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INTRODUCTION

Nowadays, we observe two main phenomena in the genesis of Parkinson’s disease
(PD). Namely the progressive degeneration of dopaminergic neurons in the sub-
stancia nigra pars compacta of the midbrain, and/or development of 𝛼-synuclein-
containing Lewy bodies within the surviving neurons. It is known that the asso-
ciated motor symptoms such as tremor at rest, progressive bradykinesia, muscular
rigidity, postural instability, gait freezing, voice/speech disorders, etc., and non-
motor symptoms such as behavioural alternations, reduction of cognitive abilities,
sleep disturbances, anxiety, depression, etc. have a detrimental impact on patients’
health, physical and mental condition, social life, independence, and quality of life
in general. Typically, PD is rare in young population and its prevalence rate grows
with the advancement of a person’s age. That’s why it is mostly diagnosed in
persons aged over 60 years. But, before the conclusive clinical diagnosis is finally
made, there is a long period of the development of the underlying neurodegenerative
process behind the disease, slowly but surely worsening the severity of its symptoms.

At some point, the cardinal motor symptoms are the ones that first bring pa-
tients to a hospital searching for help, and even though the disease gets finally
diagnosed, at this stage, most of the dopaminergic neurons have already been dam-
aged, unfortunately. As one can imagine, the conventional clinical diagnosis of PD
is therefore based on the presence of the above-mentioned cardinal motor symptom.
Nevertheless, the presence of these symptoms is still not enough, and other criteria
such as the short-term positive response to dopaminergic (anti-parkinsonian) medi-
cation, and many others have to be met. It is therefore obvious that the diagnosis
of PD is not an easy task. In fact, even today, an objective diagnostic test which
allows a definitive 100 % accurate diagnosis of this disease has not been developed.
Thus, clinicians are forced to use a battery of tests, heuristics, biomarkers, and in-
clusion/exclusion criteria to make the diagnosis as accurate as possible. Another
drawback of the current state of affairs is that this set of examinations has to be
taken in the medical environment under the supervision of skilled clinician/s, which
is logistically demanding, costly and time-consuming. Not to mention the fact that
the disease does not have to be diagnosed at the first trial. It is often the case
that prior the diagnosis elderly people have to visit the hospital several times, which
makes this whole process even more problematic.

Today, we are living in the era of modern technologies, smart devices, internet of
things, etc. Even though older population might not be adopted to such a technolog-
ical advancement, younger people essentially grow up surrounded by it. Nowadays,
smart phones, smart watches and other devices can be easily used to record a large
variety of biological signals such voice/speech, movements of hands, gait, heart rate,
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and many more. With the previously mentioned facts in mind, it seems that one of
the major obstacles of PD diagnosis is the lack of data available for the clinicians.
Therefore, these modern devices could be potentially used to collect a large amount
of data without necessity of the patient’s presence at the clinic or any specialized su-
pervision. Such data could be securely transmitted and stored on cloud, where only
authorized persons could be allowed to access them. With this approach, clinicians
would be provided with an additional information about the medical condition of
their patients that could definitely help with their decision making that is related to
diagnosis, assessment, treatment and/or monitoring of the disease. Imagine a system
that would be able to access and process all clinical data (data acquired by a doctor
as well as those acquired by a variety of specialized devices such as those discussed
above) available for a patient. The large scale of data that would be available could
provide such a system with the power to use advanced signal processing techniques
to quantify and describe properties of the acquired biological signals that might
even lay beyond human perception. Next, modern machine learning algorithms,
statistical analyses and visualization methods could be applied to provide clinicians
with powerful reports about the current state of biomarkers and their evolution in
time, and so on and so forth. It is evident that not only doctors, but also patients
themselves would benefit from such information. However, to reach that point, rela-
tionship between properties of these biological signals and other clinical symptoms
of PD needs to be investigated and fully understood.

Speech is the most natural way of communication. In most cases, people use it
without problems. However, when a disorder such as PD comes into play, speech dis-
order named hypokinetic dysarthria (HD) gets involved. The associated voice/speech
deviations in the early stages of the disease are very hard to be clearly perceived. In
addition to that, patients themselves are in most cases not aware of their handicap,
and the perception of the changes in their voice and speech is different than the one
reported by their family and relatives. But in general, and depending on the stage of
the disease, at some point, speech communication difficulties will eventually come.
In fact, HD is one of the most disabling symptoms of PD that occurs in most of the
patients suffering from it, and therefore, even though HD has a detrimental impact
on the patient’s quality of life, it might be used as a rich source of information for
its diagnosis, assessment and monitoring.
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1 HYPOTHESES AND GOALS

1.1 Hypotheses

Taking the previously mentioned facts into account, it is hypothesized that quantita-
tive acoustic analysis of voice/speech signals can be used to robustly and complexly
describe and identify HD in PD, and to indirectly assess other non-speech symptoms
of PD. Specifically, it is assumed that parametrization of voice/speech deficits in HD
and application of statistical analysis and/or modern machine learning techniques
is capable of estimating the values of clinical rating scales that are conventionally
used to assess motor and non-motor symptoms of PD at the baseline, as well as in
the horizon of two years.

1.2 Goals and objectives

The main goal of this doctoral thesis is to investigate possibilities of using quanti-
tative objective evaluation of HD, employing modern clinically interpretable speech
parametrization, statistical analysis and machine learning techniques, in direction
of PD identification and assessment. More specifically, this thesis has five main
objectives that can be briefly summarized as follows:

1. Robust computerized quantification of HD manifestations in PD – to use mod-
ern clinically interpretable speech parameterization techniques to quantify
manifestations of HD in the area of phonation, articulation, prosody and
speech fluency that are known to occur with idiopathic PD.

2. Complex analysis and identification of dysprosody in HD – to study dysprosody
in HD and to investigate an influence of prosodic demands such as precise
control of speech melody variability during recitation or modulation of stress
in speech, on computerized identification of HD.

3. Assessment of non-speech symptoms of PD at the baseline – to analyse the
possibilities of using acoustic analysis of HD to estimate the scores of a variety
of clinical rating scales that are nowadays being commonly used to assess
motor and non-motor symptoms of PD at the baseline.

4. Assessment of gait freezing in PD in the horizon of two years – to analyse the
possibilities of using acoustic analysis of HD at the baseline for predicting the
change in the severity of gait freezing in PD in the horizon of two years.

5. Analyse pathological mechanism shared by HD and gait freezing in PD – to
investigate if there are any pathological mechanisms shared by voice/speech
disorders in HD and freezing of gait in PD.
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2 IDENTIFICATION OF DYSPROSODY

Many researchers have studied speech disorders associated with dysprosody in HD
[2, 22, 29, 41, 42, 45, 46]. The literature have demonstrated the presence of re-
duced variability in pitch and intensity of speech. However, the results on speech
rate/pausing disturbances remain to be inconsistent [1]. This study proposes a novel
approach for accurate identification of dysprosody in HD. So far, there has been no
work dealing with HD analysis and identification using a poem recitation and/or
a comparison between neutral, stress-modified and rhymed speech. Furthermore,
most works do not perform the gender-differentiation, which neglects the informa-
tion about gender-specific patterns of dysprosody in HD.

2.1 Methodology

2.1.1 Description of the dataset

For the purpose of this study, 149 Czech native speakers were examined: 98 patients
with idiopathic PD (59 males and 39 females), and 51 healthy speakers (25 males
and 26 females). All PD patients were examined on their regular dopaminergic
medication approximately 1 hour after the L-dopa [28] dose. For more information
about demographical and clinical characteristics of the used cohort, especially for
the group of male and female participants, see Table 2.1 and Figure 2.1.

With respect to the speech task used to quantify prosodic disorders present in
HD, the following three speech tasks comprising two reading tasks (emotionally-
neutral and stress-modified) and a poem recitation task were considered:

1. Reading a short paragraph with neutral emotion. In Czech (original) – I na
tom, že člověk si opatř́ı psa, aby nebyl sám, je mnoho pravdy. Pes opravdu
nechce být sám.; In English – Even the fact that a man gets a dog to not be
alone is pretty much true. A dog really don’t want to be alone.

2. Stress-modified reading. In Czech (original) – Teď muśı̌s být chv́ıli trpělivý,
než to dokončme. Už mě to nebav́ı, dej mi už konečně pokoj! Tak co, jak to
dopadlo?; In English – Now, you have to be patient until we finish it. I’m tired
of it already, leave me alone! So, how did it go?

3. Poem recitation task. In Czech (original) – Chcete vidět velký lov? Budu lovit
v džungli slov. Osedlám si Pegasa, chyt́ım báseň do lasa!, ; In English – Would
you like to see a big hunt? I will be hunting in a jungle of words. I will saddle
the Pegasus, I will catch a poem into a lasso.
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Fig. 2.1: Descriptive statistical graphs of clinical characteristics of PD patients. The
structure of the graph: main diagonal – histograms are visualized; upper triangular
part – scatter plots with the fitted lines of the robust linear regression models; and
lower triangular part – residuals plots. Colour notation: blue colour – female speak-
ers, and green colour – male speakers.

2.1.2 Feature extraction

To describe dysprosody in HD, clinically interpretable acoustic features [11] were
used. To quantify variability of speech intonation, features derived from fundamen-
tal frequency (F0) [10] were computed: standard deviation of F0 (FOSD); relative
standard deviation of F0 (relF0SD); variation range of F0 (FOVR); and relative vari-
ation range of F0 (relF0VR). To quantify variability of speech intensity: features de-
rived from squared energy operator (SEO) and Teager-Kaiser energy operator (TEO)
were computed: standard deviation of SEO/TEO (SEOSD/TEOSD); relative stan-
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Tab. 2.1: Demographic and clinical characteristics of the participants.

characteristics PD (females) PD (males) HC (females) HC (males)

Number of speakers 44 53 22 29
Age (years) 68.48 ± 7.64 66.21 ± 8.78 62.25 ± 9.83 65.40 ± 9.04
PD duration (years) 7.61 ± 4.85 7.83 ± 4.39 - -
UPDRS III 22.06 ± 13.73 26.85 ± 10.22 - -
UPDRS IV 2.72 ± 3.01 3.15 ± 2.59 - -
RBDSQ 3.42 ± 3.48 3.85 ± 2.99 - -
FOG 6.94 ± 5.72 6.67 ± 5.57 - -
NMS 36.03 ± 26.72 38.19 ± 19.72 - -
BDI 18.57 ± 23.94 9.69 ± 6.23 - -
MMSE 27.38 ± 3.63 28.56 ± 1.05 - -
LED (mg/day) 862.44 ± 508.30 1087.00 ± 557.47 - -

Table notation: UPDRS III – Unified Parkinson’s disease rating scale, part III: evaluation of motor func-
tion [17]; UPDRS IV – Unified Parkinson’s disease rating scale, part IV: evaluation of complications of therapy
(Hoehn and Yahr scale, staging of severity of Parkinson’s disease) [17]; RBDSQ – The REM sleep behavior dis-
order screening questionnaire [47]; FOG-Q – Freezing of gait questionnaire [21]; NMSS – Non-motor symptoms
scale [14]; BDI – Beck depression inventory [7, 8]; MMSE – Mini-mental state examination [18]; LED – L-dopa
equivalent daily dose (mg/day) [28].

dard deviation of SEO/TEO (relSEOSD/relTEOSD); variation range of SEO/TEO
(SEOVR/TEOVR); relative variation range of SEO/TEO (relSEOVR/relTEOVR).
Finally, to quantify speech rate/pausing: total speech time (TST), net speech time
(NST), total pause time (TPT), total speech rate (TSR), net speech rate (NSR),
total pause time (pauses longer than 50 ms) (TPT (50 ms)), articulation rate (AR),
and speech index of rhythmicity (SPIR) were computed.

