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ABSTRACT

Hypokinetic dysarthria (HD) is a speech disorder occurring in up to 90 % of patients
suffering from idiopathic Parkinson's disease (PD) that significantly contributes to un-
naturalness and incomprehensibility of speech of these patients. The main aim of this
doctoral thesis is to investigate possibilities of using quantitative para-clinical analysis of
HD, employing speech parametrization, statistical analyses, and machine learning tech-
niques, for diagnosis and remote objective assessment of PD. This thesis demonstrates
that it is possible to use computerized acoustic analysis to sufficiently describe HD, es-
pecially dysprosody, which is characterized by flat speech melody and unnatural speech
rate. Moreover, it demonstrates it is also possible to use robust clinically interpretable
acoustic parameters quantifying various manifestations of HD, such as phonation, artic-
ulation, and prosody, to assess the severity of motor and non-motor symptoms of PD.
Next, it presents the investigation of pathophysiological mechanisms shared by HD and
freezing of gait in PD. And finally, it proves it is also possible to accurately estimate the
change in gait-related deficits in the horizon of two years using acoustic analysis at the
baseline.

KEYWORDS

Parkinson's disease, hypokinetic dysarthria, acoustic analysis, diagnosis, freezing of gait,
machine learning, motor symptoms, non-motor symptoms, objective assessment, quan-
titative analysis, statistical processing.

ABSTRAKT

Hypokineticka dysartrie (HD) je ¢astym symptomem vyskytujicim se az u 90 % pacienti
trpicich idiopatickou Parkinsonovou nemoci (PN), ktera vyrazné prispiva k nepfirozenosti
a nesrozumitelnosti reci téchto pacientd. Hlavnim cilem této disertacni prace je prozkou-
mat moznosti pouziti kvantitativni paraklinické analyzy HD, s pouZzitim parametrizace
reci, statistického zpracovani a strojového uceni, za Gc¢elem diagnézy a objektivniho hod-
noceni PN. Tato prace dokazuje, Ze pocitacova akusticka analyza je schopné dostatecné
popsat HD, specialné tzv. dysprozodii, ktera se projevuje nedokonalou intonaci a ne-
prirozenym tempem feCi. Navic také dokazuje, ze pouziti klinicky interpretovatelnych
akustickych parametri kvantifikujicich rizné aspekty HD, jako jsou fonace, artikulace
a prozodie, miize byt pouzito k objektivnimu posouzeni zavaznosti motorickych a ne-
motorickych symptom( vyskytujicich se u pacientli s PN. Dale tato prace prezentuje
vyzkum spolecnych patofyziologickych mechanizmi stojicich za HD a zarazy v chizi pfi
PN. Nakonec tato prace dokazuje, ze akusticka analyza HD mize byt pouzita pro odhad
progrese zarazli v chlzi v horizontu dvou let.

KLICOVA SLOVA

Parkinsonova nemoc, hypokineticka dysartrie, akustickd analyza, diagnéza, kvantitativni
analyza, motorické priznaky, nemotorické priznaky, objektivni hodnoceni, statistické zpra-
covani, strojové uceni, zarazy v chizi.
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Introduction

Nowadays, we observe two main phenomena in the genesis of Parkinson’s disease
(PD). Namely the progressive degeneration of dopaminergic neurons in the sub-
stancia nigra pars compacta of the cerebra, and/or development of a-synuclein-
containing Lewy bodies within the surviving neurons. The associated motor symp-
toms such as tremor at rest, progressive bradykinesia, muscular rigidity, postural
instability, gait freezing, voice/speech disorders, etc., and non-motor symptoms such
as behavioural alternations, reduction of cognitive abilities, sleep disturbances, anx-
iety, depression, etc. have a detrimental impact on patients’ health, physical and
mental condition, social life, independence, and quality of life in general. Typically,
PD is rare in young population and its prevalence rate grows with the advancement
of a person’s age. That’s why it is mostly diagnosed in persons aged over 60 years.
But, before the conclusive clinical diagnosis is finally made, there is a long period
of the development of the underlying neurodegenerative process behind the disease,
slowly but surely worsening the severity of its symptoms. Thus, one might be asking,
what is necessary for the diagnosis of PD to be made?

At some point, the cardinal motor symptoms are the ones that first bring pa-
tients to a hospital searching for help, and even though the disease gets finally
diagnosed, at this stage, most of the dopaminergic neurons have already been dam-
aged, unfortunately. As one can imagine, the conventional clinical diagnosis of PD
is therefore based on the presence of the above-mentioned cardinal motor symptom.
Nevertheless, the presence of these symptoms is still not enough, and other criteria
such as the short-term positive response to dopaminergic (anti-parkinsonian) medi-
cation, and many others have to be met. It is therefore obvious that the diagnosis
of PD is not an easy task. In fact, even today, an objective diagnostic test which
allows a definitive 100 % accurate diagnosis of this disease has not been developed.
Thus, clinicians are forced to use a battery of tests, heuristics, biomarkers, and in-
clusion /exclusion criteria to make the diagnosis as accurate as possible. Another
drawback of the current state of affairs is that this set of examinations has to be
taken in the medical environment under the supervision of skilled clinician/s, which
is logistically demanding, costly and time-consuming. Not to mention the fact that
the disease does not have to be diagnosed at the first trial. It is often the case
that prior the diagnosis elderly people have to visit the hospital several times, which
makes this whole process even more problematic.

Today, we are living in the era of modern technologies, smart devices, internet of
things, etc. Even though older population might not be adopted to such a technolog-
ical advancement, younger people essentially grow up surrounded by it. Nowadays,

smart phones, smart watches and other devices can be easily used to record a large
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variety of biological signals such voice/speech, movements of hands, gait, heart rate,
and many more. With the previously mentioned facts in mind, it seems that one of
the major obstacles of PD diagnosis is the lack of data available for the clinicians.
Therefore, these modern devices could be potentially used to collect a large amount
of data without necessity of the patient’s presence at the clinic or any specialized su-
pervision. Such data could be securely transmitted and stored on cloud, where only
authorized persons could be allowed to access them. With this approach, clinicians
would be provided with an additional information about the medical condition of
their patients that could definitely help with their decision making that is related to
diagnosis, assessment, treatment and /or monitoring of the disease. Imagine a system
that would be able to access and process all clinical data (data acquired by a doctor
as well as those acquired by a variety of specialized devices such as those discussed
above) available for a patient. The large scale of data that would be available could
provide such a system with the power to use advanced signal processing techniques
to quantify and describe properties of the acquired biological signals that might
even lay beyond human perception. Next, modern machine learning algorithms,
statistical analyses and visualization methods could be applied to provide clinicians
with powerful reports about the current state of biomarkers and their evolution in
time, and so on and so forth. It is evident that not only doctors, but also patients
themselves would benefit from such information. However, to reach that point, rela-
tionship between properties of these biological signals and other clinical symptoms
of PD needs to be investigated and fully understood.

Speech is the most natural way of communication. In most cases, people use it
without problems. However, when a disorder such as PD comes into play, speech dis-
order named hypokinetic dysarthria (HD) gets involved. The associated voice/speech
deviations in the early stages of the disease are very hard to be clearly perceived. In
addition to that, patients themselves are in most cases not aware of their handicap,
and the perception of the changes in their voice and speech is different than the one
reported by their family and relatives. But in general, and depending on the stage of
the disease, at some point, speech communication difficulties will eventually come.
In fact, HD is one of the most disabling symptoms of PD that occurs in most of the
patients suffering from it, and therefore, even though HD has a detrimental impact
on the patient’s quality of life, it might be used as a rich source of information for
its diagnosis, assessment and monitoring.

Taking into account all the previously mentioned information, it can be hypoth-
esized that quantitative acoustic analysis of voice/speech signals might be used to
quantify different vocal manifestations of HD. Therefore, the main aim of this doc-
toral thesis is to investigate possibilities of using a combination of speech parametriza-

tion and machine learning techniques for remote, computerized, para-clinical and
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objective PD diagnosis and assessment. The goals of this thesis are: (i) to use
modern speech parameterization techniques to quantify HD manifestations in the
area of phonation, articulation, prosody and speech fluency, (ii) to use quantitative
acoustic analysis of dysarthric speech to identify HD, (iii) to use acoustic analysis of
dysarthric speech to objectively and indirectly assess severity of PD at the baseline,
(iv) to use acoustic analysis of dysarthric speech to predict the change in the severity
of freezing of gait in PD in the horizon of two years, and (v) investigate pathological
mechanisms shared by HD and freezing of gait in PD.

The thesis is structured as follows. Chapter [1| introduces the state of knowl-
edge in the field of PD analysis and points out to limitations of its current clinical
diagnosis and assessment. Next, it provides a brief proposal of the non-invasive
para-clinical computerized approach taking advantage of modern digital signal pro-
cessing algorithms and machine learning techniques. Chapter [2|introduces the state
of knowledge in the field of HD analysis and points out to limitations of its current
clinical diagnosis and assessment. Next, it provides a description of the quanti-
tative acoustic analysis of voice/speech signals for describing voice/speech-related
abnormalities that may not be audible to humans. It also summarizes the speech
parametrization setup that have been commonly used in this field of science. Chap-
ter 3] provides a description of the hypotheses and goals of this thesis. Chapter
summarizes the results of a study focused on robust quantification and identifica-
tion of dysprosody in HD using conventional clinically interpretable acoustic features
and three speech tasks specifically designed to describe prosodic manifestations of
HD. It also presents the results of a statistical analysis devoted to differentiation
between healthy and dysarthric speech in terms of speech melody and speech rate
abnormalities. Furthermore, presence of gender-specific patterns of dysprosody in
HD is investigated as well. Chapter [5| summarizes the results of a study focused
on objective computerized assessment of PD severity based on the acoustic analysis
of dysarthric speech. It also presents the results of a correlation analysis between
acoustic features quantifying dysprosody in HD and a variety of clinical rating scales
that are nowadays being commonly used to assess motor and non-motor symptoms
of PD. Next, it demonstrates it is possible to use acoustic analysis of voice/speech
signals to estimate the values of these rating scales at the baseline. Chapter [6] sum-
marizes the results of a study focused on the estimation of the changes in freezing
of gait (FOG) occurring with PD in the horizon of two years based on the quanti-
tative acoustic analysis of dysarthric speech. It also presents the results of a partial
correlation analysis aiming at investigating pathological mechanisms shared by HD
and FOG in PD. Next, it demonstrates it is possible to use acoustic analysis of
voice/speech signals to predict the progress of FOG in the horizon of two years.

And finally, Chapter [7] provides discussion, and Chapter [§ summarizes the thesis.
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1 Parkinson’s disease

This chapter deals with the state of knowledge in the field of PD analysis. PD
is one of the most frequent and complex neurological disorders that does affect
people at an epidemic rate worldwide. This chapter describes its history, epidemi-
ology, pathophysiology, manifestations, risk factors, diagnosis, assessment, monitor-
ing, treatment, therapies, etc. It specifically points out to limitations of the current
clinical approach to diagnosis and assessment of the disease. It subsequently pro-
vides a description of the novel non-invasive a para-clinical computerized approaches
taking advantage of modern signal processing techniques, state-of-the-art statistical
and machine learning algorithms, etc. that can be used to provide clinicians with
additional supportive information for the early and accurate diagnosis, remote and

objective assessment, prediction, and monitoring of this fatal disease.

1.1 State of knowledge

1.1.1 Brief history of the disease

The oldest description of so called parkinsonian symptomd!] dates back to 5000
B.C. in the ancient India [I44]. There are other references to these symptoms [4§]
as well, e.g. ancient Chinese sources, ancient Egyptian sources, bible, and many
more [94], 135, 251]. Even though such mentions can be found all over the world
throughout the history, the foundation of knowledge about PD as we know it today
was first laid in 1817 by the English physician James Parkinson in his milestone
work named “An Essay on the Shaking Palsy” [I73]. In this work, James Parkinson
analysed and systematically described medical conditions of 6 individuals and based
on his observations, he established the term paralysis agitans (shaking palsy) to
describe the symptoms that are nowadays being recognized and well-documented to
accompany idiopathic PD.

Almost 60 years later, in 1877, the globally recognized term Parkinson’s disease
was established by the French neurologist and professor of anatomical pathology,
also known as “the founder of modern neurology”, Jean-Martin Charcot. Charcot
and his students were the first to make a distinction between muscular rigidity, weak-
ness and bradykinesia in PD, and provided a comprehensive clinical description of
the arthritic changes, dysautonomia, and pain occurring with this disease [37]. Few

years later, in 1888, the British neurologist William Gowers reported an influential

!Clinical symptoms such as tremor at rest, bradykinesia, muscular rigidity, postural instability,
etc. caused by some form of brain dysfunction that accompany a family of disorders summarized
under the term Parkinsonism.
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work [I00] comprehensively describing his personal experience with 80 patients suf-
fering from PD. Further description of morphology and pathophysiological changes
related to PD was reported by Richer and Meige in 1895 [I88]. The anatomy and
damage caused to substancia nigra in the midbrain and the pathology of PD was
described in more details by Konstantin Tretiakoff [227] and Charles Foix [65] in
1919 and 1925, respectively. In 1953, the complete pathophysiological analysis of
the brain-stem lesions in PD was performed by Greenfield and Bosanquet [102].
Next the biochemical mechanisms behind the pathophysiology of PD were further
described in 1957 by the Swedish Nobel Prize laureate Arvid Carlsson [35], and
finally one of the most famous works dealing with PD was published in 1967 by
Hoehn and Yahr [I19] that introduced the stages of this disease in the course of its
progression. The same year, levodopa (L-dopa) was first used as a medication for
PD [61]. Until today, there has been a large number of other key studies address-
ing the epidemiology, pathology, diagnosis, assessment, treatment of PD, etc. such
as [1211, [122] 127, 190] and many others. However, more comprehensive study of

history and the evolution of knowledge about this disease is left to the reader.

1.1.2 Description of the disease

Even thought it has been approximately 200 years since James Parkinson provided
his description of paralysis agitans, the exact aetiology of PD (the underlying cause
of its onset) is still not fully understood, and its conceptualisation continues to
evolve. At present, neuropathology of PD is being described as follows: PD is
a chronic idiopathic disorder characterized by the specific pattern of progressive loss
or degeneration of dopaminergic neurons in basal ganglia, especially in the substan-
cia nigra pars compacta [122] (SNpc), but also in the other regions of the brain [49]
with the development of a-synuclein-containing Lewy bodies within the surviving
neurons [67]. There is a variety of other neurodegenerative disorders that share
similar parkinsonian-like manifestations such as Lewy Body Dementia (LBD) [147],
Multiple System Atrophy (MSA) [244], Progressive Supranuclear Palsy (PSP) [41],
etc. A sub-set of these disorders, specifically: Lewy body dementia, PD, PD de-
mentia) are nowadays being summarized under the name Lewy Bodies Disorderﬂ
(LBDs). However, in the context of this thesis, only idiopathic PD is considered.
Up to this day, the gradual dopaminergid® deficiency within the basal ganglia
has been recognized as a major cause of a very heterogeneous set of parkinsonian

symptoms [28]. It leads to a malfunction of the central nervous system (CNS)

2Term that is used to signify that there is an underlying a-synuclein deposits in the brain,

which results into autonomic, cognitive, behavioral or motor dysfunction, etc.
3Dopamine is an organic chemical that functions as a neurotransmitter responsible for trans-

mitting nerve impulses within the brain that allow for motor control and movement coordination.
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that is no longer capable of coordinating muscle movements properly, which con-
sequently results into a large variety of associated motor symptoms. The primary
motor symptoms of PD that are manifested predominantly on upper and lower
extremities [122] comprise tremor at rest (unintentional rhythmic and oscillatory
movements such as trembling/shaking of a part of the body with frequency bellow
6 Hz; present in approximately 70 % of PD patients [119] 124, 139]), progressive
bradykinesiaﬁ (slowness of initiation of voluntary movement with progressive reduc-
tion in speed and amplitude of repetitive actions; present in most patients with
PD [19, 247]), muscular rigidity (resistance of the muscles to passive manipulation;
present in approximately 89 %-99% of PD patients [119, 124, 138]), and postu-
ral instability (difficulties in adapting the posture, poor balance, and unsteadiness;
present in most patients with PD [120], however it is also present in a variety of other
disorders and therefore it has low diagnostic specificity). Next, motor symptoms of
PD such as dysarthria, dysphagia, gait freezing [I18|, 122], etc. can be present.
In addition to the motor symptoms, patients with PD also develop a variety of
non-motor symptoms such as the neuropsychiatric symptoms (depression, cognitive
dysfunction, dementia, etc.), sensory symptoms (olfactory deficits, visual dysfunc-
tion, etc.), gastrointestinal symptoms (constipation, excess salivation, dysphagia,
etc.), autonomic symptoms (bladder disturbances, changes in sweating, orthostatic
hypotension, etc.), as well as sleep disturbances, etc. [I19] that are nowadays being
described as a result of a-synuclein deposits in the brain and in the periphery. As
reported by the previous studies, in approximately 70 % of PD patients these symp-
toms have asymmetric onset [124]. In summary, considering the large number of
symptoms accompanying PD, it is evident how significantly this disease reduces the
independence, social integration, mental and physical condition, and quality of life
of patients suffering from it, and how dramatically it increases the requirements for
their caregivers as well.

According to the previously published studies [I89], PD is the second most fre-
quent neurodegenerative disorder. The prevalence/incidence rateﬂ of PD has been
estimated to approximately 1.5 %/1.24 [202] respectively (prevalence rate being ap-
proximately 1.5 times larger in population of men as opposed to the population of
women [12], [105]) for people aged over 65 years [190] (PD is rare in the young popu-
lation however there are still cases of PD appearing in much younger patients [40]).
Moreover, as reported by Schrag et al. [204], another 20 % of people with PD are

currently misdiagnosed /undiagnosed. Regarding the risk factors, in fact, literature

4Bradykinesia is used synonymously with: hypokinesia (a poverty of movement. e.g. parkinso-

nian micrographia), and akinesia (an absence of movement, e.g. poor facial expressions, etc.).
5Prevalence rate is the fraction of newly diagnosed patients at any given time. Incidence rate

is the number of new patients per population at risk in a given time period.
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suggests that ageing is the most critical risk factor of PD onset [54]. In addition
to the patient’s advancing age, other factors such as the family history, exposure
to pesticides/chemicals, drug abusing, environmental stress, traumatic brain injury,
etc. have also been reported to promote the neuropathology associated with PD.
According to [7, [114], protective factors include regular tobacco smoking, coffee/tea
drinking, consumptions of antioxidants, physical activity, and others. Unfortunately,
there is no scientifically validated preventive course reducing the risk of PD onset.
At present, there is no definite cure for PD. Nevertheless, various medication
and/or therapeutic strategies aiming primarily at the treatment of its motor man-
ifestations have been developed. Levodopa, which is based on the compensation of
the dopaminergic loss in the nigrostriatal system, has been the most widely used
form of PD medication for a long time, and it still remains to be a standard way
of medication for alleviating the typical parkinsonian symptoms. Even though the
cardinal motor symptoms can be relieved reasonably well, complications of long-
term dopaminergic drug use are also known to develop [83, 103]. There are other
medications besides L-dopa such as dopamine agonists, monoamine oxidase B and
catechol-O-methyl transferase inhibitors, etc., as well as treatment method for PD
such as duodopa pump, Deep Brain Stimulation (DBS), and ones under investiga-
tion such as repetitive Transcranial Magnetic Stimulation (rTMS) [I8] 47, 115} [192].
As can be seen, there are many methods in the clinician’s toolbox for the treatment
of the disease. Unfortunately, at the end of the day, none of these methods can
cure PD, and clinicians are eventually limited to alleviating its symptoms and to

maintaining patients’ quality of live for as long as possible.

1.2 Conventional approaches and limitations

1.2.1 Diagnosis

PD, as well as other neurodegenerative diseases, does not start suddenly. It is a pro-
gressive and continuous process that appears gradually with an increasing severity
over time. In the early stages of the disease, initial motor and non-motor symptoms
of the associated neurodegeneration have already been present, however they have
not yet advanced to the stage in which they can be conclusively and definitively
diagnosed using the classic clinical methodology. According to the International
Parkinson and Movement Disorder Society (MDS), early PD can be divided into
the following 3 developmental stages:
1. Preclinical PD—in this stage, the neurodegenerative processes have already
began, but there are no evident symptoms that can be clinically diagnosed

(however some imaging or biomarker abnormalities are present [30, [245]).
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2. Prodromal PD —in this stage, some of the parkinsonian symptoms are present,
but they are still insufficient for a define diagnosis (further imaging or biomarker
abnormalities are present/amplified [20, 222]).

3. Clinical PD—in this stage, the classical motor and non-motor parkinsonian
symptoms have advanced to the stage in which they become explicit and finally
sufficient for a probable clinical diagnosis [184].

As mentioned above, before the classical symptoms of PD can be clinically diag-
nosed, the neurodegenerative process has already commenced. In fact, at this stage,
the process of dopaminergic degeneration has reached a critical point in which as
much as 6070 % of dopaminergic neurons had already been damaged [21], [193]. Ac-
cording to the literature, the motor parkinsonism is the core feature of PD diagnosis.
However, motor symptoms alone are not sufficient for the diagnosis as non-motor
manifestations are present in most patients as well. As reported by the previous
studies, non-motor symptoms can dominate the clinical presentation of PD, and in
some cases, these symptoms can appear prior to the onset of the aforementioned
cardinal motor ones [I83]. Moreover, early in the process of PD onset, it is very
difficult to determine whether the observed symptoms and signs do actually indi-
cate the presence of PD or they are caused by the presence of another disease with
similar parkinsonian-like manifestations such as medication-induced parkinsonism,
essential tremor, PSP, MSA, dementia, etc.

Even today, no objective diagnostic test which allows for definitive and conclusive
diagnosis of PD has been developed. The gold-standard for PD diagnosis has been
the presence of SNpc degeneration and Lewy pathology at post-mortem pathological
examination. The conventionally used criteria according to the UK Parkinson’s Dis-
ease Society Brain Bank for PD diagnosis are composed of the following steps [123]
(the full criteria can be seen in Appendix ; there are also other diagnostic criteria
such as [3, 84, [184], etc.):

1. Diagnosis of typical parkinsonian symptoms—presence of progressive bradyki-
nesia in combination with at least one the following features: muscular tone
(rigidity), 4-6 Hz resting tremor, postural instability (not caused by primary
visual, vestibular, cerebellar, or proprioceptive dysfunction).

2. Exclusion criteria for PD—one or more of the following features: history of
repeated strokes with stepwise progression of parkinsonian features, history
of repeated head injury, history of definite encephalitis, negative response to
large doses of levodopa, etc.

3. Supportive prospective positive criteria for PD —three or more of the following
features are required for definite diagnosis of PD: unilateral onset, presence

of resting tremor, progressive nature of disorder, great response to levodopa
(70-100 %), etc.
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1.2.2 Assessment and monitoring

At present, there are no objectively measured characteristics and methods (i.e.
biomarkers) for evaluating the disease progression and for quantifying the efficacy
of treatment in PD [5]. The actual evaluation and monitoring of PD symptoms
progression as well as the effect of the anti-parkinsonian treatment is achieved by
the subjective assessment of the ability of patients to perform a range of empirical
tests during regular physical visits at the clinic [60]. For this purpose, a variety
of standardized clinical rating scales evaluating motor and non-motor symptoms of
PD has been developed. Amongst the most commonly used ones: Unified Parkin-
son’s Disease Rating Scaleﬁ (UPDRS; parts: I) Mentation, Behavior and Mood;
IT) Activities of Daily Living; III) Motor Examination; and IV) Complications of
Therapy) [62], Non-Motor Symptoms Scale (NMSS) [38], Beck Depression Inventory
(BDI) [16| 17], Freezing Of Gait questionnaire (FOG-Q) [90], The REM sleep Be-
haviour Disorder Screening Questionnaire (RBDSQ) [223], Mini-Mental State Ex-
amination (MMSE) [66] or Addenbrooke’s Cognitive Examination-Revised (ACE-
R) [133], etc. has been used.

Nevertheless, subjective assessment of PD severity often varies between clinicians
due to inter-rater variability [I82] [I85]. A para-clinical methods that would be
able to estimate scores of previously mentioned scales and provide neurologists and
clinical psychologists with a quick and preliminary insight into motor and non-
motor features of the examined patient are still missing. As reported by the previous
studies [229, 231], these methods can provide non-invasiveness, inexpensiveness, and
most importantly, natural objectivity of the examination, minimizing the need for

regular subjective clinical expertise.

