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1 INTRODUCTION

Differential equations are a strong tool for modelling and solving numerous engineering,
mechanical, economic or population problems. It is well-known that in such problems a
time delay arises quite naturally. For example, in electrical engineering, the time delay can
be measured as the difference between the input of a signal in an electrical circuit and its
response. In general, there is always a time delay in the real-life processes depending on time.
So, differential equations with time delay are an important field of research. As the systems
with feedback can be described (under certain conditions) by systems of differential equations
with a delay or by difference equations, a wide range of applications is opened for research.

In practical applications, the behaviour of many dynamical systems depends on their previous
history. This phenomenon can be brought about by the presence of delays in the equations
under consideration. In view of the intrinsic difficulties in solving such problems, progress in
this field is slow. This is why using the optimal control of delay systems is so needed and
important.

The thesis is devoted to the optimal control problem of delayed differential equations.

The fundamentals of the theory of functional and ordinary differential equations are well
described, for example, in books by R.D. Driver [12], J.K. Hale [22], L.E. Elsgolts and
S.B. Norkin [13], N.N. Krasovskii [25], R.P. Agarwal, L. Berezansky, E. Braverman and
A. Domoshnitsky [3], R.P. Agarwal, M. Bohner and Li Wan-Tong [4], I. Gyori and G.
Ladas [21]. Classics in the field of the optimal control are R. Bellman [9], L.S. Pontryagin,
V.G. Boltyanskij, R.V. Gamkrelidze and E.F. Mishchenko [40], A.A. Fel’dbaum [14], A.M.
Letov [28], [29], V.M. Alekseev, V.M. Tikhomirov and S.V. Fomin [5], I.G. Malkin [33], R.
Gabasov and F. Kirillova [18], [19], D.E. Kirk [24], E. Fridman [16], A.V. Kim and A.V.
Ivanov [23].

1.1 CURRENT STATE

Differential equations have been the object of research since the 17th century (after works by
Newton and Leibniz) and have been intensively developed for the last century. Monographs
summarizing some outcomes were mentioned above in the Introduction.

One of the most important sections of the qualitative theory of functional differential
equations is the theory of stability. The method of Lyapunov functionals, proposed by
Krasovskii in [25], is still one of the main methods in the research of the delayed system’s
stability. Analytical research of the stability of some dynamic systems led to the emergence
of a new independent field of science - the theory of automatic control (regulation). The
basis of this theory is usually associated with the book [35]. The theory of optimal control
is an important part in the theory of automatic control, formed primarily on the basis of
the classical calculus of variations, the Pontryagin maximum principle [40] and Bellman’s
dynamic programming [9]. The direct Lyapunov method (Lyapunov function method) [31],
which is the basis of the modern nonlinear theory of automatic control, is widely used in
modeling control structures of nonlinear systems. In addition to the stability conditions, the
method includes an analysis of the quality of control processes.
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Numerous papers on the qualitative theory of differential equations, control theory, and
optimization are published every year. Some interesting results have been published on
representations of solutions of delayed systems [11], [26], on stability of solutions [17], [30], and
on optimal control for delayed differential equations [36], [42], [45], [49]. Functional differential
equations for modeling the biological problems were first used and investigated in [44]. There
are many later works on modeling of biological processes, for example, [1], [2], [20], on applying
optimal control in biology and medicine [7], [27], [41]. In [47], the authors introduced a version
of the stochastic discrete-time maximum principle for solving an optimal control problem.
In [37], the damping of the solution problem is solved by means of a linear difference–differential
controller with a state feedback. Here a certain form of the control function was used to
stabilize the solution. There are numerous works (for example, [15], [46]) where the authors
study the control of systems using some specific control functions.

1.2 AIMS OF THE THESIS

The aim of the thesis is to solve the optimal stabilization problem for processes described by
a system of delayed differential equations

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢), 𝑡 ≥ 𝑡0,

where 𝑡0 ∈ R, 𝑓 is defined on a subspace of [𝑡0,∞)×𝐶𝑚
𝜏 ×R𝑟, 𝑚, 𝑟 ∈ N, 𝐶𝑚

𝜏 = 𝐶([−𝜏, 0],R𝑚),
𝜏 > 0, 𝑥𝑡(𝜃) := 𝑥(𝑡+𝜃), 𝜃 ∈ [−𝜏, 0], 𝑥 : [𝑡0 −𝜏,∞) → R𝑚. Under the assumption 𝑓(𝑡, 𝜃*

𝑚, 𝜃𝑟) =
𝜃𝑚, where 𝜃*

𝑚 ∈ 𝐶𝑚
𝜏 is a zero vector-function, 𝜃𝑟 and 𝜃𝑚 are 𝑟 and 𝑚-dimensional zero vectors,

a control function 𝑢 = 𝑢(𝑡, 𝑥𝑡), 𝑢 : [𝑡0,∞) × 𝐶𝑚
𝜏 → R𝑟, 𝑢(𝑡, 𝜃*

𝑚) = 𝜃𝑟 is such that the zero
solution 𝑥(𝑡) = 𝜃𝑚, 𝑡 ≥ 𝑡0 − 𝜏 of the system

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢(𝑡, 𝑥𝑡)), 𝑡 ≥ 𝑡0,

is asymptotically stable and, for an arbitrary solution 𝑥 = 𝑥(𝑡), the integral
∫︁ ∞

𝑡0
𝜔 (𝑡, 𝑥𝑡, 𝑢(𝑡, 𝑥𝑡)) d𝑡,

where 𝜔 is a positive-definite functional, exists and attains its minimum value in a given sense.
The thesis solves a problem of optimal stabilization for differential non-delayed and delayed
equations and their systems.
The motivation of our research goes back to the results by I.G. Malkin. His book [33] (we refer
to the original book written in Russian, to the best of our knowledge, there is no translation
into English of the second revised edition, the book [34] is an English translation of the
first edition of Malkin’s book and does not include the results mentioned) contains, among
others, a general principle related to optimal stabilization of ordinary differential systems
and its application to linear ordinary differential systems. This principle we apply to some
types of linear differential equations and their systems to solve optimal control problems. We
analyzed Malkin’s approach and, as a result of our investigation, we present its modification to
differential delayed systems. Illustrative examples showing how this principle can be applied
are developed and, in addition, linear differential delayed systems are considered.
Some results of this work have been already published by the author of the thesis, as a co-
author, e.g., in [52]– [60].
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1.3 PRELIMINARIES

For the auxiliary material given in this part for the reader’s convenience, we refer, for
example, to [12,22].
Let 𝐶𝑚

𝜏 = 𝐶([−𝜏, 0],R𝑚), where 𝜏 > 0, 𝑚 ∈ N, be the Banach space of continuous mappings
𝜙 : [−𝜏, 0] → R𝑚. If 𝐴 is any set in R𝑚, we will set 𝐶𝑚

𝜏 (𝐴) = 𝐶([−𝜏, 0], 𝐴).

Let 𝐶𝑚
𝜏 (𝐷) be the space of continuous mappings from the interval [−𝜏, 0] into the set

𝐷 = {𝜉 ∈ R𝑚 : ‖𝜉‖ < 𝑀}, 𝑀 is a positive constant (or 𝑀 = ∞).

For each 𝑡 ≥ 𝑡0, we define 𝑥𝑡 ∈ 𝐶𝑚
𝜏 by 𝑥𝑡(𝜃) = 𝑥(𝑡+ 𝜃), 𝜃 ∈ [−𝜏, 0].

Consider a delayed differential system

𝑥′(𝑡) = 𝐺(𝑡, 𝑥𝑡), (1.1)

where 𝐺 : [𝛼,∞) ×𝐶𝑚
𝜏 (𝐷) → R𝑚 and 𝛼 ∈ R. Given any 𝑡0 ≥ 𝛼 and any 𝜙 ∈ 𝐶𝑚

𝜏 (𝐷), we shall
study (1.1) in conjunction with the initial condition

𝑥𝑡0 = 𝜙. (1.2)

Let 𝑥 : [𝑡0 − 𝜏,∞) → R𝑚 be a continuous vector-function, 𝑡0 ∈ R, and let 𝜏 > 0 be a number.
To emphasize the dependence of 𝑥 on 𝑡0 and 𝜙, we will sometimes denote 𝑥(𝑡) by 𝑥(𝑡; 𝑡0, 𝜙).
Let 𝛽1 ∈ R, 𝑡0 < 𝛽1 ≤ ∞.
Definition 1.3.1. A continuous function 𝑥 : [𝑡0 − 𝜏, 𝛽1) → 𝐷 with 𝛽1 ∈ (𝑡0,∞) is called a
solution of the initial problem (1.1), (1.2) on [𝑡0 − 𝜏, 𝛽1) if the equation (1.1) is satisfied on
[𝑡0, 𝛽1) and if 𝑥(𝑡0 + 𝜃) = 𝜙(𝜃) for every 𝜃 ∈ [−𝜏, 0].
For a given 𝑡 ∈ [𝑡0,∞), we define a norm

‖𝑥(𝑡)‖𝜏 := max
𝜃∈[−𝜏,0]

(‖𝑥(𝑡+ 𝜃)‖),

where
‖𝑥(𝑠)‖ := max

𝑖=1,...,𝑛
{|𝑥𝑖(𝑠)|}, 𝑠 ∈ [𝑡0 − 𝜏,∞). (1.3)

If 𝜙 ∈ 𝐶𝑚
𝜏 then

‖𝜙‖𝜏 := max
𝜃∈[−𝜏,0]

{‖𝜙(𝜃)‖},

where
‖𝜙(𝜃)‖ := max

𝑖=1,...,𝑚
{|𝜙𝑖(𝜃)|}.

