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ABSTRACT
The present thesis deals with processes controlled by systems of delayed differential
equations

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢), 𝑡 ≥ 𝑡0

where 𝑡0 ∈ R, 𝑓 is defined on a subspace of [𝑡0,∞) × 𝐶𝑚
𝜏 × R𝑟, 𝑚, 𝑟 ∈ N, 𝐶𝑚

𝜏 =
𝐶([−𝜏, 0],R𝑚), 𝜏 > 0, 𝑥𝑡(𝜃) := 𝑥(𝑡+ 𝜃), 𝜃 ∈ [−𝜏, 0], 𝑥 : [𝑡0 − 𝜏,∞) → R𝑚. Under the
assumption 𝑓(𝑡, 𝜃*

𝑚, 𝜃𝑟) = 𝜃𝑚, where 𝜃*
𝑚 ∈ 𝐶𝑚

𝜏 is a zero vector-function, 𝜃𝑟 and 𝜃𝑚 are 𝑟
and 𝑚-dimensional zero vectors, a control function 𝑢 = 𝑢(𝑡, 𝑥𝑡), 𝑢 : [𝑡0,∞)×𝐶𝑚

𝜏 → R𝑟,
𝑢(𝑡, 𝜃*

𝑚) = 𝜃𝑟 is determined such that the zero solution 𝑥(𝑡) = 𝜃𝑚, 𝑡 ≥ 𝑡0 − 𝜏 of the
system is asymptotically stable and, for an arbitrary solution 𝑥 = 𝑥(𝑡), the integral∫︁ ∞

𝑡0
𝜔 (𝑡, 𝑥𝑡, 𝑢(𝑡, 𝑥𝑡)) d𝑡,

where 𝜔 is a positive-definite functional, exists and attains its minimum value in a
given sense. To solve this problem, Malkin’s approach to ordinary differential systems is
extended to delayed functional differential equations and Lyapunov’s second method is
applied. The results are illustrated by examples and applied to some classes of delayed
linear differential equations.

KEYWORDS
optimal stabilization, control function, Lyapunov-Krasovskii functional, asymptotic
stability, Malkin’s approach

ABSTRAKT
Dizertační práce se zabývá procesy, které jsou řízeny systémy zpožděných diferenciálních
rovnic

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢), 𝑡 ≥ 𝑡0

kde 𝑡0 ∈ R, funkce 𝑓 je definována v jistém podprostoru množiny [𝑡0,∞) × 𝐶𝑚
𝜏 × R𝑟,

𝑚, 𝑟 ∈ N, 𝐶𝑚
𝜏 = 𝐶([−𝜏, 0],R𝑚), 𝜏 > 0, 𝑥𝑡(𝜃) := 𝑥(𝑡 + 𝜃), 𝜃 ∈ [−𝜏, 0], 𝑥 : [𝑡0 −

𝜏,∞) → R𝑚. Za předpokladu 𝑓(𝑡, 𝜃*
𝑚, 𝜃𝑟) = 𝜃𝑚, kde 𝜃*

𝑚 ∈ 𝐶𝑚
𝜏 je nulová vektorová

funkce, 𝜃𝑟 a 𝜃𝑚 jsou 𝑟 a 𝑚-dimenzionální nulové vektory, je řídící funkce 𝑢 = 𝑢(𝑡, 𝑥𝑡),
𝑢 : [𝑡0,∞)×𝐶𝑚

𝜏 → R𝑟, 𝑢(𝑡, 𝜃*
𝑚) = 𝜃𝑟 určena tak, že nulové řešení 𝑥(𝑡) = 𝜃𝑚, 𝑡 ≥ 𝑡0 −𝜏

systému je asymptoticky stabilní a pro libovolné řešení 𝑥 = 𝑥(𝑡) integrál∫︁ ∞

𝑡0
𝜔 (𝑡, 𝑥𝑡, 𝑢(𝑡, 𝑥𝑡)) d𝑡,

kde 𝜔 je pozitivně definitní funkcionál, existuje a nabývá své minimální hodnoty v daném
smyslu. Pro řešení tohoto problému byla Malkinova metoda pro obyčejné diferenciální
systémy rozšířena na zpožděné funkcionální diferenciální rovnice a byla použita druhá
metoda Lyapunova. Výsledky jsou ilustrovány příklady a aplikovány na některé třídy
zpožděných lineárních diferenciálních rovnic.

KLÍČOVÁ SLOVA
optimální stabilizace, řídící funkce, funkcionál Lyapunova-Krasovského, asymptotická
stabilita, Malkinova metoda
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1 INTRODUCTION
Differential equations are a strong tool for modelling and solving numerous
engineering, mechanical, economic or population problems. It is well-known that
in such problems a time delay arises quite naturally. For example, in electrical
engineering, the time delay can be measured as the difference between the input of
a signal in an electrical circuit and its response. In general, there is always a time
delay in the real-life processes depending on time. So, differential equations with
time delay are an important field of research. As the systems with feedback can
be described (under certain conditions) by systems of differential equations with
a delay or by difference equations, a wide range of applications is opened for research.

In practical applications, the behaviour of many dynamical systems depends on
their previous history. This phenomenon can be brought about by the presence of
delays in the equations under consideration. In view of the intrinsic difficulties in
solving such problems, progress in this field is slow. This is why using the optimal
control of delay systems is so needed and important.

The thesis is devoted to the optimal control problem of delayed differential equations.

The fundamentals of the theory of functional and ordinary differential equations
are well described, for example, in books by R.D. Driver [23], J.K. Hale [34], L.E.
Elsgolts and S.B. Norkin [24], N.N. Krasovskii [37], R.P. Agarwal, L. Berezansky,
E. Braverman and A. Domoshnitsky [3], R.P. Agarwal, M. Bohner and Li Wan-
Tong [4], I. Gyori and G. Ladas [33]. Classics in the field of the optimal control
are R. Bellman [9], L.S. Pontryagin, V.G. Boltyanskij, R.V. Gamkrelidze and E.F.
Mishchenko [52], A.A. Fel’dbaum [25], A.M. Letov [40], [41], V.M. Alekseev, V.M.
Tikhomirov and S.V. Fomin [5], I.G. Malkin [45], R. Gabasov and F. Kirillova [29],
[30], D.E. Kirk [36], E. Fridman [27], A.V. Kim and A.V. Ivanov [35].
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1.1 Current State
Differential equations have been the object of research since the 17th century (after
works by Newton and Leibniz) and have been intensively developed for the last
century. Monographs summarizing some outcomes were mentioned above in the
Introduction.

One of the most important sections of the qualitative theory of functional differential
equations is the theory of stability. The method of Lyapunov functionals, proposed
by Krasovskii in [37], is still one of the main methods in the research of the delayed
system’s stability. Analytical research of the stability of some dynamic systems led
to the emergence of a new independent field of science - the theory of automatic
control (regulation). The basis of this theory is usually associated with the book [47].
The theory of optimal control is an important part in the theory of automatic
control, formed primarily on the basis of the classical calculus of variations, the
Pontryagin maximum principle [52] and Bellman’s dynamic programming [9]. The
direct Lyapunov method (Lyapunov function method) [43], which is the basis of the
modern nonlinear theory of automatic control, is widely used in modeling control
structures of nonlinear systems. In addition to the stability conditions, the method
includes an analysis of the quality of control processes.

Numerous papers on the qualitative theory of differential equations, control theory,
and optimization are published every year. Some interesting results have been
published on representations of solutions of delayed systems [22], [38], on stability
of solutions [28], [42], and on optimal control for delayed differential equations [48],
[54], [57], [61]. Functional differential equations for modeling the biological problems
were first used and investigated in [56]. There are many later works on modeling of
biological processes, for example, [1], [2], [31], on applying optimal control in biology
and medicine [7], [39], [53]. In [59], the authors introduced a version of the stochastic
discrete-time maximum principle for solving an optimal control problem. In [49], the
damping of the solution problem is solved by means of a linear difference–differential
controller with a state feedback. Here a certain form of the control function was used
to stabilize the solution. There are numerous works (for example, [26], [58]) where
the authors study the control of systems using some specific control functions.
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1.2 Aims of the thesis
The aim of the thesis is to solve the optimal stabilization problem for processes
described by a system of delayed differential equations

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢), 𝑡 ≥ 𝑡0,

where 𝑡0 ∈ R, 𝑓 is defined on a subspace of [𝑡0,∞) × 𝐶𝑚
𝜏 × R𝑟, 𝑚, 𝑟 ∈ N, 𝐶𝑚

𝜏 =
𝐶([−𝜏, 0],R𝑚), 𝜏 > 0, 𝑥𝑡(𝜃) := 𝑥(𝑡+ 𝜃), 𝜃 ∈ [−𝜏, 0], 𝑥 : [𝑡0 − 𝜏,∞) → R𝑚. Under the
assumption 𝑓(𝑡, 𝜃*

𝑚, 𝜃𝑟) = 𝜃𝑚, where 𝜃*
𝑚 ∈ 𝐶𝑚

𝜏 is a zero vector-function, 𝜃𝑟 and 𝜃𝑚 are
𝑟 and 𝑚-dimensional zero vectors, a control function 𝑢 = 𝑢(𝑡, 𝑥𝑡), 𝑢 : [𝑡0,∞)×𝐶𝑚

𝜏 →
R𝑟, 𝑢(𝑡, 𝜃*

𝑚) = 𝜃𝑟 is such that the zero solution 𝑥(𝑡) = 𝜃𝑚, 𝑡 ≥ 𝑡0 − 𝜏 of the system

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢(𝑡, 𝑥𝑡)), 𝑡 ≥ 𝑡0,

is asymptotically stable and, for an arbitrary solution 𝑥 = 𝑥(𝑡), the integral∫︁ ∞

𝑡0
𝜔 (𝑡, 𝑥𝑡, 𝑢(𝑡, 𝑥𝑡)) d𝑡,

where 𝜔 is a positive-definite functional, exists and attains its minimum value in a
given sense.
The thesis solves a problem of optimal stabilization for differential non-delayed and
delayed equations and their systems.
The motivation of our research goes back to the results by I.G. Malkin. His book [45]
(we refer to the original book written in Russian, to the best of our knowledge,
there is no translation into English of the second revised edition, the book [46] is
an English translation of the first edition of Malkin’s book and does not include the
results mentioned) contains, among others, a general principle related to optimal
stabilization of ordinary differential systems and its application to linear ordinary
differential systems. This principle we apply to some types of linear differential
equations and their systems to solve optimal control problems. We analyzed Malkin’s
approach and, as a result of our investigation, we present its modification to
differential delayed systems. Illustrative examples showing how this principle can
be applied are developed and, in addition, linear differential delayed systems are
considered.
Some results of this work have been already published by the author of the thesis,
as a co-author, e.g., in [11]–[19].

9



1.3 Preliminaries

1.3.1 Stability of functional differential equations

For the auxiliary material given in this part for the reader’s convenience, we refer,
for example, to [23, 34].
Let 𝐶𝑚

𝜏 = 𝐶([−𝜏, 0],R𝑚), where 𝜏 > 0, 𝑚 ∈ N, be the Banach space of continuous
mappings 𝜙 : [−𝜏, 0] → R𝑚. If 𝐴 is any set in R𝑚, we will set 𝐶𝑚

𝜏 (𝐴) = 𝐶([−𝜏, 0], 𝐴).

Let 𝐶𝑚
𝜏 (𝐷) be the space of continuous mappings from the interval [−𝜏, 0] into the

set 𝐷 = {𝜉 ∈ R𝑚 : ‖𝜉‖ < 𝑀}, 𝑀 is a positive constant (or 𝑀 = ∞).

For each 𝑡 ≥ 𝑡0, we define 𝑥𝑡 ∈ 𝐶𝑚
𝜏 by 𝑥𝑡(𝜃) = 𝑥(𝑡+ 𝜃), 𝜃 ∈ [−𝜏, 0].

Consider a delayed differential system

𝑥′(𝑡) = 𝐺(𝑡, 𝑥𝑡), (1.1)

where 𝐺 : [𝛼,∞)×𝐶𝑚
𝜏 (𝐷) → R𝑚 and 𝛼 ∈ R. Given any 𝑡0 ≥ 𝛼 and any 𝜙 ∈ 𝐶𝑚

𝜏 (𝐷),
we shall study (1.1) in conjunction with the initial condition

𝑥𝑡0 = 𝜙. (1.2)

Let 𝑥 : [𝑡0 − 𝜏,∞) → R𝑚 be a continuous vector-function, 𝑡0 ∈ R, and let 𝜏 > 0 be a
number. To emphasize the dependence of 𝑥 on 𝑡0 and 𝜙, we will sometimes denote
𝑥(𝑡) by 𝑥(𝑡; 𝑡0, 𝜙).
Let 𝛽1 ∈ R, 𝑡0 < 𝛽1 ≤ ∞.

Definition 1.3.1. A continuous function 𝑥 : [𝑡0 − 𝜏, 𝛽1) → 𝐷 with 𝛽1 ∈ (𝑡0,∞) is
called a solution of the initial problem (1.1), (1.2) on [𝑡0 −𝜏, 𝛽1) if the equation (1.1)
is satisfied on [𝑡0, 𝛽1) and if 𝑥(𝑡0 + 𝜃) = 𝜙(𝜃) for every 𝜃 ∈ [−𝜏, 0].