2.1.3 Analytical setup

To measure the strength of a monotonic relationship between feature vectors and
the associated response variable [43], Spearman’s correlation coefficient (𝜌) was used.
Next, mutual information was computed [50]. Mutual information is a measure of
the amount of the information shared by two random variables. It is defined as:

𝐼(𝑋; 𝑌 ) =
∫︁

𝑋

∫︁
𝑌

𝑓(𝑥, 𝑦) log2

(︃
𝑓(𝑥, 𝑦)

𝑓𝑋(𝑥)𝑓𝑌 (𝑦)

)︃
, (2.1)

where 𝑋 and 𝑌 are both random variables with the associated joint probability
density function 𝑓(𝑥, 𝑦), marginal density functions 𝑓𝑋(𝑥) and 𝑓𝑌 (𝑦) respectively.
For the purpose of this study, marginal entropies 𝐻(𝑋) and 𝐻(𝑌 ), and joint entropy
𝐻(𝑋, 𝑌 ) were used to compute MI. With this approach, MI is defined as:

𝐼(𝑋; 𝑌 ) = 𝐻(𝑋) + 𝐻(𝑌 ) − 𝐻(𝑋, 𝑌 ). (2.2)
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Moreover, Mann-Whitney U test was used to compare the distribution of the
prosodic features between HC and patients with PD. The Mann-Whitney U test
is a non-parametric statistical test that is used to assess whether two independent
groups of variables are significantly different from each other [9]. It is defined as:

𝑈 = 𝑅1 − 𝑛1(𝑛1 + 1)
2 , (2.3)

where 𝑛1 is the sample size for sample 1, and 𝑅1 is the sum of the ranks in sample
1. Note that it is not specified which sample is considered sample 1, and therefore
and equally valid statement can be made using sample 2 (𝑛2 instead of 𝑛1 and 𝑅2

instead of 𝑅1, respectively).
To evaluate an individual power of each of the acoustic features to discriminate

healthy and dysarthric speech, every feature was used separately as an input to the
random forest (RF) classifier (univariate models). Next, to build models capable of
HD discrimination based on the combination of the acoustic features, multivariate
models were built as well. However, to select only the relevant set of features [24],
a sequential floating forward selection (SFFS) [39] algorithm was applied. To evalu-
ate the performance of the models, Matthew’s correlation coefficient [25, 31] (MCC),
accuracy (ACC), sensitivity (SEN), and specificity (SPE) were computed. MCC was
also used as a measure for assessing the classification performance of the models dur-
ing a feature selection process.

To evaluate the statistical power of the predictions made by the classifier [15],
permutation test was used [38]. In this study, the significance level (𝛼) of 0.01
was selected. Tested classification models with p-values bellow 𝛼 were consider
sufficiently high above chance level. Matthew’s correlation coefficient was chosen
as a test statistic for the permutation test as it is the measure used to assess the
classification performance of the models during a feature selection step. The number
of permutations was selected to be equal to 1000 and the classifier validation was
conducted using stratified 10-fold cross-validation with 20 repetitions [15, 35].

2.2 Experimental evaluation

Results of the univariate analysis are summarized in Table 2.2. As can be seen,
the best classification performance in terms of the classification accuracy com-
puted for the univariate models can be summarized as follows: a) poem recitation
task – ACC = 64.2 % (female participants), ACC = 64.6 % (male participants), and
ACC = 68.5 % (all participants); b) reading with neutral emotion – ACC = 62.7 %
(female participants), ACC = 69.1 % (male participants), and ACC = 58.4 % (all

10



Tab. 2.2: Statistical analysis of the prosodic features.

gender features disorder 𝜌 MI 𝑝 ACC SEN SPE

Poem recitation task

females
relSEOSD monoloudness 0.10 0.97 64.2 72.5 51.9
NST speech rate -0.23 0.88 62.7 67.5 55.6
NSR speech rate 0.23 0.88 61.2 65.0 55.6

males
F0VR monopitch -0.12 0.90 64.6 64.3 65.4
TEOVR monoloudness -0.18 0.90 62.2 62.5 61.5
rellF0SD monopitch -0.21 0.90 61.0 67.9 46.2

all
TPT speech rate -0.17 0.94 * 68.5 70.8 64.2
NST speech rate -0.11 0.79 63.1 69.8 50.9
NSR speech rate 0.11 0.79 61.8 69.8 47.2

Reading with neutral emotion

females
F0VR monopitch -0.07 0.97 62.7 67.5 55.6
TPT (50 ms) speech rate 0.05 0.94 61.2 60.0 63.1
AR speech rate -0.05 0.94 61.2 60.0 63.0

males
relSEOVR monoloudness -0.06 0.90 64.6 71.4 50.0
relTEOSD monoloudness 0.27 0.90 * 62.2 64.3 57.7
relTEOVR monoloudness 0.28 0.90 ** 61.1 66.1 50.0

all
relSEOSD monoloudness 0.04 0.94 58.4 60.4 54.7
relSEOVR monoloudness -0.01 0.94 57.7 60.4 52.8
TPT (50 ms) speech rate 0.03 0.82 54.4 58.3 47.2

Stress-modified reading task

females
relTEOVR monoloudness -0.36 0.97 ** 68.7 70.0 66.7
F0SD monopitch -0.22 0.97 64.2 65.0 63.0
relTEOSD monoloudness -0.38 0.97 ** 59.7 55.0 66.7

males
TPT (50 ms) speech rate -0.29 0.83 * 67.1 71.4 57.7
AR speech rate 0.29 0.83 * 67.1 71.4 57.7
relTEOVR monoloudness 0.03 0.90 59.8 67.9 42.3

all
TPT speech rate -0.26 0.93 ** 59.7 65.6 49.1
F0SD monopitch -0.26 0.94 ** 57.8 61.5 51.0
TEOVR monoloudness -0.15 0.94 57.7 62.5 49.1

Table notation: 𝜌 – Spearman’s rank correlation coefficient; MI – mutual information; 𝑝 – p-values
of Mann-Whitney U test (* means 𝑝 < 0.05; ** means 𝑝 < 0.01); ACC – classification accuracy;
SEN – classification sensitivity; SPE – classification specificity. ACC, SEN, SPE: expressed in %.

participants); and c) stress-modified reading – ACC = 68.7 % (female participants),
ACC = 67.1 % (male participants), and ACC = 59.7 % (all participants).

Regarding the Mann-Whitney U test, there are few statistically significant differ-
ences, specifically: a) poem recitation task – 𝑝 < 0.01 for TPT (all participants); b)
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reading with neutral emotion – 𝑝 < 0.05 for relTEOSD (males), and 𝑝 < 0.01 for rel-
TEOVR (males); and c) stress-modified reading – 𝑝 < 0.05 for TPT (50 ms) (males),
AR (males), and 𝑝 < 0.01 for relTEOVR (females), relTEOSD (females), TPT (all
participants), and F0SD (all participants). Next, a comparison of the features for
monopitch (F0SD), monoloudness (SEOSD), and speech rate abnormalities (NSR)
between PD patients and HC can be seen in Table 2.3 and Figures 2.2, 2.3, and 2.4.
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Fig. 2.2: Density estimation plots for female speakers only: T1 – poem recitation;
T2 – emotionally-neutral reading; and T3 – stress-modified reading. Colour notation:
blue colour (HC), and green colour (PD patients).

From the perspective of the monopitch, reduced variation in F0 can be observed
in 8 out of the total number of 9 scenarios. The only exception occurs in the case
of male speakers reading a passage with neutral emotion, which in general does not
require that much variation in speech intonation or stress, so that this particular
deviation is quiet acceptable. Regarding the monoloudness, interestingly there are
7 cases in which PD patients show more variation in speech intensity than HC,
which is in contradiction with the original assumption of lowered variation in speech
intensity in patients with PD in comparison with HC. The only two exceptions
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Tab. 2.3: Comparison of acoustic features between PD speakers and HC.

gender features disorder PD HC diff [%]

Poem recitation

females
F0SD monopitch 101.87 ± 8.01 107.42 ± 8.91 PD ¡ HC (5.17)
SEOSD monoloudness 6.30 ± 3.67 5.61 ± 3.17 PD ¿ HC (12.30)
NSR speech rate 15.53 ± 2.66 19.24 ± 17.94 PD ¡ HC (19.28)

males
F0SD monopitch 75.55 ± 14.06 80.90 ± 11.18 PD ¡ HC (6.61)
SEOSD monoloudness 6.44 ± 3.48 7.02 ± 3.67 PD ¡ HC (8.26)
NSR speech rate 18.09 ± 12.71 16.14 ± 2.95 PD ¿ HC (17.10)

all
F0SD monopitch 86.49 ± 17.60 94.06 ± 16.64 PD ¡ HC (8.05)
SEOSD monoloudness 6.42 ± 3.54 6.28 ± 3.48 PD ¿ HC (2.23)
NSR speech rate 17.00 ± 9.82 17.65 ± 12.71 PD ¡ HC (3.68)

Reading with neutral emotion

females
F0SD monopitch 93.69 ± 8.58 98.27 ± 7.58 PD ¡ HC (4.66)
SEOSD monoloudness 5.97 ± 3.37 6.03 ± 2.67 PD ¡ HC (1.00)
NSR speech rate 14.24 ± 4.78 13.91 ± 4.59 PD ¿ HC (2.37)

males
F0SD monopitch 71.81 ± 12.36 70.51 ± 11.33 PD ¿ HC (1.84)
SEOSD monoloudness 6.67 ± 3.03 5.42 ± 2.15 PD ¿ HC (23.06)
NSR speech rate 13.49 ± 3.29 12.86 ± 1.86 PD ¿ HC (4.90)

all
F0SD monopitch 80.86 ± 15.40 84.26 ± 16.90 PD ¡ HC (4.04)
SEOSD monoloudness 6.39 ± 3.16 5.68 ± 2.42 PD ¿ HC (12.50)
NSR speech rate 13.77 ± 3.97 13.42 ± 3.46 PD ¿ HC (2.61)

Stress-modified reading

females
F0SD monopitch 91.27 ± 11.13 95.72 ± 6.71 PD ¡ HC (4.65)
SEOSD monoloudness 5.57 ± 2.71 5.55 ± 2.53 PD ¿ HC (0.36)
NSR speech rate 17.20 ± 3.22 19.44 ± 12.40 PD ¡ HC (11.52)

males
F0SD monopitch 68.87 ± 10.11 74.86 ± 13.44 PD ¡ HC (8.00)
SEOSD monoloudness 6.53 ± 3.27 5.57 ± 2.62 PD ¿ HC (17.24)
NSR speech rate 19.35 ± 8.95 18.37 ± 4.45 PD ¿ HC (5.33)

all
F0SD monopitch 78.05 ± 15.42 85.50 ± 14.44 PD ¡ HC (8.71)
SEOSD monoloudness 6.16 ± 3.07 5.48 ± 2.52 PD ¿ HC (12.41)
NSR speech rate 18.49 ± 7.15 18.82 ± 9.17 PD ¡ HC (1.75)

Table notation: diff [%] – difference between the mean values for patients with PD and HC. All prosodic
features for PD patients and HC are represented as mean ± sd.

lies in the neutral reading task, and the poem recitation task performed by male
speakers. However, in contrast to that, female patients did show significantly lower
speech intensity when compared to HC while performing the poem recitation. Thus,
the results suggest a presence of a gender-related pattern of parkinsonian speech
intensity variation and control deterioration. Finally, in the case of speech rate
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Fig. 2.3: Density estimation plots for male speakers only: T1 – poem recitation;
T2 – emotionally-neutral reading; and T3 – stress-modified reading. Colour notation:
blue colour (HC), and green colour (PD patients).

abnormalities, PD patients seem to have lower speech rate that HC when performing
a task that requires stress (stress-modified reading) or changes in the melody of
speech (poem recitation). In the case of male participants, PD patients seem to
have higher speech rate when compared to HC. And finally, in the case of female
participants, the same phenomenon can be observed for all participants.

As can be seen in Table 2.2, when the extracted prosodic features are taken
individually, the resulting classification performance of the trained models does not
reach satisfactory level of accuracy. However, this is somewhat expected since dys-
prosody in HD is rarely expressed as manifestation in a single prosodic domain. It
is rather a combination of monopitch, monoloudness and abnormalities in speech
rate and pausing. And moreover, HD is also known to be manifested slightly differ-
ently from patient to patient, which makes the prediction task even more difficult.
Nevertheless, the univariate models can at least provide an indication about the con-
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Fig. 2.4: Density estimation plots for all of the speakers: T1 – poem recitation;
T2 – emotionally-neutral reading; and T3 – stress-modified reading. Colour notation:
blue colour (HC), green colour (PD patients).

tribution of each of the selected acoustic features to discrimination of dysarthric and
healthy speech. So, taking the previously mentioned facts into account, a feature
selection procedure was applied as the next step towards obtaining a parsimonious,
information-rich subsets of features, which provide maximum clinical information
about the underlying prosodic pathology in patients with PD. Subsequently, the
multivariate models were built using the selected features. The classification perfor-
mance of these models can be seen in Table 2.4, and Table 2.5, respectively.