Let us assume that, for each 𝑡0 ≥ 𝛼, 𝐺 satisfies the following Condition (C) on [𝑡0,∞)×𝐶𝑚
𝜏 (𝐷).

Definition 1.3.2. Condition (C) We say that the functional 𝐺(𝑡, 𝑥𝑡) is continuous if it is
continuous with respect to 𝑡 in [𝑡0,∞) for each given continuous function 𝑥 : [𝑡0 −𝜏,∞) → R𝑚.
If 𝐺 satisfies Condition (C), then a continuous function 𝑥 : [𝑡0 − 𝜏, 𝛽1) → 𝐷 is a solution of
the initial problem (1.1), (1.2) if and only if

𝑥(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝜙(𝑡− 𝑡0) for 𝑡0 − 𝜏 ≤ 𝑡 ≤ 𝑡0,

𝜙(0) +
∫︁ 𝑡

𝑡0
𝐺(𝑠, 𝑥𝑠)d𝑠 for 𝑡0 ≤ 𝑡 < 𝛽1.

Moreover, we will assume that 𝐺 is locally Lipschitzian and quasi-bounded, see definitions
below. Let the symbol 𝐽 mean either [𝑡0,∞) or [𝛼,∞) as required.
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Definition 1.3.3. The functional 𝐺 : 𝐽 × 𝐶𝑚
𝜏 (𝐷) → R𝑚 is locally Lipschitzian if, for each

given (𝑡*, 𝜙*) ∈ 𝐽 × 𝐶𝑚
𝜏 (𝐷), there exist numbers 𝑎 > 0 and 𝑏 > 0 such that

𝐶 ≡ ([𝑡* − 𝑎, 𝑡* + 𝑎] ∩ 𝐽) × {𝜙 ∈ 𝐶𝑚
𝜏 : ‖𝜙− 𝜙*‖𝜏 ≤ 𝑏}

is a subset of 𝐽 × 𝐶𝑚
𝜏 (𝐷) and 𝐺 is Lipschitzian on 𝐶. In other words, for some number 𝐾 (a

Lipschitz constant depending on 𝐶),

‖𝐺(𝑡, 𝜙) −𝐺(𝑡, 𝜙*)‖ ≤ 𝐾‖𝜙− 𝜙*‖𝜏

whenever (𝑡, 𝜙) ∈ 𝐶 and (𝑡, 𝜙*) ∈ 𝐶.

Definition 1.3.4. The functional 𝐺 : [𝑡0,∞) × 𝐶𝑚
𝜏 (𝐷) → R𝑚 is said to be quasi-bounded if

𝐺 is bounded on every set of the form [𝑡0, 𝛽1] × 𝐶𝑚
𝜏 (𝐴), where 𝑡0 < 𝛽1 < ∞ and 𝐴 is a closed

bounded set of 𝐷.

The properties described in Definitions 1.3.2–1.3.4 are basic for ensuring, for example, the
existence and uniqueness of a noncontinuable solution of the problem (1.1), (1.2), see Theorem
1.3.5 below, and its continuation (Theorem 1.3.7).

Theorem 1.3.5. (Local Existence) Let 𝐺 : [𝑡0,∞) × 𝐶𝑚
𝜏 (𝐷) → R𝑚 satisfy Condition (C)

and let it be locally Lipschitzian. Then, for each 𝜙 ∈ 𝐶𝑚
𝜏 (𝐷), the initial problem (1.1), (1.2)

has a unique solution on [𝑡0 − 𝜏, 𝑡0 + △) for some △ > 0.

Definition 1.3.6. Let 𝑥 on [𝑡0 − 𝜏, 𝛽1) and 𝑦 on [𝑡0 − 𝜏, 𝛽2), 𝛽2 > 𝑡0, both be solutions of the
initial problem (1.1), (1.2). If 𝛽2 > 𝛽1, we say 𝑦 is a continuation of 𝑥, or 𝑥 can be continued
to [𝑡0 − 𝜏, 𝛽2). A solution 𝑥(𝑡) of the initial problem (1.1), (1.2) is noncontinuable (on an
interval [𝑡0 − 𝜏,∞)) if it has no continuation.

Theorem 1.3.7. (Extended Existence) Let 𝐺 : [𝑡0,∞) × 𝐶𝑚
𝜏 (𝐷) → R𝑚 satisfy Condition

(C) and let it be locally Lipschitzian and quasi-bounded. Then, for each 𝜙 ∈ 𝐶𝑚
𝜏 (𝐷), the

problem (1.1), (1.2) has a unique noncontinuable solution 𝑥 on [𝑡0 − 𝜏, 𝛽1); if 𝛽1 < ∞, then,
for every closed bounded set 𝐴 ⊂ 𝐷, 𝑥(𝑡) /∈ 𝐴 for some 𝑡 in (𝑡0, 𝛽1).

Definition 1.3.8. The trivial solution of (1.1) is said to be stable at 𝑡0 ≥ 𝛼 (in the sense of
Lyapunov) if, for each 𝜀 > 0, there exists 𝛿 = 𝛿(𝜀, 𝑡0) > 0 such that, whenever ‖𝜙‖𝜏 < 𝛿, the
solution 𝑥(𝑡; 𝑡0, 𝜙) exists on [𝑡0 − 𝜏,∞) and

‖𝑥(𝑡; 𝑡0, 𝜙)‖ < 𝜀

for all 𝑡 ≥ 𝑡0 − 𝜏 . Otherwise, the trivial solution is said to be unstable at 𝑡0. The trivial
solution of (1.1) is said to be uniformly stable on [𝛼,∞) if it is stable at each 𝑡0 ≥ 𝛼 and the
number 𝛿 is independent of 𝑡0, i.e., 𝛿 = 𝛿(𝜀) depends only on 𝜀.

Definition 1.3.9. Let 𝑥̄ : (𝛼− 𝜏,∞) → 𝐷 satisfy the equation (1.1) on [𝛼,∞). We say that 𝑥̄
is stable at 𝑡0 ≥ 𝛼 (in the sense of Lyapunov) if, for each 𝜀 > 0, there exists a 𝛿 = 𝛿(𝜀, 𝑡0) > 0
such that, whenever ‖𝜙− 𝑥̄𝑡0‖𝜏 < 𝛿, it follows that 𝑥(·; 𝑡0, 𝜙) exists on [𝑡0 − 𝜏,∞) and

‖𝑥(𝑡; 𝑡0, 𝜙) − 𝑥̄(𝑡)‖ < 𝜀

for all 𝑡 ≥ 𝑡0 − 𝜏 . Otherwise, the solution 𝑥̄ is said to be unstable at 𝑡0 (in the sense of
Lyapunov). The solution 𝑥̄ of (1.1) is said to be uniformly stable on [𝛼,∞) if it is stable at
each 𝑡0 ≥ 𝛼 and the number 𝛿 is independent of 𝑡0, i.e., 𝛿 = 𝛿(𝜀) depends only on 𝜀.
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Definition 1.3.10. The trivial solution of (1.1) is said to be uniformly asymptotically stable
if it is uniformly stable and there exists a 𝛿1 (independent of 𝑡0) such that, whenever 𝑡0 ≥ 𝛼
and ‖𝜙‖𝜏 < 𝛿1, the expression

𝑥(𝑡; 𝑡0, 𝜙)

tends to 0 as 𝑡 → ∞ in the following manner:
For each 𝜂 > 0, there exists 𝑇 = 𝑇 (𝜂) > 0 (independent of 𝑡0) such that

‖𝑥(𝑡; 𝑡0, 𝜙)‖ < 𝜂

for all 𝑡 ≥ 𝑡0 + 𝑇 .