For a given 𝑡 ∈ [𝑡0,∞), we define a norm

‖𝑥(𝑡)‖𝜏 := max
𝜃∈[−𝜏,0]

(‖𝑥(𝑡+ 𝜃)‖),

where
‖𝑥(𝑠)‖ := max

𝑖=1,...,𝑛
{|𝑥𝑖(𝑠)|}, 𝑠 ∈ [𝑡0 − 𝜏,∞). (1.3)

If 𝜙 ∈ 𝐶𝑚
𝜏 then

‖𝜙‖𝜏 := max
𝜃∈[−𝜏,0]

{‖𝜙(𝜃)‖},

where
‖𝜙(𝜃)‖ := max

𝑖=1,...,𝑚
{|𝜙𝑖(𝜃)|}.
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Let us assume that, for each 𝑡0 ≥ 𝛼, 𝐺 satisfies the following Condition (C) on
[𝑡0,∞) × 𝐶𝑚

𝜏 (𝐷).

Definition 1.3.2. Condition (C) We say that the functional 𝐺(𝑡, 𝑥𝑡) is continuous
if it is continuous with respect to 𝑡 in [𝑡0,∞) for each given continuous function
𝑥 : [𝑡0 − 𝜏,∞) → R𝑚.

If 𝐺 satisfies Condition (C), then a continuous function 𝑥 : [𝑡0 − 𝜏, 𝛽1) → 𝐷 is a
solution of the initial problem (1.1), (1.2) if and only if

𝑥(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝜙(𝑡− 𝑡0) for 𝑡0 − 𝜏 ≤ 𝑡 ≤ 𝑡0,

𝜙(0) +
∫︁ 𝑡

𝑡0
𝐺(𝑠, 𝑥𝑠)d𝑠 for 𝑡0 ≤ 𝑡 < 𝛽1.

(1.4)

Moreover, we will assume that 𝐺 is locally Lipschitzian and quasi-bounded, see
definitions below. Let the symbol 𝐽 mean either [𝑡0,∞) or [𝛼,∞) as required.

Definition 1.3.3. The functional 𝐺 : 𝐽 × 𝐶𝑚
𝜏 (𝐷) → R𝑚 is locally Lipschitzian if,

for each given (𝑡*, 𝜙*) ∈ 𝐽 ×𝐶𝑚
𝜏 (𝐷), there exist numbers 𝑎 > 0 and 𝑏 > 0 such that

𝐶 ≡ ([𝑡* − 𝑎, 𝑡* + 𝑎] ∩ 𝐽) × {𝜙 ∈ 𝐶𝑚
𝜏 : ‖𝜙− 𝜙*‖𝜏 ≤ 𝑏}

is a subset of 𝐽 × 𝐶𝑚
𝜏 (𝐷) and 𝐺 is Lipschitzian on 𝐶. In other words, for some

number 𝐾 (a Lipschitz constant depending on 𝐶),

‖𝐺(𝑡, 𝜙) −𝐺(𝑡, 𝜙*)‖ ≤ 𝐾‖𝜙− 𝜙*‖𝜏

whenever (𝑡, 𝜙) ∈ 𝐶 and (𝑡, 𝜙*) ∈ 𝐶.

Definition 1.3.4. The functional 𝐺 : [𝑡0,∞) × 𝐶𝑚
𝜏 (𝐷) → R𝑚 is said to be quasi-

bounded if 𝐺 is bounded on every set of the form [𝑡0, 𝛽1]×𝐶𝑚
𝜏 (𝐴), where 𝑡0 < 𝛽1 < ∞

and 𝐴 is a closed bounded set of 𝐷.

The properties described in Definitions 1.3.2–1.3.4 are basic for ensuring, for
example, the existence and uniqueness of a noncontinuable solution of the problem
(1.1), (1.2), see Theorem 1.3.5 below, and its continuation (Theorem 1.3.7). The
basic theorem on the existence and uniqueness is formulated along with its proof.

Theorem 1.3.5. (Local Existence) Let 𝐺 : [𝑡0,∞) × 𝐶𝑚
𝜏 (𝐷) → R𝑚 satisfy

Condition (C) and let it be locally Lipschitzian. Then, for each 𝜙 ∈ 𝐶𝑚
𝜏 (𝐷), the

initial problem (1.1), (1.2) has a unique solution on [𝑡0 − 𝜏, 𝑡0 + △) for some △ > 0.
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Proof. Choose any 𝑎 > 0 and 𝑏 > 0 sufficiently small so that

𝒞* ≡ [𝑡0, 𝑡0 + 𝑎] × {𝜓 ∈ 𝐶𝑚
𝜏 : ‖𝜓 − 𝜙‖𝜏 ≤ 𝑏}

is a subset of [𝑡0,∞) × 𝐶𝑚
𝜏 (𝐷) and 𝐺 is Lipschitzian on 𝒞* (say, with a Lipschitz

constant 𝐾). Define a continuous function �̄� on [𝑡0 − 𝜏, 𝑡0 + 𝑎] → R𝑚 by

�̄�(𝑡) =

⎧⎨⎩ 𝜙(𝑡− 𝑡0) for 𝑡0 − 𝜏 ≤ 𝑡 ≤ 𝑡0,

𝜙(0) for 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎.

Then, 𝐺(𝑡, �̄�𝑡) depends continuously on 𝑡 and, hence, ‖𝐺(𝑡, �̄�𝑡)‖ ≤ 𝐵1 on [𝑡0, 𝑡0 + 𝑎]
for some constant 𝐵1.
Now define 𝐵 = 𝐾𝑏+𝐵1. Choose 𝑎1 ∈ (0, 𝑎] such that

‖�̄�𝑡 − 𝜙‖𝜏 = ‖�̄�𝑡 − �̄�𝑡0‖𝜏 ≤ 𝑏 for 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎1.

Choose Δ > 0 such that

Δ ≤ min{𝑎1, 𝑏/𝐵} and Δ < 1/𝐾.

Let 𝑆 be the set of all continuous functions 𝜒 : [𝑡0 − 𝜏, 𝑡0 + Δ] → R𝑚 such that

𝜒(𝑡) = 𝜙(𝑡− 𝑡0) for 𝑡0 − 𝜏 ≤ 𝑡 ≤ 𝑡0,

and
‖𝜒(𝑡) − 𝜙(0)‖ ≤ 𝑏 for 𝑡0 ≤ 𝑡 ≤ 𝑡0 + Δ.

Note that, if 𝜒 ∈ 𝑆 and 𝑡 ∈ [𝑡0, 𝑡0 + Δ], then ‖𝜒𝑡 − �̄�𝑡‖𝑟 ≤ 𝑏; so that

‖𝐺(𝑡, 𝜒𝑡)‖ ≤ ‖𝐺(𝑡, 𝜒𝑡) −𝐺(𝑡, 𝜒𝑡)‖ + ‖𝐺(𝑡, 𝜒𝑡)‖ ≤ 𝐾‖𝜒𝑡 − 𝜒𝑡‖ +𝐵1 ≤ 𝐵.

For each 𝜒 ∈ 𝑆, define a function 𝑇𝜒 on [𝑡0 − 𝜏, 𝑡0 + Δ] by

(𝑇𝜒)(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝜙(𝑡− 𝑡0) for 𝑡0 − 𝜏 ≤ 𝑡 ≤ 𝑡0,

𝜙(0) +
∫︁ 𝑡

𝑡0
𝐺(𝑠, 𝜒𝑠)d𝑠 for 𝑡0 ≤ 𝑡 ≤ 𝑡0 + Δ.

Then, since ‖𝐺(𝑠, 𝜒𝑠)‖ ≤ 𝐵,

‖(𝑇𝜒)(𝑡) − 𝜙(0)‖ ≤ 𝐵Δ ≤ 𝑏 for 𝑡0 ≤ 𝑡 ≤ 𝑡0 + Δ.

Also, 𝑇𝜒 is continuous. Thus, 𝑇𝜒 ∈ 𝑆 and we can say that 𝑇 maps 𝑆 → 𝑆.
Let us now construct “successive approximations” in the usual manner - choosing
any 𝑥(0) ∈ 𝑆 and then defining

𝑥(1) = 𝑇𝑥(0), 𝑥(2) = 𝑇𝑥(1), . . . .
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Bear in mind that

𝑥(ℓ) = 𝜙(𝑡− 𝑡0), ℓ = 0, 1, 2, . . . on [𝑡0 − 𝜏, 𝑡0].

Let us prove that the sequence {𝑥(ℓ)} converges. For each ℓ = 0, 1, 2, . . . , when
𝑡0 ≤ 𝑡 ≤ 𝑡0 + Δ:

‖𝑥(ℓ+2)(𝑡) − 𝑥(ℓ+1)(𝑡)‖ =
⃦⃦⃦⃦∫︁ 𝑡

𝑡0

[︁
𝐺(𝑠, 𝑥(ℓ+1)𝑠) −𝐺(𝑠, 𝑥(ℓ)𝑠)

]︁
d𝑠
⃦⃦⃦⃦

≤

𝐾Δ · sup
𝑡0≤𝑠≤𝑡0+Δ

‖𝑥(ℓ+1)(𝑡) − 𝑥(ℓ)(𝑡)‖.

From this and the fact that

‖𝑥(1)(𝑡) − 𝑥(0)(𝑡)‖ ≤ 2𝑏

one finds, for 𝑡0 ≤ 𝑡 ≤ 𝑡0 + Δ,

‖𝑥(2)(𝑡) − 𝑥(1)(𝑡)‖ ≤ 2𝑏𝐾Δ,
‖𝑥(3)(𝑡) − 𝑥(2)(𝑡)‖ ≤ 2𝑏(𝐾Δ)2,

and, by induction

‖𝑥(ℓ+1)(𝑡) − 𝑥(ℓ)(𝑡)‖ ≤ 2𝑏(𝐾Δ)ℓ, ℓ = 0, 1, 2, . . . .

Now, since the series
∞∑︁

𝑝=0
‖𝑥(𝑝+1)(𝑡) − 𝑥(𝑝)(𝑡)‖ ≤

∞∑︁
𝑝=0

2𝑏(𝐾Δ)𝑝

converges, the convergence of the sequence {𝑥(ℓ)} follows by applying the comparison
test to each component of

𝑥(ℓ)(𝑡) = 𝑥(0)(𝑡) +
ℓ−1∑︁
𝑝=0

[︁
𝑥(𝑝+1)(𝑡) − 𝑥(𝑝)(𝑡)

]︁

on [𝑡0, 𝑡0 + Δ]. The proof that

𝑥(𝑡) ≡ lim
ℓ→∞

𝑥(ℓ)(𝑡)

satisfies the equation (1.4) is much the same as in the case of ordinary differential
equations and we omit it. �

Definition 1.3.6. Let 𝑥 on [𝑡0−𝜏, 𝛽1) and 𝑦 on [𝑡0−𝜏, 𝛽2), 𝛽2 > 𝑡0, both be solutions
of the initial problem (1.1), (1.2). If 𝛽2 > 𝛽1, we say 𝑦 is a continuation of 𝑥, or 𝑥
can be continued to [𝑡0 − 𝜏, 𝛽2). A solution 𝑥(𝑡) of the initial problem (1.1), (1.2) is
noncontinuable (on an interval [𝑡0 − 𝜏,∞)) if it has no continuation.
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Theorem 1.3.7. (Extended Existence) Let 𝐺 : [𝑡0,∞) × 𝐶𝑚
𝜏 (𝐷) → R𝑚 satisfy

Condition (C) and let it be locally Lipschitzian and quasi-bounded. Then, for each
𝜙 ∈ 𝐶𝑚

𝜏 (𝐷), the problem (1.1), (1.2) has a unique noncontinuable solution 𝑥 on
[𝑡0 − 𝜏, 𝛽1); if 𝛽1 < ∞, then, for every closed bounded set 𝐴 ⊂ 𝐷, 𝑥(𝑡) /∈ 𝐴 for some
𝑡 in (𝑡0, 𝛽1).

Definition 1.3.8. The trivial solution of (1.1) is said to be stable at 𝑡0 ≥ 𝛼 (in
the sense of Lyapunov) if, for each 𝜀 > 0, there exists 𝛿 = 𝛿(𝜀, 𝑡0) > 0 such that,
whenever ‖𝜙‖𝜏 < 𝛿, the solution 𝑥(𝑡; 𝑡0, 𝜙) exists on [𝑡0 − 𝜏,∞) and

‖𝑥(𝑡; 𝑡0, 𝜙)‖ < 𝜀

for all 𝑡 ≥ 𝑡0 − 𝜏 . Otherwise, the trivial solution is said to be unstable at 𝑡0. The
trivial solution of (1.1) is said to be uniformly stable on [𝛼,∞) if it is stable at each
𝑡0 ≥ 𝛼 and the number 𝛿 is independent of 𝑡0, i.e., 𝛿 = 𝛿(𝜀) depends only on 𝜀.

Definition 1.3.9. Let �̄� : (𝛼− 𝜏,∞) → 𝐷 satisfy the equation (1.1) on [𝛼,∞). We
say that �̄� is stable at 𝑡0 ≥ 𝛼 (in the sense of Lyapunov) if, for each 𝜀 > 0, there
exists a 𝛿 = 𝛿(𝜀, 𝑡0) > 0 such that, whenever ‖𝜙− �̄�𝑡0‖𝜏 < 𝛿, it follows that 𝑥(·; 𝑡0, 𝜙)
exists on [𝑡0 − 𝜏,∞) and

‖𝑥(𝑡; 𝑡0, 𝜙) − �̄�(𝑡)‖ < 𝜀

for all 𝑡 ≥ 𝑡0 − 𝜏 . Otherwise, the solution �̄� is said to be unstable at 𝑡0 (in the sense
of Lyapunov). The solution �̄� of (1.1) is said to be uniformly stable on [𝛼,∞) if it is
stable at each 𝑡0 ≥ 𝛼 and the number 𝛿 is independent of 𝑡0, i.e., 𝛿 = 𝛿(𝜀) depends
only on 𝜀.