Consequently, t-distributed stochastic neighbourhood embedding (t-SNE) [30]
algorithm was used to visualize the multi-dimensional space of prosodic features
in the two-dimensional one. For this purpose, all the extracted acoustic features
were used. The visualization was performed for all the three speech tasks separately
to show the clusters of healthy and dysarthric speakers when speech prosody is
quantified in a robust way (i. e. monopitch, monoloudness, and speech rate/pausing
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abnormalities are described altogether). This method was also applied for female
speakers, male speakers, and all speakers (both genders combined). The results
of this method are presented in Figure 2.5. As can be seen, using the prosodic
description it is not strong enough to conclusively and definitely identify HD in
patients with PD. It is important to stress the fact that the results are strongly
related to the dataset used in this study.
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Fig. 2.5: Visualization of t-distributed stochastic neighbourhood embedding (lines
fitted using robust linear regression). Graph grid notation: 1. row – all speakers, 2.
row – female speakers, 3. row – male speakers; 1. column – poem recitation task, 2.
column – emotionally-neutral reading, 3. column – stress-modified reading. Colour
notation: all speakers – dark blue colour (HC), and dark green colour (PD patients);
female speakers – medium green colour (HC), and purple colour (PD patients); and
male speakers – medium blue colour (HC), and orange colour (PD patients).
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Tab. 2.4: Classification results for groups of acoustic features.

feat. gender MCC ACC SEN SPE 𝑝 No.

Poem recitation

F1
females 0.14 ± 0.38 58.04 ± 17.71 63.00 ± 25.87 50.33 ± 32.73 0.0910 3
males 0.19 ± 0.39 58.15 ± 19.01 57.06 ± 24.90 61.00 ± 33.94 0.0840 1
all 0.17 ± 0.26 59.33 ± 12.43 61.35 ± 14.68 55.53 ± 21.15 0.1690 1

F2
females 0.24 ± 0.40 61.28 ± 18.47 59.50 ± 27.14 63.66 ± 28.70 0.2590 8
males 0.26 ± 0.41 65.93 ± 17.78 72.06 ± 20.38 53.33 ± 34.17 0.0090 6
all 0.23 ± 0.27 62.78 ± 12.58 66.24 ± 16.70 56.40 ± 25.64 0.0020 3

F3
females 0.19 ± 0.43 59.28 ± 20.25 60.00 ± 27.66 58.66 ± 30.53 0.0790 2
males 0.29 ± 0.42 63.49 ± 20.05 61.73 ± 24.04 67.66 ± 32.54 0.0130 1
all 0.27 ± 0.24 64.02 ± 11.35 65.80 ± 19.08 61.00 ± 24.55 0.0010 1

Reading with neutral emotion

F1
females 0.13 ± 0.42 54.85 ± 19.35 49.50 ± 28.34 63.33 ± 31.22 0.1450 3
males 0.11 ± 0.33 59.39 ± 13.56 65.60 ± 17.45 45.33 ± 32.12 0.1340 2
all 0.08 ± 0.24 54.67 ± 11.19 56.68 ± 17.85 50.86 ± 24.79 0.5910 3

F2
females 0.16 ± 0.44 58.19 ± 20.29 59.50 ± 28.07 56.00 ± 31.90 0.1590 3
males 0.37 ± 0.42 70.53 ± 19.62 74.60 ± 20.34 62.33 ± 30.64 0.0080 4
all 0.19 ± 0.28 60.90 ± 13.00 63.97 ± 15.55 55.33 ± 23.27 0.1420 3

F3
females 0.30 ± 0.37 64.04 ± 17.63 65.00 ± 25.25 62.66 ± 29.84 0.0510 2
males 0.20 ± 0.31 60.31 ± 15.40 61.73 ± 20.89 58.00 ± 26.98 0.0710 1
all 0.12 ± 0.30 56.17 ± 13.89 56.53 ± 15.02 55.80 ± 23.82 0.3260 4

Stress-modified reading

F1
females 0.31 ± 0.35 64.38 ± 15.63 67.50 ± 25.87 60.33 ± 30.84 0.0990 2
males 0.21 ± 0.38 61.74 ± 17.71 63.80 ± 21.02 57.66 ± 31.26 0.1280 2
all 0.15 ± 0.26 58.37 ± 13.13 61.60 ± 17.21 52.73 ± 19.60 0.1560 2

F2
females 0.40 ± 0.26 69.66 ± 12.01 72.00 ± 21.21 65.66 ± 26.60 0.0240 3
males 0.24 ± 0.41 63.30 ± 18.24 64.73 ± 20.68 59.66 ± 33.51 0.0360 4
all 0.20 ± 0.21 61.95 ± 9.15 66.35 ± 13.55 53.86 ± 21.57 0.1150 2

F3
females 0.15 ± 0.39 58.90 ± 15.39 63.50 ± 19.69 51.66 ± 35.99 0.4570 2
males 0.24 ± 0.32 64.44 ± 14.19 68.73 ± 18.64 55.66 ± 30.41 0.0650 1
all 0.13 ± 0.25 58.15 ± 12.36 62.02 ± 17.18 51.13 ± 21.88 0.6840 2

Table notation: F1 – monopitch features; F2 – monoloudness features; F3 – speech rate features; F4 – general
prosodic features; MCC – Matthew’s correlation coefficient (dimensionless) [31]; ACC – classification accuracy (ex-
pressed in %); SEN – classification sensitivity (expressed in %); SPE – classification specificity (expressed in %);
No. – number of selected features; 𝑝 – p-values of classification calculated by permutation test (1000 permutations).

To specify the results presented in these two tables: Table 2.4 shows the results
of the multivariate classification analysis employed on the subsets of the prosodic
features. Specifically, models for monopitch (F1), monoloudness (F2), and speech
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Tab. 2.5: Classification results for all acoustic features.

feat. gender MCC ACC SEN SPE 𝑝 No.

T1
females 0.36 ± 0.42 66.57 ± 19.80 66.00 ± 25.13 68.33 ± 30.90 0.0070 5
males 0.35 ± 0.34 67.84 ± 17.33 68.93 ± 22.54 66.00 ± 27.34 0.0020 3
all 0.33 ± 0.16 67.30 ± 08.42 68.84 ± 14.18 64.66 ± 14.98 0.0040 1

T2
females 0.37 ± 0.40 68.47 ± 18.64 72.00 ± 26.06 63.33 ± 31.94 0.2110 3
males 0.38 ± 0.29 69.52 ± 14.02 70.40 ± 18.93 68.00 ± 26.90 0.0050 8
all 0.16 ± 0.32 59.62 ± 15.80 64.93 ± 18.77 50.13 ± 21.36 0.0350 4

T3
females 0.42 ± 0.35 70.71 ± 16.24 71.00 ± 19.13 70.33 ± 30.91 0.0001 1
males 0.37 ± 0.34 70.03 ± 16.05 73.53 ± 19.28 63.00 ± 29.41 0.0120 5
all 0.25 ± 0.26 63.20 ± 12.44 65.06 ± 14.92 60.00 ± 21.07 0.0130 3

Table notation: T1 – poem recitation task; T2 – reading with neutral emotion; T3 – stress-modified reading task;
MCC – Matthew’s correlation coefficient (dimensionless) [31]; ACC – classification accuracy (expressed in %);
SEN – classification sensitivity (expressed in %); SPE – classification specificity (expressed in %); No. – number
of selected features; 𝑝 – p-values of classification calculated by permutation test (1000 permutations).

rate abnormalities (F3) were built. The assumption behind this approach was that
despite insufficiency of the univariate models, investigation of the classification per-
formance of each of the prosodic manifestations in HD can improve the performance
of the models when more features are being used (it needs to be pointed out that
these features do however describe the same phenomenon so that they are quiet
correlated. But as mentioned previously, RF classifier is robust in dealing with
high-dimensional and highly correlated data). Table 2.5 shows the results of the
multivariate classification analysis employed on all of the prosodic features (F4).

The best classification performance in terms of classification accuracy achieved
using the prosodic features for each speech task separately can be summarized
as follows: a) poem recitation task – ACC = 67.84 % the model was trained us-
ing only 3 features based on the analysis of general prosodic impairment (TPT,
TEOSD, SEOSD) computed for male participants; b) reading with neutral emo-
tion – ACC = 69.52 %, the model was trained using 8 features based based on the
analysis of general prosodic impairment (SEOSD, relF0SD, TST, TPT, relSEOSD,
TPT (50 ms), relSEOVR, NSR) computed for male participants; and finally c) stress-
modified reading – ACC = 70.71 %, the model was trained using just a single feature
based on the analysis of monoloudness (relTEOVR) computed for female partici-
pants. It is worth noting that some of these models did not achieve sufficiently low
p-values of the permutation test (strict significance level of 0.01 was chosen) that is
needed to reject the null hypothesis. This may indicated that more data are required
in order to get significant results [23].
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3 ASSESSMENT OF PARKINSON’S DISEASE

So far, relatively small number of studies evaluating possibilities of computerized
estimation of PD severity based on the quantitative acoustic analysis of dysarthric
speech have been employed [4, 6, 16, 19, 32, 33, 37, 40, 48–50]. Nevertheless ad-
ditional studies are needed to evaluate these results and to show whether speech
prosody assessment might serve as a good biomarker for predicting a malignant
course of the disease. Therefore, this study builds upon the previous finding and
applies robust analysis of dysprosody in HD to indirectly estimate degree of PD
severity assessed by a large number of well-known and widely-used clinical rating
scales that are nowadays being commonly used to evaluate motor and non-motor
symptoms in patients with PD.

3.1 Methodology

3.1.1 Description of the dataset

In the frame of this study, robust analysis and estimation of motor and non-motor
symptoms of idiopathic PD using the acoustic analysis of dysarthric speech were
employed. These symptoms were evaluated by skilled neurologists and clinical psy-
chologists who examined and rated each PD patient participating in this study
according to a variety of widely used and recognized clinical rating scales such as:
UPDRS III (evaluation of motor functions) [17]; UPDRS IV (evaluation of compli-
cations of therapy; Hoehn and Yahr scale, staging of severity of PD) [17]; FOG-Q
(evaluation of freezing and other gait-related deficits) [21]; NMSS (evaluation of non-
motor deficits) [14]; RBDSQ (evaluation of sleep disorders, especially in the REM
sleep) [47]; ACE-R (evaluation of cognitive dysfunctions) [27]; MMSE (evaluation of
cognitive dysfunctions) [18]; and BDI (evaluation of depression) [7, 8]. These scales
are nowadays commonly used in the clinical practice to assess and rate the severity
of motor and non-motor manifestations associated with PD. Other clinical rating
scales exist as well. However, in the frame of this study, this exact subset of the
rating scales is considered exclusively.

To follow the results summarized in the previous chapter, the same speech tasks,
recording setup, dataset, etc. (database) were used. For more information see,
Chapter 2 (Section 2.1.1). However, in this particular study, only patients with PD
are considered. Moreover, a subset of the patients was needed to be selected. The
reason for that is the necessity of having the complex clinical information about each
of the patients. More specifically, not every patient did undergo all examinations so
that for some patients full clinical status is not available. Hence, to ensure that no
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missing or corrupted data will be present in the dataset, a subset of 72 PD patients
(47 males and a group of 25 females) were selected. For more information about
demographical and clinical characteristics of the used cohort, see Table 3.1, and
Figure 3.1.
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Fig. 3.1: Descriptive statistical graphs of clinical characteristics of PD patients. The
structure of the graph: main diagonal – histograms are visualized; upper triangular
part – scatter plots with the fitted lines of the robust linear regression models; and
lower triangular part – residuals plots. Colour notation: blue colour – female speak-
ers, and green colour – male speakers.