The following definitions are related to the estimation of functionals. Throughout the thesis,
we will denote by 𝑉 = 𝑉 (𝑡, 𝑥𝑡) a functional such that

𝑉 : [𝑡0,∞) × 𝐶𝑚
𝜏 → R. (1.4)

Definition 1.3.11. Let a functional 𝑉 be given. It is called positive-definite if there exists a
continuous non-decreasing function 𝑤 : [0,𝑀) −→ R, 𝑤(0) = 0, 𝑤(𝑠) > 0 if 𝑠 ∈ (0,𝑀) such
that

𝑉 (𝑡, 𝜓) ≥ 𝑤(‖𝜓(0)‖)

on (𝛼,∞) × 𝐶𝑚
𝜏 (𝐷).

Definition 1.3.12. Let a functional 𝑉 be given. 𝑉 is said to have an infinitesimal upper
bound if there exists a continuous non-decreasing function 𝑊 : [0,𝑀) −→ R, 𝑊 (0) = 0,
𝑊 (𝑠) > 0 if 𝑠 ∈ (0,𝑀) such that

𝑉 (𝑡, 𝜓) ≤ 𝑊 (‖𝜓‖𝜏 )

on (𝛼,∞) × 𝐶𝑚
𝜏 (𝐷).

Definition 1.3.13. A positive-definite functional 𝑉 having an infinitesimal upper bound is
called a Lyapunov-Krasovskii functional.

Definition 1.3.14. Let 𝑥 : [𝑡0 − 𝜏,∞) → R𝑚. The derivative of a functional 𝑉 (𝑡, 𝑥𝑡) at a
point 𝑡 ≥ 𝑡0 is defined as

d𝑉 (𝑡, 𝑥𝑡)
d𝑡 := lim

Δ→0

𝑉 (𝑡+ Δ, 𝑥𝑡+Δ) − 𝑉 (𝑡, 𝑥𝑡)
Δ ,

provided that the limit exists and is finite.

Below we assume that there exists the derivative d𝑉 (𝑡, 𝑥𝑡)/d𝑡 of the functional 𝑉 (𝑡, 𝑥𝑡) along
the trajectories of the differential delayed systems considered, that is, we will assume that 𝑥
is a solution of a given system.

Theorem 1.3.15. If there exists a Lyapunov-Krasovskii functional 𝑉 and if it defines a non-
increasing function of 𝑡 on [𝑡0,∞) whenever

𝑥 = 𝑥(·; 𝑡0, 𝜙), 𝑡 ∈ [𝑡0 − 𝜏,∞)

is the noncontinuable solution of (1.1) through some (𝑡0, 𝜙) ∈ [𝛼,∞)×𝐶𝑚
𝜏 (𝐷), then the trivial

solution of (1.1) is uniformly stable.
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In the work, we need the following theorem, taken from [12, Theorem C, p. 366].

Theorem 1.3.16. Let 𝑤1 be a continuous non-decreasing function on [0,𝑀) which is zero
at 0 and positive on (0,𝑀). Let ‖𝐺(𝑡, 𝜙)‖ ≤ 𝐵 for some constant 𝐵 > 0 for all (𝑡, 𝜙) ∈
[𝛼,∞) × 𝐶𝑚

𝜏 (𝐷). If there exists a Lyapunov-Krasovskii functional 𝑉 such that, whenever
(𝑡0, 𝜙) ∈ [𝛼,∞) × 𝐶𝑚

𝜏 (𝐷) and 𝑥 = 𝑥(·; 𝑡0, 𝜙) on [𝑡0 − 𝜏,∞), we have

d
d𝑡𝑉 (𝑡, 𝑥𝑡) ≤ −𝑤1(‖𝑥(𝑡)‖)

for 𝑡 ∈ [𝑡0,∞), then the trivial solution of (1.1) is uniformly asymptotically stable.

2 OPTIMIZATION IN NON-DELAYED CASE
A stabilization problem for a system of differential equations without delay is investigated in
this part. Below in parts 2.1 and 2.2 we denote by 𝐻 a positive number. Parts 2.1 and 2.2
are modifications of parts of [33]. We will use the original concepts and definitions of [33].

2.1 FORMULATION OF THE PROBLEM

Consider a system of non-delayed functional differential equations

𝑥′(𝑡) = 𝐹 (𝑡, 𝑥) , (2.1)

where 𝐹 : D1 → R𝑚,
D1 := {(𝑡, 𝑥) ∈ [𝑡0,∞) × R𝑚, ‖𝑥‖ ≤ 𝐻}.

Assume that 𝐹 is continuous and satisfies a local Lipschitz condition with respect to 𝑥.
For controllability problems we will consider systems (2.1) with explicitly indicated control
functions in the form

𝑥′(𝑡) = 𝑓 (𝑡, 𝑥, 𝑢) , (2.2)

where 𝑓 : D → R𝑚, 𝑓(𝑡,Θ𝑚,Θ𝑟) = Θ𝑚,

D := {(𝑡, 𝑥, 𝑢) ∈ [𝑡0,∞) × R𝑚 × R𝑟, ‖𝑥‖ ≤ 𝐻}.

Applied stabilization problems with the requirement of asymptotic stability of a given motion
described by the system of differential equations (2.2) require the best possible quality of the
transition process. The best quality criterion is very often formulated minimizing the integral

𝐼 =
∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥, 𝑢)d𝑡, (2.3)

where 𝜔 : D → R. Frequently, the integrand is assumed to have a quadratic form

𝜔(𝑡, 𝑥, 𝑢) = 𝑥𝑇𝐶𝑥+ 𝑢𝑇𝐷𝑢

with a positive-definite constant 𝑚×𝑚 matrix 𝐶 and an 𝑟 × 𝑟 matrix 𝐷.

Problem 2.1.1. The optimal control problem is formulated as follows. Find a function 𝑢 = 𝑢0
such that the quality criterion (2.3) is fufilled and the trivial solution of (2.2) is asymptotically
stable.
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In other words, let a quality criterion of a process 𝑥(𝑡) in the form (2.3) be fixed. It is necessary
to find a control function 𝑢 = 𝑢0 ensuring the asymptotic stability of non-perturbed motion
𝑥(𝑡) ≡ 0 such that, for any other admissible control function 𝑢 = 𝑢*, the inequality∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥, 𝑢0)d𝑡 ≤

∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥, 𝑢*)d𝑡

holds. The function 𝑢 = 𝑢0 is called an optimal control function.

Definition 2.1.2. Let 𝑉 : [𝑡0,∞) ×R𝑚 → [𝑡0,∞) be a continuous function. Then, 𝑉 is called
a Lyapunov function if it is a locally positive-definite function, i.e.

𝑉 (𝑡0, 0) = 0, 𝑉 (𝑡0, 𝑥) > 0 for ∀(𝑡, 𝑥) ∈ [𝑡0,∞) × 𝑈∖{0}

with 𝑈 being a neighbourhood region around 𝑥 = 0.

Definition 2.1.3. Let 𝑉 be a Lyapunov function by Definition 2.1.2. 𝑉 is said to have an
infinitesimal upper bound if there exists a continuous non-decreasing function 𝑊 : [0, 𝐻) −→
R, 𝑊 (0) = 0, 𝑊 (𝑠) > 0 if 𝑠 ∈ (0, 𝐻) such that

𝑉 (𝑡, 𝑥) ≤ 𝑊 (‖𝑥‖)

on [𝑡0,∞) × R𝑚.

Theorem 2.1.4. If a function 𝑉 can be found for the differential equations of the disturbed
motion (2.2) satisfying Definition 2.1.2 for which the derivative with respect to time based
on these equations d𝑉/d𝑡 is negative and the function 𝑉 itself permits an infinitesimal upper
bound, then the undisturbed motion is asymptotically stable.

2.2 MALKIN’S RESULT

Define an auxiliary function 𝐵 : D2 → R,

D2 : = {(𝑣, 𝑡, 𝑥, 𝑢) ∈ R × [𝑡0,∞) × R𝑚 × R𝑟, ‖𝑥‖ ≤ 𝐻},

by the formula
𝐵 (𝑉, 𝑡, 𝑥, 𝑢) := d𝑉 (𝑡, 𝑥)

d𝑡 + 𝜔(𝑡, 𝑥, 𝑢),

where 𝑉 is a Lyapunov function.
Let us formulate the main theorem of optimal stabilization presented in [33, p. 475–514]
utilizing the second Lyapunov method as applied to ordinary differential equations.