Definition 1.3.10. The trivial solution of (1.1) is said to be uniformly
asymptotically stable if it is uniformly stable and there exists a 𝛿1 (independent
of 𝑡0) such that, whenever 𝑡0 ≥ 𝛼 and ‖𝜙‖𝜏 < 𝛿1, the expression

𝑥(𝑡; 𝑡0, 𝜙)

tends to 0 as 𝑡 → ∞ in the following manner:
For each 𝜂 > 0, there exists 𝑇 = 𝑇 (𝜂) > 0 (independent of 𝑡0) such that

‖𝑥(𝑡; 𝑡0, 𝜙)‖ < 𝜂

for all 𝑡 ≥ 𝑡0 + 𝑇 .

1.3.2 Lyapunov functionals

The following definitions are related to the estimation of functionals. Throughout
the thesis, we will denote by 𝑉 = 𝑉 (𝑡, 𝑥𝑡) a functional such that

𝑉 : [𝑡0,∞) × 𝐶𝑚
𝜏 → R. (1.5)
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Definition 1.3.11. Let a functional 𝑉 be given. It is called positive-definite if there
exists a continuous non-decreasing function 𝑤 : [0,𝑀) −→ R, 𝑤(0) = 0, 𝑤(𝑠) > 0 if
𝑠 ∈ (0,𝑀) such that

𝑉 (𝑡, 𝜓) ≥ 𝑤(‖𝜓(0)‖) (1.6)

on (𝛼,∞) × 𝐶𝑚
𝜏 (𝐷).

Definition 1.3.12. Let a functional 𝑉 be given. 𝑉 is said to have an infinitesimal
upper bound if there exists a continuous non-decreasing function 𝑊 : [0,𝑀) −→ R,
𝑊 (0) = 0, 𝑊 (𝑠) > 0 if 𝑠 ∈ (0,𝑀) such that

𝑉 (𝑡, 𝜓) ≤ 𝑊 (‖𝜓‖𝜏 ) (1.7)

on (𝛼,∞) × 𝐶𝑚
𝜏 (𝐷).

Definition 1.3.13. A positive-definite functional 𝑉 having an infinitesimal upper
bound is called a Lyapunov-Krasovskii functional.

To illustrate Definitions 1.3.11, 1.3.12 we set

𝑉 (𝑡, 𝜓) = 𝜓2(0) + |𝑎|
∫︁ 0

−𝑟
𝜓2(𝜎) d𝜎,

where 𝑎 ̸= 0, 𝜓 ∈ 𝐶𝑚
𝜏 . For the functional 𝑉 , the following estimates hold. Since

𝑉 (𝑡, 𝜓) = 𝜓2(0) + |𝑎|
∫︁ 0

−𝜏
𝜓2(𝜎) d𝜎 ≥ 𝜓2(0) = ‖𝜓(0)‖2 = 𝑤(‖𝜓(0)‖),

where 𝑤(𝑠) = 𝑠2 and 𝑤 satisfies all necessary conditions, 𝑉 is positive-definite.
Moreover,

𝑉 (𝑡, 𝜓) = 𝜓2(0) + |𝑎|
∫︁ 0

−𝜏
𝜓2(𝜎) d𝜎

≤ ‖𝜓‖2
𝜏 + |𝑎|

∫︁ 0

−𝜏
‖𝜓‖2

𝜏 d𝜎

= (1 + |𝑎|𝜏)‖𝜓‖2
𝜏 = (1 + |𝑎|𝜏)𝑊 (‖𝜓‖𝜏 ),

where 𝑊 (𝑠) = (1 + |𝑎|𝜏)𝑠2 and 𝑊 satisfies all necessary conditions, too. Thus, 𝑉
has an infinitesimal upper bound.

Definition 1.3.14. Let 𝑥 : [𝑡0 −𝜏,∞) → R𝑚. The derivative of a functional 𝑉 (𝑡, 𝑥𝑡)
at a point 𝑡 ≥ 𝑡0 is defined as

d𝑉 (𝑡, 𝑥𝑡)
d𝑡 := lim

Δ→0

𝑉 (𝑡+ Δ, 𝑥𝑡+Δ) − 𝑉 (𝑡, 𝑥𝑡)
Δ ,

provided that the limit exists and is finite.
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Below we assume that there exists the derivative d𝑉 (𝑡, 𝑥𝑡)/d𝑡 of the functional
𝑉 (𝑡, 𝑥𝑡) along the trajectories of the differential delayed systems considered, that
is, we will assume that 𝑥 is a solution of a given system.

Theorem 1.3.15. If there exists a Lyapunov-Krasovskii functional 𝑉 and if it
defines a non-increasing function of 𝑡 on [𝑡0,∞) whenever

𝑥 = 𝑥(·; 𝑡0, 𝜙), 𝑡 ∈ [𝑡0 − 𝜏,∞)

is the noncontinuable solution of (1.1) through some (𝑡0, 𝜙) ∈ [𝛼,∞)×𝐶𝑚
𝜏 (𝐷), then

the trivial solution of (1.1) is uniformly stable.

Proof. If, for a given 𝜀, we prove that, for a family of solutions 𝑥 defined by
"small" initial functions, the inequality

𝑤(‖𝑥(𝑡)‖) ≤ 𝑤(𝜀)

holds, then we get
‖𝑥(𝑡)‖ ≤ 𝜀

since 𝑤 is a non-decreasing function. It leads to the stability of a trivial solution.
Let 𝜀 > 0 be given. Without loss of generality we shall assume 0 < 𝜀 < 𝑀 . Then,
𝑤(𝜀) > 0 and, as 𝑊 is continuous, we can choose 𝛿 = 𝛿(𝜀) ∈ (0, 𝜀) such that

𝑊 (𝛿) < 𝑤(𝜀). (1.8)

Now consider any (𝑡0, 𝜙) ∈ [𝛼,∞) × 𝐶𝑚
𝜏 (𝐷) with ‖𝜙‖𝜏 < 𝛿. Equation (1.1) has a

unique noncontinuable solution 𝑥 = 𝑥(·; 𝑡0, 𝜙) through (𝑡0, 𝜙) on [𝑡0 −𝜏, 𝛽1) for some
𝛽1 > 𝑡0. Thus, using the assumptions of the theorem and condition (1.8), we find
for 𝑡0 ≤ 𝑡 < 𝛽1:

𝑤(‖𝑥(𝑡)‖) ≤ 𝑉 (𝑡, 𝑥𝑡) ≤ 𝑉 (𝑡0, 𝜙) ≤ 𝑊 (‖𝜙‖𝜏 ) ≤ 𝑊 (𝛿) < 𝑤(𝜀).

Now, since 𝑤 is a non-decreasing function, this can hold only if

‖𝑥(𝑡)‖ < 𝜀

for 𝑡0 ≤ 𝑡 < 𝛽1. Thus, from Theorem 1.3.7, it follows that 𝛽1 = ∞ and the assertion
of the theorem is proved. �

In the work, we need the following theorem, taken from [23, Theorem C, p. 366].

Theorem 1.3.16. Let 𝑤1 be a continuous non-decreasing function on [0,𝑀) which
is zero at 0 and positive on (0,𝑀). Let ‖𝐺(𝑡, 𝜙)‖ ≤ 𝐵 for some constant 𝐵 > 0
for all (𝑡, 𝜙) ∈ [𝛼,∞) × 𝐶𝑚

𝜏 (𝐷). If there exists a Lyapunov-Krasovskii functional 𝑉
such that, whenever (𝑡0, 𝜙) ∈ [𝛼,∞) × 𝐶𝑚

𝜏 (𝐷) and 𝑥 = 𝑥(·; 𝑡0, 𝜙) on [𝑡0 − 𝜏,∞), we
have

d
d𝑡𝑉 (𝑡, 𝑥𝑡) ≤ −𝑤1(‖𝑥(𝑡)‖) (1.9)

for 𝑡 ∈ [𝑡0,∞), then the trivial solution of (1.1) is uniformly asymptotically stable.
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Proof. The required uniform stability follows from Theorem 1.3.15. Select and fix
some 𝑀1 ∈ (0,𝑀). Then, choose 𝛿1 > 0 independent of 𝑡0 such that

𝑊 (𝛿1) < 𝑤(𝑀1).

(It follows that 𝛿1 < 𝑀1.)
Let an arbitrary 𝜂 ∈ (0, 𝛿1] be given and let 𝛾 > 0 satisfy 𝑊 (𝛾) < 𝑤(𝜂). Then,
0 < 𝛾 < 𝜂 ≤ 𝛿1. Choose a positive integer

𝐾 >
𝑊 (𝛿1)

𝑤1(𝛾/2)𝛾 · 2𝐵,

and define 𝑇 (𝜂) = 𝐾𝜏1 where 𝜏1 = max{𝜏, 𝛾/𝐵}.
Now let 𝑥 = 𝑥(·; 𝑡0, 𝜙) be the solution of equation (1.1) through any (𝑡0, 𝜙) ∈
[𝛼,∞) × 𝐶𝑚

𝜏 (𝐷) with ‖𝜙‖𝜏 < 𝛿1. Then, it follows from the uniform stability proof
and the choice of 𝛿1 that 𝑥 exists and

‖𝑥(𝑡)‖ ≤ 𝑀1 < 𝑀

for all 𝑡 ≥ 𝑡0 − 𝜏 . Now we show that for some 𝑡1 ∈ [𝑡0, 𝑡0 + 𝑇 (𝜂)], we have

‖𝑥𝑡1‖𝜏 < 𝛾.

Suppose that, on the contrary,

‖𝑥𝑡‖𝜏 ≥ 𝛾 for all 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 (𝜂)]. (1.10)

From the assumptions of the theorem, we have ‖𝐺(𝑡, 𝜙)‖ ≤ 𝐵 for a 𝐵 > 0 and for
all (𝑡, 𝜙) ∈ [𝛼,∞) × 𝐶𝑚

𝜏 (𝐷). It means that

‖𝑥′(𝑡)‖ = ‖𝐺(𝑡, 𝑥𝑡)‖ ≤ 𝐵

for every solution 𝑥 = 𝑥(𝑡) such that 𝑥𝑡 ∈ 𝐶𝑚
𝜏 (𝐷). Since

‖𝑥′(𝑡)‖ = max
𝑖=1,...,𝑚

{|𝑥′
𝑖(𝑡)|} ≤ 𝐵, 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 (𝜂)],

we have
|𝑥′

𝑖(𝑡)| ≤ 𝐵, 𝑖 = 1, ...,𝑚, 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 (𝜂)]. (1.11)

From (1.11) we get

−𝐵 ≤ 𝑥′
𝑖(𝑡) ≤ 𝐵, 𝑖 = 1, ...,𝑚, 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 (𝜂)]. (1.12)

Integrating (1.12) over an interval (𝑡0, 𝑡0 + 𝜀), where 𝜀 < 𝑇 (𝜂), we obtain

−𝐵𝜀 ≤ 𝑥𝑖(𝑡+ 𝜀) − 𝑥𝑖(𝑡) ≤ 𝐵𝜀, 𝑖 = 1, ..., 𝑛, 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 (𝜂) − 𝜀]. (1.13)
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From (1.10) it follows that there exists an index 𝑖 = 𝑖* ∈ {1, ...,𝑚} and 𝑡 ∈ [𝑡0, 𝑡0 +
𝑇 (𝜂) − 𝜀]

𝑥𝑖*(𝑡) ≥ 𝛾

and (1.13) gives
𝑥𝑖*(𝑡+ 𝜀) ≥ 𝑥𝑖*(𝑡) −𝐵𝜀 ≥ 𝛾 −𝐵𝜀.

For 𝜀 ∈ [0, 𝛾/2𝐵] we have
𝑥𝑖*(𝑡+ 𝜀) ≥ 𝛾

2
and we conclude that, on an interval [𝑡, 𝑡+ 𝛾/2𝐵], the inequality

‖𝑥(𝑡)‖ ≥ 𝛾

2

holds. Then,
d
d𝑡𝑉 (𝑡, 𝑥𝑡) ≤ −𝑤1(‖𝑥(𝑡)‖) ≤ −𝑤1(𝛾/2)

and, integrating the last inequality over interval (𝑡0, 𝑡), we derive

𝑉 (𝑡, 𝑥𝑡) − 𝑉 (𝑡0, 𝑥𝑡0) = 𝑉 (𝑡, 𝑥𝑡) − 𝑉 (𝑡0, 𝜙) ≤ −𝑤1(𝛾/2)(𝑡− 𝑡0)

or
𝑉 (𝑡, 𝑥𝑡) ≤ 𝑉 (𝑡0, 𝜙) − 𝑤1(𝛾/2)(𝑡− 𝑡0) ≤

≤ 𝑉 (𝑡0, 𝜙) − 𝑤1(𝛾/2)𝑇 (𝜂) = 𝑉 (𝑡0, 𝜙) − 𝑤1(𝛾/2)𝐾𝜏1.