3.1.2 Feature extraction

As in the case of study presented in Chapter 2, to describe dysprosody in HD, clini-
cally interpretable acoustic features [11] were used. To quantify variability of speech
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Tab. 3.1: Clinical characteristics of the patients.

charact. mean std min Q1 Q2 Q3 max r (d) r (s)

LED (mg/day) 995.10 566.28 0.00 600.00 825.00 1325.50 2275.00 2275 ∞
UPDRS III 24.06 12.22 3.00 12.75 25.00 33.25 55.00 52 108
UPDRS IV 2.94 2.68 0.00 0.00 2.00 5.00 9.00 9 23
FOG-Q 6.46 5.63 0.00 1.00 5.50 10.00 20.00 20 24
NMSS 35.23 20.75 2.00 17.75 33.00 52.25 94.00 94 360
RBDSQ 3.67 3.13 0.00 1.00 3.00 5.00 13.00 13 13
ACE-R 87.33 8.02 60.00 82.75 87.00 93.00 99.00 39 100
MMSE 27.88 2.54 16.00 28.00 28.50 29.00 30.00 14 30
BDI 10.46 6.14 0.00 6.00 9.00 13.50 27.00 27 63

1 Table notation: charact. – characteristics (clinical); Qx – x-th quartile (Q1 [first], Q2 [second], Q3 [third]); r (d) –
range (max − min) computed from the values actually present in the dataset; r (s) – range of the values in the
scale; LED – L-dopa equivalent daily dose (mg/day) [28]; UPDRS III – Unified Parkinson’s disease rating scale,
part III: evaluation of motor function [17]; UPDRS IV – Unified Parkinson’s disease rating scale, part IV: evaluation
of complications of therapy (Hoehn and Yahr scale, staging of severity of Parkinson’s disease) [17]; FOG-Q –
Freezing of gait questionnaire [21]; NMSS – Non-motor symptoms scale [14]; RBDSQ – The REM sleep behavior
disorder screening questionnaire [47]; ACE-R – Addenbrooke’s cognitive examination-revised [27]; MMSE – Mini-
mental state examination [18]; BDI – Beck depression inventory [7, 8].

intonation, features derived from fundamental frequency (F0) [10] were computed:
standard deviation of F0 (FOSD); relative standard deviation of F0 (relF0SD); vari-
ation range of F0 (FOVR); and relative variation range of F0 (relF0VR). To quan-
tify variability of speech intensity: features derived from squared energy operator
(SEO) and Teager-Kaiser energy operator (TEO) were computed: standard devi-
ation of SEO/TEO (SEOSD/TEOSD); relative standard deviation of SEO/TEO
(relSEOSD/relTEOSD); variation range of SEO/TEO (SEOVR/TEOVR); and rel-
ative variation range of SEO/TEO (relSEOVR/relTEOVR). Finally, to quantify
speech rate/pausing: total speech time (TST), net speech time (NST), total pause
time (TPT), total speech rate (TSR), net speech rate (NSR), total pause time
(pauses longer than 50 ms) (TPT (50 ms)), articulation rate (AR), and speech index
of rhythmicity (SPIR) were computed.

3.1.3 Analytical setup

To the relationship between the values of the prosodic features and other motor
and non-motor symptoms (assessed by the selected clinical rating scales) of PD,
Spearman’s correlation coefficient (𝜌) was used (short description of this method
can be found in the previous chapter). The significance level of correlation (𝑝)
of 0.05 was selected. Due to the limited number of samples and the exploratory
character of the study, the correction for multiple comparisons was not performed.
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Consequently, multivariate regression models were built (10-fold cross-validation
with 20 repetitions). To reduce the number of features and create the regression
models with low dimensionality, and better clinical interpretability [24], a modi-
fied version of sequential floating forward selection [39] algorithm was applied. For
regression, classification and regression trees (CART) [12] were used.

To measure the prediction performance of the trained models, several conven-
tional and widely-used regression metrics such as mean absolute error (MAE), root
mean squared error (RMSE) were employed. Moreover, a novel regression metric
named estimation error rate (EER) was computed to express the prediction error in
percentage, which is particularly useful for easy and fast interpretation.

3.2 Experimental evaluation

Results of the correlation analysis are summarized in Table 3.2. The table shows
top three acoustic features sorted according to their significance level of correlation
expressed by Spearman’s correlation coefficient. The following results showing the
correlations for the specific prosodic areas under the focus were achieved (* means
𝑝 < 0.05; ** means 𝑝 < 0.01; T1 – poem recitation task; T2 – reading with neutral
emotion; and T3 – stress-modified reading):

1. UPDRS III – reduced variation in pitch and intensity of speech (T1–T3). T1:
−0.38** (F0VR), −0.30** (TEOSD); T2: −0.28* (F0SD), 0.28* (SEOSD); and
T3: −0.37** (F0VR), −0.30* (TEOVR).

2. UPDRS IV – reduced variation in intonation (T1, T2), intensity of speech
(T3), and speech rate abnormalities (T1, T2). T1: 0.29* (relF0SD), 0.21*

(TPT (50 ms)); T2: 0.32** (relF0SD), 0.31** (TPT (50 ms)); and T3: −0.21*

(TEOSD), −0.21* (F0VR).
3. FOG-Q – speech rate abnormalities (T1–T3), and reduced variation in in-

tensity of speech (T1). T1: −0.35** (NST), 0.28* (relF0SD); T2: 0.42**

(TPT (50 ms)); and T3: −0.27* (NST).
4. NMSS – reduced variation in intonation and intensity of speech (T1–T3). T1:

−0.29* (TEOSD), 0.26* (relF0SD); T2: 0.36* (relF0SD), 0.31* (relTEOVR);
and T3: −0.36* (TEOVR), −0.29* (F0VR).

5. RBDSQ – reduced variation in intensity of speech (T1, T2). T1: 0.20* (TEOSD);
and T2: −0.23* (SEOSD).

6. ACE-R – speech rate abnormalities (T1), and reduced variation in intensity of
speech (T3). T1: −0.43* (TPT); T3: 0.23* (TEOSD).

7. MMSE – speech rate abnormalities (T1): −0.26* (TPT).
8. BDI – none of the features showed statistically significant correlation.
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Tab. 3.2: Correlation analysis of the prosodic features.

T1 T2 T3

scale features 𝜌 𝑝 features 𝜌 𝑝 features 𝜌 𝑝

UPDRS III
F0VR -0.38 ** F0SD -0.28 * F0VR -0.37 **
TEOSD -0.30 ** SEOSD 0.28 * F0SD -0.34 **
TEOVR -0.25 * SEOVR 0.28 * TEOVR -0.30 *

UPDRS IV
relF0SD 0.29 * relF0SD 0.32 ** TEOSD -0.21 *
TPT (50 ms) 0.21 * TPT (50 ms) 0.31 ** F0VR -0.21 *
relF0VR 0.20 AR -0.31 ** TEOVR -0.18

FOG-Q
NST -0.35 ** TPT (50 ms) 0.42 ** NST -0.27 *
NSR 0.35 ** AR -0.42 ** NSR 0.27 *
relF0SD 0.28 * NST -0.41 ** TST -0.26 *

NMSS
TEOSD -0.29 * relF0SD 0.36 ** TEOVR -0.36 **
relF0SD 0.26 * relTEOVR 0.31 ** TEOSD -0.35 **
TPT 0.20 relF0VR 0.26 * F0VR -0.29 *

RBDSQ
TEOSD 0.20 * SEOSD -0.23 * SPIR -0.18
TEOVR 0.20 relSEOVR 0.10 TEOSD 0.17
SEOSD -0.17 SEOVR -0.09 relF0SD 0.17

ACE-R
TPT -0.43 ** TEOSD 0.18 TEOSD 0.23 *
TST -0.33 ** relSEOVR 0.16 TEOVR 0.20
TSR 0.33 ** relF0VR -0.16 SPIR 0.20

MMSE
TPT -0.26 * relTEOVR -0.17 F0SD -0.18
relSEOSD -0.17 NST 0.16 SEOVR -0.13
TST -0.16 TPT -0.16 TPT (50 ms) -0.12

BDI
relTEOVR 0.18 SEOSD 0.21 relTEOSD 0.18
SEOSD 0.16 relTEOVR 0.15 relSEOSD -0.18
relTEOSD 0.15 relSEOVR -0.14 relSEOVR -0.16

1 Table notation: T1 – poem recitation task; T2 – emotionally-neutral reading task; T3 – stress-modified reading task;
𝜌 – Spearman’s correlation coefficient; 𝑝 – significance level of correlation (* means 𝑝 < 0.05; ** means 𝑝 < 0.01);
UPDRS III – Unified Parkinson’s disease rating scale, part III: evaluation of motor function [17]; UPDRS IV – Unified
Parkinson’s disease rating scale, part IV: evaluation of complications of therapy (Hoehn and Yahr scale, staging
of severity of Parkinson’s disease) [17]; FOG-Q – Freezing of gait questionnaire [21]; NMSS – Non-motor symptoms
scale [14]; RBDSQ – The REM sleep behavior disorder screening questionnaire [47]; ACE-R – Addenbrooke’s cogni-
tive examination-revised [27]; MMSE – Mini-mental state examination [18]; BDI – Beck depression inventory [7, 8].

Moreover, three specific clinical rating scales were selected: UPDRS III (evalua-
tion of motor deficits), FOG-Q (evaluation of gait freezing), ACE-R (evaluation of
cognitive deficits). For these three scales, regression plots can be seen in Figure 3.2.
The figure provides a visual impression about the strength of a linear relationship
between the most correlated acoustic features and the values of the selected clinical
rating scales (a single feature is chosen for each scenario).
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Fig. 3.2: Regression plots of the selected acoustic features/rating scales (UPDRS III,
FOG-Q, ACE-R) for all three speech tasks performed by all PD patients: T1 – poem
recitation task; T2 – emotionally-neutral reading; and T3 – stress-modified reading.

As can be seen, the strong relationship between reduced variation in pitch and
UPDRS III (in the case of all the three speech tasks) is evident. Specifically, the flat-
ter the intonation, the more severe motor disability assessed by UPDRS III can be
observed. Next, the strong relationship between speech rate/pausing abnormalities
and FOG-Q (in the case of all the three speech tasks) is present as well. Specifi-
cally, the faster the speech during poem recitation, larger number of pauses (longer
that 50 ms) during emotionally-neutral reading, and faster the speech during stress-
modified reading, the more severe gait freezing episodes assessed by UPDRS III can
be observed. And finally, the strong relationship between speech rate/pausing ab-
normalities and ACE-R in the case of poem recitation can be seen. For the other two
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tasks, the association is much weaker (less statistically significant as well). Specif-
ically, the faster speech (less time spent on pausing) during poem recitation, and
larger deviation of speech intensity during reading (emotionally-neutral, and stress-
modified), the more severe cognitive deficits assessed by ACE-R can be observed.
These observations emphasize the fact that poem recitation task is a great candidate
to emphasize monopitch in HD, but also some cognitive deficits that are probably
related to worse control of speech tempo (patients try to compensate it by occasional
rushes of speech, etc.).

Next, for UPDRS III, FOG-Q, and ACE-R, multivariate regression models using
the features selected by the feature selection algorithm, were built and visualized
(visualization of the approximation of decision making performed by the regression
tree) using the three graphs, see Figure 3.3, Figure 3.4, and Figure 3.5, respec-
tively. Moreover, the results of the multivariate regression analysis are summarized
in Table 3.3, and Table 3.4.

TEOSD (T1) ≤ 0.008
mse = 149.3
samples = 70

value = 24.014

FOVR (T1) ≤ 341.236
mse = 128.682
samples = 54

value = 27.148

True

FOVR (T1) ≤ 341.891
mse = 73.871
samples = 16

value = 13.438

False

TEOSD (T1) ≤ 0.007
mse = 131.724
samples = 23

value = 32.435

FOVR (T1) ≤ 349.118
mse = 90.304
samples = 31

value = 23.226

mse = 109.339
samples = 22

value = 33.545

mse = 0.0
samples = 1
value = 8.0

mse = 78.415
samples = 24

value = 20.792

mse = 41.102
samples = 7

value = 31.571

TST (T2) ≤ 5.475
mse = 84.16
samples = 5
value = 22.2

TEOSD (T1) ≤ 0.015
mse = 18.43
samples = 11
value = 9.455

mse = 9.0
samples = 2
value = 33.0

mse = 4.667
samples = 3
value = 15.0

mse = 6.173
samples = 9
value = 8.222

mse = 36.0
samples = 2
value = 15.0

Fig. 3.3: Visualization of the regression tree built to estimate UPDRS III. The tree
was trained using a single training run applied on all data in the dataset/selected
features (hence the decision making of the tree is an approximation of the behavior
responsible for the results summarized in Table 3.4). In the case of this tree: TST
(T2), F0VR (T1), and TEOSD (T1) were used. For explanation of the speech task
and acoustic feature notation, see Section 3.1.1, and Section 3.1.2, respectively.