Theorem 2.2.1. Assume that, for the system of differential equations (2.2), there exists a
Lyapunov function 𝑉0(𝑡, 𝑥) having an infinitesimal upper bound and a function 𝑢0 such that
𝑖) the function 𝜔(𝑡, 𝑥, 𝑢) is positive-definite for every 𝑡 ≥ 𝑡0, ‖𝑥‖ < 𝐻, 𝑢 ∈ R𝑟;
𝑖𝑖) 𝐵 (𝑉0, 𝑡, 𝑥, 𝑢0) ≡ 0;
𝑖𝑖𝑖) 𝐵 (𝑉0, 𝑡, 𝑥, 𝑢) ≥ 0 for any 𝑢 ̸≡ 𝑢0.
Then, the function 𝑢0 is a solution of the optimal control problem and∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥, 𝑢0)d𝑡 = min

𝑢

[︂∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥, 𝑢)d𝑡

]︂
= 𝑉0(𝑡0, 𝑥).
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2.3 APPLICATIONS TO LINEAR EQUATIONS AND SYSTEMS

In this part, we apply Theorem 2.2.1 to a class of ordinary differential equations and their
systems. The results derived are not included in [33].

I. Consider a scalar equation
𝑥′(𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑢, (2.4)

where 𝑎 and 𝑏 (𝑏 ̸= 0) are real constants. Together with the equation (2.4), we will consider
the quality criterion (2.3) with

𝜔(𝑡, 𝑥, 𝑢) = 𝑐𝑥2(𝑡) + 𝑑𝑢2,

where 𝑐 > 0, 𝑑 > 0, that is,
𝐼 =

∫︁ ∞

𝑡0
(𝑐𝑥2(𝑡) + 𝑑𝑢2)d𝑡. (2.5)

Theorem 2.3.1. If, for the optimal control problem (2.4), (2.5), a Lyapunov function in the
form

𝑉 (𝑡, 𝑥) = ℎ𝑥2(𝑡),
where

ℎ = 𝑎𝑑+
√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑏2

is used, then the optimal control function is

𝑢0 = −ℎ𝑏

𝑑
𝑥(𝑡).

II. Consider a linear system with a scalar control function:

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑏𝑢, (2.6)

where 𝐴 ∈ R𝑚×𝑚, 𝑏 ∈ R𝑚, 𝑥(𝑡) ∈ R𝑚, 𝑢 ∈ R. We need to find a control function 𝑢 = 𝑢0 for
which the system (2.6) is asymptotically stable and a given integral quality criterion

𝐼 =
∫︁ ∞

𝑡0

(︁
𝑥𝑇 (𝑡)𝐶𝑥(𝑡) + 𝑑𝑢2

)︁
d𝑡 (2.7)

has a minimum value provided that 𝐶 is an 𝑚 × 𝑚 symmetric positive-definite matrix and
𝑑 > 0. We will use a Lyapunov function

𝑉 (𝑡, 𝑥) = 𝑥𝑇 (𝑡)𝐻𝑥(𝑡),

where 𝐻 is an 𝑚×𝑚 positive-definite symmetric matrix.
In the sequel, define Θ𝜅×𝜅 as a zero 𝜅× 𝜅 matrix.

Theorem 2.3.2. Assume that there exists a positive-definite symmetric matrix 𝐻 satisfying
the matrix equation

𝐴𝑇𝐻 +𝐻𝐴+ 𝐶 − 1
𝑑
𝐻𝑏𝑏𝑇𝐻 = Θ𝑚×𝑚.

Then, the optimal stabilization control function 𝑢 = 𝑢0 of the problem (2.6), (2.7) exists and

𝑢0 = −1
𝑑
𝑏𝑇𝐻𝑥(𝑡).
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III. As the next application consider a system:

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑃𝑢, (2.8)

where 𝐴 ∈ R𝑚×𝑚, 𝑃 ∈ R𝑚×𝑟, 𝑥(𝑡) ∈ R𝑚, 𝑢 ∈ R𝑟. We need to find an optimal control function
𝑢 = 𝑢0 for which the system is asymptotically stable and an integral quality criterion

𝐼 =
∫︁ ∞

𝑡0

(︁
𝑥𝑇 (𝑡)𝐶𝑥(𝑡) + 𝑢𝑇𝐷𝑢

)︁
d𝑡 (2.9)

takes a minimum value provided that 𝐶 ∈ R𝑚×𝑚 is a symmetric, positive-definite matrix and
𝐷 is a diagonal control matrix, 𝐷 = diag{𝑑𝑗}, 𝑑𝑗 > 0, 𝑗 = 1, . . . , 𝑟.
We will use a Lyapunov function

𝑉 (𝑡, 𝑥) = 𝑥𝑇 (𝑡)𝐻𝑥(𝑡),

where 𝐻 is an 𝑚×𝑚 positive-definite symmetric matrix.

Theorem 2.3.3. Assume that there exists a positive-definite symmetric matrix 𝐻 satisfying
the matrix equation

𝐴𝑇𝐻 +𝐻𝐴+ 𝐶 −𝐻𝑃𝐷−1𝑃 𝑇𝐻 = Θ𝑚×𝑚.

Then, the optimal stabilization control function 𝑢 = 𝑢0 of the problem (2.8), (2.9) exists and

𝑢0 = −𝐷−1𝑃 𝑇𝐻𝑥(𝑡).

3 OPTIMIZATION IN DELAYED CASE
In this part, we will consider systems of delayed scalar equations with constant coefficients.
For such equations, we will find control functions theoretically and, in specific cases, by using
the formulas obtained. The results of this chapter are new.

3.1 FORMULATION OF THE PROBLEM

Consider an arbitrary dynamic process and assume that it can be described by a system of
functional differential equations of delayed type

𝑥′(𝑡) = 𝐹 (𝑡, 𝑥𝑡) , (3.1)

where 𝐹 : 𝒟1 → R𝑚,
𝒟1 := {(𝑡, 𝑥𝑡) ∈ [𝑡0,∞) × 𝐶𝑚

𝜏 , ‖𝑥𝑡‖𝜏 ≤ 𝑀𝑥}

and 𝑀𝑥 is a given positive constant. Let the functional 𝐹 be continuous, locally Lipschitzian
and quasi-bounded. Together with (3.1), we consider the initial problem

𝑥𝑡* = 𝜙, (3.2)

where 𝑡* ≥ 𝑡0, and 𝜙 ∈ 𝐶𝑚
𝜏 .

Our goal is to be able to control the process. Consider a process 𝑥 : [𝑡0 − 𝜏,∞) → R𝑚,
controlled by means of a control function (or control functional) 𝑢 = 𝑢(𝑡, 𝑥𝑡), where

𝑢 : 𝒟1 → R𝑟, 𝑢(𝑡, 𝜃*
𝑚) = 𝜃𝑟
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such that ‖𝑢(𝑡, 𝑥𝑡)‖ ≤ 𝑀𝑢, (𝑡, 𝑥𝑡) ∈ 𝒟1, 𝑀𝑢 is a given positive constant, and assuming that 𝑢 is
continuous, locally Lipschitzian and quasi-bounded. Assume that the process can be modelled
by a system of differential equations of delayed type

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢), 𝑡 ≥ 𝑡0, (3.3)

where 𝑓 : 𝒟 → R𝑚,

𝒟 := {(𝑡, 𝑥𝑡, 𝑢) ∈ [𝑡0,∞) × 𝐶𝑚
𝜏 × R𝑟, ‖𝑥𝑡‖𝜏 ≤ 𝑀𝑥, ‖𝑢‖ ≤ 𝑀𝑢}

and ‖𝑢‖ is defined as in (1.3). Assume that

𝑓(𝑡, 𝜃*
𝑚, 𝜃𝑟) = 𝜃𝑚

and that 𝑓 is continuous, locally Lipschitzian and quasi-bounded. Let, moreover, for a constant
𝐾1 ≥ 0, ‖𝑓(𝑡, 𝑥𝑡, 𝑢)‖ ≤ 𝐾1 whenever (𝑡, 𝑥𝑡, 𝑢) ∈ 𝒟.
If we specify 𝐹 (𝑡, 𝑥𝑡) := 𝑓(𝑡, 𝑥𝑡, 𝑢), where 𝑢 = 𝑢(𝑡, 𝑥𝑡), then the system

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢(𝑡, 𝑥𝑡)), 𝑡 ≥ 𝑡0 (3.4)

is a particular case of the system (3.1) and (1.1) and, consequently, the auxiliary concepts
formulated for (1.1) in part 1.3 can be applied to the system (3.4) as well.
In what follows, we will assume, without loss of generality, that the constant 𝑀𝑥 is so large
that the below solutions of the system (3.4), defined on [𝑡0 − 𝜏,∞), satisfy ‖𝑥(𝑡)‖ ≤ 𝑀𝑥,
𝑡 ∈ [𝑡0 − 𝜏,∞).
The problem under consideration is formulated as follows.