Since ‖𝜙‖𝜏 < 𝛿1 and 𝑉 (𝑡0, 𝜙) ≤ 𝑊 (‖𝜙‖𝜏 ) ≤ 𝑊 (𝛿1), we get

𝑉 (𝑡, 𝑥𝑡) ≤ 𝑉 (𝑡0, 𝜙) −𝐾𝑤1(𝛾/2)𝛾/(2𝐵) < 𝑊 (𝛿1) −𝑊 (𝛿1) = 0.

This inequality contradicts the definition of 𝑉 (𝑡, 𝜙).
From the fact that ‖𝑥𝑡1‖𝜏 < 𝛾 for some 𝑡1 ∈ [𝑡0, 𝑡0 + 𝑇 (𝜂)], it follows that, for all
𝑡 ≥ 𝑡1,

𝑤(‖𝑥(𝑡)‖) ≤ 𝑉 (𝑡, 𝑥𝑡) ≤ 𝑉 (𝑡1, 𝑥𝑡1) ≤ 𝑊 (𝛾) < 𝑤(𝜂).

Thus, for all 𝑡 ≥ 𝑡1, and in particular for all 𝑡 ≥ 𝑡0 + 𝑇 (𝜂),

‖𝑥(𝑡)‖ < 𝜂

as required for uniform asymptotic stability. �
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2 OPTIMIZATION IN NON-DELAYED CASE
In this part, we will investigate a stabilization problem for a system of differential
equations without delay. We will be looking for a control function for these systems
that satisfies all the desired conditions, such as the best possible quality of a
transition process and a minimum value of a quality criterion. A Lyapunov function
will be used. Below in parts 2.1 and 2.2 we denote by 𝐻 a positive number. Parts
2.1 and 2.2 are modifications of parts of [45]. We will use the original concepts and
definitions of [45].

2.1 Formulation of the problem
Consider a system of non-delayed functional differential equations

𝑥′(𝑡) = 𝐹 (𝑡, 𝑥) , (2.1)

where 𝐹 : D1 → R𝑚,

D1 := {(𝑡, 𝑥) ∈ [𝑡0,∞) × R𝑚, ‖𝑥‖ ≤ 𝐻}.

Assume that 𝐹 is continuous and satisfies a local Lipschitz condition with respect
to 𝑥.
For controllability problems we will consider systems (2.1) with explicitly indicated
control functions in the form

𝑥′(𝑡) = 𝑓 (𝑡, 𝑥, 𝑢) , (2.2)

where 𝑓 : D → R𝑚, 𝑓(𝑡,Θ𝑚,Θ𝑟) = Θ𝑚,

D := {(𝑡, 𝑥, 𝑢) ∈ [𝑡0,∞) × R𝑚 × R𝑟, ‖𝑥‖ ≤ 𝐻}.

Applied stabilization problems with the requirement of asymptotic stability of a
given motion described by the system of differential equations (2.2) require the best
possible quality of the transition process. The best quality criterion is very often
formulated minimizing the integral

𝐼 =
∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥, 𝑢)d𝑡, (2.3)

where 𝜔 : D → R. Frequently, the integrand is assumed to have a quadratic form

𝜔(𝑡, 𝑥, 𝑢) = 𝑥𝑇𝐶𝑥+ 𝑢𝑇𝐷𝑢

with a positive-definite constant 𝑚×𝑚 matrix 𝐶 and an 𝑟 × 𝑟 matrix 𝐷.
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Problem 2.1.1. The optimal control problem is formulated as follows. Find a
function 𝑢 = 𝑢0 such that the quality criterion (2.3) is fufilled and the trivial solution
of (2.2) is asymptotically stable.
In other words, let a quality criterion of a process 𝑥(𝑡) in the form (2.3) be fixed. It
is necessary to find a control function 𝑢 = 𝑢0 ensuring the asymptotic stability of
non-perturbed motion 𝑥(𝑡) ≡ 0 such that, for any other admissible control function
𝑢 = 𝑢*, the inequality ∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥, 𝑢0)d𝑡 ≤

∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥, 𝑢*)d𝑡

holds. The function 𝑢 = 𝑢0 is called an optimal control function.

Definition 2.1.2. Let 𝑉 : [𝑡0,∞) × R𝑚 → [𝑡0,∞) be a continuous function. Then,
𝑉 is called a Lyapunov function if it is a locally positive-definite function, i.e.

𝑉 (𝑡0, 0) = 0, 𝑉 (𝑡0, 𝑥) > 0 for ∀(𝑡, 𝑥) ∈ [𝑡0,∞) × 𝑈∖{0}

with 𝑈 being a neighbourhood region around 𝑥 = 0.

Definition 2.1.3. Let 𝑉 be a Lyapunov function by Definition 2.1.2. 𝑉 is said
to have an infinitesimal upper bound if there exists a continuous non-decreasing
function 𝑊 : [0, 𝐻) −→ R, 𝑊 (0) = 0, 𝑊 (𝑠) > 0 if 𝑠 ∈ (0, 𝐻) such that

𝑉 (𝑡, 𝑥) ≤ 𝑊 (‖𝑥‖)

on [𝑡0,∞) × R𝑚.

Theorem 2.1.4. If a function 𝑉 can be found for the differential equations of
the disturbed motion (2.2) satisfying Definition 2.1.2 for which the derivative with
respect to time based on these equations d𝑉/d𝑡 is negative and the function 𝑉 itself
permits an infinitesimal upper bound, then the undisturbed motion is asymptotically
stable.

2.2 Malkin’s result
Define an auxiliary function 𝐵 : D2 → R,

D2 : = {(𝑣, 𝑡, 𝑥, 𝑢) ∈ R × [𝑡0,∞) × R𝑚 × R𝑟, ‖𝑥‖ ≤ 𝐻},

by the formula
𝐵 (𝑉, 𝑡, 𝑥, 𝑢) := d𝑉 (𝑡, 𝑥)

d𝑡 + 𝜔(𝑡, 𝑥, 𝑢), (2.4)

where 𝑉 is a Lyapunov function.
Let us formulate the main theorem of optimal stabilization presented in [45, p.
475–514] utilizing the second Lyapunov method as applied to ordinary differential
equations.
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Theorem 2.2.1. Assume that, for the system of differential equations (2.2), there
exists a Lyapunov function 𝑉0(𝑡, 𝑥) having an infinitesimal upper bound and a
function 𝑢0 such that
𝑖) the function 𝜔(𝑡, 𝑥, 𝑢) is positive-definite for every 𝑡 ≥ 𝑡0, ‖𝑥‖ < 𝐻, 𝑢 ∈ R𝑟;

𝑖𝑖) 𝐵 (𝑉0, 𝑡, 𝑥, 𝑢0) ≡ 0;

𝑖𝑖𝑖) 𝐵 (𝑉0, 𝑡, 𝑥, 𝑢) ≥ 0 for any 𝑢 ̸≡ 𝑢0.

Then, the function 𝑢0 is a solution of the optimal control problem and∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥, 𝑢0)d𝑡 = min

𝑢

[︂∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥, 𝑢)d𝑡

]︂
= 𝑉0(𝑡0, 𝑥). (2.5)

Proof. For 𝑢 = 𝑢0, the function 𝑉0(𝑡, 𝑥) satisfies all conditions of the second
Lyapunov theorem 2.1.4. For its derivative along the trajectories of the system (2.2),
we have (see assumption 𝑖𝑖) of the theorem)

d𝑉0

d𝑡 = −𝜔(𝑡, 𝑥, 𝑢0), (2.6)

which means that it is a negative-definite function. That is why, for 𝑢 = 𝑢0, the
undisturbed motion 𝑥(𝑡) ≡ 0 is, by Theorem 2.1.4, asymptotically stable and
lim𝑡→∞ 𝑥(𝑡) = 0 for all initial conditions 𝑥(𝑡0) of the region ‖𝑥(𝑡0)‖ ≤ 𝜂.
Now it is sufficient to show that (2.5) is true. Let a motion 𝑥0(𝑡) satisfy the condition
‖𝑥0(𝑡)‖ ≤ ℎ < 𝐻. Obviously, 𝜂 ≤ ℎ. Thus, during this motion, for all 𝑡 ≥ 𝑡0, the
equation (2.6) holds. Moreover, from the property of asymptotic stability and, by
Definition 2.1.3, we have

lim
𝑡→∞

𝑉0(𝑡, 𝑥0(𝑡)) = 0. (2.7)

Integrating equation (2.6) along the motion 𝑥0(𝑡) over (𝑡0,∞), using (2.7), we obtain

𝑉0(𝑡0, 𝑥0(𝑡0)) =
∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥0(𝑡), 𝑢0)d𝑡. (2.8)

On the other hand, let 𝑢 = 𝑢* be an arbitrary function that is also a solution of
the optimal stabilization problem for the motion 𝑥(𝑡) ≡ 0 and for initial conditions
‖𝑥(𝑡0)‖ ≤ 𝜂. Assume that, for 𝑡 ≥ 𝑡0, 𝑥*(𝑡) lies inside the region ‖𝑥(𝑡)‖ ≤ ℎ. Then,
by assumption 𝑖𝑖𝑖), we get

d𝑉0

d𝑡 ≥ −𝜔(𝑡, 𝑥*(𝑡), 𝑢*). (2.9)

Integrating this inequality over (𝑡0,∞) and using the property

lim
𝑡→∞

𝑉0(𝑡, 𝑥*(𝑡)) = 0, (2.10)

we obtain
𝑉0(𝑡0, 𝑥*(𝑡0)) ≤

∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥*(𝑡), 𝑢*)d𝑡. (2.11)
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A similar inequality can be obtained if the motion 𝑥*(𝑡) goes out of the region
‖𝑥(𝑡)‖ ≤ ℎ on an interval. In this case, we have the following situation. Let 𝜐 > 𝑡0

be the moment of time, when the motion 𝑥*(𝑡) goes back into the region ‖𝑥(𝑡)‖ ≤ ℎ

and stays in it for all 𝑡 ≥ 𝜐. Then, from that moment on, the equation (2.9) will
hold for 𝑥*(𝑡). Integrating this inequality over (𝜐,∞) and using the equation (2.10)
again, we obtain

𝑉0(𝜐, 𝑥*(𝜐)) ≤
∫︁ ∞

𝜐
𝜔(𝑡, 𝑥*(𝑡), 𝑢*)d𝑡. (2.12)

Since 𝑥(𝑡0) satisfies ‖𝑥(𝑡0)‖ ≤ 𝜂, where 𝜂 is sufficiently small, we have

𝑉0(𝑡0, 𝑥*(𝑡0)) < 𝑉0(𝜐, 𝑥*(𝜐)), (2.13)

and, due to assumption 𝑖), we get∫︁ ∞

𝜐
𝜔(𝑡, 𝑥*(𝑡), 𝑢*)d𝑡 <

∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥*(𝑡), 𝑢*)d𝑡. (2.14)

From (2.12)–(2.14), we derive (2.11), and from (2.8), (2.11) we get (2.5). �

Remark 2.2.2. The proof of Theorem 2.2.1 is taken from the book [45]. The
inequality (2.13) here is not proved in detail. In the generalization for delayed
equations, there is a more detailed proof of generalized inequality (see (3.30), (3.31))
from which the inequality (2.13) follows.

2.3 Applications to linear equations and systems
In this part, we apply Theorem 2.2.1 to a class of ordinary differential equations and
their systems. The results derived are not included in [45].

2.3.1 Non-delayed equations

Consider a scalar equation
𝑥′(𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑢, (2.15)

where 𝑎 and 𝑏 (𝑏 ̸= 0) are real constants. Together with the equation (2.15), we will
consider the quality criterion (2.3) with

𝜔(𝑡, 𝑥, 𝑢) = 𝑐𝑥2(𝑡) + 𝑑𝑢2,

where 𝑐 > 0, 𝑑 > 0, that is,

𝐼 =
∫︁ ∞

𝑡0
(𝑐𝑥2(𝑡) + 𝑑𝑢2)d𝑡. (2.16)
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Theorem 2.3.1. If, for the optimal control problem (2.15), (2.16), a Lyapunov
function in the form

𝑉 (𝑡, 𝑥) = ℎ𝑥2(𝑡),

where
ℎ = 𝑎𝑑+

√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑏2

is used, then the optimal control function is

𝑢0 = −ℎ𝑏

𝑑
𝑥(𝑡). (2.17)

Proof. We need to find a control function 𝑢 = 𝑢0 for which the equation (2.15) with
𝑢 = 𝑢0 is asymptotically stable and a given integral quality criterion (2.16) attains a
minimum value. Solving this problem, we need to write an auxiliary functional 𝐵 by
formula (2.4), which should be non-negative due to condition 𝑖𝑖𝑖) of Theorem 2.2.1.
We obtain

𝐵(𝑉, 𝑡, 𝑥, 𝑢) =2ℎ𝑥(𝑡)(𝑎𝑥(𝑡) + 𝑏𝑢) + 𝑐𝑥2(𝑡) + 𝑑𝑢2

=(2ℎ𝑎+ 𝑐)𝑥2(𝑡) + 2ℎ𝑏𝑥(𝑡)𝑢+ 𝑑𝑢2 ≥ 0.