With respect to the separate analysis (analysis of the speech tasks separately in
direction of evaluating their sufficiency to assess severity of PD by estimating the
clinical rating scales that are used to assess motor and non-motor deficits occurring
with this disease), the following results were achieved: a) T1 – most of the selected
acoustic features are based on the description of reduced variability in intonation
and intensity of speech. The lowest estimation error rate was obtained in the case
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TPT (T2) ≤ 4.399
mse = 31.669
samples = 70
value = 6.4

SEOVR (T1) ≤ 18.369
mse = 24.219
samples = 59
value = 5.186

True

FOVR (T1) ≤ 348.653
mse = 21.355
samples = 11

value = 12.909

False

mse = 0.0
samples = 1
value = 16.0

FOVR (T1) ≤ 349.383
mse = 22.586
samples = 58
value = 5.0

mse = 24.288
samples = 49
value = 5.551

mse = 2.667
samples = 9
value = 2.0

SEOVR (T1) ≤ 50.993
mse = 10.4

samples = 10
value = 14.0

mse = 0.0
samples = 1
value = 2.0

mse = 7.111
samples = 9

value = 13.333

mse = 0.0
samples = 1
value = 20.0

Fig. 3.4: Visualization of the regression tree built to estimate FOG-Q. The tree
was trained using a single training run applied on all data in the dataset/selected
features (hence the decision making of the tree is an approximation of the behavior
responsible for the results summarized in Table 3.4). In the case of this tree: TPT
(T2), F0VR (T1), and SEOVR (T1) were used. For explanation of the speech task
and acoustic feature notation, see Section 3.1.1, and Section 3.1.2, respectively.

relSEOSD (T1) ≤ 528.66
mse = 64.334
samples = 70

value = 86.743

relSEOSD (T1) ≤ 110.928
mse = 54.751
samples = 69
value = 87.13

True

mse = 0.0
samples = 1
value = 60.0

False

TPT (T2) ≤ 2.369
mse = 11.609
samples = 8

value = 94.125

relSEOSD (T1) ≤ 123.42
mse = 53.151
samples = 61

value = 86.213

mse = 1.0
samples = 2
value = 98.0

mse = 8.472
samples = 6

value = 92.833

mse = 48.988
samples = 9

value = 80.111

mse = 46.312
samples = 52

value = 87.269

Fig. 3.5: Visualization of the regression tree built to estimate ACE-R. The tree
was trained using a single training run applied on all data in the dataset/selected
features (hence the decision making of the tree is an approximation of the behavior
responsible for the results summarized in Table 3.4). In the case of this tree: TPT
(T2), and relSEOSD (T1) were used. For explanation of the speech task and acoustic
feature notation, see Section 3.1.1, and Section 3.1.2, respectively.
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Tab. 3.3: Results of the regression analysis for individual speech tasks.

scale MAE RMSE EER No. selected features

Poem recitation task

UPDRS III 9.41 ± 2.73 11.45 ± 3.13 18.11 ± 5.26 2 F0VR, TEOSD
UPDRS IV 2.12 ± 0.65 2.69 ± 0.72 23.65 ± 7.26 1 relTEOVR
FOG-Q 4.52 ± 1.57 5.83 ± 1.92 22.61 ± 7.89 3 TEOVR, F0VR, TST
NMSS 18.55 ± 4.48 21.88 ± 4.83 20.16 ± 4.87 1 relTEOVR
RBDSQ 2.86 ± 0.80 3.50 ± 0.94 22.06 ± 6.17 1 relSEOVR
ACE-R 6.18 ± 1.84 7.67 ± 2.23 15.86 ± 4.72 1 relSEOSD
MMSE 1.83 ± 0.77 2.52 ± 1.26 13.13 ± 5.50 2 SEOVR, TPT
BDI 5.65 ± 1.52 6.68 ± 1.80 20.94 ± 5.63 2 TPT, relSEOVR

Reading with neutral emotion

UPDRS III 10.44 ± 2.46 12.12 ± 2.63 20.08 ± 4.74 1 TPT
UPDRS IV 2.31 ± 0.50 2.66 ± 0.55 25.76 ± 5.63 1 TPT
FOG-Q 3.86 ± 1.22 4.80 ± 1.42 19.31 ± 6.14 3 relF0VR, TPT, NSR
NMSS 14.51 ± 4.29 17.78 ± 4.98 15.78 ± 4.66 3 TPT, relF0SD, TEOSD
RBDSQ 2.51 ± 0.68 3.04 ± 0.89 19.38 ± 5.24 1 TPT
ACE-R 6.80 ± 2.12 8.34 ± 2.66 17.44 ± 5.45 1 TPT
MMSE 1.61 ± 0.68 2.25 ± 1.24 11.50 ± 4.87 1 TPT
BDI 4.92 ± 1.39 6.00 ± 1.66 18.22 ± 5.18 1 TPT

Stress-modified reading

UPDRS III 10.50 ± 3.23 13.10 ± 4.01 20.20 ± 6.22 2 relTEOSD, F0SD
UPDRS IV 2.45 ± 0.64 2.99 ± 0.67 27.27 ± 7.16 4 SEOVR, F0VR, AR, TPT
FOG-Q 4.90 ± 1.29 5.78 ± 1.44 24.50 ± 6.47 2 TSR, TST
NMSS 17.29 ± 4.88 20.91 ± 5.67 18.80 ± 5.31 1 TEOVR
RBDSQ 2.64 ± 0.71 3.23 ± 0.80 20.33 ± 5.49 2 TEOSD, F0VR
ACE-R 6.18 ± 1.84 7.67 ± 2.23 15.86 ± 4.72 3 TST, TSR, relSEOSD
MMSE 1.76 ± 0.67 2.36 ± 1.12 12.62 ± 4.83 1 TST
BDI 5.44 ± 1.63 6.72 ± 1.81 20.15 ± 6.04 3 TEOVR, F0VR, SEOSD

1 Table notation: MAE – mean absolute error; RMSE – root mean squared error; EER – relative estimation error
rate (MAE divided by the range of actual values of clinical rating scale present in the dataset; expressed in %);
No. – number of selected features; UPDRS III – Unified Parkinson’s disease rating scale, part III: evaluation of
motor function [17]; UPDRS IV – Unified Parkinson’s disease rating scale, part IV: evaluation of complications
of therapy (Hoehn and Yahr scale, staging of severity of Parkinson’s disease) [17]; FOG-Q – Freezing of gait
questionnaire [21]; NMSS – Non-motor symptoms scale [14]; RBDSQ – The REM sleep behavior disorder screen-
ing questionnaire [47]; ACE-R – Addenbrooke’s cognitive examination-revised [27]; MMSE – Mini-mental state
examination [18]; BDI – Beck depression inventory [7, 8].

of MMSE (SEOVR, TPT): EER = 13.13 ± 5.50 %, closely followed by ACE-R
(relSEOSD): EER = 15.86 ± 4.72, and UPDRS III (F0VR, TEOSD): EER =
18.11 ± 5.26 %; b) T2 – in 6 out of the total number of 8 analysed clinical rating
scales, the feature selection found only a single feature based on the description of
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Tab. 3.4: Results of the regression analysis for a combination of speech tasks.

scale MAE RMSE EER No. selected features

UPDRS III 9.10 ± 2.93 11.27 ± 3.46 17.52 ± 5.64 3 TST2, F0VR1, TEOSD1

UPDRS IV 2.31 ± 0.50 2.65 ± 0.56 25.75 ± 5.64 1 TPT2

FOG-Q 3.45 ± 1.28 4.54 ± 1.61 17.28 ± 6.42 3 TPT2, F0VR1, SEOVR1

NMSS 17.03 ± 4.35 20.50 ± 4.86 18.52 ± 4.73 1 TPT2

RBDSQ 2.26 ± 0.83 2.88 ± 1.03 17.44 ± 6.40 3 F0SD1, SEOSD1, TPT2

ACE-R 6.20 ± 1.85 7.68 ± 2.22 15.72 ± 4.75 2 TPT2, relSEOSD1

MMSE 1.60 ± 0.68 2.25 ± 1.24 11.49 ± 4.92 1 TPT2

BDI 4.91 ± 1.40 6.00 ± 1.66 18.21 ± 5.21 1 TPT2

1 Table notation: 1 – poem recitation task; 2 – reading with neutral emotion; 3 – stress-modified reading task;
MAE – mean absolute error; RMSE – root mean squared error; EER – relative estimation error rate (mean ab-
solute error divided by the range of actual values of clinical rating scale present in the dataset; expressed in
%); No. – number of selected features; UPDRS III – Unified Parkinson’s disease rating scale, part III: evaluation
of motor function [17]; UPDRS IV – Unified Parkinson’s disease rating scale, part IV: evaluation of complica-
tions of therapy (Hoehn and Yahr scale, staging of severity of Parkinson’s disease) [17]; FOG-Q – Freezing of
gait questionnaire [21]; NMSS – Non-motor symptoms scale [14]; RBDSQ – The REM sleep behavior disorder
screening questionnaire [47]; ACE-R – Addenbrooke’s cognitive examination-revised [27]; MMSE – Mini-mental
state examination [18]; BDI – Beck depression inventory [7, 8].

speech rate and pausing abnormalities (TPT) to be sufficient enough to describe the
relationship between dysprosody in HD and severity of PD. The lowest estimation
error rate was obtained in the case of MMSE (TPT): EER = 11.50 ± 4.87 %; and
c) T3 – features based on the description of reduced variability of intensity of speech
and speech rate abnormalities dominated most of the models. The lowest estimation
error rate was obtained in the case of MMSE (TST): EER = 12.62 ± 4.83 %, closely
followed by ACE-R (TST, TSR, relSEOSD): EER = 15.86 ± 4.72 %, and NMSS
(TEOVR): EER = 18.80 ± 5.31 %.

Regarding the combined analysis (analysis of the combination of these speech
tasks in direction of evaluating the power of the combined model to robustly and
complexly assess severity of PD), combination of the speech tasks resulted into lower
estimation error rates in most of the cases in which more than a single acoustic
feature was selected. The prediction power of the regression models was slightly
improved in the following clinical rating scales (improvements are expressed in %):
UPDRS III = 0.59 %, FOG-Q = 2.04 %, RBDSQ = 1.94 %. However, as can be
seen, in most of the cases, a single prosodic feature seems to be sufficiently describing
a relationship between dysprosody in HD and other non-speech symptoms occurring
with PD. Hypothetically, the prediction power of these models could be increased
when taking other HD manifestations into account. Nevertheless, the results show
that dysprosody is related with other motor (as assessed by UPDRS III, or FOG-Q)
and non-motor (as assessed by MMSE or ACE-R) symptoms in PD.
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4 ASSESSMENT OF FREEZING OF GAIT

Currently, there are only a few works addressing a relationship between FOG and
speech disorders associated with PD [5, 13, 20, 34, 36]. To address this issue, this
study is focused on investigation of pathological mechanisms shared by HD and FOG
in patients with PD using a partial correlation analysis. Moreover, this study also
provides an investigation of the possibilities of using quantitative acoustic analysis
of dysarthric speech at the baseline for assessing the severity of FOG at the baseline
(i. e. at time of the examination) as well as for assessing its progress in the horizon
of two years (i. e. at the time of the follow-up examination).

4.1 Methodology

4.1.1 Description of the dataset

For the purpose of this study, 75 patients with idiopathic PD (48 males and 27
females) were enrolled at the First Department of Neurology, St. Anne’s University
Hospital in Brno, Czech Republic. All the patients were Czech native speakers.
After two years, 41 of these patients (27 males and 14 females) were re-examined.
For more information about demographical and clinical characteristics of the used
cohort, see Table 4.1 and Figure 4.1. The patients were examined on their regular
dopaminergic medication approximately 1 hour after the L-dopa [28] dose.