Problem 3.1.1. Find a control function 𝑢 = 𝑢0(𝑡, 𝑥𝑡) such that the zero solution 𝑥(𝑡) = 𝜃𝑚,
𝑡 ≥ 𝑡0 − 𝜏 of the system

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢0(𝑡, 𝑥𝑡)), 𝑡 ≥ 𝑡0, (3.5)

is asymptotically stable and, for an arbitrary solution 𝑥 : [𝑡0 − 𝜏,∞) → R𝑚 of (3.5), satisfying
‖𝑥𝑡0‖𝜏 ≤ 𝜂, 𝜂 is a sufficiently small positive number such that 𝜂 ≤ 𝑀𝑥, the integral quality
criterion

𝐼 =
∫︁ ∞

𝑡0
𝜔 (𝑡, 𝑥𝑡, 𝑢0(𝑡, 𝑥𝑡)) d𝑡, (3.6)

where 𝜔 : 𝒟 → R is a given positive-definite functional, exists and attains the minimum value.
This means that, for an arbitrary control function 𝑢 = 𝑢*(𝑡, 𝑥𝑡) such that the zero solution
𝑥(𝑡) = 𝜃𝑚, 𝑡 ≥ 𝑡0 − 𝜏 of system

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢
*(𝑡, 𝑥𝑡)), 𝑡 ≥ 𝑡0, (3.7)

is asymptotically stable, we have∫︁ ∞

𝑡0
𝜔 (𝑡, 𝑥𝑡, 𝑢0(𝑡, 𝑥𝑡)) d𝑡 ≤

∫︁ ∞

𝑡0
𝜔 (𝑡, 𝑥*

𝑡 , 𝑢
*(𝑡, 𝑥*

𝑡 )) d𝑡,

where 𝑥 : [𝑡0 − 𝜏,∞) → R𝑚 is the solution of (3.5) defined by the initial problem (3.2) where
𝑡* := 𝑡0, and 𝑥* : [𝑡0 − 𝜏,∞) → R𝑚 is the solution of (3.7) defined by the same initial problem.
The initial function 𝜙 in (3.2) is arbitrary except for the assumption ‖𝜙‖𝜏 ≤ 𝜂.
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Remark 3.1.2. Modifying the above Definition 1.3.11 of a positive-definite functional to the
functional 𝜔 : 𝒟 → R used in (3.6), we specify that 𝜔 is a positive-definite functional if there
exists a continuous non-decreasing function 𝑤*(𝑦1, 𝑦2) defined on the set 𝒮 := {[0,∞)×[0,∞)}
such that 𝑤*(0, 0) = 0 and 𝑤*(𝑦1, 𝑦2) > 0 if (𝑦1, 𝑦2) ∈ 𝒮 ∖ {(0, 0)}, and

𝜔(𝑡, 𝑥𝑡, 𝑢) ≥ 𝑤*(‖𝑥(𝑡)‖, ‖𝑢‖), 𝑡 ≥ 𝑡0

whenever (𝑡, 𝑥𝑡, 𝑢) ∈ 𝒟. The non-decreasing property of 𝑤* means that

𝑤*(𝑦1, 𝑦2) ≤ 𝑤*(𝑦1, 𝑦2)

whenever 𝑦1 ≤ 𝑦1, 𝑦2 ≤ 𝑦2 and (𝑦1, 𝑦2) ∈ 𝒮, (𝑦1, 𝑦2) ∈ 𝒮.

Remark 3.1.3. We call the function 𝑢0(𝑡, 𝑥𝑡) solving Problem 3.1.1 the optimal stabilization
control function. Moreover, the problem of minimizing the integral 𝐼 by an optimal
stabilization control function, as described in Problem 3.1.1, can be formulated more succinctly
using the following notation

𝐼 = min
𝑢

∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥𝑡, 𝑢(𝑡, 𝑥𝑡))d𝑡.

Problem 3.1.1 extends to delayed differential equations Problem II formulated for ordinary
differential equations in Malkin’s book [33, p. 479]. This problem is formulated above in part
2.1 as well (Problem 2.1.1).

Remark 3.1.4. The optimal stabilization control function 𝑢0(𝑡, 𝑥𝑡), solving Problem 3.1.1, as
well as every other control function 𝑢(𝑡, 𝑥𝑡) mentioned in the work, is actually a function of
the variable 𝑡. Therefore, without loss of generality, we sometimes use 𝑢0(𝑡), 𝑢(𝑡) or 𝑢0, 𝑢 for
short if there is no danger of ambiguity.

3.2 GENERALIZATION OF MALKIN’S RESULT

To solve the problem we are motivated by Malkin’s approach, presented in Section 2.2.
Define a functional 𝐵 : 𝒟2 → R,

𝒟2 := {(𝑣, 𝑡, 𝑥𝑡, 𝑢) ∈ R × [𝑡0,∞) × 𝐶𝑚
𝜏 × R𝑟, ‖𝑥𝑡‖𝜏 ≤ 𝑀𝑥, ‖𝑢‖ ≤ 𝑀𝑢},

by the formula
𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) := d𝑉 (𝑡, 𝑥𝑡)

d𝑡 + 𝜔(𝑡, 𝑥𝑡, 𝑢),

where 𝑉 is defined by (1.4) and the derivative of 𝑉 is computed as in Definition 1.3.14 provided
that 𝑥 is an arbitrary fixed solution of the system (3.3).
The next theorem is a generalization of Theorem 2.2.1 for the case of delayed differential
equations.

Theorem 3.2.1. Assume that, for the system of differential equations of delayed type (3.3),
there exists a Lyapunov-Krasovskii functional 𝑉 (𝑡, 𝑥𝑡) and a control function 𝑢0(𝑡, 𝑥𝑡) such
that
𝑖) the functional 𝜔 : 𝒟 → R is positive-definite;
𝑖𝑖) the identity

𝐵(𝑉, 𝑡, 𝑥𝑡, 𝑢0(𝑡, 𝑥𝑡)) ≡ 0
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holds on [𝑡0,∞) for every solution 𝑥 : [𝑡0−𝜏,∞) → R𝑚 of the system (3.3), where 𝑢 = 𝑢0(𝑡, 𝑥𝑡);
𝑖𝑖𝑖) the inequality 𝐵(𝑉, 𝑡, 𝑥𝑡, 𝑢) ≥ 0 holds on [𝑡0,∞) for every solution 𝑥 : [𝑡0 − 𝜏,∞) → R𝑚 of
the system (3.3) with arbitrary fixed control function 𝑢 = 𝑢(𝑡, 𝑥𝑡).
Then, the function 𝑢0(𝑡, 𝑥𝑡) is the optimal stabilization control function solving Problem 3.1.1,
that is,

𝐼 = min
𝑢

∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥𝑡, 𝑢(𝑡, 𝑥𝑡))d𝑡 =

∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥𝑡, 𝑢0(𝑡, 𝑥𝑡))d𝑡

and, moreover, ∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥𝑡, 𝑢0(𝑡, 𝑥𝑡))d𝑡 = 𝑉 (𝑡0, 𝑥𝑡0).

Remark 3.2.2. Theorem 3.2.1 is an extension to delayed differential equations of Theorem
IV in Malkin’s book [33, p. 485] formulated there for ordinary differential equations. Optimal
problems for delayed differential equations with integral quality criteria are often considered
for a finite upper limit in an integral quality criterion 𝐼 and are, in general, not applicable to
the case of this limit being infinite (we refer, for example, to [6,8,9,18,19,24,25,32,38,39,43,48]
and to the references therein). In [16, 23], the quality criteria are considered in an integral
form with an infinite upper limit. Unlike our investigation, a control law is searching in the
prescribed class of functionals. In [10], an integral quality criterion with an infinite upper limit
is used for solving an optimal control problem, but a weight function of an exponential type
is used to preserve its convergence.

3.3 APPLICATION TO LINEAR EQUATIONS AND SYSTEMS

I. Consider linear scalar equations with constant coefficients and a single delay

𝑥′(𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) + 𝑐𝑢, (3.8)

where 𝑎, 𝑏 ̸= 0, 𝑐 are real constants, 𝜏 > 0 is a delay and 𝑢 is a control function.
Together with the equation (3.8), we will consider a quality criterion (3.6) with

𝜔(𝑡, 𝑥𝑡, 𝑢) = 𝛼𝑥2(𝑡) + 2𝛽𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝛾𝑥2(𝑡− 𝜏) + 𝛿𝑢2,

i.e., (3.6) being a quadratic criterion

𝐼 =
∫︁ ∞

𝑡0

(︁
𝛼𝑥2(𝑡) + 2𝛽𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝛾𝑥2(𝑡− 𝜏) + 𝛿𝑢2

)︁
d𝑡, (3.9)

with
𝛼 > 0, 𝛼𝛾 − 𝛽2 > 0, 𝛿 > 0.