So we need

2ℎ𝑎+ 𝑐 ≥ 0,
(2ℎ𝑎+ 𝑐)𝑑− ℎ2𝑏2 ≥ 0. (2.18)

Moreover, 𝐵(𝑉, 𝑡, 𝑥𝑡, 𝑢0) ≡ 0 due to condition 𝑖𝑖) of Theorem 2.2.1, so

𝑑𝑢2
0 + 2ℎ𝑏𝑥(𝑡)𝑢0 + (2ℎ𝑎+ 𝑐)𝑥2(𝑡) ≡ 0

and
𝑢0 = −ℎ𝑏

𝑑
𝑥(𝑡) ± 𝑥(𝑡)

𝑑

√︁
ℎ2𝑏2 − 𝑑(2ℎ𝑎+ 𝑐).

For optimal control function existence, the below inequality should hold

ℎ2𝑏2 − 𝑑(2ℎ𝑎+ 𝑐) ≥ 0,

which is the opposite of inequality (2.18). So

ℎ2𝑏2 − 𝑑(2ℎ𝑎+ 𝑐) = 0,

and
ℎ = 𝑎𝑑+

√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑏2 .

Then,
𝑢0 = −ℎ𝑏

𝑑
𝑥(𝑡).

�
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Remark 2.3.2. System (2.15) with 𝑢 = 𝑢0 given by (2.17) takes the form

𝑥′(𝑡) =
(︃
𝑎− ℎ𝑏

𝑑

)︃
𝑥(𝑡).

Example 2.3.3. Consider the equation (2.15) with 𝑎 = −1, 𝑏 = 2, i.e.,

𝑥′(𝑡) = −𝑥(𝑡) + 2𝑢 (2.19)

with the quadratic quality criterion (2.16), where 𝑐 = 1, 𝑑 = 1, 𝑡0 = 0, i.e.,

𝐼 =
∫︁ ∞

0
(𝑥2(𝑡) + 𝑢2)d𝑡.

By Theorem 2.3.1, an optimal control function is in the form

𝑢0 = 1 −
√

5
2 𝑥(𝑡)

and the equation (2.15), (2.19) with this control is

𝑥′(𝑡) = −
√

5𝑥(𝑡).

By Theorem 2.3.1, the control function for the problem (2.15), (2.16) is given by
formula (2.17). In the following example, we demonstrate this statement within a
class of control functions.

Example 2.3.4. Consider the equation

𝑥′(𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑢, (2.20)

where 𝑏 ̸= 0, with the quadratic quality criterion (2.16) with 𝑡0 = 0, i.e.,

𝐼 =
∫︁ ∞

0
(𝑐𝑥2(𝑡) + 𝑑𝑢2)d𝑡. (2.21)

An optimal control function by formula (2.17) is in the form

𝑢0 = −ℎ𝑏

𝑑
𝑥(𝑡) = −𝑎𝑑+

√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑏𝑑
𝑥(𝑡). (2.22)

After substituting it into equation (2.20), we obtain

𝑥′(𝑡) = 𝑎𝑥(𝑡) − 𝑎𝑑+
√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑑
𝑥(𝑡),

that is,
𝑥′(𝑡) = −1

𝑑

√
𝑎2𝑑2 + 𝑏2𝑐𝑑𝑥(𝑡),

which has the general solution in the form:

𝑥(𝑡) = 𝑥(0)𝑒
−

√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑑
𝑡
.
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Using it to find the value of the quality criterion (2.21) with 𝑢 = 𝑢0, we obtain

𝐼 =
∫︁ ∞

0

(︃
𝑐+ (𝑎𝑑+

√
𝑎2𝑑2 + 𝑏2𝑐𝑑)2

𝑏2𝑑

)︃
𝑥2(𝑡)d𝑡

=𝑏
2𝑐𝑑+ (𝑎𝑑+

√
𝑎2𝑑2 + 𝑏2𝑐𝑑)2

𝑏2𝑑

∫︁ ∞

0
𝑥2(0)𝑒

−2
√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑑
𝑡
d𝑡

=𝑥2(0)𝑏
2𝑐𝑑+ (𝑎𝑑+

√
𝑎2𝑑2 + 𝑏2𝑐𝑑)2

𝑏2𝑑

⎛⎜⎜⎜⎜⎜⎝−𝑑𝑒
−2

√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑑
𝑡

2
√
𝑎2𝑑2 + 𝑏2𝑐𝑑

⎞⎟⎟⎟⎟⎟⎠

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
∞

0

=𝑥2(0)𝑏
2𝑐𝑑+ (𝑎𝑑+

√
𝑎2𝑑2 + 𝑏2𝑐𝑑)2

𝑏2𝑑

𝑑

2
√
𝑎2𝑑2 + 𝑏2𝑐𝑑

=𝑥2(0)𝑏
2𝑐𝑑+ (𝑎𝑑+

√
𝑎2𝑑2 + 𝑏2𝑐𝑑)2

2𝑏2
√
𝑎2𝑑2 + 𝑏2𝑐𝑑

=𝑥2(0)𝑎𝑑+
√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑏2 = 𝑉 (0, 𝑥(0)). (2.23)

Now we show that (2.22) is the best possible control function in a class of functions.
Consider control functions in the form

𝑢𝜀 = 𝜀𝑥(𝑡),

where 𝜀 is a parameter. Again, we substitute it into equation (2.20) to get

𝑥′(𝑡) = (𝑎+ 𝑏𝜀)𝑥(𝑡). (2.24)

The general solution of the last equation is

𝑥(𝑡) = 𝑥(0)𝑒(𝑎+𝑏𝜀)𝑡.

Assume 𝑥(0) ̸= 0 and find the value of the quality criterion with a new control
function 𝑢𝜀.
If 𝑎+ 𝑏𝜀 > 0, then the integral

𝐼 =
∫︁ ∞

0

(︁
𝑐𝑥2(𝑡) + 𝑑𝑢2

𝜀

)︁
d𝑡 =

∫︁ ∞

0

(︁
𝑐+ 𝑑𝜀2

)︁
𝑥2(𝑡)d𝑡 =

∫︁ ∞

0

(︁
𝑐+ 𝑑𝜀2

)︁
𝑥2(0)𝑒2(𝑎+𝑏𝜀)𝑡d𝑡

=
(︁
𝑐+ 𝑑𝜀2

)︁
𝑥2(0)

[︃
lim
𝑡→∞

𝑒2𝑡(𝑎+𝑏𝜀)

2(𝑎+ 𝑏𝜀) − 1
2(𝑎+ 𝑏𝜀)

]︃
= +∞

is obviously divergent (note that 𝑐+𝑑𝜀2 > 0). If 𝑎+𝑏𝜀 = 0, then the integral diverges
as well since

𝐼 =
∫︁ ∞

0

(︁
𝑐+ 𝑑𝜀2

)︁
𝑥2(0)d𝑡 = +∞.
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For 𝑎+ 𝑏𝜀 < 0, equation (2.24) is asymptotically stable and we get

𝐼 = −
(︁
𝑐+ 𝑑𝜀2

)︁
𝑥2(0) 1

2(𝑎+ 𝑏𝜀) . (2.25)

Now we will show that the quality criterion (2.21) attains a minimum value for the
optimal control function 𝑢0 defined by (2.22). Comparing (2.23) with (2.25), we need
to prove that

𝑥2(0)𝑎𝑑+
√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑏2 ≤ −
(︁
𝑐+ 𝑑𝜀2

)︁
𝑥2(0) 1

2(𝑎+ 𝑏𝜀) (2.26)

or, after some simplification,

𝑎𝑑+
√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑏2 ≤ − 𝑐+ 𝑑𝜀2

2(𝑎+ 𝑏𝜀) . (2.27)

Define a function
𝑓(𝜀) := − 𝑐+ 𝑑𝜀2

2(𝑎+ 𝑏𝜀) ,

and find its minimum. First, the derivative 𝑓 ′(𝜀) will be equal to zero if

𝑓 ′(𝜀) = − 1
2(𝑎+ 𝑏𝜀)2

[︁
2𝑑𝜀(𝑎+ 𝑏𝜀) − (𝑐+ 𝑑𝜀2)𝑏

]︁
= − 1

2(𝑎+ 𝑏𝜀)2

[︁
2𝑎𝑑𝜀+ 𝑏𝑑𝜀2 − 𝑏𝑐

]︁
= 0. (2.28)

The equation (2.28) holds if

2𝑎𝑑𝜀+ 𝑏𝑑𝜀2 − 𝑏𝑐 = 0

and the roots 𝜀1, 𝜀2 are

𝜀1,2 = −𝑎𝑑±
√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑏𝑑
.

The assumption 𝑎+ 𝑏𝜀 < 0, that is in our case,

𝑎+ 𝑏𝜀1,2 = 𝑎+ 𝑏
−𝑎𝑑±

√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑏𝑑
= ±1

𝑑

√
𝑎2𝑑2 + 𝑏2𝑐𝑑 < 0

holds only for

𝜀2 = −𝑎𝑑−
√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑏𝑑
.

The function 𝑓(𝜀2) is equal to the left-hand side of inequality (2.27), since

𝑓(𝜀2) = − 𝑐+ 𝑑𝜀2
2

2(𝑎+ 𝑏𝜀2)
= 𝑑

𝑐+ 𝑑

(︃
−𝑎𝑑−

√
𝑎2𝑑2 + 𝑏2𝑐𝑑

𝑏𝑑

)︃2

2
√
𝑎2𝑑2 + 𝑏2𝑐𝑑
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= 𝑏2𝑐𝑑+ (𝑎𝑑+
√
𝑎2𝑑2 + 𝑏2𝑐𝑑)2

2𝑏2
√
𝑎2𝑑2 + 𝑏2𝑐𝑑

= 2𝑏2𝑐𝑑+ 2𝑎2𝑑2 + 2𝑎𝑑
√
𝑎2𝑑2 + 𝑏2𝑐𝑑

2𝑏2
√
𝑎2𝑑2 + 𝑏2𝑐𝑑

=
√
𝑎2𝑑2 + 𝑏2𝑐𝑑+ 𝑎𝑑

𝑏2 .

To show that it is a minimum value of the function 𝑓, we need to find the second
derivative

𝑓 ′′(𝜀2) =
[︃
− 1

2(𝑎+ 𝑏𝜀)4

[︁
(2𝑎𝑑+ 2𝑏𝑑𝜀)(𝑎+ 𝑏𝜀)2 − (2𝑎𝑑𝜀+ 𝑏𝑑𝜀2 − 𝑏𝑐)2(𝑎+ 𝑏𝜀)𝑏

]︁]︃⃒⃒⃒⃒⃒
𝜀=𝜀2

=
[︃
−𝑑(𝑏𝜀+ 𝑎)

(𝑎+ 𝑏𝜀)2 + 𝑏

(𝑎+ 𝑏𝜀)3 (2𝑎𝑑𝜀+ 𝑏𝑑𝜀2 − 𝑏𝑐)
]︃⃒⃒⃒⃒
⃒
𝜀=𝜀2

= − 𝑑

𝑎+ 𝑏𝜀2

and
𝑓 ′′(𝜀2) > 0.

So (2.26) holds and (2.22) yields the minimum value of the quality criterion (2.21).

2.3.2 Non-delayed systems with a scalar control function

Consider a linear system with a scalar control function:

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑏𝑢, (2.29)

where 𝐴 ∈ R𝑚×𝑚, 𝑏 ∈ R𝑚, 𝑥(𝑡) ∈ R𝑚, 𝑢 ∈ R. We need to find a control function
𝑢 = 𝑢0 for which the system (2.29) is asymptotically stable and a given integral
quality criterion

𝐼 =
∫︁ ∞

𝑡0

(︁
𝑥𝑇 (𝑡)𝐶𝑥(𝑡) + 𝑑𝑢2

)︁
d𝑡 (2.30)

has a minimum value provided that 𝐶 is an 𝑚×𝑚 symmetric positive-definite matrix
and 𝑑 > 0.
In the sequel, define Θ𝜅×𝜅 as a zero 𝜅× 𝜅 matrix.

Theorem 2.3.5. Assume that there exists a positive-definite symmetric matrix 𝐻
satisfying the matrix equation

𝐴𝑇𝐻 +𝐻𝐴+ 𝐶 − 1
𝑑
𝐻𝑏𝑏𝑇𝐻 = Θ𝑚×𝑚. (2.31)

Then, the optimal stabilization control function 𝑢 = 𝑢0 of the problem (2.29), (2.30)
exists and

𝑢0 = −1
𝑑
𝑏𝑇𝐻𝑥(𝑡). (2.32)

27



Proof. We will employ Theorem 2.2.1. Define a Lyapunov function

𝑉 (𝑡, 𝑥) = 𝑥𝑇 (𝑡)𝐻𝑥(𝑡),

where 𝐻 is an 𝑚×𝑚 positive-definite symmetric matrix. Then, in accordance with
the conditions 𝑖𝑖), 𝑖𝑖𝑖) of Theorem 2.2.1 we analyse the expression 𝐵 given by (2.4),
i.e.,

𝐵 (𝑉, 𝑡, 𝑥, 𝑢) =d𝑉 (𝑡, 𝑥)
d𝑡 + 𝜔 (𝑡, 𝑥, 𝑢) = d

d𝑡
(︁
𝑥𝑇 (𝑡)𝐻𝑥(𝑡)

)︁
+ 𝜔 (𝑡, 𝑥, 𝑢)

=[𝐴𝑥(𝑡) + 𝑏𝑢]𝑇𝐻𝑥(𝑡) + 𝑥𝑇 (𝑡)𝐻[𝐴𝑥(𝑡) + 𝑏𝑢]
+ 𝑥𝑇 (𝑡)𝐶𝑥(𝑡) + 𝑑𝑢2.