To quantify FOG, every patient was examined by a trained movement disorders
specialist who rated the gait-related difficulties according to a specialized six-item
Likert-scale (5-point scale where a score of 0 indicates absence of the symptom,
while a score of 4 indicates the most severe stage; therefore the total score ranges
from 0–24): Freezing of gait questionnaire [21]. The scale can be theoretically
divided into two parts: 1st part (question 1–question 2) assesses walking and gait-
related difficulties affecting patient’s daily activities and independence; 2nd part
(question 3–question 6) assesses gait freezing specifically. There is also a total score
(T) computed as a sum of the two sub-scores (T1 for Q1–Q2, and T2 for Q3–
Q6) summarizing the two parts (T = T1 + T2, where T1 = Q1 + Q2, and T2 =
Q3 + Q4 + Q5 + Q6). This study was focused on gait freezing exclusively, therefore
only the second part of the questionnaire and its total score are considered.

Furthermore, to provide more insight into the evolution of gait-related deficits
(specifically Q6–Q6 score (sum of Q3–Q6) and the total score (sum of Q1–Q6))
between the two examinations (session 1, and session 2), box plots are presented as
well. These graphs can be seen in Figure 4.2.
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Fig. 4.1: Descriptive statistical graphs of clinical characteristics of PD patients (data
for 𝛿 session (session 2 − session 1)). The structure of the graph: main diagonal –
histograms are visualized; upper triangular part – scatter plots with the fitted lines
of the robust linear regression models; and lower triangular part – residuals plots.
Colour notation: blue colour – female speakers, and green colour – male speakers.

It is important to notice that, only participants with no missing data for the
selected clinical rating scales were chosen. The same group of speakers were used
later to built the regression models. With this approach, consistency of the dataset
was ensured (even though the number of samples must have been reduced). After
the filtration, 32 speakers (11 females, and 21 males) were left for the analysis.

Regarding the speech task used to quantify HD, a complex set of tasks was used
to robustly quantify voice/speech disorders occurring with this disease. The speech
acquisition protocol was actually derived from the standardized 3F Dysarthria Pro-
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Tab. 4.1: Clinical characteristics of the patients (session 1, 2).

charact. mean std min Q1 Q2 Q3 max
Session 1 (48 males/27 females)

PD duration (years) 7.48 4.15 4.00 1.00 11.00 7.00 21.00
UPDRS III 23.89 12.05 13.00 3.00 33.00 25.00 55.00
LED (mg/day) 997.26 554.05 610.00 0.00 1324.00 870.00 2275.00
NMSS 35.60 20.58 18.00 2.00 53.00 33.00 94.00
RBDSQ 3.76 3.22 1.00 0.00 5.00 3.00 13.00
MMSE 27.97 2.49 28.00 16.00 29.00 29.00 30.00
ACE-R 87.11 7.98 83.00 60.00 93.00 88.00 99.00
BDI 10.51 6.08 6.00 0.00 15.00 9.00 27.00
FOG-Q (Q3) 1.49 1.55 0.00 0.00 3.00 1.00 4.00
FOG-Q (Q4) 1.09 1.30 0.00 0.00 2.00 1.00 4.00
FOG-Q (Q5) 0.92 1.19 0.00 0.00 2.00 0.00 4.00
FOG-Q (Q6) 0.75 1.03 0.00 0.00 1.00 0.00 4.00
FOG-Q (total) 4.25 4.57 1.00 0.00 10.00 3.00 16.00

Session 2 (27 males/14 females)

PD duration (years) 9.68 4.69 6.50 4.00 12.00 9.00 24.00
UPDRS III 28.15 12.93 20.00 5.00 36.00 29.00 61.00
LED (mg/day) 1128.67 469.20 767.50 375.00 1357.00 1070.00 2852.00
NMSS 55.54 33.72 29.00 2.00 70.50 57.00 138.00
RBDSQ 3.61 2.29 2.00 0.00 5.00 3.00 10.00
MMSE 28.02 2.08 27.00 22.00 30.00 29.00 30.00
ACE-R 84.88 9.68 79.50 51.00 92.50 87.00 97.00
BDI 10.76 5.12 6.50 2.00 15.00 10.00 25.00
FOG-Q (Q3) 1.71 1.50 0.00 0.00 3.00 2.00 4.00
FOG-Q (Q4) 1.22 1.31 0.00 0.00 2.00 1.00 4.00
FOG-Q (Q5) 1.24 1.20 0.00 0.00 2.00 1.00 4.00
FOG-Q (Q6) 1.05 1.16 0.00 0.00 2.00 1.00 4.00
FOG-Q (total) 5.22 4.76 2.00 0.00 13.50 6.00 16.00

1 Table notation: charact. – characteristics (clinical); Qx – x-th quartile (Q1 [first], Q2 [second], Q3 [third]);
UPDRS III – Unified Parkinson’s disease rating scale, part III: evaluation of motor function [17]; LED – L-
dopa equivalent daily dose [28]; NMSS – Non-motor symptoms scale [14]; RBDSQ – The REM sleep behavior
disorder screening questionnaire [47]; MMSE – Mini-mental state examination [18]; ACE-R – Addenbrooke’s
cognitive examination-revised [27]; BDI – Beck depression inventory [7, 8]; FOG-Q – Freezing of gait ques-
tionnaire [21].

file [26] and included fourteen speech tasks, specifically: monologue, expiration with
closed/open lips, sustained phonation (/a/, /i/), diadochokinesis, rhythmical units,
basic intonation/stress templates, and reading with different/no emotions.
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Fig. 4.2: Box plots visualizing the evolution of gait-specific deficits assessed by FOG-
Q, specifically Q3–Q6 score and the total score (sum of Q1–Q6). Colour notation:
green colour (session 1, e. e. baseline examination), and blue colour (session 2, i. e.
follow-up examination).

4.1.2 Feature extraction

To quantify voice/speech disorders in the PD patients, a set of acoustic features
based on a recommendation given in recent review on acoustic analysis if voice/speech
signals in patients suffering from HD [11] was computed. It specifically covers the
area of phonation, articulation, and prosody. To provide better insight into ability
of these features to describe HD, a short description per HD area is presented.

In terms of phonation, the acoustic features describing airflow insufficiency (MPT)
during expiration with closed (T2) or opened (T3) lips, irregular pitch fluctuations
(relF0SD) during phonation of the vowel /a/ (T4), microperturbations in frequency
(jitter) and amplitude (shimmer) during phonation of the vowel /a/ (T4), tremor
of jaw (F1SD, F2SD) during phonation of the vowel /a/ (T4), increased acoustic
noise (mean HNR) during phonation of the vowel /a/ (T4), and aperiodicity of voice
(DUV) during phonation of the vowel /a/ (T4) were computed.

With respect to articulation, the acoustic features describing rigidity of tongue
and jaw (F1IR, F2IR, F1SD, F2SD) during monologue (T1), rhythmical reading
(T6), basic intonation templates (T7–9), paragraph reading (T10), and reading
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with different emotions (T11–14), slow alternating motion rate (DDK rate) during
diadochokinetic task (T5), and irregular alternating motion rate (DDK reg) during
diadochokinetic task (T5) were computed.

Finally, regarding the acoustic features describing monopitch (relF0SD) and
monoloudness (relSEOSD) during monologue (T1), rhythmical reading (T6), basic
intonation templates (T7–9), paragraph reading (T10), and reading with different
emotions (T11–14), inappropriate silences (SPIR) during paragraph reading (T10),
unnatural speech rate (TSR, NSR) during basic intonation templates (T7–9), para-
graph reading (T10), and reading with different emotions (T11–14) were computed.

4.1.3 Analytical setup

To assessed the strength of a relationship between the patients’ clinical data and the
selected items of FOG-Q in both sessions (session 1, session 2), Pearson’s correlation
with the significance level 0.05 was used. With this approach, it was possible to
identify those clinical measures (PD duration, UPDRS III, LED (mg/day), NMSS,
RBDSQ, MMSE, ACE-R, BDI) that are significantly correlated with the specific
symptoms of gait freezing in PD, which is a very valuable information because it
shows which clinical aspects of PD tend to be associated with FOG in the baseline
and in the follow-up (after 2 years). Using the 𝛿 session (session 2 − session 1), it is
even possible to see if the evolution of other clinical aspects of PD is related with
the evolution of the associated gait problems.

Next, to assess the strength of a relationship between voice/speech disorders
in HD and freezing of gait in patients with PD, Pearson’s (linear relationship)
and Spearman’s (monotonic relationship) partial correlation coefficients between the
acoustic features and the values of FOG-Q were computed. The significance level of
correlation in this case was set to 0.05 as well. During the computation of partial
correlations, the factors such as patients’ age and gender [3, 44], dopaminergic med-
ication [28] and a variety of associated motor and non-motor symptoms assessed by
UPDRS III [17], BDI [7, 8], and ACE-R [27] were controlled for. As in the previous
case, the aim was to identify those acoustic features that are significantly correlated
with the specific symptoms of gait freezing in PD.

Finally, to evaluate the power of the acoustic features (in session 1; baseline) in
predicting the change of the severity of gait freezing in PD (Δ FOG-Q), multivariate
regression analysis was employed. For this purpose, we employed classification and
regression trees (CART) in the supervised machine learning setup using stratified
10-fold cross-validation with 100 repetitions) [12]. As previously, see Chapters 2
and 3, feature selection process was applied to obtain the feature sets with the
maximum clinical interpretability and also the power to predict FOG-related deficits
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in patients with PD. For this purpose, a modified version of sequential floating
forward selection [39] algorithm was used. To evaluate the prediction performance of
the trained models, mean absolute error (MAE), root mean squared error (RMSE),
and estimation error rate (EER) were computed. For more information about these
metrics, see Chapter 3.

4.2 Results

Regarding the classical correlation analysis, the values of Pearson’s correlation co-
efficients computed between clinical data (e. g. scores of the clinical rating scales
assessing motor and non-motor symptoms of PD) and selected items of FOG-Q (i. e.
Q3–Q6, and the total score) can be found in Table 4.2. This type of correlation was
computed for all three sessions: session 1 (baseline examination), session 2 (follow-
up examination), and 𝛿 session (description of the change in the particular item of
the rating scale) The results are discussed bellow.

In both sessions, significant correlations of all FOG-Q items with duration of
PD and UPDRS III (except Q5 in session 1) were identified. Next, LED was found
significantly correlated with all FOG-Q items in session 1, but not in the session
2. Next, NMSS and all items of FOG-Q were found significantly correlated in
session 1, however in the session 2 only few significant correlations were found.
Regarding RBDSQ, no specific pattern can be observed. FOG-Q items correlated
variably with RBDSQ, however, significant correlation for FOG-Q (total score) was
found in both sessions. The scales assessing cognitive functions (MMSE, ACE-R)
were not find significantly correlated with the items of FOG-Q. And finally, BDI
score was not found significantly correlated with FOG-Q in session 1. Nevertheless,
significant correlations can be observed in session 2. Regarding the correlations
between Δ (Q3–6, total score) and Δ of the clinical scores, significant correlations
between the changes in FOG-Q items and changes in LED, NMSS and MMSE
were identified. Next, the results for partial correlation analysis are summarized in
Table 4.3. The associated regression plots can be seen in Figure 4.3.

With respect to the partial correlation analysis, the correlations among acous-
tic features quantifying impaired phonation, articulation and prosody, and selected
items of FOG-Q (Q3–Q6, and the total score) were computed. It is important to
point out that the partial correlation analysis was performed for session 1 only to
focus on the investigation of the relationship between FOG and HD in the base-
line. For a better overview, only the acoustic features with significant correlation
in both Pearson’s, and Spearman’s correlations were selected. Regarding Q3 (as-
sessment of occurrence of freezing), this item was found correlated mostly with the
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Tab. 4.2: Correlations among patients’ FOG-Q items and clinical description.