1.3 Novel a para-clinical approaches

In summary, currently established clinical diagnosis and assessment of PD is a com-
plex process, which however can not be made with 100 % certainty [125] (75 %-95 %
of PD patients have their diagnosis confirmed on autopsy), and that heavily relies
on the presence of both motor and non-motor symptoms, short-term positive re-
sponse to dopaminergic medication, presence of levodopa-induced dyskinesia, etc.
The actual clinical examination is performed in the medical environment under the
supervision of skilled clinicians using a battery of clinical tests (e.g. clinical rating
scales [60] assessing motor and non-motor deficits, etc.), imaging techniques (Mag-

netic Resonance Imaging (MRI), Single Photon Emission Computed Tomography

6Tt has been criticized that the currently used UPDRS is confusing for capturing non-motor

symptoms of PD and therefore the Movement Disorder Society has sponsored a revision of it [95]
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(SPECT), Positron Emission Tomography (PET), etc.) [126], 176, 221], biomarkers
(motor performance tests, oculomotor measurements, olfaction tests, biochemical
measurements such as blood tests, evaluation of rapid eye movement (REM) sleep
behavior disorder (RBD)), and inclusion/exclusion criteria [3, 84, 123, 184]. The
problem with this approach is that it is logistically demanding for patients as well
as their caregivers, cost-ineffective, time-consuming, and so on. Considering the
current trend of population ageing, we can imagine that more people gets older, the
more serious this becomes. It gets even trickier when we also take into account the
fact that each patient experiences the symptoms and reacts to the anti-parkinsonian
medication/treatment individually [I03]. Therefore, to make the diagnosis as precise
as possible, long periods of observation are often necessary.

Today, there is a large number of smart devices such as smart phones, smart
watches, and others, which can be used to record a variety of biological signals such
as voice/speech, gait, tremor of extremities, etc. These devices are therefore capable
of providing clinicians with large amount of data about the health condition of the
patient on a daily basis, and without necessity of supervision or patient’s presence
at the clinic. So, if such data are merged with the data acquired using classical
clinical examination, new possibilities of computer-based supportive diagnosis and
assessment of PD using so called decision support system can be developed. Based
on advanced signal processing techniques, robust mathematical modelling and sta-
tistical processing, such a systems could in theory identify unique patterns of dis-
tinct parameters combinations derived from multimodal clinical and a para-clinical
biomarkers that would not reach relevant diagnostic accuracy when evaluated one
by one separately. However, to reach this point, further research is necessary. In the
frame of this thesis, usage of computerized acoustic analysis of voice/speech signals
for quantification of hypokinetic dysarthria as a frequent and disabling symptom of

PD, and indirect assessment of other non-speech symptom of PD is considered.
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2 Hypokinetic dysarthria

This chapter deals with the state of knowledge in the field of HD analysis. HD
is a frequent speech disorder associated with idiopathic PD with detrimental im-
pact on the verbal communication and daily social life of patients suffering from it.
The chapter describes its manifestations, diagnosis, assessment, monitoring, etc. It
specifically points out to limitations of the current clinical approach to diagnosis and
assessment of HD. It subsequently provides a description of the novel approaches
taking advantage of modern signal processing techniques, state-of-the-art machine
learning algorithms, etc. that can be used to provide clinicians with additional
supportive information for the early and accurate diagnosis, remote assessment,

prediction and monitoring of this disease.

2.1 State of knowledge

Dysarthria is a medical term used to collectively describe a family of neuromuscular
speech disorders associated with disturbance of phonorespiration (discoordinated
respiration and insufficient airflow support), impaired control over laryngeal muscle
function (presence of vocal tremor and irregular vocal folds’ vibration pattern),
increased vocal nasality, imprecise articulation of consonants, unnatural prosody,
speech rate abnormalities, poor speech quality, etc. At present, there are six major
types of dysarthria [131), 148, 164], 200] that are related to an underlying neurologic
condition, as well as the presence of deviant speech dimensions identified by clinical
researchers Darley, Aronson, and Brown back in 1969 [43]:

o flaccid dysarthria (impaired lower motor neuron system)

« spastic dysarthria (impaired upper motor neuron system)

o ataxic dysarthria (damaged cerebellar system)

o hyperkinetic dysarthria (disorder of the extrapyramidal motor system)

 hypokinetic dysarthria (disorder of the extrapyramidal motor system)

« mixed dysarthria (a combination of 2/more dysarthria types)

Dysarthria is nowadays well-known to result from a variety of conditions such
as stroke, brain tumours/injuries, and most frequently, it has been shown to oc-
cur as a symptom of a large number of progressive neurological disordersl] such as
Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Parkinson’s disease
(PD) [43-45, [164], etc. In the context of this thesis, only hypokinetic dysarthria in
idiopathic PD [24] is considered.

'Resulting from central and/or peripheral nervous system abnormalities [179]
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According to the previously published studies [I1§], up to 90 % of patients suffer-
ing from idiopathic PD do eventually develop the distinctive motor speech disorder
first described in 1969 [43], [44] that is nowadays known as hypokinetic dysarthria
(HD). At present, HD is considered to be a result of the defective motor exe-
cution of articulatory programs [53] that is particularly attributed to subcortical
neuropathology (synucleinopathy) disrupting basal ganglia-thalamocortical motor
networks for speech production [69]. From the perspective of its symptoms, HD
is known to be manifested in all dimensions of human voice/speech production,
specifically in: respiration, phonation, articulation, prosody, speech fluency, and
faciokinesis [24] [44] 145, [154]. It is characterized by rigidity, bradykinesia, and re-
duced muscular control of the larynx, articulatory organs, and other physiological
support mechanisms of human speech production [I30]. The following voice/speech
disorders, which significantly contribute to reduced speech intelligibility, ability to
communicate, and quality of life of patients with HD in general [106], [175], have
been observed: increased acoustic noise [122], reduced intensity of voice [11], harsh
and breathy voice quality [229] 231], increased voice nasality [220], reduced speech
prosody i.e. monopitch, monoloudness, and speech rate disturbances [27], R0, 214],
reduced variability of the articulatory organs’ mobility i.e. imprecise articulation of
consonants [98], 194], involuntary introduction of pauses [I59], palilalia, i.e. rapid
repetitions of words and syllables [159], sudden deceleration or acceleration in speech
(bradyphemia/tachyphemia) [86], etc.

Even though HD has been known for almost fifty years, and it still remains to be
one of the most common speech disorder under investigation, its underlying patho-
physiological mechanisms are not yet fully understood. Accordingly, as the research
in the field of PD and HD in particular has evolved over time, an understanding
of the neurological changes responsible for communication impairment associated
with HD has evolved as well. In the early days, the researchers thought that HD
in PD could be attributed to the classical parkinsonian symptoms [44]. Only the
time showed that the lack of effective pharmacological (dopaminergic) treatment
and surgical intervention for alleviating the symptoms of HD do actually point to
different mechanisms of speech impairment in PD [55, 213] 217]. Moreover, it has
been shown that symptoms of HD and speech prosody impairment in particular
progress over time without any clear correlation to disease duration or global motor
symptom scores [212, [214]. Therefore, it seems that the non-dopaminergic pathways
are being involved in the pathophysiology of HD, and some parallels can be drawn
particularly between HD and gait problems [33] [I58]. Many other parallels can be
drawn to link HD with non-dopaminergic mechanisms in PD but the important
conclusion is that HD is a complex disorder that have to be viewed from multiple

perspectives.
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Literature demonstrates the influence of PD in speech from early to advanced
stages [196), 211], but HD is mainly observed in mid to advanced stages of PD [52].
But not only that, according to other sources [225], there have been cases in which
the family members of PD patients did observe changes in production and quality
of voice/speech even before the disease has been conclusively diagnosed. Hence, it
seems that when analysed accordingly, HD could be potentially used as an early and
powerful marker for diagnosis and a rich source of information for the assessment

and monitoring of PD.

2.2 Conventional approaches and limitations

Generally, voice/speech analysis can be approached by: a) perceptive clinical evalu-
ation (i.e. the analysis is performed by a skilled speech therapist according to a va-
riety of standardized protocols and clinical rating scales); or b) quantitative para-
clinical evaluation (i.e. the computerized acoustic analysis of voice/speech signals
is performed). Regarding the perceptive analysis of HD in PD, most neuroscience-
oriented research in PD has been based on the Unified Parkinson’s Rating Scale
(UPDRS), part III: Motor Examination, item 18 for evaluation of speech produc-
tion rated on a 0—4 scale [24], [62]. However, this is just a screening and an insuf-
ficiently detailed measure of HD. Another clinical rating scales that are frequently
being used to evaluate HD are Frenchay Dysarthria Assessment 2nd Edition (FDA-
2) [34], Robertson Dysarthria Profile (RDP) [46], etc. An alternative option is for
instance a visual analog scaling of speech impairment severity, e. g. for the Grandfa-
ther Passage, assessment of dysphonia using GRBAS (grade, roughness, breathiness,
asthenia and strain) rating scale, and so on. There are more detailed scales available,
such as the 3F test (for Czech speakers) as well. This instrument evaluates three
major domains of dysarthria, including faciokinesis, phonetics, and photorespira-
tion, with a calculated dysarthric index ranging from 0 (the most severe symptoms)
to 90 (no symptoms of dysarthria) points [I132]. However, such diagnostic tools are
usually available only in the country of their origin and have not been translated
and validated for broader use across Europe or elsewhere.

Assessment of speech intelligibility [249] or that of the voice/speech handi-
cap [I57] is clinically meaningful, however, not very sensitive, particularly in cases
of mild HD symptoms that may occur early in the course of the disease or even in
prodromal stages of PD. Another drawback of the clinical approach to voice/speech
quality assessment is its natural subjectivity. It might happen that if other exam-
iner rated the patient, the results would be slightly different due to medical /mental
condition, environmental factors, stress, etc. Finally, even a trained therapist is

limited to human sound perception (only sounds in the audible part of its spectrum

23



can be perceived and rated). So, to provide therapists with additional supportive
information about voice/speech disorders occurring with PD, and therefore make
its assessment or diagnosis more accurate and objective, quantitative para-clinical

evaluation of voice/speech signals has been investigated.

2.3 Novel para-clinical approaches

In quantitative para-clinical evaluation, also known as the objective acoustic analysis
of voice/speech signals, an audio recording is usually digitized and then processed
on a computer. This process comprises speech parameterization, statistical analysis,
mathematical modelling, etc. During the speech parameterization, signal properties
that are important for speech pathology description are quantified. In addition to
the pathology under focus, the parameterization is dependent on a properly selected
speech task. For a quantification of various aspects of HD in PD, a wide range of
speech tasks have been employed (most commonly used ones):

« sustained phonation of the vowels (/a/, /e/, /i/, /o/, and /u/)

o syllable repetition (diadochokinetic) tasks

e sentence repetition tasks

o reading tasks

 running speech (monologue)

To measure the quality of voice, sustained phonation of vowels has been the
most frequently used speech task across the literature [9, 110} 1511 165, 229]. More
specifically, sustained phonation of the vowel /a/ is a standard measure used to assess
quality of phonation. During this particular speech task, a speaker is asked to sustain
phonation of a vowel, attempting to maintain steady frequency and amplitude at
a comfortable level [226]. The advantage of this speech task in comparison with other
commonly used speech tasks is its independence of articulatory and other linguistic
confounds [226]. Moreover, it is also present in most of the available databases [107),
108]. Next, to measure the quality of speech articulation, syllable repetitions have
been used with great success [140, 171, 210, 21T]. And finally, to measure the
quality of speech prosody, various speech tasks such as sentence repetition tasks,
reading tasks and/or running speech (monologue) have been used [13], 80, 197, 212].
To quantify the voice/speech disorders in HD, various parametrization techniques
has been developed. In the frame of this thesis, these methods are referred to as
acoustic features. In general, the acoustic features can be roughly divided into 2 main
categories [24]: a) conventional ones; and b) non-conventional ones.

The conventional acoustic features are the most commonly used ones to describe
voice/speech deterioration present in HD. These features provide a community of

researchers and clinicians with a unique possibility of linking the values of these
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features with the specific manifestations of HD (these features are conceptually sim-
ple and therefore clinically interpretable [I53]). Thus far, the conventional acoustic
features have been used to describe: a) the impairment of phonatory aspects of
speech using several variants of jitter and shimmer, intensity variations described
by the standard deviation (SD) of the squared energy operator (SEO), or Tea-
ger—Kaiser energy operator (TEO), the SD of the time that vocal folds are apart
and in collision [85] 136, 137, 151, 165, 209, 229, 231], etc.; b) speech quality de-
terioration using harmonic-to-noise ratio (HNR), noise-to-harmonic ratio (NHR),
glottal-to-noise excitation ratio (GNE), fraction of locally unvoiced frames (FLUF)
[85], 136, 137, 151, 156, [165], etc.; ¢) impairment of speech prosody using the SD
of fundamental frequency (FOSD), the relative SD of FO (relF0SD), the variation
range of FO (FOVR), the relative VR of FO (relFOVR), the SD of SEO (SEOSD), the
SD of TEO (TEOSD), the variation range of SEO (SEOVR), the variation range
of TEO (TEOVR), the relative VR of SEO (relSEOVR), the relative VR of TEO
(relTEOVR) [80), 214 216], etc.; d) speech rate disturbances using total speech time
(TST), net speech time (NST), total pause time (TPT), total speech rate (TSR),
net speech rate (NSR), articulation rate (AR), percent pause time (PPT), speech
index of rhythmicity (SPIR) [80) 196) 212} 214] 216], etc.; and e) impaired conso-
nant articulation and tongue movement using frequencies and bandwidths of the
first three formants (Fx and Bx), the formant centralization ratio (FCR), the vowel
space area (VSA) and its logarithmic version (InVSA), the vowel articulation index
(VAI), the ratio of second formants of vowels [i] and [u] (Fi/Fu), DDK rate, DDK
regularity, voice onset time (VOT) [68, [196, 198, 201, 218], etc.

However, in more advanced stages of PD, the voice becomes aperiodic, noisy, ir-
regular, and chaotic. Sometimes, this results in the inability of conventional acoustic
features to capture useful clinical information about the underlying voice pathology.
To deal with this problem, researchers have developed more complex and robust non-
conventional acoustic features. Compared to the conventional ones, these features
provide more precise HD identification and tracking. However, non-conventional
acoustic features are in general less clinically interpretable [I53]. Amongst the
most commonly used ones, features based on empirical mode decomposition (EMD)
[1511, 219) 229, 231], correlation dimension (CD), fractal dimension (FD) [169} 170,
205, 234], Hurst exponent (HE), largest Lyapunov exponent (LLE) [169, 234], ap-
proximate entropy (AE), sample entropy (SE), correlation entropy (CE), recurrence
probability density entropy (RPDE) [113] [136], 137, 169], mel-frequency cepstral
coefficients (MFCC) [153, 165, 229, 231], detrended fluctuation analysis (DFA)
[136, 137, 229 231], pitch period entropy (PPE) [136], cepstral peak prominence
(CPP) [116], normalized noise energy (NNE) [129], etc. have been analyzed.
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Acoustic analysis of dysarthric speech was shown to be a promising biomarker of
PD [152, 230] with a great potential to objectively assess severity of PD [151], 214,
229]. Asreported by the recent studies, acoustic analysis of speech in HD can provide
clinicians with non-invasive and reliable methodology of PD examination that can
be used in daily clinical practice for identification, assessment and monitoring of the
progress of PD [24], 229] and also the efficiency of the treatment [109, 197].
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3 Hypotheses and goals

3.1 Hypotheses

Taking the previously mentioned facts into account, it is hypothesized that quantita-
tive acoustic analysis of voice/speech signals can be used to robustly and complexly
describe and identify HD in PD, and to indirectly assess other non-speech symptoms
of PD. Specifically, it is assumed that parametrization of voice/speech deficits in HD
and application of statistical analysis and/or modern machine learning techniques
is capable of estimating the values of clinical rating scales that are conventionally
used to assess motor and non-motor symptoms of PD at the baseline, as well as in

the horizon of two years.

3.2 Goals and objectives

The main goal of this doctoral thesis is to investigate possibilities of using quanti-
tative objective evaluation of HD, employing modern clinically interpretable speech
parametrization, statistical analysis and machine learning techniques, in direction
of PD identification and assessment. More specifically, this thesis has five main
objectives that can be briefly summarized as follows:

1. Robust computerized quantification of HD manifestations in PD—to use mod-
ern clinically interpretable speech parameterization techniques to quantify
manifestations of HD in the area of phonation, articulation, prosody and
speech fluency that are known to occur with idiopathic PD.

2. Complex analysis and identification of dysprosody in HD —to study dysprosody
in HD and to investigate an influence of prosodic demands such as precise
control of speech melody variability during recitation or modulation of stress
in speech, on computerized identification of HD.

3. Assessment of non-speech symptoms of PD at the baseline—to analyse the
possibilities of using acoustic analysis of HD to estimate the scores of a variety
of clinical rating scales that are nowadays being commonly used to assess
motor and non-motor symptoms of PD at the baseline.

4. Assessment of gait freezing in PD in the horizon of two years—to analyse the
possibilities of using acoustic analysis of HD at the baseline for predicting the
change in the severity of gait freezing in PD in the horizon of two years.

5. Analyse pathological mechanism shared by HD and gait freezing in PD—to
investigate if there are any pathological mechanisms shared by voice/speech

disorders in HD and freezing of gait in PD.

27



4 Analysis and identification of dysprosody

4.1 State of knowledge

The prosodic features of speech describe its stress and rhythm, speech to pause ratio
and velocity, speech intensity and pitch variation [T, 45]. Prosody is an important
aspect of human verbal communication as it conveys semantic, syntactic and af-
fective information and reflects emotions of a speaker. Due to vocal tract muscle
stiffness [214] patients with PD exhibit alterations of rhythm and speech rate (inap-
propriate silences, short rushes of speech, and variable speech rate) [27], small vari-
ations in pitch and intensity (monopitch and monoloudness, respectively) [52, [1T1]
resulting into flat voice and speech melody lacking intonation [31, 45]. Such deterio-
ration of prosody has a detrimental impact on speech naturalness and intelligibility,
and can ultimately lead to substantial voice and speech quality deficits resulting

into serious day-to-day communication problems in patients suffering from PD.

4.1.1 Monopitch

In 2011, based on their previously published research [215], authors Skodda et
al. [212] analysed variability of pitch during a reading task in a sample of 138 PD
patients and 50 healthy controls (HC), and showed significantly reduced pitch vari-
ability in PD patients in comparison with HC when related to the entire reading task
confirming the results of the previous research in this area [64], 93], [155]. In the same
year, Rusz et al. [196] demonstrated that even in the early stages of PD, patients do
exhibit lower melody and decreased intensity variations referring to limited range
of motions and impaired laryngeal tension in combination with insufficient breath
support [I80]. Results of this study indicated that patients in the early stage of
PD can suffer primarily from prosodic impairment, which is in accordance with the
findings of Harel et al. [I09] stating that poor intonation had been observed in sev-
eral individuals years before the onset of cardinal parkinsonian motor symptoms.
Moreover, in their another study [196], Rusz et al. reported that reduced melody
variations can be related to the lowered ability of stress pronunciation and emotional
intonation limitation caused by the presence of HD. In 2014, Tykalova et al. [232] in-
vestigated contrastive stress in 20 male patients in early stage of PD and 16 age- and
gender-matched HC. The participants were asked to unnaturally emphasize several
key words during a reading task. In contrast with HC, PD patients produced a dis-
tinctively flatter pitch contours, especially at the beginning and the end of a phrase,
confirming the findings published in [195] [196]. In addition, Pell et al. [I75] investi-

gated impact of dysprosody on vocal-prosodic communication from the perspective

28



of listeners and reported that listeners experienced serious difficulties recognizing
the emotional prosody, sentence mode, phonemic stress and contrastive stress of PD
patients compared to HC. And finally, in 2015, Anand and Stepp [4] demonstrated
that pitch variation is strongly correlated with the naturalness of speech perceived

by listeners.

4.1.2 Monoloudness

In 1986, authors Metter and Hanson proposed a study in which they showed that
patients with PD produced a significantly smaller intensity variation compared to
HC during the reading of a standard passage [I55]. Later, according to Watson
and Munson, PD speakers exhibit overall lower speech intensity, deficits in intensity
range, and intensity variations during speech production [241]. In addition to that,
in 2011, Skodda et al. proposed a gender-related study of dysprosody in PD [217]
comprising 169 PD patients and 64 age-matched HC and reported a reduction in
speech intensity during a reading task composed of 4 sentences. In the same year,
Rusz et al. [196] showed that early-staged PD patients can exhibit a decreased
intensity variations in comparison with HC. And finally, in 2014, authors Clark et
al. [39] performed a study focused on loudness perception in 17 PD patients and
25 HC and showed that patients with PD produced a significantly different pattern

with more restricted range of perception when compared to healthy individuals.

4.1.3 Speech rate deficits

In 1963, Canter [32] found no differences in the number of pauses or mean pause du-
ration between PD patients and HC during a reading task. However, in 1986, Metter
et al. [I55] did demonstrate the presence of such speech rate abnormalities in HD.
More recently, in 2008, Skodda and Schlegel [215] investigated articulation rate and
pause time during reading of 170-syllabic text composed of 4 complex sentences in
a cohort of 121 PD patients and 70 HC. They analysed the performance of acoustic
measurements applied on the first and the last sentence in order to evaluate the
hypothesis of altered speech rate and rhythm in patients with PD and confirmed
an age-related reduction of articulation rate that was proposed by Weismer [242]
back in 1984. Furthermore, a gender specific patterns of speech rhythm was re-
ferred. However, neither gender-related differences between PD patients and HC in
speech rate parameters (total speech rate, net speech rate), nor overall distinctions
in speech rate between PD and HC were observed. Later, in 2009, Skodda et al.
performed a longitudinal study [214] reporting speech rate variation closely related

to the progression of PD and confirmed the previous findings of Ho et al. [I1§], in
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which decisive impairment of speech fluency was found specifically in the more ad-
vanced stages of PD. Two years later, in 2011, Skodda et al. investigated net speech
rate of patients with PD during a reading task and observed no significant distinc-
tions of this measure between PD patients and HC [212]. In addition, they reported
increased number of pauses per second during a reading task in their another work
from the same year [217]. And finally, in 2015, authors Bandini et al. [I3] employed
a study evaluating patterns of dysprosody in 14 male and 6 female PD patients via
a fully automated tool and showed that PD patients exhibit longer pauses between
sentence repetitions. In contrast to the findings reported by Bandini et al., Skodda
and colleagues performed several studies [216] 217] reporting shorter pauses between
sentences. However, as stated by Bandini et al. such distinction is a consequence of
a difference between the speech tasks (sentence repetition task [I3] and reading of
a passage [216], 217]).

4.2 Rationale behind the research

To summarize and emphasize, many researchers have performed studies focused on
the investigation of a variety of aspects associated with dysprosody in HD [2], 29|
31, 64, 92, [141), [155] 195] 196] 215, 217). These studies comprised quantification,
examination, and evaluation of intonation and melody of speech, variation in speech
loudness and timing, contrastive stress and rhythmical deficits occurring with this
disease. Regarding the monopitch aspect of HD, the literature have demonstrated
that reduced variability in pitch is present in a majority of patients suffering from
PD. In the case of monoloudness aspect of HD, the presence of reduced variability
in speech loudness in most patients with PD has been well-documented as well.
Concerning speech rate disturbances associated with HD in PD, the previous studies
do relate the rigidity and hypokinesia of the laryngopharyngeal tractus [11] and
speech rate abnormalities [212), 214, 217]. However, in contrast to the monopitch
and monoloudness that seem to be describing dysprosody pretty well, the results on
the speech rate in patients with PD still remains to be inconsistent [II, 30, 64].
This thesis builds upon the previous findings in this field of science, and proposes
a novel approach for accurate and sensitive identification of dysprosody in HD. So
far, there is no work dealing with HD analysis and identification using a poem
recitation as well as a comparison between neutral, stress-modified and rhymed
speech. Introducing such speech tasks however is of scientific significance since
the recitation task requires a speaker to use precise and controlled variation in
intonation and intensity of speech as well as speech rate/pausing all at once, and
therefore this task is a good candidate for sensitive differentiation of dysarthric

and healthy speech. Next, the comparison between neutral, stressed, and rhymed
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speech is missing. However, it can provide useful information about distinctions
in the patterns of prosodic impairments associated with HD when the speakers are
exposed to a variety of prosodic demands. Furthermore, most works that have been
published does not perform the gender-differentiation, which in fact does neglect
very important information that can provide deeper understanding of gender-specific

patterns of dysprosody in HD.

4.3 Methodology

4.3.1 Description of the dataset

For the purpose of this study, 149 Czech native speakers were examined: 98 pa-
tients with idiopathic PD (59 males and 39 females, characteristics described as
mean (sd): participants’ age in years 67.52 (8.29); duration of the disease in years
7.80 (4.42); UPDRS III (evaluation of motor functions) [62] 24.91 (11.97); UP-
DRS IV (evaluation of complications of therapy; Hoehn and Yahr scale, staging of
severity of PD) [62] 2.83 (2.57); RBDSQ (evaluation of sleep disorders) [223] 3.79
(3.23); FOG-Q (evaluation of freezing of gait) [90] 7.16 (5.81); NMSS (evaluation
of non-motor deficits) [38] 34.76 (19.80); BDI (evaluation of depression) [16, [17]
13.19 (14.57); MMSE (evaluation of cognitive dysfunctions) [66] 28.07 (2.23); LED
(daily levodopa equivalent dose; in mg/day) [134] 1005.93 (545.66)), and 51 healthy
speakers (25 males and 26 females, characteristics described as mean (sd) as well:
participant’s age in yearsE] 63.96 (9.21)). For more information about demographical
and clinical characteristics of the used cohort, especially for the group of male and
female participants, see Table [4.1]

All the speakers participating in this study were enrolled at the First Depart-
ment of Neurology, St. Anne’s University Hospital in Brno, Czech Republic. The
healthy speakers had no history or presence of speech disorders or brain diseases,
including neurological and psychiatric illnesses. All PD patients were examined on
their regular dopaminergic medication approximately 1 hour after the L-dopa [134]
dose (i.e. ON state examination).