Simplifying the last expression, we get

𝐵 (𝑉, 𝑡, 𝑥, 𝑢) = 𝑥𝑇 (𝑡)[𝐴𝑇𝐻 +𝐻𝐴+ 𝐶]𝑥(𝑡) + 2𝑏𝑇𝐻𝑥(𝑡)𝑢+ 𝑑𝑢2. (2.33)

Looking for an extremum of (2.33) with respect to 𝑢, we get

𝐵′
𝑢(𝑉, 𝑡, 𝑥, 𝑢) = 2𝑏𝑇𝐻𝑥(𝑡) + 2𝑑𝑢 = 0,

i.e.,
𝑢 = −1

𝑑
𝑏𝑇𝐻𝑥(𝑡), (2.34)

which is the minimum of the function 𝐵 because

𝐵′′
𝑢𝑢(𝑉, 𝑡, 𝑥, 𝑢) = 2𝑑 > 0.

For 𝐵(𝑉, 𝑡, 𝑥, 𝑢) = 0 to hold, by (2.33) we have

𝑥𝑇 (𝑡)[𝐴𝑇𝐻 +𝐻𝐴+ 𝐶]𝑥(𝑡) − 1
𝑑

(︁
𝑏𝑇𝐻𝑥(𝑡)

)︁2

= 𝑥𝑇 (𝑡)
[︂
𝐴𝑇𝐻 +𝐻𝐴+ 𝐶 − 1

𝑑
𝐻𝑏𝑏𝑇𝐻

]︂
𝑥(𝑡) = 0,

that is,
𝐴𝑇𝐻 +𝐻𝐴+ 𝐶 − 1

𝑑
𝐻𝑏𝑏𝑇𝐻 = Θ𝑚×𝑚.

Thus, for the control function defined by (2.34) the desired optimal stabilization
control function is

𝑢0 = −1
𝑑
𝑏𝑇𝐻𝑥(𝑡).

The formula (2.32) is proved. For the control function (2.32) and the Lyapunov
function used, the system (2.29) is asymptotically stable and the quality
criterion (2.30) takes a minimum value. �
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Remark 2.3.6. System (2.29) with 𝑢 = 𝑢0 given by (2.32) takes the form

𝑥′(𝑡) =
(︂
𝐴− 1

𝑑
𝑏𝑇𝐻

)︂
𝑥(𝑡).

Example 2.3.7. Let the system (2.29) be reduced to

𝑥′
1(𝑡) = − 2𝑥1(𝑡) + 𝑥2(𝑡) + 𝑢,

𝑥′
2(𝑡) = 𝑥1(𝑡) − 2𝑥2(𝑡) + 𝑢, (2.35)

with the quality criterion (2.30)

𝐼 =
∫︁ ∞

0

(︁
3𝑥2

1(𝑡) + 3𝑥2
2(𝑡) + 𝑢2

)︁
d𝑡,

where

𝐴 =
⎛⎝−2 1

1 −2

⎞⎠ , 𝑏 =
⎛⎝1

1

⎞⎠ , 𝐶 =
⎛⎝3 0

0 3

⎞⎠ , 𝑑 = 1, 𝑡0 = 0.

By formula (2.32), we obtain the optimal stabilization control function in the form

𝑢0 = −1
𝑑
𝑏𝑇𝐻𝑥(𝑡) = −

⎛⎝1
1

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝𝑥1

𝑥2

⎞⎠ = −(ℎ1 + ℎ2)𝑥1 − (ℎ2 + ℎ3)𝑥2. (2.36)

We need to find the matrix 𝐻 in (2.36). In our case, by (2.31),

𝐴𝑇𝐻 +𝐻𝐴+ 𝐶 − 1
𝑑
𝐻𝑏𝑏𝑇𝐻

=
⎛⎝−2 1

1 −2

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠+
⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝−2 1
1 −2

⎞⎠+
⎛⎝3 0

0 3

⎞⎠

−

⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝1
1

⎞⎠⎛⎝1
1

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠
=
⎛⎝ −4ℎ1 + 2ℎ2 + 3 − (ℎ1 + ℎ2)2 ℎ1 − 4ℎ2 + ℎ3 − (ℎ1 + ℎ2)(ℎ2 + ℎ3)
ℎ1 − 4ℎ2 + ℎ3 − (ℎ1 + ℎ2)(ℎ2 + ℎ3) 2ℎ2 − 4ℎ3 + 3 − (ℎ2 + ℎ3)2

⎞⎠
= Θ2×2,

which means that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−4ℎ1 + 2ℎ2 + 3 − (ℎ1 + ℎ2)2 = 0, (2.37)
ℎ1 − 4ℎ2 + ℎ3 − (ℎ1 + ℎ2)(ℎ2 + ℎ3) = 0, (2.38)
2ℎ2 − 4ℎ3 + 3 − (ℎ2 + ℎ3)2 = 0. (2.39)

To solve it we can, for example, add the second equation multiplied by 2 to the sum
of the first and the third equations ((2.37)+(2.39)+2(2.38)). We obtain

−2ℎ1 − 4ℎ2 − 2ℎ3 + 6 − [(ℎ1 + ℎ2) + (ℎ2 + ℎ3)]2
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= −2[ℎ1 + 2ℎ2 + ℎ3] + 6 − [ℎ1 + 2ℎ2 + ℎ3]2 = 0.

Denoting
ℎ1 + 2ℎ2 + ℎ3 = 𝐾, (2.40)

we get
𝐾2 + 2𝐾 − 6 = 0

and 𝐾 = −1 ±
√

7.
After subtracting the first equation of the system from the third one, i.e., ((2.39)–
(2.37)), we obtain

4ℎ1 − 4ℎ3 + (ℎ1 + ℎ2)2 − (ℎ2 + ℎ3)2 =4(ℎ1 − ℎ3) + (ℎ1 + 2ℎ2 + ℎ3)(ℎ1 − ℎ3)
=(ℎ1 − ℎ3)(4 +𝐾) = 0

and
ℎ1 = ℎ3.

Using the last equation to (2.40), we find

ℎ1 + ℎ2 = 𝐾

2 . (2.41)

Next, from (2.38) we obtain

2(ℎ1 − 2ℎ2) − (ℎ1 + ℎ2)2 = 0 ⇒ ℎ1 − 2ℎ2 = 𝐾2

8 . (2.42)

By (2.41) and (2.42), we have

ℎ1 = ℎ3 = 𝐾

3 + 𝐾2

24 ,

ℎ2 = 𝐾

6 − 𝐾2

24 .

For 𝐾 = −1 −
√

7, the matrix 𝐻 is not positive-definite so, by (2.36) the optimal
stabilization control function is

𝑢0 = 1 −
√

7
2 (𝑥1(𝑡) + 𝑥2(𝑡)).

With 𝑢 = 𝑢0, the system (2.35) takes the form

𝑥′
1(𝑡) = −3 +

√
7

2 𝑥1(𝑡) + 3 −
√

7
2 𝑥2(𝑡),

𝑥′
2(𝑡) = 3 −

√
7

2 𝑥1(𝑡) − 3 +
√

7
2 𝑥2(𝑡).
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2.3.3 Non-delayed systems with a control vector-function

As the next application consider a system:

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑃𝑢, (2.43)

where 𝐴 ∈ R𝑚×𝑚, 𝑃 ∈ R𝑚×𝑟, 𝑥(𝑡) ∈ R𝑚, 𝑢 ∈ R𝑟. We need to find an optimal control
function 𝑢 = 𝑢0 for which the system is asymptotically stable and an integral quality
criterion

𝐼 =
∫︁ ∞

𝑡0

(︁
𝑥𝑇 (𝑡)𝐶𝑥(𝑡) + 𝑢𝑇𝐷𝑢

)︁
d𝑡 (2.44)

takes a minimum value provided that 𝐶 ∈ R𝑚×𝑚 is a symmetric, positive-definite
matrix and 𝐷 is a diagonal control matrix, 𝐷 = diag{𝑑𝑗}, 𝑑𝑗 > 0, 𝑗 = 1, . . . , 𝑟.

Theorem 2.3.8. Assume that there exists a positive-definite symmetric matrix 𝐻
satisfying the matrix equation

𝐴𝑇𝐻 +𝐻𝐴+ 𝐶 −𝐻𝑃𝐷−1𝑃 𝑇𝐻 = Θ𝑚×𝑚. (2.45)

Then, the optimal stabilization control function 𝑢 = 𝑢0 of the problem (2.43), (2.44)
exists and

𝑢0 = −𝐷−1𝑃 𝑇𝐻𝑥(𝑡). (2.46)

Proof. We will employ Theorem 2.2.1. Define a Lyapunov function

𝑉 (𝑡, 𝑥) = 𝑥𝑇 (𝑡)𝐻𝑥(𝑡),

where 𝐻 is an 𝑚×𝑚 positive-definite symmetric matrix. Then, in accordance with
the conditions 𝑖𝑖), 𝑖𝑖𝑖) of Theorem 2.2.1, we analyse the expression 𝐵 given by (2.4),
i.e.,

𝐵(𝑉, 𝑡, 𝑥, 𝑢) =d𝑉 (𝑡, 𝑥)
d𝑡 + 𝜔 (𝑡, 𝑥, 𝑢) = d

d𝑡
(︁
𝑥𝑇 (𝑡)𝐻𝑥(𝑡)

)︁
+ 𝜔 (𝑡, 𝑥, 𝑢)

=[𝐴𝑥(𝑡) + 𝑃𝑢]𝑇𝐻𝑥(𝑡) + 𝑥𝑇 (𝑡)𝐻[𝐴𝑥(𝑡) + 𝑃𝑢]
+ 𝑥𝑇 (𝑡)𝐶𝑥(𝑡) + 𝑢𝑇𝐷𝑢.

Simplifying the last expression, we get

𝐵(𝑉, 𝑡, 𝑥, 𝑢) =𝑥𝑇 (𝑡)[𝐴𝑇𝐻 +𝐻𝐴+ 𝐶]𝑥(𝑡) + 𝑢𝑇 (𝑡)𝑃 𝑇𝐻𝑥(𝑡)
+ 𝑥𝑇 (𝑡)𝐻𝑃𝑢+ 𝑢𝑇𝐷𝑢. (2.47)

Looking for an extremum of (2.47), with respect to 𝑢, we get

𝐵′
𝑢(𝑉, 𝑡, 𝑥, 𝑢) = 2𝑃 𝑇𝐻𝑥(𝑡) + 2𝐷𝑢 = 0,
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i.e.,
𝑢 = −𝐷−1𝑃 𝑇𝐻𝑥(𝑡), (2.48)

which is the minimum of the function 𝐵 because 𝐵′′
𝑢𝑢 = 2𝐷, and 𝐷 is a positive-

definite matrix.
For 𝐵(𝑉, 𝑡, 𝑥, 𝑢) = 0 to hold, from (2.47) we get

𝐵(𝑉,𝑡, 𝑥, 𝑢)
=𝑥𝑇 (𝑡)

[︁
𝐴𝑇𝐻 +𝐻𝐴+ 𝐶 − [𝐷−1𝑃 𝑇𝐻]𝑇𝑃 𝑇𝐻 −𝐻𝑃𝐷−1𝑃 𝑇𝐻

+ [𝐷−1𝑃 𝑇𝐻]𝑇𝐷𝐷−1𝑃 𝑇𝐻
]︁
𝑥(𝑡)

=𝑥𝑇 (𝑡)
[︁
𝐴𝑇𝐻 +𝐻𝐴+ 𝐶 −𝐻𝑃𝐷−1𝑃 𝑇𝐻 −𝐻𝑃𝐷−1𝑃 𝑇𝐻 +𝐻𝑃𝐷−1𝑃 𝑇𝐻

]︁
𝑥(𝑡)

=𝑥𝑇 (𝑡)
[︁
𝐴𝑇𝐻 +𝐻𝐴+ 𝐶 −𝐻𝑃𝐷−1𝑃 𝑇𝐻

]︁
𝑥(𝑡) = 0,

that is,
𝐴𝑇𝐻 +𝐻𝐴+ 𝐶 −𝐻𝑃𝐷−1𝑃 𝑇𝐻 = Θ𝑚×𝑚.

From (2.48) and the above computations, we get

𝑢0 = −𝐷−1𝑃 𝑇𝐻𝑥(𝑡).

Thus, for the control function (2.46) and the Lyapunov function used, the
system (2.43) is asymptotically stable and the quality criterion (2.44) has a minimum
value. �

Remark 2.3.9. System (2.43) with 𝑢 = 𝑢0 given by (2.46) takes the form

𝑥′(𝑡) =
(︁
𝐴− 𝑃𝐷−1𝑃 𝑇𝐻

)︁
𝑥(𝑡).