FOG-Q 𝜌 (Q3) 𝑝 𝜌 (Q4) 𝑝 𝜌 (Q5) 𝑝 𝜌 (Q6) 𝑝 𝜌 (total) 𝑝

Session 1

PD dur. (years) 0.47 ** 0.35 ** 0.35 ** 0.39 ** 0.44 **
UPDRS III 0.24 * 0.24 * 0.24 0.23 * 0.25 *
LED (mg/day) 0.36 ** 0.33 ** 0.37 ** 0.24 * 0.37 **
NMSS 0.45 ** 0.43 ** 0.39 ** 0.52 ** 0.49 **
RBDSQ 0.25 * 0.28 * 0.14 0.28 * 0.27 *
MMSE -0.01 -0.07 0.06 -0.06 -0.02
ACE-R -0.06 -0.15 0.04 -0.13 -0.08
BDI 0.05 0.06 0.09 0.13 0.09

Session 2

PD dur. (years) 0.41 ** 0.41 ** 0.38 ** 0.42 ** 0.44 **
UPDRS III 0.36 * 0.45 ** 0.35 * 0.39 * 0.42 **
LED (mg/day) 0.28 0.03 0.17 0.15 0.18
NMSS 0.39 * 0.30 0.26 0.36 * 0.36 *
RBDSQ 0.34 * 0.28 0.38 * 0.41 ** 0.38 *
MMSE -0.26 -0.14 -0.14 -0.07 -0.17
ACE-R -0.25 -0.18 -0.18 -0.13 -0.20
BDI 0.36 * 0.36 * 0.38 * 0.38 * 0.40 **

Δ (Session 2 − Session 1)

PD dur. (years) -0.22 0.06 0.18 0.25 0.04
UPDRS III 0.03 0.17 0.17 0.10 0.16
LED (mg/day) -0.28 -0.33 -0.35 -0.18 -0.40 *
NMSS 0.20 0.04 0.20 0.42 * 0.28
RBDSQ 0.09 0.24 0.06 0.24 0.21
MMSE -0.35 * -0.26 -0.29 -0.12 -0.36 *
ACE-R -0.17 -0.25 -0.24 -0.06 -0.25
BDI -0.26 -0.10 -0.06 0.02 -0.16

1 Table notation: 𝜌 – Spearman’s correlation coefficient; 𝑝 – significance level of correlation (* means 𝑝 < 0.05;
** means 𝑝 < 0.01); UPDRS III – Unified Parkinson’s disease rating scale, part III: evaluation of motor
function [17]; LED – L-dopa equivalent daily dose [28]; NMSS – Non-motor symptoms scale [14]; RBDSQ –
The REM sleep behavior disorder screening questionnaire [47]; MMSE – Mini-mental state examination [18];
ACE-R – Addenbrooke’s cognitive examination-revised [27]; BDI – Beck depression inventory [7, 8]; FOG-
Q – Freezing of gait questionnaire [21] (Q1–Q6, and T – total score), for more details, see Section 4.1.

interpercentile range of the first formant, and with net speech rate (extracted from
reading of a short sentence). The strongest correlation can be seen in the case of
NSR extracted from the short imperative sentence reading (𝜌 (P) = −0.40, 𝑝 < 0.01,
and 𝜌 (S) = −0.44, 𝑝 < 0.01). In the case of Q4 (assessment of the duration of the
longest freezing episode), 2 significant negative correlations were identified for the
interpercentile range of the first formant (extracted from paragraph reading, and
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Tab. 4.3: Partial correlations among features and FOG-Q (session 1) items.

HD area specific disorder features 𝜌 (P) 𝑝 (P) 𝜌 (S) 𝑝 (S)

FOG (Q3)

prosody unnatural speech rate NSR (T8) 0.41 ** 0.34 *
articulation rigidity of tongue and jaw F1IR (T10) -0.40 ** -0.44 **
articulation rigidity of tongue and jaw F1IR (T9) -0.34 * -0.38 **
articulation rigidity of tongue and jaw F1IR (T13) -0.32 * -0.39 **
articulation rigidity of tongue and jaw F1IR (T14) -0.30 * -0.30 *
articulation rigidity of tongue and jaw F1IR (T7) -0.30 * -0.35 *

FOG (Q4)

articulation rigidity of tongue and jaw F1IR (T10) -0.40 ** -0.43 **
articulation rigidity of tongue and jaw F1IR (T9) -0.35 * -0.40 **

FOG (Q5)

articulation rigidity of tongue and jaw F1IR (T14) -0.47 ** -0.49 **
prosody unnatural speech rate NSR (T8) 0.36 * 0.42 **
articulation rigidity of tongue and jaw F1IR (T10) -0.36 * -0.40 **
articulation rigidity of tongue and jaw F1IR (T13) -0.29 * -0.36 *

FOG (Q6)

prosody unnatural speech rate TSR (T11) 0.33 * 0.33 *
prosody unnatural speech rate NSR (T8) 0.33 * 0.33 *
prosody unnatural speech rate NSR (T11) 0.32 * 0.32 *

FOG (total score)

articulation rigidity of tongue and jaw F1IR (T10) -0.40 ** -0.45 **
articulation rigidity of tongue and jaw F1IR (T14) -0.38 ** -0.38 **
articulation unnatural speech rate NSR (T8) 0.36 * 0.38 **

1 Table notation: 𝜌 (P) – Pearson’s correlation coefficient; 𝑝 (S) – significance level of correlation accord-
ing to 𝜌 (P); 𝜌 (S) – Spearman’s correlation coefficient; 𝑝 (S) – significance level of correlation according
to 𝜌 (S) (* means 𝑝 < 0.05; ** means 𝑝 < 0.01); FOG-Q – Freezing of gait questionnaire [21].

short declarative sentence reading). The strongest correlation can be seen in the
case of paragraph reading (𝜌 (P) = −0.40, 𝑝 < 0.01, and 𝜌 (S) = −0.43, 𝑝 < 0.01).
With respect to Q5 (assessment of the duration of the typical start hesitation), the
interpercentile range of the first formant (extracted from paragraph reading, reading
of 9 words in a bored manner, reading of 5 words excitedly), and with the net speech
rate (extracted from short imperative sentence reading) were found significantly cor-
related with this particular item of the questionnaire. The strongest correlation can
be seen in the case of F1IR extracted from the reading of 5 words in an excited
manner (𝜌 (P) = −0.47, 𝑝 < 0.01, and 𝜌 (S) = −0.49, 𝑝 < 0.01). In the case of Q6
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Fig. 4.3: Regression plots (scatter plots with the fitted line of the robust linear
regression estimator) of the most correlated acoustic features (partial correlation)
for Q3–Q6, see Table 4.3. Colour notation: blue colour (the most correlated feature);
and green colour (the second most correlated feature).
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(assessment of the duration of the typical turning hesitation), significant correlations
were found for total speech rate (extracted from reading of a sentence of 8 words
in a neutral manner) and net speech rate (extracted from short imperative sentence
reading and reading of a sentence of 8 words in a neutral manner). The strongest
correlation can be seen in the case of TSR extracted from the reading of a sentence
of 8 words in a neutral manner (𝜌 (P) = 0.33, 𝑝 < 0.05, and 𝜌 (S) = 0.33, 𝑝 < 0.05).
And finally, with respect to the total score (Q3–Q6), interpercentile range of the
first formant (extracted from paragraph reading and reading of 5 words excitedly),
and net speech rate (extracted from short imperative sentence reading) were found
significantly correlated with this item. The strongest correlation can be seen in the
case of F1IR extracted from the paragraph reading (𝜌 (P) = −0.40, 𝑝 < 0.05, and
𝜌 (S) = −0.45, 𝑝 < 0.05). Next, the results of the multivariate regression analysis
can be seen in Table 4.4. Moreover, the models for FOG-G (Q5), and FOG (Q6) are
visualized (visualization of the approximation of decision making performed by the
regression tree) using the three graphs, see Figure 4.4, and Figure 4.5, respectively.

relF0SD (T4) ≤ 0.024
mse = 1.351
samples = 74
value = 1.027

relF0SD (T4) ≤ 0.018
mse = 1.333
samples = 9
value = 2.0

True

relF0SD (T4) ≤ 0.036
mse = 1.204
samples = 65
value = 0.892

False

F2SD (T7) ≤ 662.123
mse = 0.5

samples = 4
value = 1.0

relF0SD (T4) ≤ 0.018
mse = 0.56
samples = 5
value = 2.8

mse = 0.222
samples = 3
value = 1.333

mse = 0.0
samples = 1
value = 0.0

mse = 0.25
samples = 2
value = 3.5

mse = 0.222
samples = 3
value = 2.333

F2SD (T12) ≤ 838.003
mse = 0.109
samples = 16
value = 0.125

relF0SD (T4) ≤ 0.043
mse = 1.306
samples = 49
value = 1.143

mse = 0.0
samples = 11
value = 0.0

mse = 0.24
samples = 5
value = 0.4

mse = 0.64
samples = 5
value = 2.6

mse = 1.113
samples = 44
value = 0.977

Fig. 4.4: Visualization of the regression tree built to estimate FOG-Q (Q5). The
tree was trained using a single run applied on all data (all speech tasks and all
acoustic features) in the dataset for the features selected by the feature selection
algorithm (hence the decision making of the tree is an approximation of the behavior
responsible for the results summarized in Table 4.4). In the case of this tree, three
acoustic features are used: F2SD (T7), relF0SD (T4), and F2SD (T12).

Regarding the multivariate regression analysis, the results can be seen in Ta-
ble 4.4. The table contains the results related to the prediction of the change in
FOG severity in a two-year horizon. When considering the three HD dimensions
separately, the following results were achieved. The change in Q3 was predicted
with the estimation error of 20.96 % using 3 prosodic features. Specifically, TSR
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Tab. 4.4: FOG deficits prediction using classification and regression trees.

FOG-Q MAE RMSE EER No. selected features

Articulation

Q3 0.86 ± 0.26 1.03 ± 0.28 20.96 ± 6.38 1 F1SD11

Q4 0.76 ± 0.28 0.89 ± 0.31 20.78 ± 7.73 2 F1IR6, F2SD14

Q5 0.49 ± 0.22 0.64 ± 0.34 10.52 ± 4.67 4 F2SD7, F1IR11, F1SD12, DDKr5

Q6 0.60 ± 0.28 0.77 ± 0.43 13.85 ± 6.41 1 F1SD6

T 2.15 ± 0.63 2.53 ± 0.73 21.89 ± 6.44 1 F1SD9

Phonation

Q3 1.11 ± 0.30 1.29 ± 0.33 27.11 ± 7.33 1 jitter4

Q4 0.94 ± 0.28 1.14 ± 0.31 25.84 ± 7.57 2 shimmer4, jitter4

Q5 0.62 ± 0.24 0.81 ± 0.33 13.42 ± 5.18 1 MPT3

Q6 0.60 ± 0.24 0.79 ± 0.34 13.95 ± 5.57 1 MPT2

T 2.32 ± 0.75 2.91 ± 0.90 23.64 ± 7.63 1 relF0SD4

Prosody

Q3 0.85 ± 0.33 1.04 ± 0.39 20.90 ± 8.01 3 TSR11, TSR10, relF0SD11

Q4 0.80 ± 0.24 0.96 ± 0.27 21.88 ± 6.69 1 TSR7

Q5 0.56 ± 0.22 0.71 ± 0.31 12.09 ± 4.77 3 relSEOSD9, SPIR10, relF0SD1

Q6 0.55 ± 0.20 0.71 ± 0.26 12.75 ± 4.54 2 TSR7, NSR14

T 2.07 ± 0.71 2.59 ± 0.88 21.10 ± 7.20 4 TSR11, TSR10, TSR9, NSR8

Combination

Q3 0.83 ± 0.27 1.01 ± 0.31 20.40 ± 6.73 3 F1SD11, relF0SD6, F2IR1

Q4 0.76 ± 0.28 0.89 ± 0.31 20.78 ± 7.73 2 F1IR6, F2SD14

Q5 0.51 ± 0.21 0.66 ± 0.32 11.03 ± 4.59 3 F2SD7, relF0SD4, F2SD12

Q6 0.50 ± 0.21 0.65 ± 0.29 11.73 ± 4.93 4 TSR7, HNRm4, F2SD7, TSR11

T 2.00 ± 0.69 2.48 ± 0.82 20.35 ± 7.08 3 F1SD9, TSR11, F1IR6

1 Table notation: MAE – mean absolute error; RMSE – root mean squared error; EER – relative estimation error
rate (mean absolute error divided by the range of actual values of clinical rating scale present in the dataset;
expressed in %); No. – number of selected features; feature𝑥 – acoustic feature and the label of the speech task
(𝑥), see Section 4.1; FOG-Q – Freezing of gait questionnaire [21] (Q3–Q6, and T – total score), for more details,
see Section 4.1 as well.