Theorem 3.3.1. If, for the optimal control problem (3.8), (3.9), a Lyapunov-Krasovskii
functional is used in the form

𝑉 (𝑡, 𝑥𝑡) = ℎ𝑥2(𝑡) + 𝑑
∫︁ 𝑡

𝑡−𝜏
𝑥2(𝑠)d𝑠, ℎ > 0, 𝑑 > 0,

with ℎ = −𝛽/𝑏 (𝛽𝑏 < 0), 𝑑 = 𝛾,

𝛿(2ℎ𝑎+ 𝑑+ 𝛼) − ℎ2𝑐2 = 0,

then the optimal stabilization control function 𝑢0 equals

𝑢0 = −ℎ𝑐

𝛿
𝑥(𝑡).
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II. Consider linear scalar equations with constant coefficients and delays

𝑥′(𝑡) = 𝑎𝑥(𝑡) +
𝑛∑︁

𝑖=1
𝑏𝑖𝑥(𝑡− 𝜏𝑖) + 𝑐𝑢, 𝑡 ≥ 0, (3.10)

where 𝑎, 𝑏𝑖 and 𝑐 are real constants, 𝑖 = 1, . . . , 𝑛, 𝜏1 < 𝜏2 < · · · < 𝜏𝑛 = 𝜏 are delays and 𝑢 is a
control function.
Together with the equation (3.10), we will consider a quality criterion (3.6) with

𝜔(𝑡, 𝑥𝑡, 𝑢) =
𝑛∑︁

𝑖=0
𝛼𝑖𝑥

2(𝑡− 𝜏𝑖) + 2
𝑛∑︁

𝑖=1
𝛽𝑖𝑥(𝑡)𝑥(𝑡− 𝜏𝑖) + 𝛾𝑢2,

where 𝜏0 = 0, i.e., (3.6) being a quadratic criterion

𝐼 =
∫︁ ∞

𝑡0

(︃
𝑛∑︁

𝑖=0
𝛼𝑖𝑥

2(𝑡− 𝜏𝑖) + 2
𝑛∑︁

𝑖=1
𝛽𝑖𝑥(𝑡)𝑥(𝑡− 𝜏𝑖) + 𝛾𝑢2

)︃
d𝑡, (3.11)

where 𝛼0, 𝛼𝑖, 𝛽𝑖 (𝑖 = 1, . . . , 𝑛) and 𝛾 > 0 are constants and the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝛼0 𝛽1 𝛽2 . . . 𝛽𝑛

𝛽1 𝛼1 0 . . . 0
𝛽2 0 𝛼2 . . . 0
... ... ... . . . ...
𝛽𝑛 0 0 . . . 𝛼𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
is positive-definite.

Theorem 3.3.2. Let
−𝛽𝑖/𝑏𝑖 = ℎ > 0, 𝑖 = 1, . . . , 𝑛.

If for the optimal control problem (3.10), (3.11) a Lyapunov-Krasovskii functional is used in
the form

𝑉 (𝑡, 𝑥𝑡) = ℎ𝑥2(𝑡) +
𝑛∑︁

𝑖=1
𝑑𝑖

∫︁ 𝑡

𝑡−𝜏𝑖

𝑥2(𝑠)d𝑠, ℎ > 0, 𝑑𝑖 > 0,

with
𝑑𝑖 = 𝛼𝑖

and if

𝛾

(︃
2ℎ𝑎+

𝑛∑︁
𝑖=1

𝑑𝑖 + 𝛼0

)︃
− ℎ2𝑐2 = 0,

then the optimal stabilization control function 𝑢0 equals

𝑢0 = −ℎ𝑐

𝛾
𝑥(𝑡).

III. Consider linear systems with constant coefficients and a single constant delay

𝑥′(𝑡) = 𝐴0𝑥(𝑡) + 𝐴1𝑥(𝑡− 𝜏) + 𝑏𝑢, (3.12)

where 𝐴0, 𝐴1 are 𝑚×𝑚 constant matrices, 𝑏 ∈ R𝑚, 𝑢 ∈ R, and a quality criterion (3.6) with

𝜔(𝑡, 𝑥𝑡, 𝑢) = 𝑥𝑇 (𝑡)𝐶11𝑥(𝑡) + 𝑥𝑇 (𝑡)𝐶12𝑥(𝑡− 𝜏)
+ 𝑥𝑇 (𝑡− 𝜏)𝐶21𝑥(𝑡) + 𝑥𝑇 (𝑡− 𝜏)𝐶22𝑥(𝑡− 𝜏) + 𝑑𝑢2,
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where 𝑚×𝑚 matrices 𝐶11, 𝐶22 and an 2𝑚× 2𝑚 matrix

𝐶 =
(︃
𝐶11 𝐶12
𝐶21 𝐶22

)︃
(3.13)

are positive-definite and symmetric, 𝐶21 = 𝐶𝑇
12 and 𝑑 > 0, i.e., (3.6) is a quadratic criterion

𝐼 =
∫︁ ∞

𝑡0

(︁
𝑥𝑇 (𝑡)𝐶11𝑥(𝑡) + 𝑥𝑇 (𝑡)𝐶12𝑥(𝑡− 𝜏)

+𝑥𝑇 (𝑡− 𝜏)𝐶21𝑥(𝑡) + 𝑥𝑇 (𝑡− 𝜏)𝐶22𝑥(𝑡− 𝜏) + 𝑑𝑢2
)︁

d𝑡. (3.14)

We will employ a Lyapunov-Krasovskii functional

𝑉 (𝑡, 𝑥𝑡) = 𝑥𝑇 (𝑡)𝐻𝑥(𝑡) +
∫︁ 𝑡

𝑡−𝜏
𝑥𝑇 (𝑠)𝐺𝑥(𝑠)d𝑠, (3.15)

where 𝐻 and 𝐺 are 𝑚×𝑚, constant, positive-definite and symmetric matrices.

Theorem 3.3.3. Assume that there exists a positive-definite symmetric 𝑚 × 𝑚 matrix 𝐻
satisfying a matrix equation

𝐴𝑇
0𝐻 +𝐻𝐴0 + 𝐶11 + 𝐶22 − 1

𝑑
𝐻𝑏𝑏𝑇𝐻 = Θ𝑚×𝑚. (3.16)

If, moreover,
𝐻𝐴1 + 𝐶12 = Θ𝑚×𝑚,

the optimal stabilization control function 𝑢 = 𝑢0 of the problem (3.12), (3.14) exists and

𝑢0 = −1
𝑑
𝑏𝑇𝐻𝑥(𝑡).

IV. Consider linear systems with constant coefficients and a single constant delay

𝑥′(𝑡) = 𝐴0𝑥(𝑡) + 𝐴1𝑥(𝑡− 𝜏) + 𝑃𝑢, (3.17)

where 𝐴0, 𝐴1 are 𝑚×𝑚 constant matrices, 𝑃 ∈ R𝑚×𝑟, 𝑢 ∈ R𝑟, and a quality criterion (3.6)

𝐼 =
∫︁ ∞

𝑡0
(𝑥𝑇 (𝑡)𝐶11𝑥(𝑡) + 𝑥𝑇 (𝑡)𝐶12𝑥(𝑡− 𝜏)

+ 𝑥𝑇 (𝑡− 𝜏)𝐶21𝑥(𝑡) + 𝑥𝑇 (𝑡− 𝜏)𝐶22𝑥(𝑡− 𝜏) + 𝑢𝑇𝐷𝑢)d𝑡, (3.18)

where 𝑚×𝑚 matrices 𝐶11, 𝐶22 and an 2𝑚× 2𝑚 matrix (3.13), i.e.,

𝐶 =
(︃
𝐶11 𝐶12
𝐶21 𝐶22

)︃

are positive-definite and symmetric, 𝐶21 = 𝐶𝑇
12 and 𝐷 is a diagonal matrix, 𝐷 = diag{𝑑𝑗},

𝑑𝑗 > 0, 𝑗 = 1, . . . , 𝑟.
We will use a Lyapunov-Krasovskii functional (3.15), that is

𝑉 (𝑡, 𝑥𝑡) = 𝑥𝑇 (𝑡)𝐻𝑥(𝑡) +
∫︁ 𝑡

𝑡−𝜏
𝑥𝑇 (𝑠)𝐺𝑥(𝑠)d𝑠,

where 𝐻 and 𝐺 are 𝑚×𝑚 constant, positive-definite and symmetric matrices.
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Theorem 3.3.4. Assume that there exists a positive-definite symmetric matrix 𝐻 satisfying
the matrix equation

𝐴𝑇
0𝐻 +𝐻𝐴0 + 𝐶11 + 𝐶22 −𝐻𝑃𝐷−1𝑃 𝑇𝐻 = Θ𝑚×𝑚. (3.19)

If, moreover,
𝐻𝐴1 + 𝐶12 = Θ𝑚×𝑚,

the optimal stabilization control function 𝑢 = 𝑢0 of the problem (3.17), (3.18) exists and

𝑢0 = −𝐷−1𝑃 𝑇𝐻𝑥(𝑡).