Example 2.3.10. Consider the system (2.43) with the quality criterion (2.44). Let
the matrices have the form

𝐴 =
⎛⎝−2 1

1 −2

⎞⎠ , 𝑃 =
⎛⎝1 𝜀

𝜀 1

⎞⎠ , 𝐶 =
⎛⎝3 0

0 3

⎞⎠ , 𝐷 =
⎛⎝1 0

0 1

⎞⎠ ,
where 𝜀 ̸= −1, so

𝑥′
1(𝑡) = − 2𝑥1(𝑡) + 𝑥2(𝑡) + 𝑢1 + 𝜀𝑢2,

𝑥′
2(𝑡) = 𝑥1(𝑡) − 2𝑥2(𝑡) + 𝜀𝑢1 + 𝑢2. (2.49)

By (2.46) the optimal control function will be in the form

𝑢0 = −𝐷−1𝑃 𝑇𝐻𝑥(𝑡) = −

⎛⎝1 0
0 1

⎞⎠−1⎛⎝1 𝜀

𝜀 1

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠ ,
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so

𝑢0
1 = −(ℎ1 + 𝜀ℎ2)𝑥1 − (ℎ2 + 𝜀ℎ3)𝑥2,

𝑢0
2 = −(𝜀ℎ1 + ℎ2)𝑥1 − (𝜀ℎ2 + ℎ3)𝑥2. (2.50)

Determine the matrix 𝐻. Compute the expression (2.45), i.e.,

𝐴𝑇𝐻 +𝐻𝐴+ 𝐶 −𝐻𝑃𝐷−1𝑃 𝑇𝐻

=
⎛⎝−2 1

1 −2

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠+
⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝−2 1
1 −2

⎞⎠+
⎛⎝3 0

0 3

⎞⎠

−

⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝1 𝜀

𝜀 1

⎞⎠⎛⎝1 0
0 1

⎞⎠−1⎛⎝1 𝜀

𝜀 1

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠ = Θ2×2,

which means that⎧⎪⎪⎪⎨⎪⎪⎪⎩
−4ℎ1 + 2ℎ2 + 3 − (ℎ1 + 𝜀ℎ2)2 − (𝜀ℎ1 + ℎ2)2 = 0, (2.51)
ℎ1 − 4ℎ2 + ℎ3 − (ℎ1 + 𝜀ℎ2)(ℎ2 + 𝜀ℎ3) − (𝜀ℎ1 + ℎ2)(𝜀ℎ2 + ℎ3) = 0, (2.52)
2ℎ2 − 4ℎ3 + 3 − (ℎ2 + 𝜀ℎ3)2 − (𝜀ℎ2 + ℎ3)2 = 0. (2.53)

To solve this we can, for example, subtract the first equation from the third one,
i.e., ((2.53)–(2.51)) to obtain

4ℎ1 − 4ℎ3 + (ℎ1 + 𝜀ℎ2)2 − (ℎ2 + 𝜀ℎ3)2 + (𝜀ℎ1 + ℎ2)2 − (𝜀ℎ2 + ℎ3)2

=4(ℎ1 − ℎ3) + (ℎ1 + 𝜀ℎ2 + ℎ2 + 𝜀ℎ3)(ℎ1 + 𝜀ℎ2 − ℎ2 − 𝜀ℎ3)
+ (𝜀ℎ1 + ℎ2 + 𝜀ℎ2 + ℎ3)(𝜀ℎ1 + ℎ2 − 𝜀ℎ2 − ℎ3)

=4(ℎ1 − ℎ3) + ℎ2(1 + 𝜀)(ℎ1 − 𝜀ℎ3 + 𝜀ℎ1 − ℎ3)
+ (ℎ1 + 𝜀ℎ3)(ℎ1 + 𝜀ℎ2 − ℎ2 − 𝜀ℎ3) + (𝜀ℎ1 + ℎ3)(𝜀ℎ1 + ℎ2 − 𝜀ℎ2 − ℎ3)

=4(ℎ1 − ℎ3) + ℎ2(1 + 𝜀)2(ℎ1 − ℎ3)
+ ℎ2

1(1 + 𝜀2) + ℎ1ℎ2(2𝜀− 1 − 𝜀2) + ℎ2ℎ3(𝜀2 − 2𝜀+ 1) + ℎ2
3(−𝜀2 − 1)

=(ℎ1 − ℎ3)(4 + ℎ2(1 + 𝜀2)) + (1 + 𝜀2)(ℎ2
1 − ℎ2

3) − ℎ2(𝜀− 1)2(ℎ1 − ℎ3)
=(ℎ1 − ℎ3)(4 + ℎ2(1 + 𝜀2) + (ℎ1 + ℎ3)(1 + 𝜀2) − ℎ2(𝜀− 1)2)
=(ℎ1 − ℎ3)(4 + 2ℎ2𝜀+ (ℎ1 + ℎ3)(1 + 𝜀2)) = 0.

This implies
ℎ1 = ℎ3 (2.54)

since (because the matrix 𝐻 is positive-definite and ℎ1 > |ℎ2|)

4 + 2ℎ2𝜀+ (ℎ1 + ℎ3)(1 + 𝜀2) > 0.
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We add the second equation multiplied by 2 to the sum of the first and the third
equations ((2.51)+2(2.52)+(2.53)) obtaining

−2ℎ1 − 4ℎ2 − 2ℎ3 + 6 − (ℎ1 + 𝜀ℎ2 + ℎ2 + 𝜀ℎ3)2 − (𝜀ℎ1 + ℎ2 + 𝜀ℎ2 + ℎ3)2 = 0.

Next, using (2.54), we have

−4(ℎ1 + ℎ2) + 6 − 2(ℎ1 + ℎ2)2(1 + 𝜀)2 = 0.

If we put
ℎ1 + ℎ2 = 𝐾 > 0, (2.55)

then
𝐾2(1 + 𝜀)2 + 2𝐾 − 3 = 0 (2.56)

and

𝐾 =
−1 +

√︁
1 + 3(1 + 𝜀)2

(1 + 𝜀)2 . (2.57)

From (2.55), we get
ℎ1 = 𝐾 − ℎ2 ⇒ 𝐾 > ℎ2. (2.58)

From (2.52), we obtain

ℎ1 − 2ℎ2 − (ℎ1 + 𝜀ℎ2)(𝜀ℎ1 + ℎ2)
= 𝐾 − 3ℎ2 − (𝐾 − ℎ2 + 𝜀ℎ2)(𝜀𝐾 − 𝜀ℎ2 + ℎ2) = 0.

After simplification, we obtain the following equation

ℎ2
2(𝜀− 1)2 + ℎ2(−𝐾(𝜀− 1)2 − 3) +𝐾 −𝐾2𝜀 = 0,

where

ℎ2 =
𝐾(𝜀− 1)2 + 3 ±

√︁
(𝐾(𝜀− 1)2 + 3)2 − 4(𝜀− 1)2(𝐾 −𝐾2𝜀)

2(𝜀− 1)2

and

(𝐾(𝜀− 1)2 + 3)2 − 4(𝜀− 1)2(𝐾 −𝐾2𝜀)
= 𝐾2(𝜀− 1)4 + 6𝐾(𝜀− 1)2 + 9 − 4(𝜀− 1)2(𝐾 −𝐾2𝜀)
= 𝐾2(𝜀− 1)2((𝜀− 1)2 + 4𝜀) + 2𝐾(𝜀− 1)2 + 9
= 𝐾2(𝜀− 1)2(𝜀+ 1)2 + 2𝐾(𝜀− 1)2 + 9
by (2.56)= (𝜀− 1)2(−2𝐾 + 3) + 2𝐾(𝜀− 1)2 + 9 = 3(𝜀− 1)2 + 9.

So

ℎ2 =
𝐾(𝜀− 1)2 + 3 ±

√︁
3(𝜀− 1)2 + 9

2(𝜀− 1)2 . (2.59)
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For, say, 𝜀 = 0.5, from (2.57), (2.59) and (2.58), we obtain

𝐾
.= 0.792837, ℎ2

.= 0.151421, ℎ1 = ℎ3
.= 0.641416

(another solution for ℎ2
.= 12.6414 does not satisfy (2.58)).

By (2.50), the optimal stabilization control function will be (coefficients are
computed approximately)

𝑢0
1 = −0.7171265𝑥1(𝑡) − 0.472129 𝑥2(𝑡),

𝑢0
2 = −0.472129 𝑥1(𝑡) − 0.7171265𝑥2(𝑡).

The system (2.49) with 𝑢 = 𝑢0 takes the form

𝑥′
1(𝑡) = −2.95319 𝑥1(𝑡) + 0.169308𝑥2(𝑡),
𝑥′

2(𝑡) = 0.169308𝑥1(𝑡) − 2.95319 𝑥2(𝑡).
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3 OPTIMIZATION IN DELAYED CASE
In this part, we will consider systems of delayed scalar equations with constant
coefficients. For such equations, we will find control functions theoretically and, in
specific examples, by using the formulas obtained. The results of this chapter are
new.

3.1 Formulation of the problem
Consider an arbitrary dynamic process and assume that it can be described by a
system of functional differential equations of delayed type

𝑥′(𝑡) = 𝐹 (𝑡, 𝑥𝑡) , (3.1)

where 𝐹 : 𝒟1 → R𝑚,

𝒟1 := {(𝑡, 𝑥𝑡) ∈ [𝑡0,∞) × 𝐶𝑚
𝜏 , ‖𝑥𝑡‖𝜏 ≤ 𝑀𝑥}

and 𝑀𝑥 is a given positive constant. Let the functional 𝐹 be continuous, locally
Lipschitzian and quasi-bounded. Together with (3.1), we consider the initial problem

𝑥𝑡* = 𝜙, (3.2)

where 𝑡* ≥ 𝑡0, and 𝜙 ∈ 𝐶𝑚
𝜏 .

Our goal is to be able to control the process. Consider a process 𝑥 : [𝑡0−𝜏,∞) → R𝑚,
controlled by means of a control function (or control functional) 𝑢 = 𝑢(𝑡, 𝑥𝑡), where

𝑢 : 𝒟1 → R𝑟, 𝑢(𝑡, 𝜃*
𝑚) = 𝜃𝑟

such that ‖𝑢(𝑡, 𝑥𝑡)‖ ≤ 𝑀𝑢, (𝑡, 𝑥𝑡) ∈ 𝒟1, 𝑀𝑢 is a given positive constant, and
assuming that 𝑢 is continuous, locally Lipschitzian and quasi-bounded. Assume that
the process can be modelled by a system of differential equations of delayed type

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢), 𝑡 ≥ 𝑡0, (3.3)

where 𝑓 : 𝒟 → R𝑚,

𝒟 := {(𝑡, 𝑥𝑡, 𝑢) ∈ [𝑡0,∞) × 𝐶𝑚
𝜏 × R𝑟, ‖𝑥𝑡‖𝜏 ≤ 𝑀𝑥, ‖𝑢‖ ≤ 𝑀𝑢}

and ‖𝑢‖ is defined as in (1.3). Assume that

𝑓(𝑡, 𝜃*
𝑚, 𝜃𝑟) = 𝜃𝑚

and that 𝑓 is continuous, locally Lipschitzian and quasi-bounded. Let, moreover, for
a constant 𝐾1 ≥ 0, ‖𝑓(𝑡, 𝑥𝑡, 𝑢)‖ ≤ 𝐾1 whenever (𝑡, 𝑥𝑡, 𝑢) ∈ 𝒟.
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If we specify 𝐹 (𝑡, 𝑥𝑡) := 𝑓(𝑡, 𝑥𝑡, 𝑢), where 𝑢 = 𝑢(𝑡, 𝑥𝑡), then the system

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢(𝑡, 𝑥𝑡)), 𝑡 ≥ 𝑡0 (3.4)

is a particular case of the system (3.1) and (1.1) and, consequently, the auxiliary
concepts formulated for (1.1) in part 1.3 can be applied to the system (3.4) as well.
In what follows, we will assume, without loss of generality, that the constant 𝑀𝑥 is
so large that the below solutions of the system (3.4), defined on [𝑡0 − 𝜏,∞), satisfy
‖𝑥(𝑡)‖ ≤ 𝑀𝑥, 𝑡 ∈ [𝑡0 − 𝜏,∞).
The problem under consideration is formulated as follows.

Problem 3.1.1. Find a control function 𝑢 = 𝑢0(𝑡, 𝑥𝑡) such that the zero solution
𝑥(𝑡) = 𝜃𝑚, 𝑡 ≥ 𝑡0 − 𝜏 of the system

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢0(𝑡, 𝑥𝑡)), 𝑡 ≥ 𝑡0, (3.5)

is asymptotically stable and, for an arbitrary solution 𝑥 : [𝑡0 − 𝜏,∞) → R𝑚 of (3.5),
satisfying ‖𝑥𝑡0‖𝜏 ≤ 𝜂, 𝜂 is a sufficiently small positive number such that 𝜂 ≤ 𝑀𝑥,
the integral quality criterion

𝐼 =
∫︁ ∞

𝑡0
𝜔 (𝑡, 𝑥𝑡, 𝑢0(𝑡, 𝑥𝑡)) d𝑡, (3.6)

where 𝜔 : 𝒟 → R is a given positive-definite functional, exists and attains the
minimum value. This means that, for an arbitrary control function 𝑢 = 𝑢*(𝑡, 𝑥𝑡)
such that the zero solution 𝑥(𝑡) = 𝜃𝑚, 𝑡 ≥ 𝑡0 − 𝜏 of system

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢
*(𝑡, 𝑥𝑡)), 𝑡 ≥ 𝑡0, (3.7)

is asymptotically stable, we have∫︁ ∞

𝑡0
𝜔 (𝑡, 𝑥𝑡, 𝑢0(𝑡, 𝑥𝑡)) d𝑡 ≤

∫︁ ∞

𝑡0
𝜔 (𝑡, 𝑥*

𝑡 , 𝑢
*(𝑡, 𝑥*

𝑡 )) d𝑡, (3.8)

where 𝑥 : [𝑡0−𝜏,∞) → R𝑚 is the solution of (3.5) defined by the initial problem (3.2)
where 𝑡* := 𝑡0, and 𝑥* : [𝑡0 −𝜏,∞) → R𝑚 is the solution of (3.7) defined by the same
initial problem. The initial function 𝜙 in (3.2) is arbitrary except for the assumption
‖𝜙‖𝜏 ≤ 𝜂.