In addition to that, descriptive statistical graphs of specifically selected set of
clinical characteristics for female and male speakers (only in the case of PD patients)
can be seen in Figure 4.1l On the main diagonal, the graphs show histograms (i. e.

approximation of a distribution of the values of the clinical rating scales in the

LOther clinical characteristics such as the scores of the clinical rating scales used to examine
PD patients are not known for healthy speakers. For the purpose of this study, only patients with
clinically diagnosed PD were further examined. So, age and gender of the participants are the only

data available for healthy speakers.
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Fig. 4.1: Descriptive statistical graphs of clinical characteristics (clinical rating
scales) of PD patients participated in this study: on the main diagonal, histograms
are visualized. Next, the upper triangular part of the graph-grid shows scatter plots
along with the fitted lines of the robust linear regression models. And finally, the
lower triangular part of the graph-grid is used to display residuals for the models
shown in the the upper grid. Colour notation: blue colour represents female speak-

ers, and green colour represents male speakers. For the description of the rating

scales, see Table

sample) for each of the rating scale. Next, on the upper triangular part of the
graph-grid, scatter plots along with the lines fitted using robust linear regression
can be seen. And finally, on the lower triangular part of the graph-grid, the residual

plots for these models are visualized as well. With respect to the colour notation,
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Tab. 4.1: Demographic and clinical characteristics of the participants.

characteristics PD (females) PD (males) HC (females) HC (males)
Number of speakers 44 53 22 29
Age (years) 68.48 + 7.64 66.21 + 8.78 62.25 £ 9.83 65.40 £ 9.04
PD duration (years) 7.61 + 4.85 7.83 + 4.39 - -
UPDRS III 22.06 £ 13.73 26.85 + 10.22 - -
UPDRS IV 2.72 £ 3.01 3.15 £ 2.59 - -
RBDSQ 3.42 £+ 3.48 3.85 £ 2.99 - -
FOG 6.94 £ 5.72 6.67 £ 5.57 - -
NMS 36.03 £ 26.72 38.19 £ 19.72 - -
BDI 18.57 £+ 23.94 9.69 £ 6.23 - -
MMSE 27.38 + 3.63 28.56 + 1.05 - -
LED (mg/day) 862.44 £ 508.30 1087.00 + 557.47 - -

Table notation: UPDRS III—-Unified Parkinson’s disease rating scale, part III: evaluation of motor func-
tion [62]; UPDRS IV — Unified Parkinson’s disease rating scale, part IV: evaluation of complications of therapy
(Hoehn and Yahr scale, staging of severity of Parkinson’s disease) [62]; RBDSQ — The REM sleep behavior dis-
order screening questionnaire [223]; FOG-Q — Freezing of gait questionnaire [90]; NMSS —Non-motor symptoms
scale [38]; BDI—-Beck depression inventory [16} [17]; MMSE — Mini-mental state examination [66]; LED —L-dopa
equivalent daily dose (mg/day) [134].

blue colour represents female speakers and green colour represents male speakers.

Voice/speech signals were acquired by a large capsule cardioid microphone M-
AUDIO Nova mounted to a boom arm RODE PSA1. The microphone was positioned
at a distance of approximately 20 cm from the speaker’s mouth. Room’s environ-
mental noise was lower than 30 dB sound pressure level. The signals were sampled
with the sampling frequency of 48 kHz and consequently resampled to 16 kHz. All
recordings were checked by a trained acoustic engineer who discarded those, which
contain some undesirable noise (such as speech therapist’s cough, phone ringing,
etc.). All the participants signed an informed consent form that had been approved
by the Ethics Committee of St. Anne’s University Hospital in Brno.

With respect to the speech tasks used to quantify prosodic deterioration in HD,
the following three speech task scenarios comprising two reading tasks and a poem
recitation task were considered. First of all, every participant performed two reading
tasks (1. emotionally-neutral reading, and 2. stress-modified reading). Next, all
speakers were asked to recite a poem composed of two rhymes. At first, they were
instructed to read the poem on a paper. After that, every participant recited this
poem into a microphone, but without any need to keep it in memory (i.e. no
memory-related constraints were applied). The tasks:

1. Reading a short paragraph with neutral emotion. In Czech (original) -1 na

tom, Ze clovék si opatri psa, aby nebyl sim, je mnoho pravdy. Pes opravdu

nechce byt sam.; In English— FEven the fact that a man gets a dog to not be
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alone is pretty much true. A dog really don’t want to be alone.

2. Stress-modified reading. In Czech (original)— Ted musis byt chvili trpélivy,
nez to dokoncme. UZ mé to nebavi, dej mi uZ konecné pokoj! Tak co, jak to
dopadlo?; In English— Now, you have to be patient until we finish it. I'm tired
of it already, leave me alone! So, how did it go?

3. Poem recitation task. In Czech (original)— Chcete vidét velky lov? Budu lovit
v dZungli slov. Osedlam si Pegasa, chytim bdsen do lasal, ; In English— Would
you like to see a big hunt? I will be hunting in a jungle of words. I will saddle

the Pegasus, I will catch a poem into a lasso.

4.3.2 Feature extraction

To describe dysprosody in HD, several conventional and clinically well-interpretable
acoustic features [24] were used. The following acoustic features quantifying a rel-
ative variability of speech intonation were computed: standard deviation of F(ﬂ
(FOSD); relative standard deviation®|of FO (relF0SD); variation rangd|of FO (FOVR);
and relative variation rangef| of FO (relFOVR). In the case of intensity variation,
squared energy operator (SEO) and Teager-Kaiser energy operator (TEO) were com-
puted to quantify the intensity of voice/speech signals. The following acoustic fea-
tures quantifying a relative variability of speech intensity were computed: standard
deviation of SEO/TEO (SEOSD/TEOSD); relative standard deviation of SEO/TEO
(relSEOSD/rel TEOSD); variation range of SEO/TEO (SEOVR/TEOVR); and rel-
ative variation range of SEO/TEO (relSEOVR/relTEOVR). Next, several features
describing speech rate and pausing abnormalities in HD, such as total speech time
(TST), net speech time (NST), total pause time (TPT), total speech rate (TSR), net
speech rate (NSR), total pause time (pauses longer than 50 ms) (TPT (50 ms)), ar-
ticulation rate (AR), and speech index of rhythmicity (SPIR) were computed. For
more information about these features, see Appendix and the review article

focused on the acoustic analysis in patients with PD [24].

4.3.3 Analytical setup

To obtain an insight into the statistical properties of the acoustic features used to
quantify dysprosody in HD, the approach of Tsanas et al. [231] using Spearman’s
correlation coefficient (p) and mutual information (MI) between the features and

the associated clinical diagnosis (HC/PD) was followed. Spearman’s correlation

2In the case of pitch variation, fundamental frequency (F0) was used [23].
3Standard deviation divided by the mean of the variable.

4Difference between minimum and maximum value of the variable.
5Variation range divided by the mean of the variable.
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coefficient is a statistical measure of the strength of a monotonic relationship between
feature vectors and the associated response variable [206]. Mutual information is
a measure of the amount of the information shared by two random variables (the
larger the value of MI, the stronger statistical association between feature and the

response can be observed). MI is defined as follows:

15:) = [ [ fag)los, (M) | (1)

where X and Y are both random variables with the associated joint probability
density function f(z,y), and marginal density functions fx(z) and fy(y), respec-
tively. For the purpose of this study, marginal entropies H(X) and H(Y'), and joint
entropy H(X,Y) were used to compute MI. With this approach, MI is defined as:

I[(X;Y)=H(X)+ H(Y) - H(X,Y). (4.2)

Moreover, Mann-Whitney U test was used to compare the distribution of the
prosodic features between HC and patients with PD. The Mann-Whitney U test
is a non-parametric statistical test that is used to assess whether two independent
groups of variables are significantly different from each other [22]. It is defined as:
ni(ny + 1)
5

where n; is the sample size for sample 1, and R; is the sum of the ranks in sample

U=R, — (4.3)

1. Note that it is not specified which sample is considered sample 1, and therefore
and equally valid statement can be made using sample 2 (ny instead of n; and Ry
instead of Ry, respectively).

To evaluate an individual power of each of the acoustic features to discriminate
healthy and dysarthric speech, every feature was used separately as an input to the
random forest (RF) classifier (univariate models). Random forest is an ensemble
learning algorithm operating by constructing a multiple of base learners [25] that
are used for classifying new samples via voting mechanism. To optimise the trained
models, grid-search technique over the set of tunable parameters was performed: the
number of features over which RF performs a search while constructing each branch
was selected to be equal to the square root of the number of input features; and the
maximum number of 500 trees was chosen for this classifier.

Next, to build models capable of HD discrimination based on the combination of
acoustic features, i.e. combination of the prosodic impairments present in HD, mul-
tivariate models were trained as well. For this purpose, RF classifier with the same
tuning parameters as in the case of univariate models was used. However, to select
only the relevant set of features and to build clinically interpretable models with

low dimensionality (prediction models with less features are in general less prone
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overfitting), a feature selection process was applied [104]. For this purpose, a mod-
ified version of sequential floating forward selection (SFFS) algorithm proposed by
Pohjalainen et al. [I81] in 2014 was used.

To quantify the classification performance of the models, Matthew’s correlation
coefficient [I45] (MCC) as a reference performance measurement employed on un-
balanced data sets [128], accuracy (ACC), sensitivity (SEN), and specificity (SPE)f]
were computed. MCC was also used as a measure assessing the classification per-
formance of the models during a feature selection process. All metrics however are
useful when used to describe properties of the build models (described bellow). The

metrics are defined as:

TP xTN+ FP x FN

MCC = : 4.4
VN (44)
acc — LPHTN o4 %], (4.5)
M
TP
TN

where the variables denote: N = (I'P + FP)(TP+ FN)(TN + FP)(TN + FN),
M =TP+TN+ FP+ FN. TP (true positive) and F'P (false positive) represents
the number of correctly identified PD subjects and a number of subjects identified
as PD, but being healthy. Similarly, TN (true negative) and F'N (false negative)
represent the total number of correctly identified healthy controls, and PD patients
identified as HC. In the frame of this study, these classification metrics can be
interpreted as: accuracy expresses the proportion of correctly identified PD patients
as well as healthy subjects (T'P+TN) out of all subjects (' P+TN +FP+FN), so
that with higher accuracy, fewer miss-classifications are made; sensitivity expresses
the proportion of participants correctly identified as having PD (T'P) out of all
patients with PD (T'P + F'N), so that with higher sensitivity, fewer actual cases of
PD go undetected; and specificity expresses the proportion of participants correctly
identified not as having PD (T'N) out of all healthy subjects (I'N + F'P), so that
with higher specificity, fewer healthy subjects are labelled as having PD.

The theoretical chance level of binary classification is 50 %. This threshold is
based on the assumption of infinite sample size, which does not hold in practice.
The empirical chance level depends on the actual number of samples in the used

dataset and therefore it is common to see the empirical chance level noticeably above

6Tn the frame of this study, ACC, SEN, and SPE are are expressed in %, and therefore should be
rather referred to as: Pacc, Psen, Pspg as the ACC, SEN, and SPE are expressed as rational num-

bers. However, for the simplicity and easier interpretability of the results, classical abbreviations
(ACC, SEN, SPE) are used.
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the theoretical threshold for small datasets (60% or even higher) [42]. As the sample
size grows, the empirical chance level is getting closer to its theoretical value. With
the growing dimension of feature space required sample size grows exponentially. So,
to find out if the classification results were obtained by chance or by the actual rela-
tionship between the class labels and the data a non-parametric statistical method:
permutation test was used. Permutation test is commonly used tool in biostatisti-
cal research. It makes no particular assumptions about statistical properties of the
samples except that the observations are independent and identically distributed
under the null hypothesis, which makes it highly attractive [I78]. The main idea
behind permutation tests used in classifier performance evaluation is the following:
The null hypothesis is that the observations are independently and identically dis-
tributed (in other words, there is no relation between the class labels and the data).
The alternative hypothesis is that the distribution differs between groups (in our
case between PD and HC groups). The null hypothesis testing requires the p-value
to be determined. The most commonly used approach is to estimate the p-value
by randomly permuting the labels to obtain the empirical null distribution [I78],
however, in the frame of this study, the exact p-value is used to mitigate the type I
error rate and the multiple testing issues [178].

Thus, if the computed p-value is bellow a chosen significance level o then the
null hypothesis can be rejected. In this study, the o of 0.01 was selected. Tested
classification models with p-values bellow a were consider sufficiently high above
chance level. Matthew’s correlation coefficient was chosen as a test statistic for the
permutation test as it is the measure used to assess the classification performance of
the models during a feature selection step. The number of permutations was selected
to be equal to 1000 and the classifier validation was conducted using stratified 10-fold
cross-validation with 20 repetitions [42, [168)].

4.4 Results

Results of the univariate analysis are summarized in Table .2l As can be seen,
the best classification performance in terms of the classification accuracy com-
puted for the univariate models can be summarized as follows: a) poem recitation
task— ACC = 64.2 % (female participants), ACC = 64.6 % (male participants), and
ACC = 68.5% (all participants); b) reading with neutral emotion—ACC = 62.7%
(female participants), ACC = 69.1 % (male participants), and ACC = 58.4% (all
participants); and ¢) stress-modified reading— ACC = 68.7 % (female participants),
ACC = 67.1 % (male participants), and ACC = 59.7 % (all participants).
Regarding the Mann-Whitney U test, there are few statistically significant dif-
ferences, specifically: a) poem recitation task—p < 0.01 for TPT (all participants);
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Tab. 4.2: Statistical analysis of the prosodic features.

gender  features disorder p MI p ACC SEN SPE

Poem recitation task

relSEOSD monoloudness  0.10 0.97 64.2 725 51.9
females NST speech rate -0.23  0.88 62.7 67.5 55.6
NSR speech rate 0.23 0.88 61.2 65.0 55.6
FOVR monopitch -0.12 0.90 64.6 64.3 65.4
males TEOVR monoloudness -0.18 0.90 62.2 62.5 61.5
rellFOSD monopitch -0.21  0.90 61.0 679 46.2
TPT speech rate -0.17 094 * 685 70.8 64.2
all NST speech rate -0.11 0.79 63.1 69.8 50.9
NSR speech rate 0.11  0.79 61.8 69.8 47.2

Reading with neutral emotion

FOVR monopitch -0.07 0.97 62.7 67.5 55.6
females TPT (50ms) speech rate 0.05 0.94 61.2 60.0 63.1
AR speech rate -0.05 0.94 61.2 60.0 63.0
relSEOVR monoloudness -0.06 0.90 64.6 71.4 50.0

males relTEOSD monoloudness  0.27 0.90 * 62.2 64.3 57.7
rel TEOVR monoloudness  0.28 0.90 ** 61.1 66.1 50.0

relSEOSD monoloudness  0.04 0.94 58.4  60.4 54.7
all relSEOVR monoloudness -0.01 0.94 577 60.4 528
TPT (50ms) speech rate 0.03 0.82 54.4 583 47.2

Stress-modified reading task

relTEOVR monoloudness -0.36 0.97 ** 687 70.0 66.7
females FOSD monopitch -0.22 0.97 64.2 65.0 63.0
relTEOSD monoloudness -0.38 0.97 ** 59.7 55.0 66.7

TPT (50ms) speech rate -0.29 083 * 671 714 577

males AR speech rate 029 0.83 * 671 714 57.7
rel TEOVR monoloudness  0.03  0.90 59.8 67.9 423
TPT speech rate -0.26 0.93 ** 597 65.6 49.1
all FOSD monopitch -0.26 094 ** 578 61.5 51.0
TEOVR monoloudness -0.15 0.94 57.7 62.5 49.1

Table notation: p—Spearman’s rank correlation coefficient; MI—mutual information; p—p-values
of Mann-Whitney U test (* means p < 0.05; ** means p < 0.01); ACC —classification accuracy;
SEN - classification sensitivity; SPE — classification specificity. ACC, SEN, SPE: expressed in %.

b) reading with neutral emotion—p < 0.05 for relTEOSD (males), and p < 0.01
for relTEOVR (males); and c) stress-modified reading—p < 0.05 for TPT (50 ms)
(males), AR (males), and p < 0.01 for relTEOVR (females), relTEOSD (females),
TPT (all participants), and FOSD (all participants). Next, a comparison of the
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features expressing monopitch (FOSD), monoloudness (SEOSD), and speech rate
abnormalities (NSR) between PD patients and HC can be seen in Table and

Figures [4.2] [4.3] and [4.4]

Tab. 4.3: Comparison of acoustic features between PD speakers and HC.

gender features disorder PD HC diff [%]

Poem recitation

FOSD monopitch 101.87 £ 8.01 10742 £ 891 PD < HC (5.17)
females SEOSD monoloudness  6.30 + 3.67 5.61 £3.17 PD > HC (12.30)
NSR speech rate 15.53 £ 2.66 19.24 + 17.94 PD < HC (19.28)

FOSD monopitch 75.55 + 14.06  80.90 + 11.18 PD < HC (6.61)
males SEOSD  monoloudness  6.44 + 3.48 7.02 £ 3.67 PD < HC (8.26)
NSR speech rate 18.09 + 12.71  16.14 £ 2.95 PD > HC (17.10)

FOSD monopitch 86.49 + 17.60 94.06 + 16.64 PD < HC (8.05)
all SEOSD  monoloudness  6.42 + 3.54 6.28 £+ 3.48 PD > HC (2.23)
NSR speech rate 17.00 £ 9.82 17.65 + 1271 PD < HC (3.68)

Reading with neutral emotion

FOSD monopitch 93.69 + 8.58 98.27 £ 7.58 PD < HC (4.66)
females SEOSD monoloudness  5.97 + 3.37 6.03 + 2.67 PD < HC (1.00)
NSR speech rate 14.24 £ 478 1391 £ 459 PD > HC (2.37)

FOSD monopitch 71.81 +12.36  70.51 + 11.33 PD > HC (1.84)
males SEOSD monoloudness  6.67 £ 3.03 542 +2.15 PD > HC (23.06)
NSR speech rate 13.49 £ 329 12.86 £ 1.86 PD > HC (4.90)

FOSD monopitch 80.86 + 15.40 84.26 £ 16.90 PD < HC (4.04)
all SEOSD  monoloudness  6.39 £ 3.16 5.68 +2.42 PD > HC (12.50)
NSR speech rate 13.77 £3.97 1342+ 3.46 PD > HC (2.61)

Stress-modified reading

FOSD monopitch 91.27 + 11.13  95.72 £ 6.71 PD < HC (4.65)
females SEOSD monoloudness  5.57 4+ 2.71 5.55 + 2.53 PD > HC (0.36)
NSR speech rate 17.20 £ 3.22 1944 £+ 1240 PD < HC (11.52)

FOSD monopitch 68.87 £ 10.11 74.86 £ 13.44 PD < HC (8.00)
males SEOSD  monoloudness  6.53 &+ 3.27 5.57 £2.62 PD > HC (17.24)

NSR speech rate 19.35 +8.95  18.37 £ 4.45 PD > HC (5.33)
FOSD monopitch 78.05 + 15.42 8550 + 14.44 PD < HC (8.71)
all SEOSD  monoloudness  6.16 & 3.07 548 + 252 PD > HC (12.41)
NSR speech rate 18.49 £ 7.15 18.82 +£9.17 PD < HC (1.75)

Table notation: diff [%] - difference between the mean values for patients with PD and HC. All prosodic
features for PD patients and HC are represented as mean =+ sd.
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From the perspective of the monopitch, reduced variation in FO can be observed
in 8 out of the total number of 9 scenarios. The only exception occurs in the case
of male speakers reading a passage with neutral emotion, which in general does not
require that much variation in speech intonation or stress, so that this particular
deviation is quiet acceptable. Regarding the monoloudness, interestingly there are
7 cases in which PD patients show more variation in speech intensity than HC,
which is in contradiction with the original assumption of lowered variation in speech
intensity in patients with PD in comparison with HC. The only two exceptions
lies in the neutral reading task, and the poem recitation task performed by male
speakers. However, in contrast to that, female patients did show significantly lower
speech intensity when compared to HC while performing the poem recitation. Thus,
the results suggest a presence of a gender-related pattern of parkinsonian speech
intensity variation and control deterioration. Finally, in the case of speech rate
abnormalities, PD patients seem to have lower speech rate that HC when performing
a task that requires stress (stress-modified reading) or changes in the melody of
speech (poem recitation). In the case of male participants, PD patients seem to
have higher speech rate when compared to HC. And finally, in the case of female
participants, the same phenomenon can be observed when the data for both genders
are merged together.

As can be seen in Table [4.2] when the extracted prosodic features are taken
individually, the resulting classification performance of the trained models does not
reach satisfactory level of accuracy. However, this is somewhat expected since dys-
prosody in HD is rarely expressed as manifestation in a single prosodic domain. It
is rather a combination of monopitch, monoloudness and abnormalities in speech
rate and pausing. And moreover, HD is also known to be manifested slightly differ-
ently from patient to patient, which makes the prediction task even more difficult.
Nevertheless, the univariate models can at least provide an indication about the con-
tribution of each of the selected acoustic features to discrimination of dysarthric and
healthy speech. So, taking the previously mentioned facts into account, a feature
selection procedure was applied as the next step towards obtaining a parsimonious,
information-rich subsets of features, which provide maximum clinical information
about the underlying prosodic pathology in patients with PD. Subsequently, the
multivariate models were built using the selected features. The classification perfor-
mance of these models can be seen in Table [4.4], and Table respectively.

Consequently, t-distributed stochastic neighbourhood embedding (t-SNE) [142]
algorithm was used to visualize the multi-dimensional space of prosodic features
in the two-dimensional one. For this purpose, all the extracted acoustic features
were used. The visualization was performed for all the three speech tasks separately

to show the clusters of healthy and dysarthric speakers when speech prosody is
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Fig. 4.2: Density estimation plots (computed using kernel probability density es-
timation with Gaussian kernels) for selected acoustic features for all three speech
tasks performed by female speakers only: T1-poem recitation task (first row); T2 -
emotionally-neutral reading (second row); and T3-stress-modified reading (third
row). Colour notation: blue colour represents healthy speakers, and green colour
represents speakers with PD. Feature notation: FOSD (standard deviation of fun-
damental frequency) expresses variability of intonation (melody of speech); SEOSD
(standard deviation of squared energy operator) expresses variability of speech in-
tensity (melody of speech); and NSR (net speech rate) expresses the number of

phones per entire duration of speech without pauses (speech rate).

quantified in a robust way (i.e. monopitch, monoloudness, and speech rate/pausing
abnormalities are described altogether). This method was also applied for female
speakers, male speakers, and all speakers (both genders combined). The results
of this method are presented in Figure As can be seen, using the prosodic
description it is not strong enough to conclusively and definitely identify HD in
patients with PD. It is important to stress the fact that the results are strongly
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Fig. 4.3: Density estimation plots (computed using kernel probability density es-
timation with Gaussian kernels) for selected acoustic features for all three speech
tasks performed by male speakers only: T1-poem recitation task (first row); T2 -
emotionally-neutral reading (second row); and T3-stress-modified reading (third
row). Colour notation: blue colour represents healthy speakers, and green colour
represents speakers with PD. Feature notation: FOSD (standard deviation of fun-
damental frequency) expresses variability of intonation (melody of speech); SEOSD
(standard deviation of squared energy operator) expresses variability of speech in-
tensity (melody of speech); and NSR (net speech rate) expresses the number of

phones per entire duration of speech without pauses (speech rate).

related to the dataset used in this study. This claim is therefore based on the limited

number of samples and must be considered as an approximation of the reality.
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Fig. 4.4: Density estimation plots (computed using kernel probability density es-
timation with Gaussian kernels) for selected acoustic features for all three speech
tasks performed by all speakers (both genders combined): T'1-poem recitation task
(first row); T2 - emotionally-neutral reading (second row); and T3 - stress-modified
reading (third row). Colour notation: blue colour represents healthy speakers, and
green colour represents speakers with PD. Feature notation: FOSD (standard de-
viation of fundamental frequency) expresses variability of intonation (melody of
speech); SEOSD (standard deviation of squared energy operator) expresses variabil-
ity of speech intensity (melody of speech); and NSR (net speech rate) expresses the

number of phones per entire duration of speech without pauses (speech rate).