(reading of a sentence of 8 words in a neutral manner), TSR (paragraph reading),
and relF0SD (reading of a sentence of 8 words in a neutral manner). The change in
Q4 was predicted with the estimation error of 20.78 % using 2 articulatory features.
Specifically, F1IR (rhythmical reading), and F2SD (reading of 5 words in an excited
manner). The change in Q5 was predicted with the estimation error of 10.52 %
using 4 articulatory features. Specifically, F2SD (short interrogative sentence read-
ing), F1IR (reading of a sentence of 8 words in a neutral manner), F1SD (reading of
a sentence of 6 words angrily), and DDKr (diadochokinetic task). The change in Q6
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HNRm (T4) ≤ 6.688
mse = 1.042
samples = 74
value = 0.77

HNRm (T4) ≤ 5.294
mse = 2.25
samples = 2
value = 2.5

True

F2SD (T7) ≤ 943.562
mse = 0.923
samples = 72
value = 0.722

False

mse = 0.0
samples = 1
value = 1.0

mse = 0.0
samples = 1
value = 4.0

F2SD (T7) ≤ 909.89
mse = 0.96

samples = 65
value = 0.8

mse = 0.0
samples = 7
value = 0.0

mse = 0.933
samples = 62
value = 0.742

mse = 0.0
samples = 3
value = 2.0

Fig. 4.5: Visualization of the regression tree built to estimate FOG-Q (Q6). The
tree was trained using a single run applied on all data (all speech tasks and all
acoustic features) in the dataset for the features selected by the feature selection
algorithm (hence the decision making of the tree is an approximation of the behavior
responsible for the results summarized in Table 4.4). In the case of this tree, three
acoustic features are used: TSR (T7), HNRm (T4), F2SD (T7), and TSR (T11).

was predicted with the estimation error of 12.75 % using 2 prosodic features. Specif-
ically, TSR (short interrogative sentence reading), and NSR (reading of 5 words in
an excited manner). The change in total score (Q3–Q6) was predicted with the
estimation error of 21.10 % using 4 prosodic features. Specifically, TSR (reading of
a sentence of 8 words in a neutral manner), TSR (paragraph reading), TSR (short
declarative sentence reading), and NSR (short imperative sentence reading). And
finally, when considering a combination of the features, the prediction was improved
in the case of Q3, Q6, and total score (the difference, i. e. improvement is shown
[in percentage]): Q3 (0.56), Q6 (1.02), and total score (0.75). However, as can be
seen, the improvements are not that significant, which shows a strong relationship
between separate HD areas and specific FOG deficits.
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5 CONCLUDING SUMMARY

This doctoral thesis deals with quantitative acoustic analysis of dysarthric speech
applied in the field of objective non-invasive computerized diagnosis and assessment
of idiopathic PD. The first study presented in this thesis is focused on robust quan-
tification, description and identification of monopitch, monoloudness and speech
rate/pausing abnormalities in patients with PD. In the frame of this study, speech
recordings acquired from 98 PD patients and 51 healthy speakers were investigated.
For this purpose, three specifically-designed speech tasks were recorded to quantify
variability of speech melody, speech-stress control and naturalness of speech rate
and pausing. With respect to the analyses, a complex comparison between HC and
patients with PD in terms of gender-related distinctions occurring with parkinso-
nian dysprosody, and a unique investigation of the possibilities of HD identification
using specific prosodic scenarios was performed. In addition, permutation test was
applied to evaluate the statistical power of the predictions made by the multivariate
classification models trained to discriminate healthy and dysarthric speech.

The second study presented in this thesis is focused on computerized and objec-
tive assessment of motor and non-motor symptoms of PD based on the quantitative
acoustic analysis of dysarthric speech at the baseline. In the frame of this study,
speech recordings and clinical data acquired from 72 PD patients were investigated.
For this purpose, the same speech tasks as well as the acoustic features as in the
case of the previous study was used. As opposed to the previous study, the corre-
lation analysis aiming at investigating the relationship between dysprosody in HD
and other non-speech symptoms of PD was employed. In addition to that, multi-
variate regression models capable of precise assessment of PD severity were built.
These regression models used only the information about prosodic deficits of the
patients at the baseline to predict the scores of a variety of clinical rating scales
that are nowadays being commonly used to assess severity of motor and non-motor
symptoms of PD.

The third study presented in this thesis is focused on computerized and objective
assessment of freezing of gait in PD in the horizon of two years based on the quan-
titative acoustic analysis of dysarthric speech at the baseline. In the frame of this
study, a robust set of acoustic features and speech task quantifying phonation, artic-
ulation, prosody, and speech fluency were used. For this purpose, speech recordings
and clinical data acquired from 75 and 41 PD patients at the baseline and at the
follow-up examination were investigated, respectively. In this study, multivariate
regression models capable of predicting the change of gait-related deficits in the
horizon of two years based on the information about severity of HD at the baseline
are built. Furthermore, partial correlation analysis was performed in direction of
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investigating pathological mechanisms shared by HD and freezing of gait in PD.
The main goal of this doctoral thesis that was to investigate possibilities of using

quantitative objective evaluation of HD, employing speech parametrization, statistical
analyses and machine learning techniques, in direction of identification and assess-
ment of PD, as well as all its objectives were successfully accomplished. Specifically,
the following goals were achieved:

1. Robust computerized quantification of HD manifestations in PD was performed.
In the area of phonation, microperturbations in frequency and amplitude, ir-
regular pitch fluctuations, tremor of jaw, increased acoustic noise, insufficient
breath support and aperiodicity of voice were quantified. In the area of ar-
ticulation, rigidity of tongue and jaw, slow alternating motion rate during
diadochokinesis and irregular alternating motion rate during diadochokinesis
were quantified. In the area of speech prosody, monopitch and monoloud-
ness were quantified. And finally, in the area of speech fluency, inappropriate
silences and unnatural speech rate were quantified. These acoustic features
provided a basis for complex computerized description of HD in PD.

2. Complex analysis and identification of dysprosody in HD was employed. To
quantify dysprosody in HD, conventional prosodic features, quantifying mono-
pitch, monoloudness and speech rate/pausing abnormalities, were computed
from the recordings of three specialized speech tasks: a) poem recitation task
(description of flat speech melody), b) stress-modified reading (description of
insufficient stress-control), and c) emotionally-neutral reading (description of
speech rate/pausing abnormalities). Next, a comparison between dysarthric
and healthy speech was performed. Additionally, multivariate classification
models were built to discriminate between PD patients and HC. All of the
analyses were employed in the gender-specific setup. Finally, each dimension
of dysprosody was evaluated separately as well.

3. Assessment of non-speech symptoms of PD at the baseline was employed. To
follow and build on top of the findings and conclusions of the previous study
focused on identification of dysprosody in HD, the same acquisition and pa-
rameterization setup was used. Here, correlation analysis between prosodic
features and values (scores) of a variety of clinical rating scales assessing mo-
tor and non-motor symptoms of PD was performed. Moreover, the computed
prosodic features were used to train and evaluate multivariate regression mod-
els that were proved to be capable of assessing the values of these rating scales
based solely on the information about the severity of HD at the baseline.

4. Assessment of gait freezing in PD in the horizon of two years was employed. To
robustly describe HD in PD, a large variety of speech tasks such as sustained
phonation, expiration, reading, free speech (monologue), diadochokinesis, etc.
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and acoustic features quantifying all dimensions of speech production were
studied. These features were consequently used to to train and evaluate mul-
tivariate regression models that were proved to be capable of predicting the
change in the freezing of gait occurring with PD in the horizon of two years
based solely on the information about the severity of HD at the baseline.

5. Analysis of pathological mechanism shared by HD and gait freezing in PD was
employed. To investigate if there are pathological mechanisms shared by HD
and freezing of gait in PD. Partial correlation analysis, controlling for the effect
of other confounding factors such as age, gender, dopaminergic medication,
etc., between the acoustic features and values of the specialized clinical rating
scale assessing gait-related deficits in PD was performed. This analysis pointed
out to some interesting facts about the relationship between HD and gait
freezing in patients with PD.

Regarding the future direction of the research described in this thesis, application
of the presented methodology for assessing of other common parkinsonian symptoms
such as depression or cognitive deficits at the baseline as well as in the direction of
two years is considered. Moreover, investigation of pathological mechanisms shared
by HD and other symptoms of PD besides freezing of gait is considered. Next,
application of quantitative acoustic analysis of dysarthric speech in direction of
tuning the parameters of novel perspective PD treatment methods such as rTMS is
considered as well. And finally, the ultimate goal behind this research is the fusion
of clinical and paraclinical data in order to develop and evaluate a decision support
system that would help clinicians with diagnosis, assessment, and monitoring of PD.
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and Communication, Technická 3058/10, 616 00 Brno, degree:
B.Sc (achieved in: 2011).

2004–2008 Gymnasium of Jan Botto, Trnava, Slovak Republic.

Internships

2018 University of Arizona Health Sciences (Neurology), University
of Arizona, Department of Neurology, 1501 N. Campbell Ave,
Tucson, Arizona, USA.

2016 Instituto para el Desarrollo Tecnológico y la Innovación en Co-
municaciones (IDeTIC), Universidad de Las Palmas de Gran Ca-
naria, 35001 Las Palmas de Gran Canaria, Spain.

2015 Facultad de Informática, Universidad Politécnica de Madrid
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ABSTRACT
Hypokinetic dysarthria (HD) is a speech disorder occurring in up to 90 % of patients
suffering from idiopathic Parkinson’s disease (PD) that significantly contributes to
unnaturalness and incomprehensibility of speech of these patients. The main aim of
this doctoral thesis is to investigate possibilities of using quantitative para-clinical
analysis of HD, employing speech parametrization, statistical analyses, and machine
learning techniques, for diagnosis and remote objective assessment of PD. This thesis
demonstrates that it is possible to use computerized acoustic analysis to sufficiently
describe HD, especially dysprosody, which is characterized by flat speech melody and
unnatural speech rate. Moreover, it demonstrates it is also possible to use robust
clinically interpretable acoustic parameters quantifying various manifestations of
HD, such as phonation, articulation and prosody, to assess the severity of motor and
non-motor symptoms of PD. Next, it presents the investigation of pathophysiological
mechanisms shared by HD and freezing of gait in PD. And finally, it proves it is also
possible to accurately estimate the change in gait-related deficits in the horizon of
two years using acoustic analysis at the baseline.

ABSTRAKT
Hypokinetická dysartrie (HD) je častým symptomem vyskytuj́ıćım se až u 90 %
pacient̊u trṕıćıch idiopatickou Parkinsonovou nemoćı (PN), která výrazně přisṕıvá
k nepřirozenosti a nesrozumitelnosti řeči těchto pacient̊u. Hlavńım ćılem této dis-
ertačńı práce je prozkoumat možnosti použit́ı kvantitativńı paraklinické analýzy HD,
s použit́ım parametrizace řeči, statistického zpracováńı a strojového učeńı, za účelem
diagnózy a objektivńıho hodnoceńı PN. Tato práce dokazuje, že poč́ıtačová akustická
analýza je schopná dostatečne popsat HD, speciálně tzv. dysprozodii, která se pro-
jevuje nedokonalou intonaćı a nepřirozeným tempem řeči. Nav́ıc také dokazuje,
že použit́ı klinicky interpretovatelných akustických parametr̊u kvantifikuj́ıćıch r̊uzné
aspekty HD, jako jsou fonace, artikulace a prozodie, může být použito k objek-
tivńımu posouzeńı závažnosti motorických a nemotorických symptomů vyskytuj́ıćıch
se u pacient̊u s PN. Dále tato práce prezentuje výzkum společných patofyziolog-
ických mechanizmů stoj́ıćıch za HD a zárazy v ch̊uzi při PN. Nakonec tato práce
dokazuje, že akustická analýza HD může být použita pro odhad progrese záraz̊u
v ch̊uzi v horizontu dvou let.
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