeformed mesh of the fibre reinforced elastomer under tension (k3=0.5) 

In the large strain range no solution enabling us a verification was found in literature, so the 

presented example illustrates only qualitatively the capability of the code to mimic the bending 

stiffness of the fibres. When the parameter k3 is set to zero in the applied material model, it is 

reduced to a classical (Cauchy) model taking only tension stiffness of the fibres into consideration, 

i.e. based on the assumption of the infinitesimal diameter of fibres and their uniform distribution.. 

Addition of a non-zero value of the k3 parameter has increased the stiffness of the specimen, 

demonstrating thus the increased resistance of the specimen against deformation caused by bending 

stiffness of the fibres.  
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9. PROBLEMS WITH KINEMATIC CONSTRAINTS: LINEAR ELASTICITY WITH AND 

WITHOUT ADDITIONAL BENDING STIFFNESS 

9.1. Problem setting 

Let us consider a plane strain boundary problem: a simply supported thick transversely isotropic 

plate, infinite in the x3 direction, loaded by sinusoidal pressure on the top surface. In this case, the 

displacements are functions of only two coordinates x1, x2. The material in question is transversely 

isotropic with high tensile stiffness in x1 direction. It simulates a fibre-reinforced composite with 

one family of straight fibres. Boundary conditions include sinusoidal pressure on the top surface of 

the plate and zero vertical displacement at the ends of the plate, similar to Fig. 8.1. 

9.2. Incompressibility constraint case 

Here the focus is on the incompressible material and corresponding elastic solutions. The  

constitutive relations in the following general form [41] for symmetric stress components are 

      1111111 22 ijjiTjijiijijTijij aaaaaa   ,     (9.1) 

where 321   . We use    (which corresponds to incompressibility), and α is not present 

in the relations after simplifying. The second part of the constitutive equations is: 

2

1

2

2

3113
x

u
dm
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                                                         (9.2) 

With regard to material incompressibility we use hydrostatic pressure  321
3

1
 P .   Thus, 

three independent material constants μ1T, μT. β are required for the description of a transversely 

isotropic incompressible material, and four constants (with d31) if the fibre bending stiffness is 

included in formulation. The solution is sought in the form 
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                                                (9.3)                

This corresponds to the boundary conditions applied at the plate ends. The upper and lower 

boundary conditions for the present problem, i.e. along the upper and lower surfaces, are set as 

follows: 
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The present (extensible) incompressible formulation is further referred to as EIF (with hydrostatic 

pressure as additional unknown and kinematic constraint employed) and a “general” (extensible and 

compressible) material formulation is further referred to as GF. We approach EIF with GF by 

setting respective material constants closer to the values corresponding to incompressibility. In 

terms of generalised Hooke’s law for transversely isotropic material, perfect incompressibility is 

achieved by setting Poisson’s ratios as follows: 
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9.3. Inextensibility constraint case    

In this section the material in question is set to be inextensible in x1 direction (this represents 

inextensible fibres). The constitutive description involves Lagrange multiplier T which is related to 

unknown tension in x1 direction. Applying the corresponding constitutive equations for the present 

plane strain problem we obtain: 
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Similarly to (9.4) the solution is chosen as follows: 
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which corresponds to the boundary conditions applied at the plate ends. 

The the upper and lower boundary conditions are given by: 
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The couple stress is  
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Such formulation will be referred as EIF (extensible incompressible formulation).  Thus, three 

independent material constants μ1T, μT. λ  are required (four if d31 ≠0). 

9.4. Inextensibility and incompressibility: double kinematic constraint   

In this section, the material is assumed to be both incompressible and inextensible. The 

corresponding relations in the case of plane strain are: 

 




























L

x
sincd

L
m

x

u
2

,P

,TP

1

131

2

13

1

2

T112T112

22

11









                                           (9.10) 

Solution is sought in the form 
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                      (9.11) 

The upper and lower boundary conditions are given by (9.8). 

The formulation is here and further abbreviated as IIF (inextensible, incompressible formulation). 

9.5. Effect of additional bending stiffness for inextensible incompressible 

material  

The results obtained for the models in different formulations are compared with converging their 

effective properties. The convergence is established for the classical material description (d31=0). In 

this paragraph the focus is on the resulting couple stress distribution in the middle cross-section of 

the plate. The d31 parameter is set the same in all computations. Different combinations of 

kinematic constraints and their effect on the couple stress distribution m13 are examined below. 
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The graph in (Fig. 9.1) illustrates convergence of the results obtained with general formulation (GF) 

to the result obtained with (extensible) incompressible formulation (EIF). For both d31=10 N. We 

converge GF model to EIF by approaching Poisson ratio 5.01 T . 

 

 

Fig. 9.1.  Couple stress at the end of the plate calculated for different constitutive models 

The comparison in Fig. 9.2 is between two models (for both d31=10 N) which we refer to as IIF 

(inextensible incompressible formulation) and EIF (extensible incompressible formulation) 

accordingly. The material properties were set such that EIF approaches inextensibility (E1 is 

increasing).   
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Fig. 9.2.  Couple stress in the middle of the plate calculated for different constitutive models 

As it can be seen from the figure below, with increasing longitudinal Young’s modulus in EIF 1E

, the couple stress m13 tends to constant value throughout the cross-section, as it is for IIF. 