To specify the results presented in these two tables: Table [.4] shows the results
of the multivariate classification analysis employed on the subsets of the prosodic
features. Specifically, models for monopitch (F1), monoloudness (F2), and speech
rate abnormalities (F3) were built. The assumption behind this approach was that
despite insufficiency of the univariate models, investigation of the classification per-

formance of each of the prosodic manifestations in HD can improve the performance
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Tab

. 4.4: Classification results for groups of acoustic features.

feat. gender MCC ACC SEN SPE D No.
Poem recitation
females 0.14 + 0.38 58.04 + 17.71 63.00 + 25.87 50.33 + 32.73 0.0910 3
F1  males 0.19 + 0.39 58.15 + 19.01 57.06 £ 24.90 61.00 + 33.94 0.0840 1
all 0.17 £ 0.26 59.33 +£ 1243 61.35 + 14.68 55.53 + 21.15 0.1690 1
females 0.24 + 0.40 61.28 4+ 18.47 59.50 + 27.14 63.66 + 28.70 0.2590 8
F2  males 0.26 + 0.41 65.93 + 17.78 72.06 £ 20.38 53.33 + 34.17 0.0090 6
all 0.23 £ 0.27 62.78 £ 12.58 66.24 + 16.70 56.40 + 25.64 0.0020 3
females 0.19 + 0.43 59.28 + 20.25 60.00 + 27.66 58.66 + 30.53 0.0790 2
F3  males 0.29 + 0.42 63.49 + 20.05 61.73 £24.04 67.66 + 32.54 0.0130 1
all 0.27 + 0.24 64.02 + 11.35 65.80 £ 19.08 61.00 &+ 24.55 0.0010 1
Reading with neutral emotion
females 0.13 +0.42 54.85 + 19.35 49.50 + 28.34 63.33 £ 31.22 0.1450 3
F1  males 0.11 £ 0.33  59.39 + 13.56 65.60 = 17.45 45.33 +32.12 0.1340 2
all 0.08 + 0.24 54.67 + 11.19 56.68 £ 17.85 50.86 + 24.79 0.5910 3
females 0.16 + 0.44 58.19 4+ 20.29 59.50 4+ 28.07 56.00 + 31.90 0.1590 3
F2  males 0.37 + 0.42 70.53 + 19.62 74.60 + 20.34 62.33 &+ 30.64 0.0080 4
all 0.19 +£ 0.28 60.90 + 13.00 63.97 + 15.55 55.33 + 23.27 0.1420 3
females 0.30 + 0.37 64.04 + 17.63 65.00 + 25.25 62.66 + 29.84 0.0510 2
F3  males 0.20 + 0.31 60.31 + 15.40 61.73 £20.89 58.00 + 26.98 0.0710 1
all 0.12 £+ 0.30 56.17 £ 13.89 56.53 + 15.02 55.80 + 23.82 0.3260 4
Stress-modified reading
females 0.31 +0.35 64.38 + 15.63 67.50 + 25.87 60.33 £ 30.84 0.0990 2
F1  males 0.21 +£0.38 61.74 £ 17.71 63.80 £ 21.02 57.66 + 31.26 0.1280 2
all 0.15 £ 0.26 58.37 + 13.13 61.60 + 17.21 52.73 + 19.60 0.1560 2
females 0.40 + 0.26 69.66 + 12.01 72.00 + 21.21 65.66 £ 26.60 0.0240 3
F2  males 0.24 +0.41 63.30 + 18.24 64.73 £+ 20.68 59.66 + 33.51 0.0360 4
all 0.20 + 0.21  61.95 £9.15 66.35 £ 13.55 53.86 + 21.57 0.1150 2
females 0.15 + 0.39 58.90 + 15.39 63.50 + 19.69 51.66 £ 35.99 0.4570 2
F3  males 0.24 + 0.32 64.44 + 14.19 68.73 £ 18.64 55.66 + 30.41 0.0650 1
all 0.13 + 0.25 58.15 + 12.36 62.02 £ 17.18 51.13 + 21.88 0.6840 2

Table notation:

F1-monopitch features; F2-monoloudness features; F3—speech rate features; F4-—general
prosodic features; MCC—Matthew’s correlation coefficient (dimensionless) [I45]; ACC—classification accuracy
(expressed in %); SEN — classification sensitivity (expressed in %); SPE —classification specificity (expressed in %);
No. —number of selected features; p—p-values of classification calculated by permutation test (1000 permutations).

of the models when more features are being used (it needs to be pointed out that
these features do however describe the same phenomenon so that they are quiet

correlated. But as mentioned previously, RF classifier is robust in dealing with
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Tab. 4.5: Classification results for all acoustic features.

feat. gender MCC ACC SEN SPE D No.
females 0.36 £ 0.42 66.57 & 19.80 66.00 £ 25.13 68.33 £ 30.90 0.0070 5
T1  males 0.35 £ 0.34 67.84 +£17.33 68.93 £ 2254 66.00 £ 27.34 0.0020 3
all 0.33 £ 0.16 67.30 £ 08.42 68.84 + 14.18 64.66 + 14.98 0.0040 1
females 0.37 + 0.40 68.47 + 18.64 72.00 + 26.06 63.33 +£31.94 0.2110 3
T2  males 0.38 £0.29 69.52 + 14.02 70.40 £ 18.93 68.00 £ 26.90 0.0050 8
all 0.16 £ 0.32 59.62 + 15.80 64.93 + 18.77 50.13 +21.36 0.0350 4
females 0.42 4+ 0.35 70.71 +16.24 71.00 + 19.13 70.33 £ 30.91 0.0001 1
T3  males 0.37 £ 0.34 70.03 + 16.05 73.53 + 19.28 63.00 + 29.41 0.0120 5
all 0.25 + 0.26 63.20 + 12.44 65.06 £+ 14.92 60.00 £+ 21.07 0.0130 3

Table notation: T1—poem recitation task; T2 —reading with neutral emotion; T3 —stress-modified reading task;
MCC —Matthew’s correlation coefficient (dimensionless) [145]; ACC —classification accuracy (expressed in %);
SEN - classification sensitivity (expressed in %); SPE — classification specificity (expressed in %); No.—number of
selected features; p—p-values of classification calculated by permutation test (1000 permutations).

high-dimensional and highly correlated data). Table shows the results of the
multivariate classification analysis employed on all of the prosodic features (F4).

The best classification performance in terms of classification accuracy achieved
using the prosodic features for each speech task separately can be summarized
as follows: a) poem recitation task—ACC = 67.84 % the model was trained us-
ing only 3 features based on the analysis of general prosodic impairment (TPT,
TEOSD, SEOSD) computed for male participants; b) reading with neutral emo-
tion— ACC = 69.52 %, the model was trained using 8 features based based on the
analysis of general prosodic impairment (SEOSD, relF0SD, TST, TPT, relSEOSD,
TPT (50 ms), relSEOVR, NSR) computed for male participants; and finally c) stress-
modified reading — ACC = 70.71 %, the model was trained using just a single feature
based on the analysis of monoloudness (relTEOVR) computed for female partici-
pants. It is worth noting that some of these models did not achieve sufficiently low
p-values of the permutation test (strict significance level of 0.01 was chosen) that is
needed to reject the null hypothesis. This may indicated that more data are required
in order to get significant results [96].

With respect to the models built for the subsets of the prosodic features and
all of the features taken together (general prosodic model), the following classi-
fication performance was achieved: F1-ACC = 64.38 %, the model was trained
using prosodic features extracted from the stress-modified reading task performed
by female participants; F2-ACC = 70.54 %, the model was trained using prosodic
features extracted from the reading task with neutral emotion performed by male

participants; F3—ACC = 64.44 %, the model was trained using prosodic features ex-
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Fig. 4.5: Visualization of t-distributed stochastic neighbourhood embedding applied
on all samples and acoustic features for each of the speech tasks separately (lines
fitted using robust linear regression for each visualized class are provided as well).
Graph grid notation: 1. row —all speakers, 2. row —female speakers, 3. row—male
speakers; 1. column—poem recitation task, 2. column—emotionally-neutral read-
ing, 3. column —stress-modified reading. Colour notation: all speakers—dark blue
colour represents healthy speakers, and dark green colour represents speakers with
PD; female speakers—medium green colour represents healthy speakers, and purple
colour represents speakers with PD; and male speakers —medium blue colour repre-
sents healthy speakers, and orange colour represents speakers with PD. Note: the
feature space is reduced from multi-dimensional space to two-dimensional one and

therefore only general z, y features are used to describe the resulting feature space.
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tracted from the stress-modified reading task performed by male participants; and
finally F4—ACC = 70.71 %, the model was trained using prosodic features extracted

from the stress-modified reading task performed by male participants.

4.5 Conclusion

According to the literature [93] 117], speech task used for the assessment of voice
and speech has a great impact on the prosodic aspects of HD. Moreover, as stated
by Skodda et al. in 2011, some aspects of prosody might be different in natural
conversational speech in comparison to other speech tasks. Thus, in the frame of
this study, three types of speech tasks are used: a) reading with neutral emotion—to
obtain data comparable with previous studies [196, 2T5H217] that also used speech
tasks focusing on reading with neutral emotion in their analysis setup. To some
extent the results are also comparable with the work of Bandini et al. [I3] that
focused on the automatic identification of dysprosody in HD using a sentence rep-
etition task; b) stress-modified reading—to obtain data that are at least partially
comparable with those proposed in the research of Tykalova et al. [232] focused on
the acoustic investigation of stress patterns in PD using a reading task. But the
main idea behind this approach was to expose speakers to additional prosodic de-
mands, which in theory could emphasize the prosodic impairment in the group of
PD patients as opposed to the HC.

Regarding the individual analysis of the selected acoustic features quantifying
dysprosody in HD, the following conclusion can be made. At first, this study con-
firms previous finding of several renowned researchers [32, [64], 92, [155], 217] reporting
that patients with PD exhibit decreased intonation variability in comparison with
HC (difference of approximately 8.72%). This pattern can be seen in almost ev-
ery scenario used in this study except a single reading task performed by the male
participants with neutral emotion. This suggests that emotionally-neutral reading,
especially in the male subjects is not sufficient enough to capture monopitch. In
contrast, speech tasks such as stress-modified reading and a recitation task seems
to be a good candidates for further investigation. Interestingly, at the same time,
the results suggests that PD patients produce higher variability in speech intensity
than HC (difference of approximately 12.41 %), which is in contradiction with the
previous findings published in [I55] [196], 217, 24T]. However, this might be a conse-
quence of a presence of so far uncovered gender-related pattern of speech intensity
control impairment in HD, especially in the dataset used in the frame of this study,
which is based on the observation of great gender-related distinctions of speech in-

tensity deterioration summarized in Table [1.3] Therefore, subsequent investigation
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of this phenomenon would be of interest. And finally, concerning speech rate ab-
normalities, the results suggest that PD patients in general produce lower speech
rate that HC when performing a task that requires prosodic demands such as stress
or melody alternation. Regarding the gender-related distinctions, male participants
seem to have have higher speech rate when compared to HC. Nevertheless, this is
likely a dataset-specific pattern that would need to be confirmed using a different
and possibly multilingual dataset.

Next, with respect to the comparison between emotionally-neutral and stress-
modified reading. The following conclusion can be drawn: the classification ac-
curacy achieved for the model based on the stress-modified reading performed by
female speakers (70.71 %) and the model based on the emotionally-neutral reading
performed by male speakers (69.52 %), may indicate no difference between these
two tasks. However, deeper investigation considerably favours the stress-modified
reading tasks considerably. The main reasons supporting this conclusion are: a)
the p-value computed using permutation test is significantly lower in the case of
stress-modified reading (p = 0.0001) in contrast with the emotionally-neutral one
(p = 0.0050) suggesting higher reliability and statistical significance of the results; b)
when the feature selection was applied, only a single prosodic feature (relTEOVR)
expressing monoloudness was needed to provide sufficient power to discriminate
dysarthric and healthy speech, whereas eight features were selected in the case of
emotionally-neutral reading task. Therefore, the clinical interpretability of the re-
sults derived from the reading with stress emphasis is far more convenient and prac-
tical. One more important aspect to consider is the fact that the two results also
differ in their corresponding gender group. Nevertheless, in the case of emotionally-
neutral reading, the results achieved for the group of female speakers are comparable
to the ones achieved for the male group. Moreover, the statistical significance of this
case was rejected anyway.

With respect to the comparison between the poem recitation task and the reading
tasks, the results shows that the poem recitation task outperformed both reading
tasks in the case of gender-undifferentiated analysis. This suggests that recitation-
related rhythmical demands can in general lead to more precise discrimination of
dysprosody in HD in cases when gender-differentiation is not required. In contrast
to the straightforwardness of this outcome, the gender information consideration
inflicted higher classification accuracy of stress-modifier reading compared to the
poem recitation. One can hypothesize this may be a consequence of some yet to be
found gender-related pattern of rhythm and stress control deterioration present in
HD. Furthermore, it is also important to emphasize the difference in gender group
sizes (the mixed group contains approximately twice as many speakers than the

gender-separated groups), therefore the difference in performance could be caused
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by an independent phenomena. Nevertheless, this hypothesis needs to be confirmed
by the subsequent investigation. Another interesting observation made here is the
striking proximity of the classification accuracies achieved by the emotionally-neutral
reading and the poem recitation. Considering that when no prosodic demands such
as thythm, stress or emotion are required, marked superiority of the poem recitation
would be naturally anticipated. Nevertheless, permutation test repeatedly gave
disadvantage to the results achieved for the reading with neutral emotion.

Finally, When discriminating dysarthric and healthy speech using several scenar-
ios focused on the expression of monopitch, monoloudness, speech rate abnormalities
and a combination of these prosodic flaws, the results showed that the analysis of
a single aspect of parkinsonian dysprosody (using this particular set of features)
does not achieve sufficient classification accuracy, which is in some respect consis-
tent with the results proposed by Lowit [I40] in 2008 in which the author stated
that a combination of these aspects should be analysed exclusively. As can be seen
in Table this fact is also supported by the p-values computed using the per-
mutation test that in most cases rejected the hypothesis of statistical significance
of these prosodic sub-models. In contrast, the analysis of general prosodic features
improved the classification accuracies of the models. Therefore, it can be concluded
that future development of novel prosodic features quantifying the relationship be-
tween monopitch, monoloudness and speech rate disruption in PD is likely to bring
deeper understanding of HD and its manifestation on human speech prosody.

To guarantee a complete and relevant overview, limitations of this work need
to be pointed out. With respect to the speech sample, one drawback (which is
a common one of many studies dealing with the acoustic analysis of speech in PD)
is relatively small dataset restricting overall statistical significance of the results.
Additionally, since the prevalence rate of PD is estimated to approximately 1.5 %
(for people aged over 65 years, see [190]), investigated data should reflect this fact.
However, most dataset comprise more PD patients than healthy speakers, which
therefore does not correspond with the reality. This is also the case of this particular
work. Moreover, it is also worth noting that the current results are based upon
speech tasks of relatively limited length. As suggested by Rusz et al. in [197, [19§]
acoustic features computed from a running speech are the most prospective ones to
assess the speech impairment in PD. So, an addition of the running speech can in
general bring new insights into understanding of differences among neutral, stressed,
rhymed and spontaneous speech in patients with PD. Finally, no correction of the
p-values obtained by the Mann-Whitney U test and Spearman’s correlation was
performed. However, since the tests were executed only on carefully selected set
of 19 prosodic features, the errors caused by the multiple testing issue are not as

relevant as they could be if hundreds or thousands of features were used.
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To summarize, the results confirms the previous findings of reduced pitch vari-
ation [31), 164, 92, O3, 155, 196], to some extent impaired speech intensity con-
trol [39, 155 196, 217, 241] and speech rate abnormalities [155] 215 217, 242] in PD.
The results also highlight the fact that more studies are necessary in order to fully
understand the manifestation of HD on human prosody. In 2009, Skodda et al. [214]
used prosodic features to study changes of speech rate and pitch variation in patients
with PD over time and showed the presence of some characteristic changes in parkin-
sonian dysprosody. However, further longitudinal studies are required. Besides the
PD classification and disease tracking, the analysis of dysprosody in HD can also be
used during an evaluation of the modern non-invasive treatment methods such as
high-frequency repetitive transcranial magnetic stimulation (rTMS) [56], which has

a great potential in treatment of PD.
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5 Assessment of Parkinson’s disease

5.1 State of knowledge

Over the last few decades, objective paraclinical methods such as the analysis of
digitized hand-writing [50, 51} 63, 163], computerized freezing of gait evaluation [59,
191], or the acoustic analysis of dysarthric speech [56, 151, 152, [154] have been
developed. In terms of PD, the studies in which such methods have been applied
have focused mainly on parkinsonian symptoms identification, description of the
relationships between motor and non-motor symptoms of the disease, overall severity
of PD estimation, etc. In theory, voice/speech, movement (e.g. gait), hand-writing
and similar actions/signals can be digitized and processed remotely on computer.
After that, modern signal processing techniques, statistical analyses, and /or machine
learning algorithms can be used to extract a wide range of parameters that can be
integrated into a decision support system that can eventually be used in clinical
practice to enable clinicians to use such data to support their decision making when
diagnosing, assessing, or monitoring the progress of PD. However, to reach this
point, more studies need to be performed.

In terms of HD in PD (i.e. the hypothesis is that quantification of voice/speech
deficits in HD can be used to indirectly assess other non-speech symptoms of PD),
especially studies that bring more insight into pathological mechanisms behind a va-
riety of voice/speech disorders accompanying HD and other motor and non-motor
symptoms of PD are yet to be employed. If such pathological mechanisms are present
and precisely described, it is likely that carefully-planned and sensitive acoustic anal-
ysis of voice/speech can be used to assess these motor and non-motor symptoms, or
possibly predict their future evolution in time.

So, with these ideas in mind, clinical rating scales that are nowadays being
commonly used to quantify motor and non-motor symptoms of PD such as Uni-
fied Parkinson’s Disease Rating Scale (UPDRS) [62], Non-Motor Symptoms Scale
(NMSS) [38], Beck Depression Inventory (BDI) [16], Freezing Of Gait question-
naire (FOG-Q) [90], The REM sleep Behaviour Disorder Screening Questionnaire
(RBDSQ) [223], Mini-Mental State Examination (MMSE) [66] or Addenbrooke’s
Cognitive Examination-Revised (ACE-R) [133], etc., can serve as relevant clinically-
established baseline data, which can be used to model the relationship between
speech disorders in HD and other non-speech symptoms of PD. The values of these
scales can be mathematically modelled and the trained models can consequently be
used to estimate the clinical status of the patients in a non-invasive, paraclinical
way that has a great potential to be used for other related tasks such as prediction

and monitoring of the efficiency of the treatments, etc.
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With respect to the estimation of the scores quantifying parkinsonian manifes-
tations, UPDRS, especially its third part (motor examination) [8} 5], 57, 177 228
229, [231], or its total score [57, 177, [228] 229, 231] has been most commonly-used by
researchers. In addition to UPDRS, Mekyska et al. [I51] explored prediction capa-
bilities of regression models estimating a larger number of rating scales, specifically
FOG-Q, NMSS, BDI, MMSE, and ACE-R. Finally, Rektorova et al. built regression
models capable of predicting cognitive decline in PD patients based on the analysis
of voice/speech signals [186].

To summarize, there are some works investigating prediction of PD severity using
acoustic analysis of dysarthric speech. However, the researchers have mostly been
experimenting with acoustic features describing phonatory aspects of HD or aimed
at robust parametrization [I51, [152] without specifically focusing on dysprosody
(most prosody-specific analysis was proposed in [I86]). In the previous study, it
has been shown that dysprosody can be successfully used to identify HD in PD.
Therefore, the hypothesis is that the same can be said in terms of PD assessment.

5.2 Rationale behind the research

To summarize and emphasize, relatively small number of studies evaluating possi-
bilities of estimating severity of PD, assessed by a variety of clinical scales rating
motor and non-motor deficits present in PD, have been employed [8, [15 57, [78]
151, 177, 186, 228, 229, 231]. Moreover, most of these works took only a single
rating scale (UPDRS), or a phonatory aspects of HD into account. Even though, in
2015, Mekyska et al. proposed a study presenting estimation of much larger set of
clinical rating scales using robust voice/speech parametrization [I52], more studies
are needed to evaluate these results and/or come up with new insights. Finally, in
2016, Rektorova et al. [I86] showed for the first time that speech prosody might be
used to estimate PD prognosis in pilot prospective longitudinal study, in which the
authors assessed how speech prosody impairment in PD in addition to other motor
and non-motor features may predict global cognitive worsening or changes in the
cognitive status from normal cognition to mild cognitive impairment (MCI) or from
PD-MCI to PD dementia. Nevertheless, additional studies are needed to evaluate
these results and to show whether speech prosody assessment might serve as a good
biomarker for predicting a malignant course of the disease.

Therefore, the study presented in this thesis builds upon the previous finding
and applies robust analysis of dysprosody in HD to indirectly estimate degree of PD
severity assessed by a large number of well-known and widely-used clinical rating

scales. The reason behind this type of estimation is that perceptual assessment of
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PD severity even if performed by skilled clinicians is subject to inter-rater variabil-
ity [182, [I85]. In addition, auditory and visual perception of every rater is limited,
and there is nothing to be done about that. Therefore, the hypothesis is that objec-
tive computerized quantification of voice/speech signals can provide clinicians with
additional information supporting their evaluation.

Moreover, as presented in Chapter [4] the prosodic aspects in HD can be suffi-
ciently described using speech tasks that require precise control of speech melody
(recitation task) and/or stress (stress-modified reading). To build upon the results
summarized in this study, this one uses the same set of speech tasks (poem recita-
tion task, reading with neutral emotion, and stress-modified reading). As well as
in the previously mentioned study concerning HD identification, the comparison of
the prediction performance of regression models assessing PD severity is compared
to evaluate the sufficiency of these speech task in this particular settings. Finally,

Combination of the models is considered as well.

5.3 Methodology

5.3.1 Description of the dataset

In the frame of this study, robust analysis and estimation of motor and non-motor
symptoms of idiopathic PD using the acoustic analysis of dysarthric speech were
employed. These symptoms were evaluated by skilled neurologists and clinical psy-
chologists who examined and rated each PD patient participating in this study
according to a variety of widely used and recognized clinical rating scales such as:
UPDRS III (evaluation of motor functions) [62]; UPDRS IV (evaluation of compli-
cations of therapy; Hoehn and Yahr scale, staging of severity of PD) [62]; FOG-Q
(evaluation of freezing and other gait-related deficits) [90]; NMSS (evaluation of non-
motor deficits) [38]; RBDSQ (evaluation of sleep disorders, especially in the REM
sleep) [223]; ACE-R (evaluation of cognitive dysfunctions) [133]; MMSE (evaluation
of cognitive dysfunctions) [66]; and BDI (evaluation of depression) [16] [I7]. These
scales are nowadays being commonly used in the clinical practice to assess and rate
the severity of motor and non-motor manifestations associated with PD. Other clin-
ical rating scales exist as well. However, in the frame of this study, this exact subset
of the rating scales is considered exclusively.

To follow the results summarized in the previous chapter, the same speech tasks,
recording setup, dataset, etc. (database) were used. For more information see,
Chapter [ (Section [£.3.1)). However, in this particular study, only patients with PD
are considered. Moreover, a subset of the patients was needed to be selected. The

reason for that is the necessity of having the complex clinical information about each
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of the patients. More specifically, not every patient did undergo all examinations
so that for some patients full clinical status is not available. Hence, to ensure
that no missing or corrupted data will be present in the dataset, a subset of 72 PD
patients (47 males and a group of 25 females, characteristics described as mean (sd):
participants’ age in years 67.50 (8.08); duration of the disease in years 7.47 (4.17))
was selected. For more information about demographical and clinical characteristics
of the used cohort, see Table [5.1]

Tab. 5.1: Clinical characteristics of the patients.

charact. mean std  min Q1 Q2 Q3 max r(d) r(s)
LED (mg/day) 995.10 566.28  0.00 600.00 825.00 1325.50 2275.00 2275 oo
UPDRS III 24.06 12.22  3.00 12.75  25.00 33.25 55.00 52 108
UPDRS IV 2.94 2.68  0.00 0.00 2.00 5.00 9.00 9 23
FOG-Q 6.46 5.63  0.00 1.00 5.50 10.00 20.00 20 24
NMSS 35.23 20.75 2.00 17.75  33.00 52.25 94.00 94 360
RBDSQ 3.67 3.13  0.00 1.00 3.00 5.00 13.00 13 13
ACE-R 87.33 8.02 60.00 82.75  87.00 93.00 99.00 39 100
MMSE 27.88 2.54 16.00 28.00 28.50 29.00 30.00 14 30
BDI 10.46 6.14  0.00 6.00 9.00 13.50 27.00 27 63

I Table notation: charact.—characteristics (clinical); Qx—x-th quartile (Q1 [first], Q2 [second], Q3 [third]); r(d)—
range (max — min) computed from the values actually present in the dataset; r (s) —range of the values in the scale;
LED —L-dopa equivalent daily dose (mg/day) [134]; UPDRS III- Unified Parkinson’s disease rating scale, part III:
evaluation of motor function [62]; UPDRS IV —Unified Parkinson’s disease rating scale, part IV: evaluation of
complications of therapy (Hoehn and Yahr scale, staging of severity of Parkinson’s disease) [62]; FOG-Q — Freezing
of gait questionnaire [90]; NMSS—Non-motor symptoms scale [38]; RBDSQ—The REM sleep behavior disorder
screening questionnaire [223]; ACE-R - Addenbrooke’s cognitive examination-revised [133]; MMSE — Mini-mental
state examination [66]; BDI-Beck depression inventory [16}, [I7].