V. In this part, we consider systems of linear differential equations with delays

𝑥′(𝑡) =
𝑛∑︁

𝑖=0
𝐴𝑖𝑥(𝑡− 𝜏𝑖) + 𝑐𝑢, 𝑡 ≥ 𝑡0, (3.20)

where 𝐴𝑖, 𝑖 = 0, . . . , 𝑛 are𝑚×𝑚 real matrices, 𝑐 ∈ R𝑚, 0 = 𝜏0 < 𝜏1 < · · · < 𝜏𝑛, 𝑥 : [𝑡0−𝜏,∞) →
R𝑚, 𝑡0 ∈ R and 𝑢 ∈ R is a control function. Set 𝜏 := 𝜏𝑛. A minimization problem (3.6) with

𝜔 (𝑡, 𝑥𝑡, 𝑢) :=
𝑛∑︁

𝑖=0
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖𝑖𝑥(𝑡− 𝜏𝑖) +

𝑛∑︁
𝑖=1

𝑥𝑇 (𝑡)𝐶0𝑖𝑥(𝑡− 𝜏𝑖)

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖0𝑥(𝑡) + 𝑑𝑢2 (3.21)

will be solved for the system (3.20), where constant symmetric 𝑚 × 𝑚 matrices 𝐶𝑖𝑖 and an
auxiliary matrix

𝐶 =

⎛⎜⎜⎜⎜⎝
𝐶00 𝐶01 . . . 𝐶0𝑛

𝐶10 𝐶11 . . . 𝐶1𝑛
... ... . . .
𝐶𝑛0 𝐶𝑛1 . . . 𝐶𝑛𝑛

⎞⎟⎟⎟⎟⎠ ,
(with 𝐶𝑖𝑗 = 𝐶𝑗𝑖 = Θ𝑚×𝑚, 𝑖 > 𝑗 ≥ 1, 𝑖, 𝑗 = 1, . . . , 𝑛) are positive-definite, 𝐶0𝑖 and 𝐶𝑖0, 𝐶0𝑖 = 𝐶𝑇

𝑖0
are 𝑚×𝑚 constant matrices, 𝑑 > 0. We will employ a Lyapunov-Krasovskii functional

𝑉 (𝑡, 𝑥𝑡) = 𝑥𝑇 (𝑡)𝐻𝑥(𝑡) +
𝑛∑︁

𝑖=1

∫︁ 𝑡

𝑡−𝜏𝑖

𝑥𝑇 (𝑠)𝐺𝑖𝑥(𝑠)d𝑠, (3.22)

where 𝑚×𝑚 matrices 𝐻 and 𝐺𝑖, 𝑖 = 1, . . . , 𝑛 are constant, positive-definite and symmetric.

Theorem 3.3.5. Assume that the matrix 𝐶 is positive-definite and there exists a positive-
definite symmetric matrix 𝐻 satisfying the matrix equation

𝐴𝑇
0𝐻 +𝐻𝐴0 +

𝑛∑︁
𝑖=0

𝐶𝑖𝑖 − 1
𝑑
𝐻𝑐𝑐𝑇𝐻 = Θ𝑚×𝑚. (3.23)

If, moreover,
𝐴𝑇

𝑖 𝐻 + 𝐶𝑖0 = Θ𝑚×𝑚, 𝑖 = 1, . . . , 𝑛
then the optimal stabilization control function of the problem (3.20), (3.21) exists and equals

𝑢0 = −1
𝑑
𝑐𝑇𝐻𝑥(𝑡).
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VI. In this part, we consider systems of linear differential equations with delays

𝑥′(𝑡) =
𝑛∑︁

𝑖=0
𝐴𝑖𝑥(𝑡− 𝜏𝑖) + 𝐶𝑢, 𝑡 ≥ 𝑡0, (3.24)

where 𝐴𝑖, 𝑖 = 0, . . . , 𝑛 are 𝑚 × 𝑚 real matrices, 𝐶 is an 𝑚 × 𝑟 real matrix, 0 = 𝜏0 < 𝜏1 <
· · · < 𝜏𝑛, 𝑥 : [𝑡0 − 𝜏,∞) → R𝑚, 𝑡0 ∈ R and 𝑢 : 𝒟1 → R𝑟 is a control function. Set 𝜏 := 𝜏𝑛. A
minimization problem

𝐼 = min
𝑢

∫︁ ∞

𝑡0
𝜔 (𝑡, 𝑥𝑡, 𝑢) d𝑡, (3.25)

where

𝜔 (𝑡, 𝑥𝑡, 𝑢) :=
𝑛∑︁

𝑖=0
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖𝑖𝑥(𝑡− 𝜏𝑖) +

𝑛∑︁
𝑖=1

𝑥𝑇 (𝑡)𝐶0𝑖𝑥(𝑡− 𝜏𝑖)

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖0𝑥(𝑡) +

𝑛∑︁
𝑖=0

𝑢𝑇𝐷𝑖𝑥(𝑡− 𝜏𝑖)

+
𝑛∑︁

𝑖=0
𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*

𝑖 𝑢+ 𝑢𝑇𝐷𝑢 (3.26)

will be solved for the system (3.24), where 𝐶𝑖𝑖 are 𝑚 × 𝑚 constant symmetric matrices, 𝐶0𝑖

and 𝐶𝑖0, 𝐶0𝑖 = 𝐶𝑇
𝑖0 are 𝑚×𝑚 constant matrices, 𝐷 is an 𝑟× 𝑟 symmetric matrix and 𝐷𝑖, 𝐷*

𝑖 ,
𝐷𝑖 = (𝐷*

𝑖 )𝑇 are 𝑟 × 𝑚 and 𝑚 × 𝑟 constant matrices, respectively. Define auxiliary matrices
𝐶𝑖𝑗 = 𝐶𝑗𝑖 = Θ𝑚×𝑚, (𝑖 > 𝑗 ≥ 1, 𝑖, 𝑗 = 1, . . . , 𝑛). Let 𝑋(𝑡) be an [(𝑛 + 1)𝑚 + 𝑟] × 1 vector
defined by the formula

𝑋(𝑡) = (𝑥𝑇 (𝑡), 𝑥𝑇 (𝑡− 𝜏1), . . . , 𝑥𝑇 (𝑡− 𝜏𝑛), 𝑢)𝑇

and

𝒞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐶00 𝐶01 . . . 𝐶0𝑛 𝐷*
0

𝐶10 𝐶11 . . . 𝐶1𝑛 𝐷*
1

... ... . . . ...
𝐶𝑛0 𝐶𝑛1 . . . 𝐶𝑛𝑛 𝐷*

𝑛

𝐷0 𝐷1 . . . 𝐷𝑛 𝐷

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Then, the formula (3.26) can be written in the form

𝜔 (𝑡, 𝑥𝑡, 𝑢) = 𝑋𝑇 (𝑡)𝒞𝑋(𝑡).

Below we assume that the matrix 𝒞 is positive-definite, that is, the functional 𝜔(𝑡, 𝑥𝑡, 𝑢) is
positive-definite. In the following, we will employ a Lyapunov-Krasovskii functional (3.22),
that is

𝑉 (𝑡, 𝑥𝑡) = 𝑥𝑇 (𝑡)𝐻𝑥(𝑡) +
𝑛∑︁

𝑖=1

∫︁ 𝑡

𝑡−𝜏𝑖

𝑥𝑇 (𝑠)𝐺𝑖𝑥(𝑠)d𝑠,

where 𝑚 × 𝑚 matrices 𝐻 and 𝐺𝑖, 𝑖 = 1, . . . , 𝑛 are constant, positive-definite and symmetric.
Their elements will be defined in the formulation of the theorem below.
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Theorem 3.3.6. Assume that the matrix 𝒞 is positive-definite and there exist positive-definite
symmetric matrices 𝐻 and 𝐺𝑖, 𝑖 = 1, . . . , 𝑛, satisfying

𝐴𝑇
0𝐻 +𝐻𝐴0 + 𝐶00 +

𝑛∑︁
𝑖=1

𝐺𝑖 − [𝐻𝐶 +𝐷*
0]𝐷−1

[︁
𝐶𝑇𝐻 +𝐷0

]︁
= Θ𝑚×𝑚, (3.27)

𝐴𝑇
𝑖 𝐻 + 𝐶𝑖0 −𝐷*

𝑖𝐷
−1
[︁
𝐶𝑇𝐻 +𝐷0

]︁
= Θ𝑚×𝑚, 𝑖 = 1, . . . , 𝑛,

𝐺𝑖 − 𝐶𝑖𝑖 −𝐷*
𝑖𝐷

−1𝐷𝑖 = Θ𝑚×𝑚, 𝑖 = 1, . . . , 𝑛.