Comparison in the Fig. 9.3. is between IIF model and inextensible (ICF) model. Relations that are 

valid for the inextensible (ICF) model: 
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In order to converge ICF to IIF, we take incompressibility relation (9.45b) and approach it by 

varying the parameter νT:  11 TT   , so 1T  
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Fig. 9.3.  Couple stress in the middle of the plate calculated for different constitutive models 

 

9.6. Polar theory graphs examination 

- EIF model (incompressible material with extensible, though stiff fibres) shows couple stress 

distribution close to constant in the cross-section. Fig. 9.1 shows gradual convergence of the GF 

(general formulation) model results to the EIF ones. 

- Figs. 9.2, 9.3  show gradual convergence of the EIF and ICF results to IIF result (which is 

constant couple-stress distribution) 

-  Inextensible (ICF) model response converges to IIF by manipulating Poisson’s ratio νT. 

- Extensible incompressible (EIF) model response converges to IIF by increasing of Young/s 

modulus E1. 
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10. CONCLUSIONS AND FUTURE WORK SUGGESTIONS 

   The current work is an attempt of a systematic study of the so called “polar elasticity for 

fibre-reinforced solids”, its mechanical interpretation and specifics of numerical implementation 

and represents a natural continuation of Lasota’s dissertation [3].  The contribution of fibres to the 

material stiffness is characterized by the tensile stiffness parameter and the additional parameters 

related to another fibre deformation mode (the focus of current work is bending mode of 

deformation).    

            The work starts with an experimental mechanical study with the steel fibre-reinforced rubber 

specimens. The fibres are comparatively thick and located in the middle plane of the specimen. The 

study shows the validity of the anisotropic unimaterial constitutive model in case of tension tests 

but its inability to simulate the bending behaviour of the composite correctly.  This result supports 

the earlier suggestion that main reason of discrepancy lies in the inability of the model to account 

for the bending stiffness contribution and size effect of fibres. 

               As a next step, the general logic of the effective constants derivation is considered for a 

small strains case of fibre composites.  The “rule of mixtures” approach of mechanics of composite 

materials is recapitulated, and a similar simplifying scheme is employed to include the additional 

parameter corresponding to the bending stiffness contributed by fibres.  

             The role of the additional effective constant in the model is investigated further on. The 

constitutive equations published in Spencer and Soldatos [2] are used to formulate a specific form 

of strain energy density function on the basis of constraint Cosserat theory (in which couple stresses 

are introduced and displacements or displacement rates are the only independent unknowns). This 

approach leads to second derivatives of displacement rates occurring in the finite element 

formulations. A specific form of strain energy density is proposed with an additional term 

correcting the effective bending stiffness of the continuum.  The model used recently by Lasota [3] 

is examined and modified in order to make it more mechanically representative.  For the modified 

constitutive model the issue of determination of the additional constant k3 (associated with the fibre 

bending stiffness) is considered. Within the small strains framework, the formula is offered linking 

k3 to the geometric and material properties of the initial heterogeneous structure.  

             The finite element code by Lasota [3] is modified to incorporate the additional invariant. 

Code equations are reformulated in the matrix form instead of index form which reduces the 

computational time substantially. The corresponding calculation is carried out for the composite 

plate under bending in the case of small strains. Two examples are considered: composite plate with 
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fibres aligned along the longitudinal axis, and composite plate with fibres aligned under the angle of 

30 degrees to the longitudinal axis. It is shown that the discrepancy between the classical 

homogeneous model and a heterogeneous model can be largely diminished by the presented 

approach.  

           A complementary study is also carried out for a thick fibre-reinforced plate under 

displacement boundary conditions. Polar elasticity equations are employed in linear formulation. 

The solution of the plane strain boundary problem of polar elasticity for the static and dynamic 

flexure of a thick laminated plate has been recently derived by Farhat and Soldatos [7]. The authors 

take the contribution of the couple stresses into account with the help of one extra modulus of 

elasticity. In the present study, after having reproduced the solution in [7] for the case of static 

flexure of a single-layer plate, I extended the solution to different boundary conditions with three 

extra modules of elasticity applied in the model. In this chapter some new numerical results are 

presented which complement those in [7]. 

            In Section 7 a new pure bending elasticity solution is derived for the transversely isotropic 

polar material. It is compared with solutions based on the conventional theory in order to 

demonstrate how the size effect can be taken into consideration in the homogeneous polar model. 

           In Section 8 verification of the new constitutive model and finite element code [8] is carried 

out using new exact solution for the anisotropic couple stress continuum with the incompressibility 

constraint. Considerations and techniques employed in Section 6 are used to achieve exact solution 

of the linear boundary problem. Plane strain boundary problem is solved both analytically and 

numerically. The finite element calculations and analytical solution show perfect agreement. The 

large strain problem is also examined. In the large strain range no solution enabling us a comparison 

was found in literature, so the presented example illustrates only qualitatively the capability of the 

code to mimic the bending stiffness of the fibres.  

In Section 9, a known linear elasticity problem is considered in two new ways. Firstly, 

constraints of incompressibility and inextensibility in fibre direction are added; secondly, the 

intrinsic anisotropic bending stiffness (based on polar elasticity) is included in the model. 

Inextensibility and incompressibility constraints cause the presence of respective Lagrange 

multipliers in the formulation.  The resulting stress fields are compared to those obtained using the 

slightly compressible and slightly extensible formulation. The observed characteristics of stress 

distribution are compared and it is shown that those obtained with compressible and extensible 

formulations tend to the incompressible and inextensible ones with decreasing compressibility and 

extensibility. The scheme of determination of the additional constant d31 is suggested. 
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