Moreover, as in the previous study, descriptive statistical graphs of the selected
clinical characteristics are used. The graphs show histograms (i.e. approximation
of a distribution of the values of the clinical rating scales in the sample), scatter
plots (i.e. approximation of a joint distribution of two clinical rating scales in the
sample), estimation of the linear relationship (robust linear regression estimator)
and the associated residuals between the clinical data assessed by the rating scales.

The graphs can be seen in Figure [5.1}

5.3.2 Feature extraction

As in the case of study presented in Chapter [ the following acoustic features
quantifying dysprosody in HD were used [24]. To describe variation in pitch, fun-
damental frequency (FO0) was used, specifically: standard deviation of FO (FOSD),
relative standard deviation of FO (relFOSD), variation range of FO (FOVR), and
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Fig. 5.1: Descriptive statistical graphs of clinical characteristics of PD patients par-
ticipated in this study: on the main diagonal, histograms are visualized. Next, the
upper triangular part of the graph-grid shows scatter plots with the fitted lines of
the linear regression models. And finally, the lower triangular part of the graph-grid
is used to display residuals for the models shown in the the upper grid. Colour
notation: blue colour represents female speakers, and green colour represents male
speakers. For the description of the rating scales, see Table

relative variation range of FO (relFOVR) were computed. Regarding description
of variation in intensity, squared energy operator (SEO) and Teager-Kaiser energy
operator (TEO) were used, specifically: standard deviation of SEO/TEO (SEOSD/-
TEOSD), relative standard deviation of SEO/TEO (relSEOSD/relTEOSD), varia-
tion range of SEO/TEO (SEOVR/TEOVR), and relative variation range of SEO/-
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TEO (relSEOVR/relTEOVR) were computed. And finally, total speech time (TST),
net speech time (NST), total pause time (TPT), total speech rate (TSR), net speech
rate (NSR), total pause time (pauses longer than 50ms) (TPT (50ms)), articula-
tion rate (AR), and speech index of rhythmicity (SPIR) were computed to describe

speech rate and pausing abnormalities.

5.3.3 Analytical setup

To describe the presence of possible relationship between the values of the computed
acoustic features quantifying dysprosody in HD and other motor and non-motor
symptoms (assessed by the selected clinical rating scales) in PD, Spearman’s corre-
lation coefficient (p) was used (short description of this method can be found in the
previous chapter). The significance level of correlation (p) of 0.05 was selected. Due
to the limited number of samples and the exploratory character of the study, the
correction for multiple comparisons was not performed. Moreover, due to the large
number of clinical rating scales under focus, partial correlations were not computed
to control for the effect of covariates, but rather classical correlations were applied to
provide a preliminary insight into association between dysprosody in HD and other
non-speech symptoms of PD.

Consequently, multivariate regression models estimating values of the analysed
clinical rating scales were built (10-fold cross-validation with 20 repetitions was used
for validation). However, as in the case of HD identification (see Chapter {f), not all
acoustic features were used for this purpose. As previously, a modified version of se-
quential floating forward selection [I81] algorithm was applied to reduce the number
of features and create the regression models with low dimensionality, better clinical
interpretability, and high performance [I04]. With respect to the actual regression
algorithm, classification and regression trees (CART) were employed. Classification
and regression trees are a non-parametric supervised machine learning algorithm
based on mathematical theory introduced in 1984 by Breiman, Freidman, Olshen
and Stone [26] that are still commonly used in the field of biostatistics due to its
robustness to outliers and ability to deal with highly dimensional and highly cor-
related data [I12]. The result of the algorithm are often well-interpretable, which
makes this algorithm especially attractive.

To measure the prediction performance of the trained models, several conven-
tional and widely-used regression metrics such as mean absolute error (MAE), and
root mean squared error (RMSE) were employed. Moreover, a novel regression met-
ric named estimation error rate (EER) was computed to express the prediction error

in percentage, which is particularly useful for easy and fast interpretation. These
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metrics are defined as:

1 R
=1
1.
i=1
1 n
EER = — |y; — 4| - 100 [%], (5.3)
n-r.:

where the above mentioned variables stands for: n is the number of true/predicted
values, y; and ¢; represents the true and predicted values of the response variable,
respectively, and r denotes the range of values of the given clinical rating scale
present in the dataset (this is particularly useful when interpreting the values of EER
for the restricted range of values that is a common situation when dealing with the
data from patients with neurodegenerative disordersﬂ, see Table . In the frame
of this study, these regression metrics can be interpreted as: mean absolute error
expresses the average absolute difference between the predicted and true values of the
variable under focus, so that with higher mean absolute error, worse predictions are
made. Root mean squared error expresses the square root of the average of squared
prediction errors, so that with lower root mean squared error, even more inaccurate
predictions are made. Furthermore, as opposed to RMSE, MAE has the advantage
that it describes the prediction error in the same units as the variables themselves.
However, RMSE is also frequently used because it amplifies larger differences and
is therefore more sensitive to prediction errors. And finally, estimation error rate
expresses the mean absolute error in relation to the range of values of the predicted
variable, so that it gives the visual impression of the estimation error of the model

given the actual statistical properties of the dataset.

5.4 Results

Results of the correlation analysis are summarized in Table [5.2 The table shows

top three acoustic features sorted according to their significance level of correlation

Tt is important to note that every dataset is different in the participants. For instance, in the
case of this study, patients with PD were acquired. These patients however are often in the moder-
ate to severe stage of the disease since an accurate early PD diagnosis is rare or completely missing.
Therefore, even though the clinical rating scales used to assess the parkinsonian manifestations are
able to quantify very mild or severe disabilities, such data is almost never acquired. Hence, the
conversion of some classical prediction metric such as mean absolute error into percentage can
not simply be done using the range of the clinical rating scales because the resulting estimation
error rates would be overestimating the performance of the trained models. For this reason, it is

extremely important to consider the actual range of values present in the dataset.
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expressed by Spearman’s correlation coefficient. The following results showing the
correlation for the specific prosodic areas under focus were achievedE] (* means that
p < 0.05; ** means that p < 0.01; T1-poem recitation task; T2— reading with
neutral emotion; and T3 —stress-modified reading):

1. UPDRS III-the strongest correlation was found in the case of features de-
scribing reduced variation in pitch and intensity of speech in all three speech
tasks (T1-T3) (T1: —0.38** (FOVR), —0.30"* (TEOSD); T2: —0.28* (FOSD),
0.28* (SEOSD); and T3: —0.37** (FOVR), —0.30* (TEOVR)).

2. UPDRS IV —the strongest correlation was found in the case of features de-
scribing reduced variation in intonation (T1, T2), intensity of speech (T3), and
speech rate abnormalities (T1, T2) (T1: 0.29* (relF0SD), 0.21* (TPT (50 ms));
T2: 0.32* (relF0SD), 0.31** (TPT (50 ms)); and T3: —0.21* (TEOSD), —0.21*
(FOVR)).

3. FOG-Q—the strongest correlation was found mostly in the case of features
describing speech rate abnormalities in all three speech tasks (T1-T3), and re-
duced variation in intensity of speech (T1) (T1: —0.35** (NST), 0.28* (relF0SD);
T2: 0.42* (TPT (50ms)); and T3: —0.27* (NST)).

4. NMSS —the strongest correlation was found in the case of features describing
reduced variation in intonation and intensity of speech in all three speech tasks
(T1-T3) (T1: —0.29* (TEOSD), 0.26* (relF0SD); T2: 0.36* (relF0SD), 0.31*
(relTEOVR); and T3: —0.36* (TEOVR), —0.29* (FOVR)).

5. RBDSQ —the strongest correlation was found only in the case of features de-
scribing reduced variation in intensity of speech (T1, T2) (T1: 0.20* (TEOSD);
and T2: —0.23* (SEOSD)).

6. ACE-R—the strongest correlation was found in the case of features describing
speech rate abnormalities (T1), and reduced variation in intensity of speech
(T3) (T1: —0.43* (TPT); T3: 0.23* (TEOSD)).

7. MMSE —the strongest correlation was found in the case of a single feature
describing speech rate abnormalities (T1: —0.26* (TPT)).

8. BDI—none of the features showed statistically significant correlation.

Moreover, three specific clinical rating scales were selected: UPDRS III (evalua-

tion of motor deficits), FOG-Q (evaluation of gait freezing), ACE-R (evaluation of
cognitive deficits). For these three scales, regression plots can be seen in Figure .
The figure provides a visual impression about the strength of a linear relationship
between the most correlated acoustic features and the values of the selected clinical

rating scales (a single feature is chosen for each scenario).

20nly a single statistically significant feature per prosodic area is presented, therefore it might
happen that some features will not appear in the summary. Features with p > 0.05 are not shown
as well as they are considered statistically insignificant. For complete picture, see
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Tab. 5.2: Correlation analysis of the prosodic features.

T1 T2 T3
scale features p p features p p features p D
FOVR -0.38  **  F0SD -0.28 *  FOVR -0.37  **
UPDRS III TEOSD -0.30 ** SEOSD 0.28 * FO0SD -0.34  **
TEOVR -0.25 * SEOVR 028 * TEOVR -0.30  *
relFOSD 0.29 * relFOSD 0.32 ** TEOSD -0.21 %
UPDRSIV TPT(50ms) 021 * TPT(50ms) 0.31 ** FOVR -0.21 %
relFOVR 0.20 AR -0.31 ** TEOVR -0.18
NST -0.35 ** TPT(50ms) 0.42 ** NST -0.27 %
FOG-Q NSR 035 ** AR -0.42 ** NSR 027 *
relFOSD 028 * NST -0.41 ** TST -0.26  *
TEOSD -0.29 *  relFOSD 0.36 ** TEOVR -0.36  **
NMSS relFOSD 026 * relTEOVR 0.31 ** TEOSD -0.35  **
TPT 0.20 relFOVR 026 * FOVR -0.29 *
TEOSD 020 * SEOSD -0.23 * SPIR -0.18
RBDSQ TEOVR 0.20 relSEOVR 0.10 TEOSD 0.17
SEOSD -0.17 SEOVR -0.09 relFOSD 0.17
TPT -0.43 ** TEOSD 0.18 TEOSD 023 *
ACE-R TST -0.33  ** relSEOVR 0.16 TEOVR 0.20
TSR 0.33 ** relFOVR -0.16 SPIR 0.20
TPT -0.26 * relTEOVR -0.17 F0OSD -0.18
MMSE relSEOSD -0.17 NST 0.16 SEOVR -0.13
TST -0.16 TPT -0.16 TPT (50ms) -0.12
rel TEOVR 0.18 SEOSD 0.21 rel TEOSD 0.18
BDI SEOSD 0.16 relTEOVR 0.15 relSEOSD -0.18
rel TEOSD 0.15 relSEOVR -0.14 relSEOVR -0.16

1 Table notation: T1-poem recitation task; T2 —emotionally-neutral reading task; T3 —stress-modified reading task;
p — Spearman’s correlation coefficient; p — significance level of correlation (* means p < 0.05; ** means p < 0.01);
UPDRS III - Unified Parkinson’s disease rating scale, part III: evaluation of motor function [62]; UPDRS IV — Unified
Parkinson’s disease rating scale, part IV: evaluation of complications of therapy (Hoehn and Yahr scale, staging
of severity of Parkinson’s disease) [62]; FOG-Q—Freezing of gait questionnaire [00]; NMSS - Non-motor symp-
toms scale [38]; RBDSQ—The REM sleep behavior disorder screening questionnaire [223]; ACE-R — Addenbrooke’s
cognitive examination-revised [133]; MMSE — Mini-mental state examination [66]; BDI—Beck depression inventory
16}, 17].

As can be seen, the strong relationship between reduced variation in pitch and
UPDRS III (in the case of all the three speech tasks) is evident. Specifically, the flat-
ter the intonation, the more severe motor disability assessed by UPDRS III can be
observed. Next, the strong relationship between speech rate/pausing abnormalities
and FOG-Q (in the case of all the three speech tasks) is present as well. Specifi-

cally, the faster the speech during poem recitation, larger number of pauses (longer
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Fig. 5.2: Regression plots (scatter plots with the fitted line of the robust linear
regression estimator) of the selected rating scales (UPDRS III, FOG-Q, ACE-R)
for all three speech tasks performed by all PD patients: T1—poem recitation task
(first column/blue colour); T2—emotionally-neutral reading (second column/green
colour); and T3-stress-modified reading (third column/red colour). Only one fea-
ture for each clinical rating scale/speech feature is visualized (selected according to
the Spearman’s correlation coefficient, see Table . For more information about
the acoustic features notation, see Section .

that 50 ms) during emotionally-neutral reading, and faster the speech during stress-
modified reading, the more severe gait freezing episodes assessed by UPDRS III
can be observed. And finally, the strong relationship between speech rate/paus-

ing abnormalities and ACE-R in the case of poem recitation can be seen. For the
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other two tasks, the association is much weaker (less statistically significant as well).
Specifically, the faster speech (less time spent on pausing) during poem recitation,
and larger deviation of speech intensity during reading (emotionally-neutral, and
stress-modified), the more severe cognitive deficits assessed by ACE-R can be ob-
served. These observations emphasize the fact that poem recitation task is a great
candidate to emphasize monopitch in HD, but also some cognitive deficits that are
probably related to worse control of speech tempo (patients try to compensate it by
occasional rushes of speech, etc.).

Next, for UPDRS III, FOG-Q, and ACE-R, multivariate regression models using
the features selected by the feature selection algorithm, were built and visualized
(visualization of the approximation of decision making performed by the regression
tree) using the three graphs, see Figure Figure and Figure , respec-

tively. Moreover, the results of the multivariate regression analysis are summarized

in Table [5.3 and Table [5.4]

TEOSD (T1) < 0.008
mse = 149.3
samples = 70

value = 24.014

FOVR (T1) < 341.236
mse = 128.682

samples = 54
value = 27.148

FOVR (T1) < 341.891
mse = 73.871
samples = 16
value = 13.438

TST (T2) < 5.475
mse = 84.16

samples = 5
value = 22.2

TEOSD (T1) <£0.015
mse = 18.43
samples = 11
value = 9.455

mse = 131.724 mse = 90.304
samples = 23 samples = 31

TEOSD (T1) < 0.007 FOVR (T1) < 349.118
value = 32.435 value = 23.226

mse = 109.339 mse = 0.0 mse = 78.415 mse = 41.102 mse = 9.0 mse = 4.667 mse =6.173 mse = 36.0
samples = 22 samples = 1 samples = 24 samples = 7 samples = 2 samples = 3 samples = 9 samples = 2
value = 33.545 value = 8.0 value = 20.792 value = 31.571 value = 33.0 value = 15.0 value = 8.222 value = 15.0

Fig. 5.3: Visualization of the regression tree built to estimate UPDRS III. The tree
was trained using a single training run applied on all data in the dataset/selected
features (hence the decision making of the tree is an approximation of the behavior
responsible for the results summarized in Table . In the case of this tree: TST
(T2), FOVR (T1), and TEOSD (T1) were used. For explanation of the speech task
and acoustic feature notation, see Section .31} and Section 0.3.2, respectively.

With respect to the separate analysis (analysis of the speech tasks separately in
direction of evaluating their sufficiency to assess severity of PD by estimating the
clinical rating scales that are used to assess motor and non-motor deficits occurring
with this disease), the following results were achieved: a) T1—most of the selected
acoustic features are based on the description of reduced variability in intonation

and intensity of speech. The lowest estimation error rate was obtained in the case
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TPT (T2) < 4.399
mse = 31.669
samples = 70

value = 6.4

samples = 59 samples = 11
value = 5.186 value = 12909

!

[FOVR (T1) < 349.383

SEOVR (T1) < 18.369 FOVR (T1) < 348.653
mse = 24.219 J t mse = 21.355

mse = 0.0
samples = 1
value = 2.0

mse = 0.0
samples = 1
value = 16.0

mse = 22.586
samples = 58
value = 5 0

samples = 10
value 14.0

SEOVR (T1) <50.993
mse = 10.4

mse = 24. 288 mse = 2 667 mse = 7 111
samples = 49 samples = 9 samples = 9
value = 5.551 value = 2.0 value = 13.333

Fig. 5.4: Visualization of the regression tree built to estimate FOG-Q. The tree
was trained using a single training run applied on all data in the dataset/selected
features (hence the decision making of the tree is an approximation of the behavior
responsible for the results summarized in Table . In the case of this tree: TPT
(T2), FOVR (T1), and SEOVR (T1) were used. For explanation of the speech task
and acoustic feature notation, see Section and Section , respectively.

relSEOSD (T1) < 528.66
mse = 64.334
samples = 70

value = 86.743

relSEOSD (T1) < 110.928

mse = 54.751
samples = 69
value = 87.13

samples = 1
value = 60.0

mse = 11.609 mse = 53.151
samples = 8 samples = 61
value = 94.125 value = 86.. 213

|

mse = 8.472 mse = 48 988 mse 46.312
samples = 6 samples = 9 samples = 52
value = 92.833 value = 80.111 value = 87.269

TPT (T2) < 2.369 LreISEOSD (T1) < 123.42

Fig. 5.5: Visualization of the regression tree built to estimate ACE-R. The tree
was trained using a single training run applied on all data in the dataset/selected
features (hence the decision making of the tree is an approximation of the behavior
responsible for the results summarized in Table . In the case of this tree: TPT
(T2), and relSEOSD (T1) were used. For explanation of the speech task and acoustic

feature notation, see Section and Section [5.3.2} respectively.
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Tab. 5.3: Results of the regression analysis for individual speech tasks.

scale MAE RMSE EER No. selected features
Poem recitation task
UPDRSIII  9.41 £2.73 11.45 +£3.13 18.11 £ 5.26 2 FOVR, TEOSD
UPDRS IV 2.12 £+ 0.65 2.69 + 0.72  23.65 £ 7.26 1 relTEOVR
FOG-Q 452+ 1.57 583 +1.92 2261+789 3 TEOVR, FOVR, TST
NMSS 18.55 +4.48 21.88 +4.83 20.16 +4.87 1 relTEOVR
RBDSQ 2.86 £0.80 3.50+ 094 22.06+6.17 1 relSEOVR
ACE-R 6.18 + 1.84 7.67 +£2.23 15.86 £ 4.72 1 relSEOSD
MMSE 1.83 +£0.77 2524+126 13.13£550 2 SEOVR, TPT
BDI 5.65 + 1.52 6.68 +1.80 2094 +563 2 TPT, relSEOVR
Reading with neutral emotion
UPDRS III 10.44 4+ 2.46 12.12 £2.63 20.08+ 474 1 TPT
UPDRS IV~ 2.31 £ 0.50 2.66 + 0.55  25.76 £+ 5.63 1 TPT
FOG-Q 3.86 £ 1.22 4.80+1.42 1931 +£6.14 3  relFOVR, TPT, NSR
NMSS 14.51 +4.29 1778 +4.98 1578 +4.66 3  TPT, relFOSD, TEOSD
RBDSQ 251 +0.68 3.04 +0.89 1938+524 1 TPT
ACE-R 6.80 £+ 2.12 8.34 +2.66 17.44 +£5.45 1 TPT
MMSE 1.61 + 0.68 2.25 +1.24 11.50 £+ 4.87 1 TPT
BDI 492+ 139 6.00+1.66 1822+518 1 TPT
Stress-modified reading
UPDRS III  10.50 4+ 3.23 13.10 +4.01 20.20 +£6.22 2  relTEOSD, FOSD
UPDRS IV 245 +0.64 299+ 0.67 2727+7.16 4 SEOVR, FOVR, AR, TPT
FOG-Q 4.90 + 1.29 5.78 + 1.44  24.50 £+ 6.47 2 TSR, TST
NMSS 17.29 + 4.88 2091 + 5.67 18.80 + 5.31 1 TEOVR
RBDSQ 2.64 +0.71 3.23+0.80 2033+549 2 TEOSD, FOVR
ACE-R 6.18 + 1.84 7.67 £223 1586 +4.72 3  TST, TSR, relSEOSD
MMSE 1.76 £+ 0.67 2.36 + 1.12  12.62 £ 4.83 1 TST
BDI 544 +1.63 6.72+1.81 20.15+6.04 3 TEOVR, FOVR, SEOSD

1 Table notation: MAE —mean absolute error; RMSE —root mean squared error; EER —relative estimation error

rate (MAE divided by the range of actual values of clinical rating scale present in the dataset; expressed in %);

No. —number of selected features; UPDRS III-Unified Parkinson’s disease rating scale, part III: evaluation of

motor function [62]; UPDRS IV —Unified Parkinson’s disease rating scale, part IV: evaluation of complications

of therapy (Hoehn and Yahr scale, staging of severity of Parkinson’s disease) [62]; FOG-Q—Freezing of gait
questionnaire [90]; NMSS — Non-motor symptoms scale [38]; RBDSQ - The REM sleep behavior disorder screen-
ing questionnaire [223]; ACE-R— Addenbrooke’s cognitive examination-revised [133]; MMSE —Mini-mental state

examination [66]; BDI—Beck depression inventory [16], [17].

of MMSE (SEOVR, TPT): EER = 13.13 £+ 5.50%, closely followed by ACE-R
(relSEOSD): EER = 15.86 + 4.72, and UPDRS III (FOVR, TEOSD): EER =
18.11 £+ 5.26%; b) T2—in 6 out of the total number of 8 analysed clinical rating

scales, the feature selection found only a single feature based on the description of
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Tab. 5.4: Results of the regression analysis for a combination of speech tasks.

scale MAE RMSE EER No. selected features
UPDRSIII 9.10 £2.93 1127 +£346 1752+564 3 TSTZ? FOVR!, TEOSD!
UPDRSIV 2314+ 0.50 2654056 25.75+564 1 TPT?

FOG-Q 3454+ 128 454+161 1728+6.42 3 TPT? FOVR!, SEOVR!
NMSS 17.03 £ 4.35 20.50 +4.86 1852+473 1 TPT?

RBDSQ 2.26 +0.83 2.88+1.03 1744 +6.40 3 F0SD!, SEOSD!, TPT?
ACE-R 6.20 £ 1.85 7.68+2.22 1572+ 475 2 TPTZ2, relSEOSD!
MMSE 1.60 £0.68 225+ 124 11.494+492 1 TPT?

BDI 491 +140 6.00+1.66 1821+521 1 TPT?

I Table notation: ! —poem recitation task; 2 —reading with neutral emotion; 3 —stress-modified reading task;
MAE —mean absolute error; RMSE —root mean squared error; EER —relative estimation error rate (mean abso-
lute error divided by the range of actual values of clinical rating scale present in the dataset; expressed in %);
No. —number of selected features; UPDRS III - Unified Parkinson’s disease rating scale, part I1I: evaluation of
motor function [62]; UPDRS IV — Unified Parkinson’s disease rating scale, part IV: evaluation of complications
of therapy (Hoehn and Yahr scale, staging of severity of Parkinson’s disease) [62]; FOG-Q—Freezing of gait
questionnaire [90]; NMSS — Non-motor symptoms scale [38]; RBDSQ—The REM sleep behavior disorder screen-
ing questionnaire [223]; ACE-R — Addenbrooke’s cognitive examination-revised [133]; MMSE —Mini-mental state
examination [66]; BDI—Beck depression inventory [16] [I7].

speech rate and pausing abnormalities (TPT) to be sufficient enough to describe the
relationship between dysprosody in HD and severity of PD. The lowest estimation
error rate was obtained in the case of MMSE (TPT): EER = 11.50 + 4.87%; and
c¢) T3 —features based on the description of reduced variability of intensity of speech
and speech rate abnormalities dominated most of the models. The lowest estimation
error rate was obtained in the case of MMSE (TST): EER = 12.62 + 4.83 %, closely
followed by ACE-R (TST, TSR, relSEOSD): EER = 15.86 + 4.72%, and NMSS
(TEOVR): EER = 18.80 + 5.31%.