If, moreover,
𝐷*

𝑖𝐷
−1𝐷𝑗 = Θ𝑚×𝑚, 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ̸= 𝑗,

then the optimal stabilization control function of the problem (3.24)–(3.26) exists and equals

𝑢0 = −𝐷−1
[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) −𝐷−1

𝑛∑︁
𝑖=1

𝐷𝑖𝑥(𝑡− 𝜏𝑖).

As a particular case of Theorem 3.3.6, consider the system (3.24) with the quality
criterion (3.25) where matrices 𝐷𝑖, 𝐷*

𝑖 , 𝑖 = 0, . . . , 𝑛 are zero matrices, that is, let

𝜔 (𝑡, 𝑥𝑡, 𝑢) :=
𝑛∑︁

𝑖=0
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖𝑖𝑥(𝑡− 𝜏𝑖) +

𝑛∑︁
𝑖=1

𝑥𝑇 (𝑡)𝐶0𝑖𝑥(𝑡− 𝜏𝑖)

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖0𝑥(𝑡) + 𝑢𝑇𝐷𝑢. (3.28)

Then, the following holds.

Theorem 3.3.7. Assume that the matrix 𝒞 is positive-definite and there exist positive-definite
symmetric matrices 𝐻 and 𝐺𝑖, 𝑖 = 1, . . . , 𝑛, satisfying

𝐴𝑇
0𝐻 +𝐻𝐴0 + 𝐶00 +

𝑛∑︁
𝑖=1

𝐺𝑖 −𝐻𝐶𝐷−1𝐶𝑇𝐻 = Θ𝑚×𝑚, (3.29)

𝐴𝑇
𝑖 𝐻 + 𝐶𝑖0 = Θ𝑚×𝑚, 𝑖 = 1, . . . , 𝑛.

If, moreover
𝐺𝑖 = 𝐶𝑖𝑖, 𝑖 = 1, . . . , 𝑛,

then the optimal stabilization control function of the problem (3.24), (3.25), (3.28) exists and
equals

𝑢0 = −𝐷−1𝐶𝑇𝐻𝑥(𝑡).

4 CONCLUSIONS
The thesis considers the problem of optimal stabilization for ordinary and functional
differential systems. It is based on the result [Theorem 2.2.1, page 11] given in Malkin’s
book [33, Theorem IV, page 485]. The book [33] is a revised edition of the book [34] and,
furthermore, contains new parts - Additions I–IV, prepared by Malkin’s followers led by
academician N. Krasovskii. In the thesis, first Theorem 2.2.1 was applied to some classes of
linear non-delayed differential equations and then the previous result was extended to delayed
differential equations and systems. If the delay vanishes (𝜏 = 0), our results reduce back to
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those already known from [33].

The main result of the thesis is Theorem 3.2.1 (page 15), which solves the problem of
minimizing an integral quality criterion. In order to solve this problem, we find an optimal
stabilization control function, which simultaneously guarantees the asymptotic stability of a
given system of differential equations. The result obtained is successfully applied to certain
classes of linear differential equations with delays.

The problems and derived results, formulated in the thesis, can serve as a motivation for
further research. For example, in the thesis, the assumption 𝑖𝑖𝑖) (𝐵(𝑉, 𝑡, 𝑥𝑡, 𝑢0) = 0) from
Theorem 3.2.1 (page 15) is considered only in cases explicitly solvable with respect to 𝑢0. It is
also an open question if the theory of implicit functions can be applied to more complicated
cases and, consequently, if the results obtained in the thesis can be extended. Another
challenge is to apply the results to linear systems with variable coefficients, first in the case
of the coefficients being almost constant (for 𝑡 → ∞).

As a topic for future research, investigation of the solvability of the matrix equations (in the
thesis, for example, equations (3.16), (3.19), (3.23), (3.27)) with respect to the matrix 𝐻 can
be suggested as well.

Application of the main result to linear systems leads to complicated systems of nonlinear
equations, which determine the elements of the matrix 𝐻 that has a crucial role in the
formulated criteria. In the examples of this thesis, we sometimes overcome this circumstance
by using a suitable software. That is why it could be useful to create a special program for
solving certain classes of the problems considered.
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ABSTRACT

The present thesis deals with processes controlled by systems of delayed differential
equations

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢), 𝑡 ≥ 𝑡0

where 𝑡0 ∈ R, 𝑓 is defined on a subspace of [𝑡0,∞)×𝐶𝑚
𝜏 ×R𝑟, 𝑚, 𝑟 ∈ N, 𝐶𝑚

𝜏 = 𝐶([−𝜏, 0],R𝑚),
𝜏 > 0, 𝑥𝑡(𝜃) := 𝑥(𝑡+𝜃), 𝜃 ∈ [−𝜏, 0], 𝑥 : [𝑡0 −𝜏,∞) → R𝑚. Under the assumption 𝑓(𝑡, 𝜃*

𝑚, 𝜃𝑟) =
𝜃𝑚, where 𝜃*

𝑚 ∈ 𝐶𝑚
𝜏 is a zero vector-function, 𝜃𝑟 and 𝜃𝑚 are 𝑟 and 𝑚-dimensional zero vectors,

a control function 𝑢 = 𝑢(𝑡, 𝑥𝑡), 𝑢 : [𝑡0,∞) × 𝐶𝑚
𝜏 → R𝑟, 𝑢(𝑡, 𝜃*

𝑚) = 𝜃𝑟 is determined such that
the zero solution 𝑥(𝑡) = 𝜃𝑚, 𝑡 ≥ 𝑡0 − 𝜏 of the system is asymptotically stable and, for an
arbitrary solution 𝑥 = 𝑥(𝑡), the integral∫︁ ∞

𝑡0
𝜔 (𝑡, 𝑥𝑡, 𝑢(𝑡, 𝑥𝑡)) d𝑡,

where 𝜔 is a positive-definite functional, exists and attains its minimum value in a given
sense. To solve this problem, Malkin’s approach to ordinary differential systems is extended
to delayed functional differential equations and Lyapunov’s second method is applied. The
results are illustrated by examples and applied to some classes of delayed linear differential
equations.

ABSTRAKT

Dizertační práce se zabývá procesy, které jsou řízeny systémy zpožděných diferenciálních rovnic

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢), 𝑡 ≥ 𝑡0

kde 𝑡0 ∈ R, funkce 𝑓 je definována v jistém podprostoru množiny [𝑡0,∞)×𝐶𝑚
𝜏 ×R𝑟, 𝑚, 𝑟 ∈ N,

𝐶𝑚
𝜏 = 𝐶([−𝜏, 0],R𝑚), 𝜏 > 0, 𝑥𝑡(𝜃) := 𝑥(𝑡 + 𝜃), 𝜃 ∈ [−𝜏, 0], 𝑥 : [𝑡0 − 𝜏,∞) → R𝑚. Za

předpokladu 𝑓(𝑡, 𝜃*
𝑚, 𝜃𝑟) = 𝜃𝑚, kde 𝜃*

𝑚 ∈ 𝐶𝑚
𝜏 je nulová vektorová funkce, 𝜃𝑟 a 𝜃𝑚 jsou 𝑟 a 𝑚-

dimenzionální nulové vektory, je řídící funkce 𝑢 = 𝑢(𝑡, 𝑥𝑡), 𝑢 : [𝑡0,∞)×𝐶𝑚
𝜏 → R𝑟, 𝑢(𝑡, 𝜃*

𝑚) = 𝜃𝑟

určena tak, že nulové řešení 𝑥(𝑡) = 𝜃𝑚, 𝑡 ≥ 𝑡0 − 𝜏 systému je asymptoticky stabilní a pro
libovolné řešení 𝑥 = 𝑥(𝑡) integrál ∫︁ ∞

𝑡0
𝜔 (𝑡, 𝑥𝑡, 𝑢(𝑡, 𝑥𝑡)) d𝑡,

kde 𝜔 je pozitivně definitní funkcionál, existuje a nabývá své minimální hodnoty v daném
smyslu. Pro řešení tohoto problému byla Malkinova metoda pro obyčejné diferenciální
systémy rozšířena na zpožděné funkcionální diferenciální rovnice a byla použita druhá metoda
Lyapunova. Výsledky jsou ilustrovány příklady a aplikovány na některé třídy zpožděných
lineárních diferenciálních rovnic.
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