Regarding the combined analysis (analysis of the combination of the speech
tasks in direction of evaluating the power of the combined model to robustly and
complexly assess severity of PD), combination of the speech tasks resulted into lower
estimation error rates in most of the cases in which more than a single acoustic
feature was selected. The prediction power of the regression models was slightly
improved in the following clinical rating scales (improvements are expressed in %):
UPDRS III = 0.59%, FOG-Q = 2.04%, RBDSQ = 1.94%. However, as can be
seen, in most of the cases, a single prosodic feature seems to be sufficiently describing
a relationship between dysprosody in HD and other non-speech symptoms occurring
with PD. Hypothetically, the prediction power of these models could be increased
when taking other HD manifestations into account. Nevertheless, the results clearly
show dysprosody is related with other motor (as assessed by UPDRS III, or FOG-Q)
and non-motor (as assessed by MMSE or ACE-R) symptoms in PD.
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5.5 Conclusion

Up to this day, several world-renown researchers analysed relationship between
speech disorders in HD and other non-speech symptoms of PD [92, 158, 21T, 214,
217]. However, investigation of the association between acoustic features quantify-
ing dysprosody in HD and a complex set of clinical rating scales assessing motor and
non-motor symptoms of PD is still rare or missing. This study therefore provides
further analysis of the relationship between HD and other aspects of PD using the
correlation analysis. Regarding the results, the following conclusion can be made.
Concerning UPDRS III [62], the strongest correlation can be observed for the
acoustic features describing reduced variation in intonation and intensity of speech.
Specifically, in the case of poem recitation task, reduced variation in fundamental
frequency was found correlated with higher severity of motor symptoms (FOVR:
—0.38, p < 0.01) present in PD, which highlights and confirms the previous findings
proposed in Chapter ] reporting that when PD patients are exposed to additional
rhythmical demands, the prosodic deficits occurring with HD gets emphasized. This
phenomenon can also be found in the case of stress-modified reading (FOVR: —0.37,
p < 0.01) confirming the relevancy of this speech task as well. On top of that,
smaller variation and standard deviation of speech intensity was also found corre-
lated with the higher severity of PD for both emotionally-neutral reading (TEOSD:
—0.30, p < 0.01) and stress-modified reading (TEOVR: —0.30, p < 0.05). Regarding
UPDRS 1V [62], the strongest correlation can be observed for the acoustic features
describing reduced variation in intonation, and speech rate/pausing abnormalities.
Interestingly, the best results were achieved for the emotionally-neutral reading
task. Specifically, larger standard deviation of fundamental frequency (relFOSD:
0.32, p < 0.01), larger number of pauses longer than 50ms (TPT (50ms): 0.31,
p < 0.01), and slow rate of speech (AR: —0.31, p < 0.01) were found correlated
with higher severity of PD. With respect to FOG-Q [90], the strongest correlation
can be observed almost exclusively for the features describing speech rate/pausing
abnormalities, which suggests that the relationship between HD and freezing of gait
in PD is independent of stress and rhythm. Specifically, larger number of pauses
longer than 50ms (TPT (50ms): 0.42, p < 0.01), and slow rate of speech (AR:
—0.42, p < 0.01) were found correlated with the higher severity of gait freezing in
PD. Additionally, statistically significant correlations are present for poem recitation
(NST: —0.35, p < 0.01) and stress-modified reading (NST: —0.27, p < 0.05) as well.
These results confirm the relationship between the freezing of gait and speech rate
disturbances in HD reported by Park et al. [I72] in 2014. Regarding NMSS [38], the
strongest correlation can be observed for the acoustic features describing reduced

variation in intonation and intensity of speech. These acoustic features dominated
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in the case of all the three speech tasks. Specifically, larger standard deviation of
fundamental frequency (relTEOVR: 0.36, p < 0.01) and variation in speech inten-
sity (relTEOVR: 0.31, p < 0.01) during emotionally-neutral reading, and smaller
variation (relTEOVR: —0.36, p < 0.01) and standard deviation (relTEOVR: -0.35,
p < 0.01) of speech intensity during stress-modified reading were found correlated
with higher severity of non-motor symptoms of PD. In the case of ACE-R [133],
the strongest correlation can be observed for the features describing speech rate/-
pausing abnormalities. Specifically, shorter pauses (TPT: —0.43, p < 0.01) and
faster speech (TST: —0.33, p < 0.01) during recitation was found correlated with
the cognitive decline in PD. This might mean that PD patients with more severe
cognitive manifestations were not able to pay enough attention to precise speech
rate, pausing, and timing required by the poem recitation task, so to compensate
that, they spoke faster and did not emphasize the end of each verse. These results
to some extent confirm the previous finding of Rektorova et al. [I86] reporting that
impaired speech rhythmicity predicts rapid cognitive decline in patients with PD.
The results for other rating scales are not so convincing, however a short discussion
is provided. Although Rusz et al. [I99] revealed that speech impairment is present in
approximately 88 % of patients with idiopathic rapid eye movement sleep behaviour
disorder (RBD), only mildly strong connection between reduced variation in speech
intensity in HD and sleep disorders in PD assessed by RBDSQ [223] was found.
Next, with respect to MMSE [66], only a single acoustic feature describing total du-
ration of speech (TPT: —0.26, p < 0.05) was found correlated with cognitive deficits
in PD assessed by this particular rating scale. Finally, despite the fact that some
relationship between emotional prosody and depression in PD has already been re-
ported [235], the results of this study did not confirm any particular relationship
between prosodic features and depression assessed by BDI [16].

Nowadays, there are some studies focused on the estimation of clinical rating
scales assessing severity of PD using the acoustic analysis of dysarthric speech [8,
15, 57, 51, 177, 186, 228, 229, 231]. However, as mentioned previously, these works
mainly estimated UPDRS. Moreover, most of the works only quantified phonatory
aspects of HD. This study therefore provides further analysis of computerized remote
estimation of motor and non-motor symptoms of PD using the quantification of HD.
Regarding the regression analysis, the following conclusions can be drawn.

With respect to the estimation of motor symptoms, it can be concluded that
the most interesting results were found in the case of UPDRS III and FOG-Q.
Concerning UPDRS III [62], the lowest estimation error (17.52 %) was achieved for
the combined prosodic model composed of three features: TST (emotionally-neutral
reading), FOVR (poem recitation task), and TEOSD (stress-modified reading). This

shows that every aspect of dysprosody in HD is relevant and useful for estimation
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of motor symptoms of PD assessed by this particular rating scale. Moreover, it can
be seen that these results are consistent with the findings of the correlation anal-
ysis showing that speech rate/pausing abnormalities are mostly manifested during
reading with neutral emotion, reduced variation in intonation is mostly manifested
during poem recitation, and reduced variation in speech intensity is mostly mani-
fested during stress-modified reading. Regarding FOG-Q [90], the lowest estimation
error (17.28 %) was achieved for the combined prosodic model composed of three
features: TPT (emotionally-neutral reading), FOVR (poem recitation task), and
SEOVR (stress-modified reading). This also confirms great importance of the ro-
bust description of dysprosody when estimating motor deficits in PD. Regarding
the estimation of non-motor symptoms, it can be concluded that the most inter-
esting results were found in the case of RBDSQ, ACE-R and MMSE. Concerning
RBDSQ [223], the lowest estimation error (17.44 %) was achieved for the combined
prosodic model composed of three features: FOSD (poem recitation task), SEOSD
(stress-modified reading), and TPT (emotionally-neutral reading). It is therefore
evident that when estimating non-motor symptoms of PD, full description of dys-
prosody is necessary as well. Similarly to the motor aspects, poem recitation task
is the preferred choice when quantifying flat speech melody, and speech rate/paus-
ing abnormalities seem to be sufficiently described by emotionally-neutral reading.
With respect to ACE-R [I33], the lowest estimation error (15.72 %) was achieved
for the combined prosodic model composed of two features: TPT (emotionally-
neutral reading), and relSEOSD (poem recitation task). And finally, in the case of
MMSE [66], the lowest estimation error (15.72 %) was achieved for a single prosodic
feature describing total speech time of the emotionally-neutral reading (11.49 %).
This is in fact the lowest estimation error that was achieved.

To provide relevant discussion and conclusion, limitations of this work need to
be pointed out as well. One limitation of this study is the range of values of the
rating scales covered by the cohort. This limitation is however tightly linked with
the difficulty of the data acquisition in the case of patients in early or severe stages
of the disease. On one hand, patients that are diagnosed in the early stages of PD
are very hard to find, and on the other hand, patients in the severe stages of PD
are very hard to examine because of their medical condition. Therefore, one must
take into account the fact that the results presented in this study are limited by the
statistical properties of the dataset. Another drawback of this study is the fact that
the results are based upon speech tasks of relatively limited length. This however is
done purposely in order to propose the results that are in line with the methodology
and continuously build on top of the findings summarized in Chapter [4]

To summarize, it is also evident that speech prosody plays a great role in linking

HD and other non-speech deficits in PD. The results also confirm the potential of the
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acoustic analysis of dysarthric speech to assess PD. At first, they strongly suggest
that using a recitation and stress-modified tasks can emphasize prosodic deficits in
HD and therefore can be used for HD identification, and even non-speech symptoms
estimation. Secondly, they show importance of speech rate and pausing abnormal-
ities description, especially during emotionally-neutral reading. And finally, they
confirm the previous findings of a few pilot studies concerning estimation of motor
and non-motor symptoms of PD [I51], [I86].
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6 Assessment of freezing of gait

6.1 State of knowledge

Freezing of gait (FOG) is a frequent disabling symptom in patients with PD that is
characterized by sudden and transient interruptions to walking, which according to
the literature, tends to occur when initiating walking, turning, or facing an obstacle
or narrow path [167]. As reported by the previous studies, FOG has been diagnosed
in approximately half of the patients with PD and is more likely to occur in advanced
stages of the disease [I4]. As reported by several studies [87, 89, [143], patients
suffering from FOG experience problems in controlling and modulating their gait,
especially during its initiation and changes in direction or speed. Gait disorders
associated with FOG in PD [87, 89, [160] can lead to poor locomotion, postural
instability, and eventually to serious fall-related injuries [101, 203] reducing the
quality of life of the patients. Despite the fact that FOG is a very problematic aspect
occurring in most patients with PD [91], the exact pathophysiological mechanism
underlying FOG in PD remains unexplained [207, 237, 239].

In 2001, Giladi et al. [88] studied development of freezing of gait in patients with
idiopathic PD. Based on the analysis of data from 800 patients with early PD from
the Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP)
clinical trial, they reported a strong association between FOG and speech abnor-
malities, both assessed by the Unified Parkinson’s Disease Rating Scale (UPDRS),
part III, evaluation of motor function [62]. However, due to the very limited ability
of item 18 of this particular clinical rating scale to sufficiently describe a variety of
voice/speech disorders occurring with HD, the authors simply concluded that there
might be some common pathophysiological mechanisms between FOG and HD that
should be investigated in future research.

In 2003, Bartels et al. [14] studied a relationship between FOG (quantified by
FOG frequency based on the assessment of 3 independent viewers who watched
videotapes and rated a performance of a 130 m walk) and other clinical features
of PD (again evaluated by UPDRS, including speech) in 19 PD patients who were
assessed in their OFF (prior to levodopa dosage use) and ON (after the levodopa
dosage use) state. They reported that the FOG frequency was not correlated with
other parkinsonian manifestations in the OFF state, and it was related to speech
and writing only in the ON state. The authors concluded that FOG is an indepen-
dent motor symptom, caused by a paroxysmal pathology that is different from that
responsible for bradykinesia, rigidity or postural instability in PD.

In 2005, A. M. Goberman [092] published a study dealing with the correlation

analysis between 16 acoustic measures (quantifying multidimensional HD in the
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area of phonation, articulation, and prosody) and non-speech motor performance
(once again assessed by UPDRS) in 9 patients with idiopathic PD. After the anal-
ysis, 3 significant and positive correlations were identified between gait deficits and
these acoustic parameters: the standard deviation of fundamental frequency, percent
pause time calculated from monologue, and finally percent pause time calculated
from a reading task. Based on the observation that some acoustic measures were
found correlated with both axial motor symptoms (e. g., gait, facial expression) and
non-axial motor symptoms (e. g. resting tremor, bradykinesia), the author also con-
cluded that some voice/speech deficits in PD may result from dopaminergic lesions,
while others are likely to result from non-dopaminergic ones.

In 2007, Moreau et al. [I58] were interested in the relationship between oral
festination (quantified by acoustic parameters based on diadochokinetic rate), and
gait festination and FOG separately. With this approach, the authors analysed the
tendency of PD patients to speed up when performing repetitive movements. They
enrolled 40 PD patients (17 presented both gait festination and FOG, 5 presented
gait festination alone, 9 presented FOG alone, and 9 did not present either FOG
or festination) and observed that oral festination was associated more to the gait
festination than to the severity of FOG in general.

In 2010, Cantiniaux et al. [33] measured walking velocity, step length and walk-
ing cadence in the set of 11 PD patients undergoing the deep-brain stimulation of
the subthalamic nucleus (STN-DBS) using an optoelectronic system. In addition,
they computed several acoustic features such as speech rate, net speech time and
speech index of rhythmicity. Based on the correlation analysis, they concluded that
speech rate and walking velocity, as well as net speech time and step length are sig-
nificantly correlated. Moreover, negative correlation was identified between speech
index of rhythmicity and walking cadence. The authors came up with a hypothesis
that similar fundamental hypokinetic impairment and probably a similar rhythmic
factor affect speech in patients with PD. Furthermore, authors also came up with
a hypothesis of the presence of shared pathophysiological mechanisms in both walk-
ing and speaking dysfunctions occurring with this disease.

In 2014, Park et al. [I72] performed correlation analysis among several FOG
features (gait velocity, stride length and cadence), evaluated by the Gait and Falls
Questionnaire (GFQ) and the Freezing of Gait Questionnaire (FOG-Q) [90], and
three speech parameters (initiation time, rate, dysfluency) in 18 PD patients (9 with
FOG, 9 without FOG). They reported that the increase in gait velocity was found
positively correlated with the decrease in the time delay of the speech initiation,
the increase in the gait velocity and cadence was found positively correlated with
the decrease in the number of repetitions per sentence (dysfluency), and finally, the

increase in the stride length was found positively correlated with the increase in
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speech rate and decrease in the number of repetitions per sentence. As well as in
the previous cases [14, [33] 88 92], the authors concluded that there are common
pathophysiological mechanisms behind gait freezing and speech disturbance in PD.

In 2016, McCaig et al. [I46] analysed the effect of concurrent walking on speech
production in fifteen PD patients with hypophonia. More specifically, they analysed
the effect of sitting, standing, and three concurrent walking tasks on speech intensity
and speech rate. They observed that concurrent walking produces a significant
increase in speech intensity, relative to standing and sitting, while the same task has
no effect on the speech rate. The faster the walking, the more intense the speech.
Finally, they reported that the concurrent walking and talking produced significant
reductions in walking speed and that this fact need to be given consideration in
future attempts to develop a comprehensive model of speech intensity regulation
and they may have important implications for the development of new evaluation
and treatment procedures for individuals with hypophonia related to PD.

In the same year, Rektorova et al. [I86] assessed whether the baseline acoustic
parameters, alone or in combination with other motor and non-motor symptoms
may predict change in cognitive status and cognitive decline during a 2-year follow-
up. The speech index of rhythmicity predicted a cognitive status change with 73.2 %
accuracy (sensitivity 87.1 %, specificity 30.0 %) while adding FOG in the multivariate
model improved the accuracy by 4.8 %, thus suggesting that both HD and FOG
parameters relate to cognitive impairment in PD.

And finally, Ricciardi et al. [I87] investigated the relationship between speech
disturbances (assessed perceptively by the Italian version of the Dysarthria Profile
made of 8 sub-sections: respiration, phonation, facial musculature, diadochokinesis,
articulation, intelligibility, rate/prosody, eating and swallowing) and FOG (evalu-
ated by UPDRS II and the New Freezing of Gait Questionnaire) in 43 PD patients.
They discovered that patients with FOG or Hoehn-Yahr > 2 reported lower scores
in the articulation, intelligibility and rate/prosody sub-sections. Moreover, based on
the multiple regression analysis, they proved that the severity of FOG is associated
to the rate/prosody score only. Therefore, they concluded it is especially speech

dysfluency which shares pathophysiological mechanisms with FOG.

6.2 Rationale behind the research

FOG and HD are both problematic axial aspects of PD that do not sufficiently re-
spond to dopaminergic therapy [10, 56|, [174] 233]. Currently, there are only a few
works addressing a relationship between FOG and speech disorders associated with
PD [14] [33] 88, 158| [172]. This needs to be addressed because if some shared patho-

logical mechanisms behind voice/speech deficits in HD and FOG do exist, the acous-
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tic analysis of dysarthric speech can be used to remotely and objectively assess gait
manifestations in PD, which are nowadays being examined using perceptual evalua-
tion of gait using FOG-Q. It is evident that the perceptual examination even though
if performed by a skilled examiner can not fully capture all gait-related problems
accompanying the disease. So, when these common pathophysiological mechanisms
are found and understood, the acoustic analysis of dysarthric speech can be used to
assess FOG severity, the effectiveness of its treatment, etc.

With the previous ideas in mind, this thesis proposes a study that is focused
on investigation of relationship between voice/speech disorders in HD and FOG in
patients with PD assessed by FOG-Q [90]. For this purpose, correlation analysis is
applied. Moreover, it is hypothesized that acoustic analysis of dysarthric speech at
the baseline can be used to assess severity FOG at the same time as well as to assess
its progress in the horizon of two years. For this purpose, multivariate regression
analysis is applied on the large number of acoustic features computed from a battery
of variety clinically relevant and evaluated speech tasks to robustly and complexly
quantify voice/speech disorders in HD [24].

6.3 Methodology

6.3.1 Description of the dataset

In the frame of this study, a grand total of 75 non-depressed patients with idiopathic
PD (48 males/27 females, characteristics described as mean (sd): participants’ age
in years 67.40 (7.95)) were enrolled at the First Department of Neurology, St. Anne’s
University Hospital in Brno, Czech Republic. All the patients were Czech native
speakers. After two years, 41 of these patients (27 males/14 females, characteristics
described as mean (sd): participants’ age in years 67.34 (7.60)) were re-examined.
For more information, see Table None of the patients had a disease affecting the
central nervous system other than PD. The patients were examined on their regular
dopaminergic medication approximately 1 hour after the L-dopa [134] dose. All the
participants signed an informed consent form that had been approved by the Ethics
Committee of St. Anne’s University Hospital in Brno.

Next, data from the A session (session 2 — session 1) was used to visualize the
descriptive statistical graphs (i.e. histograms, regression, and residual plots) for the
change in selected sub-set of clinical data, specifically: UPDRS III, NMSS, RBDSQ),
MMSE, ACE-R, BDI, FOG-Q (Q3-Q6 score), see Figure[6.1] With this approach it
is possible to assess the improvement and/or decline in motor and non-motor deficits
associated with PD in the horizon of two years. It is important to notice that, only

participants with no missing data for the selected clinical rating scales were chosen.
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Tab. 6.1: Clinical characteristics of the patients (session 1, 2).

charact. mean std min Q1 Q2 Q3 max
Session 1 (48 males/27 females)

PD duration (years) 7.48 4.15 4.00 1.00 11.00 7.00 21.00
UPDRS III 23.89 12.05  13.00 3.00 33.00 25.00 55.00
LED (mg/day) 997.26 554.05 610.00 0.00 1324.00 870.00 2275.00
NMSS 35.60  20.58 18.00 2.00 53.00 33.00 94.00
RBDSQ 3.76 3.22 1.00 0.00 5.00 3.00 13.00
MMSE 27.97 249 28.00 16.00 29.00 29.00 30.00
ACE-R 87.11 7.98 83.00 60.00 93.00 88.00 99.00
BDI 10.51 6.08 6.00 0.00 15.00 9.00 27.00
FOG-Q (Q3) 1.49 1.55 0.00 0.00 3.00 1.00 4.00
FOG-Q (Q4) 1.09 1.30 0.00 0.00 2.00 1.00 4.00
FOG-Q (Q5) 0.92 1.19 0.00 0.00 2.00 0.00 4.00
FOG-Q (Q6) 0.75 1.03 0.00 0.00 1.00 0.00 4.00
FOG-Q (total) 4.25 4.57 1.00 0.00 10.00 3.00 16.00
Session 2 (27 males/14 females)
PD duration (years) 9.68 4.69 6.50 4.00 12.00 9.00 24.00
UPDRS III 2815 12,93 20.00 5.00 36.00 29.00 61.00
LED (mg/day) 1128.67 469.20 767.50 375.00 1357.00 1070.00 2852.00
NMSS 55.54  33.72 29.00 2.00 70.50 57.00 138.00
RBDSQ 3.61 2.29 2.00 0.00 5.00 3.00 10.00
MMSE 28.02 2.08 27.00 22.00 30.00 29.00 30.00
ACE-R 84.88 9.68 79.50  51.00 92.50 87.00 97.00
BDI 10.76 5.12 6.50 2.00 15.00 10.00 25.00
FOG-Q (Q3) 1.71 1.50 0.00 0.00 3.00 2.00 4.00
FOG-Q (Q4) 1.22 1.31 0.00 0.00 2.00 1.00 4.00
FOG-Q (Q5) 1.24 1.20 0.00 0.00 2.00 1.00 4.00
FOG-Q (Q6) 1.05 1.16 0.00 0.00 2.00 1.00 4.00
FOG-Q (total) 5.22 4.76 2.00 0.00 13.50 6.00 16.00

I Table notation: charact.—characteristics (clinical); Qx—x-th quartile (Q1 [first], Q2 [second], Q3 [third]);
UPDRS III - Unified Parkinson’s disease rating scale, part III: evaluation of motor function [62]; LED —L-
dopa equivalent daily dose [134]; NMSS — Non-motor symptoms scale [38]; RBDSQ—The REM sleep behavior
disorder screening questionnaire [223]; MMSE — Mini-mental state examination [66]; ACE-R — Addenbrooke’s
cognitive examination-revised [I33]; BDI—- Beck depression inventory [16}, [17]; FOG-Q — Freezing of gait ques-
tionnaire [90].

The same group of speakers were used later to built the regression models. With
this approach, consistency of the dataset is ensured (even though the number of

samples is reduced): 32 speakers (11 females, and 21 males)]

1 As can be seen, the cohort can not be further balanced in gender without reducing the number

of male speakers. Since the number of samples is rather small anyway, this step was not applied.
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Fig. 6.1: Descriptive statistical graphs of clinical characteristics of PD patients par-
ticipated in this study (data for the § session (session 2 — session 1) only): on the
main diagonal, histograms are visualized. Next, the upper triangular part of the
graph-grid shows scatter plots with the fitted lines of the linear regression models.
And finally, the lower triangular part of the graph-grid is used to display residuals
for the models shown in the the upper grid. Colour notation: blue colour represents
female speakers, and green colour represents male speakers. For the description of
the rating scales, see Table

With respect to the assessment of gait freezing, every patient was examined by
a trained movement disorders specialist who rated the gait-related difficulties accord-
ing to a specialized six-item Likert-scale (5-point scale where a score of 0 indicates

absence of the symptom, while a score of 4 indicates the most severe stage; therefore
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the total score ranges from 0-24): Freezing of gait questionnaire [90]. Full template
can be seen in Appendix The scale can be theoretically divided into two parts:
Ist part (question 1-question 2) assesses walking and gait-related difficulties affect-
ing patient’s daily activities and independence; 2nd part (question 3—question 6)
assesses gait freezing specifically. There is also a total score (T) computed as a sum
of the two sub-scores (T; for Q1-Q2, and Ty for Q3-Q6) summarizing the two
parts (T = Ty + Ty, where T; = Q1 + Q2, and Ty = Q3 + Q4 + Q5 + Q6). This
study was focused on gait freezing exclusively, therefore only the second part of the
questionnaire and its total score are considered.

Furthermore, to provide more insight into the evolution of gait-related deficits
(specifically Q6-Q6 score and the total score (sum of Q1-Q6)) between the two
examinations (session 1, and session 2), box plots are presented as well. These
graphs can be seen in Figure [6.2] For the purpose of this visualization, all samples
from both sessions were used (as opposed to the descriptive statistical graphs shown
in Figure in which only a subset of speakers with no missing data was selected).
The reason behind this is to show a distribution of the data based on as much
observations as possible to better approximate the reality.

Regarding the speech task used to quantify HD, a complex set of tasks was used
to robustly quantify voice/speech disorders occurring with this disease. The speech
acquisition protocol was actually derived from the standardized 3F Dysarthria Pro-
file [I32] and included fourteen speech tasks, specifically: monologue, expiration
with closed/open lips, sustained phonation (/a/, /i/), diadochokinesis, rhythmical
units, basic intonation/stress templates, and reading with different/no emotions.
More complete description of these speech tasks can be seen in Table And
finally, the actual acquisition of the acoustic signals was performed exactly in the
same way as in the other studies summarized in this thesis. For more information,
see chapter [4]

6.3.2 Feature extraction

To quantify voice/speech disorders in the PD patients, a set of acoustic features
based on a recommendation given in recent review on acoustic analysis of voice/speech
signals in patients suffering from HD [24] was computed. It specifically covers the
area of phonation (Appendix [A.2), articulation (Appendix [A.3)), and prosody (Ap-
pendix . To provide better insight into ability of these features to describe HD,
a short description per HD area is presented.

In terms of phonation, the acoustic features describing airflow insufficiency (MPT)
during expiration with closed (T2) or opened (T3) lips, irregular pitch fluctuations
(relFOSD) during phonation of the vowel /a/ (T4), microperturbations in frequency
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Fig. 6.2: Box plots visualizing the evolution of gait-specific deficits assessed by FOG-
Q, specifically Q3—-Q6 score and the total score (sum of Q1-Q6). Colour notation:
green colour represents data for session 1 (baseline examination), and blue colour

represents data for session 2 (follow-up examination).

(jitter) and amplitude (shimmer) during phonation of the vowel /a/ (T4), tremor
of jaw (F1SD, F2SD) during phonation of the vowel /a/ (T4), increased acoustic
noise (mean HNR) during phonation of the vowel /a/ (T4), and aperiodicity of voice
(DUV) during phonation of the vowel /a/ (T4) were computed.

With respect to articulation, the acoustic features describing rigidity of tongue
and jaw (F1IR, F2IR, F1SD, F2SD) during monologue (T1), rhythmical reading
(T6), basic intonation templates (T7-9), paragraph reading (T10), and reading
with different emotions (T11-14), slow alternating motion rate (DDK rate) during
diadochokinetic task (T5), and irregular alternating motion rate (DDK reg) during
diadochokinetic task (T5) were computed.

Finally, regarding the acoustic features describing monopitch (relFOSD) and
monoloudness (relSEOSD) during monologue (T1), rhythmical reading (T6), basic
intonation templates (T7-9), paragraph reading (T10), and reading with different
emotions (T11-14), inappropriate silences (SPIR) during paragraph reading (T10),
unnatural speech rate (TSR, NSR) during basic intonation templates (T7-9), para-
graph reading (T10), and reading with different emotions (T11-14) were computed.
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Tab. 6.2: List of the examination speech tasks.

label vocal task description

T1 Monologue Free speech without the interruption of a clinician.
The participants were instructed to speak about their
daily living, hobbies, family, an so on.

T2 Expiration with closed lips Sustained phonation of the consonant /m/ with
closed lips as constantly and for as long as possible.
It should be performed in one breath if possible.

T3 Expiration with open lips Sustained phonation of the vowel /i/ with open lips
as constantly and for as long as possible. It should
be performed in one breath if possible.

T4 Sustained phonation Sustained phonation of the vowel /a/ at a comfort-
able pitch and loudness. Performed in one breath and
without any limitations in length.

T5 Diadochokinetic task Rapid and steady /pa/-/ta/-/ka/ syllable repetition
as constantly and for as long as possible. It should
be performed in one breath if possible.

T6 Rhythmical units Reading a text containing 4 rhymes of 16 words
rhythmically (i.e. poem recitation, for more infor-
mation about the task, see description in Chapter .

T7 Basic intonation template Short sentence reading containing 3 words. The
sentence should be pronounced interrogatively (i.e.
stress-modified reading, similar to Chapter .

T8 Basic intonation template Short sentence reading containing 3 words. The sen-
tence should be pronounced imperatively (i. e. stress-
modified reading, similar to Chapter [4).

T9 Basic intonation template Short sentence reading containing 3 words. The sen-
tence should be pronounced declaratively (i. e. stress-
modified reading, similar to Chapter .

T10 Reading paragraph Reading phonetically unbalanced text of 135 words.

T11  Reading with different emotions Reading a sentence of 8 words neutrally.

T12  Reading with different emotions Reading a sentence of 6 words angrily.

T13  Reading with different emotions Reading a sentence of 9 words in a bored manner.

T14  Reading with different emotions Reading a sentence of 5 words excitedly.

6.3.3 Analytical setup

To assess the strength of a relationship between the patients’ clinical data and the

selected items of FOG-Q in both sessions (session 1, session 2), Pearson’s correlation

with the significance level 0.05 was used. With this approach, it was possible to
identify those clinical measures (PD duration, UPDRS III, LED (mg/day), NMSS,
RBDSQ, MMSE, ACE-R, BDI) that are significantly correlated with the specific

symptoms of gait freezing in PD, which is a very valuable information because it
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shows which clinical aspects of PD tend to be associated with FOG in the baseline
and in the follow-up (after 2 years). Using the ¢ session (session 2 — session 1), it is
even possible to see if the evolution of other clinical aspects of PD is related with
the evolution of the associated gait problems.

Next, to assess the strength of a relationship between voice/speech disorders in
HD and freezing of gait in patients with PD, Pearson’s (linear relationship) and
Spearman’s (monotonic relationship) partial correlation coefﬁcientf] between the
acoustic features and the values of FOG-Q were computed. The significance level of
correlation in this case was set to 0.05 as well. During the computation of partial
correlations, the factors such as patients’ age and gender [6, 210], dopaminergic
medication [134] and a variety of associated motor and non-motor symptoms assessed
by UPDRS III [62], BDI [16, 17], and ACE-R [I33] were controlled for. As in the
previous case, the aim was to identify those acoustic features that are significantly
correlated with the specific symptoms of gait freezing in PD.

Finally, to evaluate the power of the acoustic features (in session 1; baseline) in
predicting the change of the severity of gait freezing in PD (A FOG-Q), multivariate
regression analysis was performed. For this purpose, we employed classification and
regression trees (CART) in the supervised machine learning setup using stratified
10-fold cross-validation with 100 repetitions) [26]. As previously, see Chapter {4 and
Chapter [5] feature selection process was applied to obtain the feature sets with the
maximum clinical interpretability and also the power to predict FOG-related deficits
in patients with PD. For this purpose, a modified version of sequential floating for-
ward selection [I81] algorithm was used. To evaluate the prediction performance of
the trained models, mean absolute error (MAE), root mean squared error (RMSE),
and estimation error rate (EER) were computed. For more information about these
metrics, see Chapter [5

6.4 Results

Regarding the classical correlation analysis, the values of Pearson’s correlation co-
efficients computed between clinical data (e.g. scores of the clinical rating scales
assessing motor and non-motor symptoms of PD) and selected items of FOG-Q (i. e.
Q3-Q6, and the total score) can be found in Table . This type of correlation was
computed for all three sessions: session 1 (baseline examination), session 2 (follow-
up examination), and § session (description of the change in the particular item of

the rating scale) The results are discussed bellow.

2Partial correlation measures the unbiased degree of association between two variables while

controlling for the effect of other confounding factors (variables).
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Tab. 6.3: Correlations among patients’ FOG-Q items and clinical description.

FOG-Q p(Q3) p p(Q4) p p(Q5) p p(Q6) p p(total) p
Session 1
PD dur. (years) 0.47 ** 0.35 ** 0.35 ** 0.39 ** 0.44 **
UPDRS III 024 * 024 * 0.24 023 * 025 *
LED (mg/day)  0.36 ** 033 ** 037 * 024 * 0.37 **
NMSS 0.45 ** 0.43 ** 0.39 ** 0.52 ** 049 **
RBDSQ 0.25 * 0.28 * 0.14 028 * 027 *
MMSE -0.01 -0.07 0.06 -0.06 -0.02
ACE-R -0.06 -0.15 0.04 -0.13 -0.08
BDI 0.05 0.06 0.09 0.13 0.09
Session 2
PD dur. (years) 0.41 ** 0.41 ** 0.38 ** 0.42 ** 0.44 **
UPDRS III 036 * 0.45 ** 035 * 039 * 0.42 **
LED (mg/day)  0.28 0.03 0.17 0.15 0.18
NMSS 039 * 0.30 0.26 036 * 036 *
RBDSQ 034 * 0.28 0.38 * 0.41 ** 0.38 *
MMSE -0.26 -0.14 -0.14 -0.07 -0.17
ACE-R -0.25 -0.18 -0.18 -0.13 -0.20
BDI 0.36 * 0.36 * 038 * 038 * 0.40 **

A (Session 2 — Session 1)

PD dur. (years)  -0.22 0.06 0.18 0.25 0.04
UPDRS III 0.03 0.17 0.17 0.10 0.16
LED (mg/day)  -0.28 -0.33 -0.35 0.18 040 *
NMSS 0.20 0.04 0.20 042 * 0.28
RBDSQ 0.09 0.24 0.06 0.24 0.21
MMSE -0.35 % -0.26 -0.29 -0.12 -0.36 ¥
ACE-R -0.17 -0.25 -0.24 -0.06 -0.25
BDI -0.26 -0.10 -0.06 0.02 -0.16

1 Table notation: p—Spearman’s correlation coefficient; p —significance level of correlation (* means p < 0.05;
** means p < 0.01); UPDRS III-Unified Parkinson’s disease rating scale, part III: evaluation of motor
function [62]; LED —L-dopa equivalent daily dose [134]; NMSS — Non-motor symptoms scale [38]; RBDSQ -
The REM sleep behavior disorder screening questionnaire [223]; MMSE — Mini-mental state examination [66];
ACE-R - Addenbrooke’s cognitive examination-revised [133]; BDI—-Beck depression inventory [16] [17]; FOG-
Q- Freezing of gait questionnaire [90] (Q1-Q6, and T —total score), for more details, see Section

In both sessions, significant correlations of all FOG-Q items with duration of
PD and UPDRS III (except Q5 in session 1) were identified. Next, LED was found
significantly correlated with all FOG-Q items in session 1, but not in the session
2. Next, NMSS and all items of FOG-Q were found significantly correlated in
session 1, however in the session 2 only few significant correlations were found.

Regarding RBDSQ, no specific pattern can be observed. FOG-Q items correlated
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variably with RBDSQ, however, significant correlation for FOG-Q (total score) was
found in both sessions. The scales assessing cognitive functions (MMSE, ACE-R)
were not find significantly correlated with the items of FOG-Q. And finally, BDI
score was not found significantly correlated with FOG-(Q in session 1. Nevertheless,
significant correlations can be observed in session 2. Regarding the correlations
between A (Q3-6, total score) and A of the clinical scores, significant correlations
between the changes in FOG-Q items and changes in LED, NMSS and MMSE
were identified. Next, the results for partial correlation analysis are summarized in
Table [6.4] The associated regression plots can be seen in Figure [6.3]

Tab. 6.4: Partial correlations among features and FOG-Q (session 1) items.

HD area specific disorder features p(P) pP) p(S) p(S)
FOG (Q3)
prosody unnatural speech rate NSR (T8) 0.41 *x 0.34 *

articulation rigidity of tongue and jaw F1IR(T10) -0.40 **  -0.44  **

articulation rigidity of tongue and jaw F1IR (T9 -0.34 * -0.38
* -0.39 ok
articulation rigidity of tongue and jaw F1IR (T14) -0.30 * -0.30 *

(

(T9)
articulation rigidity of tongue and jaw F1IR (T13) -0.32

(

(

articulation rigidity of tongue and jaw F1IR (T7) -0.30 * -0.35 *

FOG (Q4)

articulation rigidity of tongue and jaw F1IR (T10) -0.40  **  -043  **
articulation rigidity of tongue and jaw F1IR (T9) -0.35 * -0.40 X

FOG (Q5)

articulation rigidity of tongue and jaw F1IR (T14) -0.47  ** -0.49  **
prosody unnatural speech rate NSR (T8) 0.36 * 0.42  **

articulation rigidity of tongue and jaw F1IR (T10) -0.36 * -0.40 ¥

articulation rigidity of tongue and jaw F1IR (T13) -0.29 * -0.36 *
FOG (Q6)

prosody unnatural speech rate TSR (T11) 0.33 * 0.33 *

prosody unnatural speech rate NSR (T8) 0.33 * 0.33 *

prosody unnatural speech rate NSR (T11)  0.32 * 0.32 *

FOG (total score)

articulation rigidity of tongue and jaw F1IR(T10) -0.40 **  -0.45  **
articulation rigidity of tongue and jaw F1IR (T14) -0.38  **  -0.38  **
articulation unnatural speech rate NSR (T8) 0.36 * 0.38  **

! Table notation: p (P)—Pearson’s correlation coefficient; p (S) —significance level of correlation accord-
ing to p (P); p (S)—Spearman’s correlation coefficient; p (S)—significance level of correlation according
to p(S) (* means p < 0.05; ** means p < 0.01); FOG-Q —Freezing of gait questionnaire [90].
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Fig. 6.3: Regression plots (scatter plots with the fitted line of the robust linear
regression estimator) of the most correlated acoustic features (partial correlation) for
Q3-Q6, see Table [6.4, Colour notation: blue colour represents the most correlated
feature; and green colour represents the second most correlated feature. For speech
task notation, see Table @
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With respect to the partial correlation analysis, the correlations among acous-
tic features quantifying impaired phonation, articulation and prosody, and selected
items of FOG-Q (Q3-Q6, and the total score) were computed. It is important to
point out that the partial correlation analysis was performed for session 1 only to
focus on the investigation of the relationship between FOG and HD in the base-
line. For a better overview, only the acoustic features with significant correlation
in both Pearson’s, and Spearman’s correlations were selected. Regarding Q3 (as-
sessment of occurrence of freezing), this item was found correlated mostly with the
interpercentile range of the first formant, and with net speech rate (extracted from
reading of a short sentence). The strongest correlation can be seen in the case of
NSR extracted from the short imperative sentence reading (p (P) = —0.40, p < 0.01,
and p(S) = —0.44, p < 0.01). In the case of Q4 (assessment of the duration of the
longest freezing episode), 2 significant negative correlations were identified for the
interpercentile range of the first formant (extracted from paragraph reading, and
short declarative sentence reading). The strongest correlation can be seen in the
case of paragraph reading (p (P) = —0.40, p < 0.01, and p (S) = —0.43, p < 0.01).
With respect to Q5 (assessment of the duration of the typical start hesitation), the
interpercentile range of the first formant (extracted from paragraph reading, reading
of 9 words in a bored manner, reading of 5 words excitedly), and with the net speech
rate (extracted from short imperative sentence reading) were found significantly cor-
related with this particular item of the questionnaire. The strongest correlation can
be seen in the case of F1IR extracted from the reading of 5 words in an excited
manner (p(P) = —0.47, p < 0.01, and p (S) = —0.49, p < 0.01). In the case of Q6
(assessment of the duration of the typical turning hesitation), significant correlations
were found for total speech rate (extracted from reading of a sentence of 8 words
in a neutral manner) and net speech rate (extracted from short imperative sentence
reading and reading of a sentence of 8 words in a neutral manner). The strongest
correlation can be seen in the case of TSR extracted from the reading of a sentence
of 8 words in a neutral manner (p (P) = 0.33, p < 0.05, and p (S) = 0.33, p < 0.05).
And finally, with respect to the total score (Q3—Q6), interpercentile range of the
first formant (extracted from paragraph reading and reading of 5 words excitedly),
and net speech rate (extracted from short imperative sentence reading) were found
significantly correlated with this item. The strongest correlation can be seen in the
case of F1IR extracted from the paragraph reading (p (P) = —0.40, p < 0.05, and
p(S) = —0.45, p < 0.05). Next, the results of the multivariate regression analysis
can be seen in Table[6.5] Moreover, the models for FOG-G (Q5), and FOG (Q6) are
visualized (visualization of the approximation of decision making performed by the
regression tree) using the three graphs, see Figure and Figure , respectively.
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Tab. 6.5: FOG deficits prediction using classification and regression trees.

FOG-Q MAE RMSE EER No. selected features
Articulation
Q3 0.86 +£0.26 1.03 +0.28 20.96+6.38 1 F1SD!
Q4 0.76 £ 0.28 0.89 +0.31 20.78 £7.73 2 FI1IRS F2SD'4
Q5 0.49 +£0.22 064 +0.34 1052 +4.67 4 F2SD7 F1IR', F1SD'?, DDKr®
Q6 0.60 £ 0.28 0.77 +£0.43 1385 +641 1 F1SD¢
T 2.15 £ 0.63 2.534+0.73 21.89+6.44 1 F1SD?
Phonation
Q3 1.11 £0.30 1294033 2711+£733 1  jitter?
Q4 0.94 +£0.28 1.144+0.31 2584 +757 2  shimmer?,jitter?
Q5 0.62 +£0.24 081 +033 1342+518 1 MPT?
Q6 0.60 £ 0.24 0.79 +0.34 1395 +557 1 MPT?
T 2324+ 075 291 +090 23.64+763 1 relFOSD*
Prosody
Q3 0.85+0.33 1.04 +0.39 2090+ 801 3 TSR, TSR, relF0SD!!
Q4 0.80 £ 0.24 096 + 027 21.88+£6.69 1 TSR’
Q5 0.56 = 0.22 0.71 £ 0.31 12.09 £ 477 3  relSEOSD?, SPIR', relFOSD!
Q6 0.55+0.20 0.71 +0.26 12.75+ 454 2 TSR’,NSR"
T 2.07£0.71 2.59+0.88 21.10+7.20 4 TSR TSR'° TSR’ NSR?®
Combination
Q3 0.83 £ 0.27 1.01 £0.31 2040 £6.73 3  FI1SD! relFOSD®, F2IR!
Q4 0.76 £ 0.28 0.89 +0.31 20.78 £7.73 2  FI1IRS F2SD*
Q5 0.51 £0.21 0.66 £0.32 11.03+ 459 3 F2SD7,relF0SD*, F2SD'?
Q6 0.50 £ 0.21 0.654+0.29 11.73+493 4 TSR7,HNRm? F2SD7, TSR!!
T 2.00 £ 0.69 248 +0.82 2035+ 7.08 3 F1SD? TSR! F1IRS

1 Table notation: MAE —mean absolute error; RMSE —root mean squared error; EER —relative estimation error
rate (mean absolute error divided by the range of actual values of clinical rating scale present in the dataset;
expressed in %); No.—number of selected features; feature® —acoustic feature and the label of the speech task
(), see Section [6.1} FOG-Q —Freezing of gait questionnaire [90] (Q3-Q6, and T —total score), for more details,
see Section [6.1] as well.

Regarding the multivariate regression analysis, the results can be seen in Ta-
ble [6.5] The table contains the results related to the prediction of the change in
FOG severity in a two-year horizon. When considering the three HD dimensions
separately, the following results were achieved. The change in Q3 was predicted
with the estimation error of 20.96 % using 3 prosodic features. Specifically, TSR
(reading of a sentence of 8 words in a neutral manner), TSR (paragraph reading),
and relFOSD (reading of a sentence of 8 words in a neutral manner). The change in

Q4 was predicted with the estimation error of 20.78 % using 2 articulatory features.
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relFOSD (T4) < 0.024
mse = 1.351
samples = 74
value = 1.027

relFOSD (T4) < 0.018 relFOSD (T4) < 0.036

mse = 1.333 mse = 1.204

samples = 9 samples = 65

value 2.0 value = 0 892

F2SD (T7) < 662.123 relFOSD (T 4) < 0 018 F2SD (T1 2) <838.003 relFOSD (T4) < 0.043

mse = 0.5 mse = 0.5 mse = 0.109 mse = 1.306
samples = 4 samples = 5 samples = 16 samples = 49
value = 1.0 value = 2 8 value 0.125 value = 1.143

mse = 0.222 mse = 0.0
samples = 3 samples = 1
value = 1.333 value = 0.0

Fig. 6.4: Visualization of the regression tree built to estimate FOG-Q (Q5). The

tree was trained using a single run applied on all data (all speech tasks and all

mse 0.222 mse = 0 0 mse = 0.24 mse = 0.64 mse = 1.113
samples = 3 samples = 11 samples =5 samples =5 samples = 44
value = 2.333 value = 0.0 value = 0.4 value = 2.6 value = 0.977

acoustic features) in the dataset for the features selected by the feature selection
algorithm (hence the decision making of the tree is an approximation of the behavior
responsible for the results summarized in Table . In the case of this tree, three
acoustic features are used: F2SD (T7), relFOSD (T4), and F2SD (T12).

HNRm (T4) < 6.688
mse = 1.042
samples = 74
value = 0.77

mse = 2.25 mse = 0.923
samples = 2 samples = 72

HNRm (T4) < 5.294 F2SD (T7) < 943.562
value = 2.5 value = 0.722

mse = 0.0 S mse = 0.0
samples = 1 sampI;s Z 65 samples = 7

value = 1.0 value = 0.0

value = 0.8

mse = 0.933 mse = 0.0
samples = 62 samples = 3
value = 0.742 value = 2.0

Fig. 6.5: Visualization of the regression tree built to estimate FOG-Q (Q6). The
tree was trained using a single run applied on all data (all speech tasks and all
acoustic features) in the dataset for the features selected by the feature selection
algorithm (hence the decision making of the tree is an approximation of the behavior

responsible for the results summarized in Table . In the case of this tree, three
acoustic features are used: TSR (T7), HNRm (T4), F2SD (T7), and TSR (T11).
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Specifically, F1IR (rhythmical reading), and F2SD (reading of 5 words in an excited
manner). The change in Q5 was predicted with the estimation error of 10.52 %
using 4 articulatory features. Specifically, F2SD (short interrogative sentence read-
ing), F1IR (reading of a sentence of 8 words in a neutral manner), F1SD (reading of
a sentence of 6 words angrily), and DDKr (diadochokinetic task). The change in Q6
was predicted with the estimation error of 12.75 % using 2 prosodic features. Specif-
ically, TSR (short interrogative sentence reading), and NSR (reading of 5 words in
an excited manner). The change in total score (Q3—-Q6) was predicted with the
estimation error of 21.10 % using 4 prosodic features. Specifically, TSR (reading of
a sentence of 8 words in a neutral manner), TSR (paragraph reading), TSR (short
declarative sentence reading), and NSR (short imperative sentence reading). And
finally, when considering a combination of the features, the prediction was improved
in the case of Q3, Q6, and total score (the difference, i.e. improvement is shown
[in percentage]): Q3 (0.56), Q6 (1.02), and total score (0.75). However, as can be
seen, the improvements are not that significant, which shows a strong relationship
between separate HD areas and specific FOG deficits.

6.5 Conclusion

Regarding the correlation between the individual items of FOG-Q and other clinical
signs of PD assessed by the previously mentioned clinical rating scales, the follow-
ing conclusions can be drawn. The results proposed in this study (in both sessions)
confirm the previous findings of Giladi et al. [90] who reported a significant correla-
tion between UPDRS III and FOG-Q. Next, a strong association between duration
of PD and severity of FOG, which is also in accordance with the previous findings
[143, 166], 208, was identified. In addition to that, the results suggest that FOG-
Q scores are no longer correlated with dopaminergic medication assessed by LED
(mg/day) after the two-year follow-up, which is an interesting finding that points
out to the fact that as the disease progresses, the FOG episodes loose their respon-
siveness to levodopa, or the effect of this medication is not as easily predictable
anymore. This is in line with the literature that reports the unresponsiveness of
FOG to levodopa as being more prevalent in the more advanced stages of PD,
which is hypothesized to be a consequence of higher importance and influence of
other neurotransmitters and pathophysiological mechanisms besides those related
to dopaminergic deficits [58, 236], 246]. Next, FOG-Q items were found significantly
correlated with non-motor symptoms of PD assessed by NMSS, which supports the
findings of Zhang et al. [250], who pointed out the presence of the relationship be-
tween FOG and cardiovascular domain of the NMSS. With respect to RBDSQ, the
total score of FOG-Q was found strongly related to the level of REM sleep behaviour
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disorder assessed by this particular rating scale. This is in line with the findings of
several studies reporting that increased muscle activity during REM sleep is a co-
morbid feature of patients with PD who exhibit FOG [238] 240, 250]. With respect
to other non-motor symptoms of PD assessed by MMSE and ACE-R, none of the
correlations were found significant. This is in contradiction with the previous stud-
ies that did demonstrate the presence of a relationship between impaired cognitive
functions and FOG [I86], 248]. And finally, in the case of BDI, the significant corre-
lations were found only in the follow-up session that is suggesting that the presence
of more advanced depressive symptoms (although not severe enough to diagnose the
major depressive episode) at the follow-up examination is linked with the progres-
sion of PD. This is also in accordance of the previous studies that showed depressive
symptoms could be pertinent and significant predictors of FOG in PD [88], 208, 240].

Next, in the case of the partial correlation analysis between the acoustic features
quantifying phonation, articulation and prosody in HD and selected items of FOG-
Q, the following conclusions can be drawn. At first, it must be pointed out that no
corrections for multiple comparisons was applied since after employing any of the
most commonly-used methods for significance level adjustment such as Bonferroni
correction [243] or false discovery rate (FDR) [224], none of the correlations appeared
to be significant (none of the p-values were bellow the chosen significance level of
0.05). However, this is tightly linked to the number of cohorts in the dataset (to
be discussed later). Therefore, the results of this analysis must be considered as
exploratory and pilot in nature. So, with that in mind, it can be seen that most of
the FOG-Q items, showed statistically significant correlation with the articulatory
features, more specifically with the interpercentile range of first formant. Moreover,
in some cases, standard deviation of the first formant was close to the significance
level as well. To discuss this observation in more details, formants are resonances
of the oro-naso-pharyngeal tract that are changed mainly by a position of tongue
and jaw [6, 97, 99], where the first formant is influenced by a vertical position of
these articulatory organs. Therefore the interpercentile range of the first formant
is related to the limit positions of the jaw and tongue in the vertical direction, and
the standard deviation of this acoustic feature is related to the jaw and tongue
tremor (when quantifying sustained phonation) or the speed of articulatory organ
position change (when quantifying running speech). All the partial correlations with
the formant-based features are negative in direction, i.e. the worse performance in
FOG-Q can in theory be linked to the worse articulation. This confirms the previous
findings of Ricciardi et al. [I87], who used a simple one-item articulation analysis
using the dysarthria profile. In addition to that, speech rate (quantified either
by the total speech rate or by the net speech rate) was also found significantly
correlated with FOG. In contrary to the previously published work of Ricciardi et
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al. [I87], in the frame of this thesis, the positive correlations with FOG-Q items were
identified. This suggests that patients with more severe FOG exhibited a higher
speech rate. However, the data also shows that with increasing speech rate the
articulation was less precise as well, which could mean that more severe FOG is
linked to speech rashes and disturbed and/or less intelligible speech. Furthermore,
no significant correlation between vocal tremor and FOG can be observed. This is
in contradiction with the work of A. M. Goberman [92], who was one of the first
to complexly study the association between voice/speech disorders and gait freezing
in patients with PD. And finally, no significant correlation of FOG with monopitch
and monoloudness can be found as well. This suggests that FOG manifestations are
mainly related to imprecise articulation and abnormal speech rate.

With respect to the multivariate regression analysis, it was hypothesized that
since there are some common pathophysiological mechanisms for both HD and FOG
in PD, the selected acoustic features may be used as predictors of FOG severity
changes (i.e. the severity of HD at the baseline can predict change in FOG in the
horizon of two years). The following conclusion can be drawn. It can be seen that
for instance in the case of FOG Qb item (freezing when initiating the first step) and
FOG Q6 (freezing when turning), the estimation error can go down to almost 10 %,
which is a very precise prediction when the complexity of both of these symptoms
are taken into account. Specifically, for FOG Q5, the estimation error rate of 10.52 %
was achieved. The actual range of the values of this particular item is 5 (0-4). It
means that the achieved error is equal to 0.526 points. Similarly, in the case of
FOG Q6, the estimation error rate of 11.73 % was achieved, which is equal to 0.587
points. Such deviations can in fact be thought of as acceptable even for the human
specialist. Nevertheless, this is the only study dealing with the acoustic analysis
of dysarthric speech in direction of robust indirect assessment of FOG in PD and
therefore it is hard to be compared with literature. For this reason, the results
should be considered as pilot and should be definitely confirmed by the subsequent
scientific research.

Next, as in the previous chapters, limitations of this study are briefly summa-
rized. One limitation is the fact that the partial correlation analysis was only applied
to FOG-Q items acquired for the first session. With this approach, the study aimed
at investigating the relationship between HD and FOG at the baseline. However, this
is a pilot study, and subsequent scientific research should analyse the relationship
between the other session/s and/or the change between them into account. Next, as
mentioned previously, no correction for multiple comparisons was employed during
the partial correlation analysis. This is a consequence of another limitation, which is
the size of the cohort used for the analysis, which at least from the statistical point

of view, is rather small. However, it must be also pointed out that an acquisition of
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patients with PD is very time consuming, physically demanding, and it is difficult
to access a large number of participants. Furthermore, during a couple of years,
some patients die or reach and advanced stage of the disease so that they are not
able to continue in a two-year follow-up study. But, even though the size of the
dataset does play an important role in the analysis and the statistical significance
of the results, it must be also pointed out that the dataset used in this study is in
fact the largest one that has been ever used for this purpose.

To summarize, the results of this study confirms the potential of the acous-
tic analysis to reveal common pathophysiological mechanisms behind voice/speech
disorders in HD and FOG in PD. Moreover, it can also be seen that especially artic-
ulation and abnormal speech rate are related to gait-specific deficits. Finally, it was
shown that the acoustic analysis at the baseline can be used to predict the change
in FOG in the horizon of two years with the the estimation error of approximately
10%. This has a great potential in the field of non-invasive remote computerized

PD assessment, monitoring, and efficiency of treatment evaluation.
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7 Discussion

This doctoral thesis describes three major studies employed by the author. These
studies have been performed over the years 2014-2018 at Department of Telecom-
munications, Faculty of Electrical Engineering and Communication, Brno Univer-
sity of Technology, in cooperation with national and international partners such
as: Applied Neuroscience Research Group, Central European Institute of Technol-
ogy, Masaryk University, Brno, Czech Republic; First Department of Neurology,
St. Anne’s University Hospital, Brno, Czech Republic; Neuromorphic Processing
Laboratory, Center for Biomedical Technology, Universidad Politécnica de Madrid,
Madrid, Spain; and Escola Superior Politécnica, Tecnocampus, Matard, Barcelona,
Spain. The thesis aimed specifically at investigating possibilities of using quantita-
tive acoustic analysis of dysarthric speech in direction of HD identification and PD
assessment (at the baseline as well as in the horizon of two years).

This chapter provides a discussion about the results of the studies presented
in Chapters ][] and [6] Next, advantages and disadvantages of the computerized
para-clinical approach to diagnosis and assessment of PD based on the quantitative

acoustic analysis of dysarthric speech are discussed.

7.1 Discussion about the results

The first study (Chapter 4f) was focused on complex analysis and accurate identifica-
tion of dysprosody in HD using three specifically designed speech tasks: emotionally-
neutral reading, stress-modified reading, and poem recitation task. This study con-
firmed the previous findings of reduced variability of intonation |31, [64], 92, 93], [155]
196] and speech intensity [39, [155] 196, 217, 241] variability, as well as lower speech
rate [155] 215, 217, 242] in patients with PD. Next, for the first time, it showed
a comparison between neutral, stress-modified, and rhymed speech in terms of HD
identification. It is proved that when patients with PD are exposed to additional
prosodic demands such as precise control of speech melody during recitation or
modification of stress in speech during reading, the underlying prosodic deficits get
emphasized, which allows for more accurate identification of HD. The results pro-
posed in this study were also confirmed by permutation test [I78] that was used
to evaluate the statistical power of the predictions performed by the trained binary
classification models. To the best of author’s knowledge, this study is the first to
use permutation test in the field of acoustic analysis of HD. Furthermore, the re-
sults of this study clearly showed that there are some yet to be found gender-related

distinctions in the prosodic manifestation of HD that need to be taken into account
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during the analysis. To sum up, this study is the first to points out to the poten-
tial of prosodic analysis of speech signals acquired from stress-modified and rhymed
reading to robustly quantify and identify dysprosody [24], 80] in HD.

The second study (Chapter [5) was focused on estimation of PD severity. This
study was built on top of the results of the previous one, and extended the prosodic
analysis of HD to indirect computerized assessment of motor and non-motor symp-
toms of PD that are nowadays being commonly evaluated using a variety of clinical
rating scales. This study showed it is possible to use conventional and clinically
interpretable acoustic features to estimate values of these rating scales at the base-
line (i.e. it is possible to assess the severity of PD at the time of the examina-
tion). Even though, a few similar studies aiming at PD assessment have already
been employed, this is the first study that uses robust description of dysprosody
to assess non-speech symptoms of PD. In addition to that, most of the researchers
[8, [15), (57, 177, 228, 229], 231] have been focusing on the estimation of a single clinical
rating scale, namely Unified Parkinson’s Disease Rating Scale, part III: evaluation
of motor function [62]. Estimation of other clinical rating scales assessing symp-
toms such as freezing of gait, sleep disorders, depression, or cognitive deficits has
rarely been studied [I52), [I86]. This study also investigated the relationship be-
tween HD and various motor and non-motor deficits in PD. It showed that mostly
reduced variability of speech intonation and intensity during stress-modified and/or
rhymed reading, and speech rate and pausing abnormalities during emotionally-
neutral reading are related to other motor symptoms of PD. With respect to non-
motor symptoms, speech rate and pausing abnormalities during emotionally-neutral
reading was found almost exclusively. To sum up, this study is the first to point out
to the potential of prosodic analysis of speech signals acquired from stress-modified,
rhymed, and emotionally neutral reading to assess non-speech symptoms of PD. It
also shows that in order to robustly assess the severity of PD, reduced variability of
intonation and intensity of speech, as well as abnormal speech rate should be taken
into account.

The third study (Chapter @ was focused on estimation of the changes in freez-
ing of gait occurring with PD in the horizon of two years based on the quantitative
acoustic analysis of dysarthric speech in patients with PD. Freezing of gait, as well
as other symptoms of PD, is evaluated using a specialized clinical rating scale [90],
which is composed of several questions (sub-scores) and rated on a Likert scale. This
study was built on top of the results and conclusions summarized in the previously
mentioned chapters, and proposed an investigation of the possibilities of using clin-
ically interpretable set of acoustic features quantifying phonation, articulation and
prosody using a variety of speech tasks, according to the recommendations given

in [24], in direction of complex description of HD. Consequently it showed that
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indeed it is possible to estimate the change in the severity of gait-related deficits
from the baseline description of voice/speech disorders associated with HD, which
is an interesting finding that might open the doors for further research and pos-
sibly application of this methodology in clinical practice. Furthermore, this thesis
also proposed an investigation of pathological mechanisms shared by freezing of
gait and HD in PD. So far, only a few works have addressed this area of research
[14), [33], 88, [158], 172]. Moreover, none of the works have used such a complex ana-
lytical setup as presented in this study. To specify, this study showed that reduced
movement of the tongue and jaw during articulation [6, 97, [99], and speech rate,
which in some respect correspond to the intelligibility of speech, are closely related
to freezing of gait. To sum up, this study confirms the potential of the acoustic
analysis to reveal common pathophysiological mechanisms behind voice/speech dis-
orders in HD and freezing of gait in PD and that it can be used to predict the change

in freezing of gait in the horizon of two years.

7.2 Advantages and disadvantages

The following facts can be identified as being one of the most important and clinically
relevant advantages of the para-clinical computerized approach to PD diagnosis and
assessment in comparison with the conventional approach that is nowadays being
used exclusively in the clinical practice all over the world}

1. The analysis is free of human subjectivity. Even if the examination of PD-
related symptoms is performed by skilled clinicians, the inherent inter-rater
subjectivity plays a great role in the reliability of the evaluation. The com-
puterized analysis if free of human factor and therefore 100 % objective.

2. It is possible to quantify deficits not perceptible to humans. Even the most
skilled examiner is subject to limitation of human perception (e. g. only sounds
in the audible part of its spectrum can be perceived). The computerized
acoustic analysis is capable of quantifying a large variety of characteristics of
voice/speech that would otherwise stay neglected.

3. It is possible to analyse large amount of data. Even though today, every
database that is used for PD analysis is rather small, it might not be the
case in the future. The computerized approach to data analysis provides us
with the power to analyse the amount of data that would never be analysable

to human beings, especially if time is of the essence.

IEvent though the advantages of the para-clinical approach are presented in terms of the com-
parison to the clinical one, it is important to note that rather a fusion of both clinical and para-
clinical approaches is considered (see the last paragraphs in Chapter .
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4. Possibility to use modern signal processing and machine learning techniques.
Today, advanced signal processing and machine learning techniques are being
applied in almost every field of science. This trend brings new possibilities
that have not been available before mainly due to insufficient computational
power and unoptimized learning algorithms.

5. It is possible to integrate it into modern wearable devices and generally into the
concept of Health 4.0. Today, there is a large variety of smart devices such as
smart phones, smart watches, etc. that can be used to record and collect vari-
ous biological signals. Therefore, and integration of the computerized acoustic
analysis of dysarthric speech into such devices can be the next step towards
improving diagnosis, assessment, and monitoring of PD.

As can be expected, the computerized analysis of PD has several disadvantages as
well. In fact, these disadvantages are one of the reasons why this approach has not
been applied to clinical practice yet. However, as more studies are employed, more
information necessary for this to happen is collected. So, one can say it is only
a matter of time until the analysis of PD is eventually made with the help of signal
processing and machine learning. However, until that time, the following facts need
to be taken into account:

1. The quality of results depends on the quality of data. Even the best ana-
lytical setup if provided with noisy and disturbed data is likely to produce
non-optimal results. Especially the acquisition of voice/speech recordings is
sensitive to background noise, quality of microphone, etc.

2. The quality of results depends on the quality of speech parametrization. Un-
til the optimal and robust set of acoustic features, quantifying all important
characteristics of voice/speech production deterioration occurring with HD in
PD, is found, imperfect predictions will be made.

3. Modern machine learning techniques require big data. Today, there are mod-
ern machine learning algorithms such as deep neural networks, etc. that pro-
vide state-of-the-art results in many scientific fields. Nevertheless, current
databases used for HD-based PD analysis are so far insufficient for such algo-
rithms because of their limited size.

4. Acoustic features must be clinically interpretable. Clinicians are unlikely to
trust the results if they are not able to associate the values of the acoustic

features with real physiological phenomena inside the human body.
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8 Conclusion

This doctoral thesis deals with quantitative acoustic analysis of dysarthric speech
applied in the field of objective non-invasive computerized diagnosis and assessment
of idiopathic PD. The first two parts of the thesis present the theoretical background
that this thesis was built on. In the first part of the thesis, description of PD along
with limitations of the current clinical diagnosis and assessment, and a proposal of
novel para-clinical approach based on the acoustic analysis of dysarthric speech is
provided. In the second part, HD is described. This part also summarizes drawbacks
of the current state of HD diagnosis and assessment, and provides a description of the
computerized techniques that have been applied by the community of researchers in
direction of non-perceptual HD quantification and identification. In the third part,
the hypotheses and objectives of this thesis are summarized.

In the fourth part, a study focused on robust quantification, description and
identification of monopitch, monoloudness and speech rate/pausing abnormalities
in patients with PD is presented. In the frame of this study, speech recordings
acquired from 98 PD patients and 51 healthy speakers were investigated. For this
purpose, three specifically-designed speech tasks were recorded to quantify vari-
ability of speech melody, speech-stress control and naturalness of speech rate and
pausing. With respect to the analyses, a complex comparison between HC and pa-
tients with PD in terms of gender-related distinctions occurring with parkinsonian
dysprosody, and a unique investigation of the possibilities of HD identification us-
ing specific prosodic scenarios was performed. In addition, permutation test was
applied to evaluate the statistical power of the predictions made by the multivariate
classification models trained to discriminate healthy and dysarthric speech.

In the fifth part, a study focused on computerized and objective assessment of
motor and non-motor symptoms of PD based on the quantitative acoustic analysis
of dysarthric speech at the baseline is presented. In the frame of this study, speech
recordings and clinical data acquired from 72 PD patients were investigated. For this
purpose, the same speech tasks as well as the acoustic features as in the case of the
previous study was used. As opposed to the previous study, the correlation analysis
aiming at investigating the relationship between dysprosody in HD and other non-
speech symptoms of PD was employed. In addition to that, multivariate regression
models capable of precise assessment of PD severity were built. These regression
models used only the information about prosodic deficits of the patients at the
baseline to predict the scores of a variety of clinical rating scales that are nowadays
being commonly used to assess severity of motor and non-motor symptoms of PD.

In the sixth part, a study focused on computerized and objective assessment of

freezing of gait in PD in the horizon of two years based on the quantitative acoustic
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analysis of dysarthric speech at the baseline is presented. In the frame of this study,
a robust set of acoustic features and speech task quantifying phonation, articulation,
prosody, and speech fluency were used. For this purpose, speech recordings and
clinical data acquired from 75 and 41 PD patients at the baseline and at the follow-
up examination were investigated, respectively. In this study, multivariate regression
models capable of predicting the change in gait-related deficits in the horizon of two
years based on the information about severity of HD at the baseline were built
Furthermore, partial correlation analysis was performed in direction of investigating
pathological mechanisms shared by HD and freezing of gait in PD.

And finally, in the seventh part of the thesis, a discussion about the results of
the three aforementioned studies that are presented in this thesis is provided. This
part also summarizes some of the advantages and disadvantages of the computerized
para-clinical approach to diagnosis and assessment of PD based on the quantitative
acoustic analysis of voice/speech signals in PD patients suffering from HD.

The main goal of this doctoral thesis was to investigate possibilities of using
quantitative objective evaluation of HD, employing speech parametrization, statistical
analyses and machine learning techniques, in direction of PD identification and
assessment. This goal as well as all its objectives were successfully accomplished.
More specifically, the following goals were achieved:

1. Robust computerized quantification of HD manifestations in PD was performed.

In the area of phonation, microperturbations in frequency and amplitude, ir-
regular pitch fluctuations, tremor of jaw, increased acoustic noise, insufficient
breath support and aperiodicity of voice were quantified. In the area of ar-
ticulation, rigidity of tongue and jaw, slow alternating motion rate during
diadochokinesis and irregular alternating motion rate during diadochokinesis
were quantified. In the area of speech prosody, monopitch and monoloud-
ness were quantified. And finally, in the area of speech fluency, inappropriate
silences and unnatural speech rate were quantified. These acoustic features
provided a basis for complex computerized description of HD in PD.

2. Complez analysis and identification of dysprosody in HD was employed. To
quantify dysprosody in HD, conventional prosodic features, quantifying mono-
pitch, monoloudness and speech rate/pausing abnormalities, were computed
from the recordings of three specialized speech tasks: a) poem recitation task
(description of flat speech melody), b) stress-modified reading (description of
insufficient stress-control), and c) emotionally-neutral reading (description of
speech rate/pausing abnormalities). Next, a comparison between dysarthric
and healthy speech was performed. Additionally, multivariate classification
models were built to discriminate between PD patients and HC. All of the

analyses were employed in the gender-specific setup. Finally, each dimension
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of dysprosody was evaluated separately as well.

3. Assessment of non-speech symptoms of PD at the baseline was employed. To
follow and build on top of the findings and conclusions of the previous study
focused on identification of dysprosody in HD, the same acquisition and pa-
rameterization setup was used. Here, correlation analysis between prosodic
features and values (scores) of a variety of clinical rating scales assessing mo-
tor and non-motor symptoms of PD was performed. Moreover, the computed
prosodic features were used to train and evaluate multivariate regression mod-
els that were proved to be capable of estimating the scores of these rating scales
based solely on the information about the severity of HD at the baseline.

4. Assessment of gait freezing in PD in the horizon of two years was employed. To
robustly describe HD in PD, a large variety of speech tasks such as sustained
phonation, expiration, reading, free speech (monologue), diadochokinesis, etc.
and acoustic features quantifying all dimensions of speech production were
studied. These features were consequently used to to train and evaluate mul-
tivariate regression models that were proved to be capable of predicting the
change in the freezing of gait occurring with PD in the horizon of two years
based solely on the information about the severity of HD at the baseline.

5. Analysis of pathological mechanism shared by HD and gait freezing in PD was
employed. To investigate if there are pathological mechanisms shared by HD
and freezing of gait in PD, partial correlation analysis controlling for the effect
of other confounding factors such as age, gender, dopaminergic medication,
etc., between the acoustic features and values of the specialized clinical rating
scale assessing gait-related deficits in PD was performed. This analysis pointed
out to some interesting facts about the relationship between HD and gait
freezing in patients with PD.

Regarding the future direction of the research described in this thesis, application
of the presented methodology for assessing of other common parkinsonian symptoms
such as depression or cognitive deficits at the baseline as well as in the direction of
two years is considered. Moreover, investigation of pathological mechanisms shared
by HD and other symptoms of PD besides freezing of gait is considered. Next,
application of quantitative acoustic analysis of dysarthric speech in direction of
tuning the parameters of novel perspective PD treatment methods such as rTMS
is considered as well. And finally, the ultimate goal behind this research is the
fusion of clinical and paraclinical methodology in order to develop and evaluate
a decision support system that would help clinicians with diagnosis, assessment,

and monitoring of PD.
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A Appendix

A.1 Parkinson’s Disease diagnosis criteria

Tab. A.1: UK Parkinson’s Disease Society Brain Bank diagnosis criteria [123].

Step  Diagnostic criteria

1 Diagnosis of parkinsonian syndromme
bradykinesia
one/more of the following: muscular rigidity, 4-6 Hz resting tremor, postural instability

2 Exclusion criteria for Parkinson’s disease
history of repeated strokes with stepwise progression of parkinsonian features
history of repeated head injury
history of definite encephalitis
oculogyric crises
neuroleptic treatment at onset of symptoms
sustained remission
strictly unilateral features after 3 years
supranuclear gaze palsy
cerebellar signs
early severe autonomic involvement
early severe dementia with disturbances of memory, language, and praxis
Babinski sign
presence of cerebral tumor or communication hydrocephalus on imaging study

negative response to large doses of levodopa in absence of malabsorption

3 Supportive prospective positive criteria for Parkinson’s disease
unilateral onset
rest tremor present
progressive disorder
persistent asymmetry affecting side of onset most
excellent response (70-100 %) to levodopa
severe levodopa-induced chorea
levodopa response for 5 years or more

clinical course of ten years or more
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A.2 Overview of acoustic features

Tab. A.2: Overview of acoustic features used to quantify phonation in HD.

Specific disorder

Vocal tasks

Acoustic
feature

Feature definition

Airflow

insufficiency

Irregular pitch

fluctuations

Microperturbations

in frequency

Microperturbations

in amplitude

Tremor of jaw

Increased noise

Aperiodicity

Expiration with
closed or opened

lips
Sustained

phonation

Sustained

phonation

Sustained

phonation

Sustained

phonation

Sustained

phonation

Sustained

phonation

MPT

relFOSD

jitter

shimmer

F1SD,
F2SD

mean HNR

DUV

Maximum phonation time, aerody-
namic efficiency of the vocal tract
measured as the maximum duration
of the sustained vowel/consonant.
The standard deviation of funda-
mental frequency relative to its
mean, variation in frequency of vo-
cal fold vibration.

Frequency perturbation, the extent
of variation of the voice range. Jit-
ter is defined as the variability of the
FO of speech from one cycle to the
next. In this case it is implemented
as the five-point period perturbation
quotient.

Amplitude perturbation, represent-
ing rough speech. Shimmer is de-
fined as the sequence of maximum
extent of the signal amplitude within
each vocal cycle. In this case imple-
mented as the five-point amplitude
perturbation quotient.

The standard deviation of the first
(F1) and second (F2) formant. For-
mants are related to the resonances
of the oro-naso-pharyngeal tract and
are modified by position of tongue
and jaw.

Harmonics-to-noise  ratio, the
amount of noise in the speech
signal, mainly due to incomplete
vocal fold closure. HNR is defined
as the amplitude of noise relative to
tonal components in speech.

Degree of unvoiced segments, the
fraction of pitch frames marked as

unvoiced.
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Tab. A.3: Overview of acoustic features used to quantify articulation in HD.

Specific disorder Vocal tasks Acoustic Feature definition
feature
Rigidity of Monologue, F1IR, F2IR, Interpercentile range (range be-
tongue and jaw rhythmical units, F1SD, tween 1st and 99th percentile) and
basic intonation F2SD standard deviation of the first (F1)
template, reading and second (F2) formant. Formants
paragraph, are related to the resonances of the
reading with oro-naso-pharyngeal tract and are
different emotions modified by position of tongue and
jaw.
Slow alternating Diadochokinetic DDK rate Diadochokinetic rate, representing
motion rate task the number of syllable vocalizations
per second.
Irregular Diadochokinetic DDK reg Diadochokinetic regularity, defined
alternating task as the standard deviation of dis-

motion rate

tances between following syllables
nuclei.
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Tab. A.4: Overview of acoustic features used to quantify prosody in HD.

Specific disorder Vocal tasks Acoustic Feature definition
feature
Monoloudness Monologue, relSEOSD Speech loudness variation, defined
rhythmical units, as a standard deviation of intensity
basic intonation contour relative to its mean.
template, reading
paragraph,
reading with
different emotions
Monopitch relFOSD Pitch variation, defined as a stan-
dard deviation of FO contour relative
to its mean.
Inappropriate Reading SPIR Number of speech inter-pauses per
silences paragraph minute.
Unnatural speech  Basic intonation TSR, NSR T total speech time (TST) is a du-

rate

template, reading
paragraph,
reading with

different emotions

ration of the whole speech, and net
speech time (NST) is a duration of
speech without pauses. So, the to-
tal speech rate (TSR) is defined as
a number of phonemes per TST, and
the net speech rate (NSR) as a num-
ber of phonemes per NST.
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A.3

Freezing of gait questionnaire

Tab. A.5: Freezing Of Gait Questionnaire template [90].

points

description

B W N = O

Q1: During your worst state — do you walk:
Normally

Almost normally — somewhat slow

Slow but fully independent

Need assistance or walking aid

Unable to walk

=W NN = O

Q2: Are your gait difficulties affecting your daily activities and independence?
Not at all

Mildly

Moderately

Severely

Unable to walk

= W NN = O

Q3: Do you feel that your feet get glued to the floor while walking/turning (freezing)?
Never

Very rarely — about once a month

Rarely — about once a week

Often — about once a day

Always — whenever walking

=W NN = O

Q4: How long is your longest freezing episode?
Never happened

1-2s

3—-10s

11-30s

Unable to walk for more than 30s

B W NN = O

Q5: How long is your typical start hesitation episode (when initiating the first step)?

None

Takes longer than 1s to start walking
Takes longer than 3s to start walking
Takes longer than 10s to start walking
Takes longer than 30s to start walking

=W NN = O

Q6: How long is your typical turning hesitation episode (freezing when turning)?

None

Resume turning in 1-2s
Resume turning in 3-10s
Resume turning in 11-30s

Unable to resume turning for more than 30s
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