Remark 3.1.2. Modifying the above Definition 1.3.11 of a positive-definite
functional to the functional 𝜔 : 𝒟 → R used in (3.6), we specify that 𝜔 is a positive-
definite functional if there exists a continuous non-decreasing function 𝑤*(𝑦1, 𝑦2)
defined on the set 𝒮 := {[0,∞) × [0,∞)} such that 𝑤*(0, 0) = 0 and 𝑤*(𝑦1, 𝑦2) > 0
if (𝑦1, 𝑦2) ∈ 𝒮 ∖ {(0, 0)}, and

𝜔(𝑡, 𝑥𝑡, 𝑢) ≥ 𝑤*(‖𝑥(𝑡)‖, ‖𝑢‖), 𝑡 ≥ 𝑡0 (3.9)
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whenever (𝑡, 𝑥𝑡, 𝑢) ∈ 𝒟. The non-decreasing property of 𝑤* means that

𝑤*(𝑦1, 𝑦2) ≤ 𝑤*(𝑦1, 𝑦2) (3.10)

whenever 𝑦1 ≤ 𝑦1, 𝑦2 ≤ 𝑦2 and (𝑦1, 𝑦2) ∈ 𝒮, (𝑦1, 𝑦2) ∈ 𝒮.

Remark 3.1.3. We call the function 𝑢0(𝑡, 𝑥𝑡) solving Problem 3.1.1 the optimal
stabilization control function. Moreover, the problem of minimizing the integral 𝐼
by an optimal stabilization control function, as described in Problem 3.1.1, can be
formulated more succinctly using the following notation

𝐼 = min
𝑢

∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥𝑡, 𝑢(𝑡, 𝑥𝑡))d𝑡.

Problem 3.1.1 extends to delayed differential equations Problem II formulated
for ordinary differential equations in Malkin’s book [45, p. 479]. This problem is
formulated above in part 2.1 as well (Problem 2.1.1).

Remark 3.1.4. The optimal stabilization control function 𝑢0(𝑡, 𝑥𝑡), solving
Problem 3.1.1, as well as every other control function 𝑢(𝑡, 𝑥𝑡) mentioned in the
work, is actually a function of the variable 𝑡. Therefore, without loss of generality,
we sometimes use 𝑢0(𝑡), 𝑢(𝑡) or 𝑢0, 𝑢 for short if there is no danger of ambiguity.

3.2 Generalization of Malkin’s result
To solve the problem we are motivated by Malkin’s approach, presented in
Section 2.2.
Define a functional 𝐵 : 𝒟2 → R,

𝒟2 := {(𝑣, 𝑡, 𝑥𝑡, 𝑢) ∈ R × [𝑡0,∞) × 𝐶𝑚
𝜏 × R𝑟, ‖𝑥𝑡‖𝜏 ≤ 𝑀𝑥, ‖𝑢‖ ≤ 𝑀𝑢},

by the formula
𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) := d𝑉 (𝑡, 𝑥𝑡)

d𝑡 + 𝜔(𝑡, 𝑥𝑡, 𝑢), (3.11)

where 𝑉 is defined by (1.5) and the derivative of 𝑉 is computed as in Definition 1.3.14
provided that 𝑥 is an arbitrary fixed solution of the system (3.3).
The next theorem is a generalization of Theorem 2.2.1 for the case of delayed
differential equations.

Theorem 3.2.1. Assume that, for the system of differential equations of delayed
type (3.3), there exists a Lyapunov-Krasovskii functional 𝑉 (𝑡, 𝑥𝑡) and a control
function 𝑢0(𝑡, 𝑥𝑡) such that

𝑖) the functional 𝜔 : 𝒟 → R is positive-definite;
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𝑖𝑖) the identity
𝐵(𝑉, 𝑡, 𝑥𝑡, 𝑢0(𝑡, 𝑥𝑡)) ≡ 0 (3.12)

holds on [𝑡0,∞) for every solution 𝑥 : [𝑡0 − 𝜏,∞) → R𝑚 of the system (3.3), where
𝑢 = 𝑢0(𝑡, 𝑥𝑡);

𝑖𝑖𝑖) the inequality 𝐵(𝑉, 𝑡, 𝑥𝑡, 𝑢) ≥ 0 holds on [𝑡0,∞) for every solution 𝑥 : [𝑡0 −
𝜏,∞) → R𝑚 of the system (3.3) with arbitrary fixed control function 𝑢 = 𝑢(𝑡, 𝑥𝑡).

Then, the function 𝑢0(𝑡, 𝑥𝑡) is the optimal stabilization control function solving
Problem 3.1.1, that is,

𝐼 = min
𝑢

∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥𝑡, 𝑢(𝑡, 𝑥𝑡))d𝑡 =

∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥𝑡, 𝑢0(𝑡, 𝑥𝑡))d𝑡 (3.13)

and, moreover, ∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥𝑡, 𝑢0(𝑡, 𝑥𝑡))d𝑡 = 𝑉 (𝑡0, 𝑥𝑡0). (3.14)

Proof. For the derivative d𝑉 (𝑡, 𝑥𝑡)/d𝑡 along the trajectories of the system (3.3)
where 𝑢 = 𝑢0(𝑡, 𝑥𝑡), from (3.11) and (3.12), it follows that

d𝑉 (𝑡, 𝑥𝑡)
d𝑡 = −𝜔(𝑡, 𝑥𝑡, 𝑢0(𝑡, 𝑥𝑡)), 𝑡 ≥ 𝑡0. (3.15)

By (3.9), we have

−𝜔(𝑡, 𝑥𝑡, 𝑢0(𝑡, 𝑥𝑡)) ≤ −𝑤*(‖𝑥(𝑡)‖, ‖𝑢0(𝑡, 𝑥𝑡)‖), 𝑡 ≥ 𝑡0.

Set
𝑤1(‖𝑥(𝑡)‖) := 𝑤*(‖𝑥(𝑡)‖, 0).

Since, by (3.10),

𝑤*(‖𝑥(𝑡)‖, ‖𝑢0(𝑡, 𝑥𝑡)‖) ≥ 𝑤*(‖𝑥(𝑡)‖, 0) = 𝑤1(‖𝑥(𝑡)‖),

we have
d𝑉 (𝑡, 𝑥𝑡)

d𝑡 ≤ −𝑤*(‖𝑥(𝑡)‖, ‖𝑢0(𝑡, 𝑥𝑡)‖) ≤ −𝑤1(‖𝑥(𝑡)‖), 𝑡 ≥ 𝑡0. (3.16)

The functional 𝑤1 is a continuous non-decreasing function on [0,∞), 𝑤1(0) = 0, and
𝑤1(𝑡) > 0 for 𝑡 ∈ (0,∞). That is, the functional 𝑉 (𝑡, 𝑥𝑡) satisfies all the assumptions
of Theorem 1.3.16 (the derivative d𝑉 (𝑡, 𝑥𝑡)/d𝑡 satisfies (1.9)).
So, the trivial solution 𝑥(𝑡) ≡ 𝜃𝑚 of the system (3.3) with 𝑢 = 𝑢0(𝑡, 𝑥𝑡) is uniformly
asymptotically stable and there exists an 𝜂 ∈ (0,𝑀𝑥] such that, for all initial
conditions 𝑥𝑡0 satisfying ‖𝑥(𝑡0)‖𝜏 ≤ 𝜂, the solution 𝑥(𝑡0, 𝑥𝑡0)(𝑡) exists on an interval
[𝑡0 − 𝜏,∞) and

lim
𝑡→∞

𝑥(𝑡0, 𝑥𝑡0)(𝑡) = 𝜃𝑚, lim
𝑡→∞

‖(𝑥0)𝑡‖𝜏 = 0. (3.17)
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It remains to show that (3.13) and (3.14) are true. Below we will assume that, for a
given ℎ ∈ (0,𝑀𝑥) the number 𝜂 is so small that the inequality

sup
‖𝑥(𝑡0)‖𝜏 ≤𝜂

𝑉 (𝑡0, 𝑥𝑡0) < inf
‖𝑥(𝑡0)‖𝜏 =ℎ

𝑉 (𝑡0, 𝑥𝑡0) (3.18)

is true. Such a choice of the number 𝜂 is always possible due to the formula (1.6) in
Definition 1.3.11 and the formula (1.7) in Definition 1.3.12. Indeed, assuming 𝜂 so
small that 𝑊 (𝜂) < 𝑤(ℎ), we have

sup
‖𝑥(𝑡0)‖𝜏 ≤𝜂

𝑉 (𝑡0, 𝑥𝑡0) ≤ 𝑊 (𝜂) < 𝑤(ℎ) ≤ inf
‖𝑥(𝑡0)‖𝜏 =ℎ

𝑉 (𝑡0, 𝑥𝑡0)

and (3.18) holds. Obviously, 𝜂 < ℎ. This inequality is a simple consequence of the
chain of inequalities

𝑊 (𝜂) < 𝑤(ℎ) ≤ 𝑉 (𝑡, ℎ) ≤ 𝑊 (ℎ).

Next, we prove that every solution 𝑥0(𝑡), satisfying⃦⃦⃦
𝑥0(𝑡0)

⃦⃦⃦
𝜏

≤ 𝜂 (3.19)

satisfies the condition

‖𝑥0(𝑡)‖ ≤ ℎ < 𝑀𝑥, 𝑡 ∈ [𝑡0,∞) (3.20)

as well. Indeed, due to the properties of 𝑤, 𝑊 and the formula (3.16) saying that
the functional 𝑉 (𝑡, 𝑥𝑡) is non-increasing, we have

𝑤(‖𝑥0(𝑡)|) ≤ 𝑉 (𝑡, 𝑥0
𝑡 ) ≤ 𝑉 (𝑡0, 𝑥0

𝑡0) ≤ 𝑊 (‖𝑥0
𝑡0‖

𝜏
) ≤ 𝑊 (𝜂) < 𝑤(ℎ), (3.21)

where 𝑡 ∈ [𝑡0,∞), and inequality

𝑤(‖𝑥0(𝑡)|) < 𝑤(ℎ), 𝑡 ∈ [𝑡0,∞)

implies (3.20). Moreover, from the property of asymptotic stability and from (1.7),
(3.17), we have

0 ≤ lim
𝑡→∞

𝑉 (𝑡, 𝑥0
𝑡 ) ≤ lim

𝑡→∞
𝑊 (

⃦⃦⃦
𝑥0

𝑡

⃦⃦⃦
𝜏
) = 0. (3.22)

Set in (3.15) 𝑥 := 𝑥0 where 𝑥 = 𝑥0 is an arbitrary but fixed solution satisfying (3.19).
Then, integrating equation (3.15) over an interval (𝑡0,∞) and using (3.22), we obtain

∫︁ ∞

𝑡0

(︃
d𝑉 (𝑡, 𝑥0

𝑡 )
d𝑡

)︃
d𝑡 = lim

𝑡→∞
𝑉 (𝑡, 𝑥0

𝑡 ) − 𝑉 (𝑡0, 𝑥0
𝑡0)

= −𝑉 (𝑡0, 𝑥0
𝑡0) = −

∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥0

𝑡 , 𝑢0(𝑡, 𝑥0
𝑡 ))d𝑡 (3.23)

and
𝑉 (𝑡0, 𝑥0

𝑡0) =
∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥0

𝑡 , 𝑢0(𝑡, 𝑥0
𝑡 ))d𝑡. (3.24)
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By (3.24), the improper integral exists. Moreover, a consequence of (3.24) is the
formula (3.14) as well, provided that 𝑢0 solves Problem 3.1.1.
On the other hand, let 𝑢 = 𝑢* be an arbitrary control function that is also a solution
of Problem 3.1.1. Let 𝑥 = 𝑥** be a solution of the system

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢
*(𝑡, 𝑥𝑡)), 𝑡 ≥ 𝑡0, (3.25)

satisfying ‖𝑥**(𝑡0)‖𝜏 ≤ 𝜂 (recall that the trivial solution of (3.25) is assumed to be
asymptotically stable, see the formulation of Problem 3.1.1). Assume

‖𝑥**(𝑡)‖ ≤ ℎ, 𝑡 ∈ [𝑡0,∞).

By 𝑖𝑖𝑖), we get

𝐵(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 𝐵(𝑉 (𝑡, 𝑥**
𝑡 ), 𝑡, 𝑥**

𝑡 , 𝑢
*(𝑡, 𝑥**

𝑡 ))

= d𝑉 (𝑡, 𝑥**
𝑡 )

d𝑡 + 𝜔(𝑡, 𝑥**
𝑡 , 𝑢

*(𝑡, 𝑥**
𝑡 )) ≥ 0, 𝑡 ∈ [𝑡0,∞)

or, equivalently,

d𝑉 (𝑡, 𝑥**
𝑡 )

d𝑡 ≥ −𝜔(𝑡, 𝑥**
𝑡 , 𝑢

*(𝑡, 𝑥**
𝑡 )), 𝑡 ∈ [𝑡0,∞). (3.26)

Integrating this inequality over (𝑡0,∞) and using the property

lim
𝑡→∞

𝑉 (𝑡, 𝑥**
𝑡 ) = 0, (3.27)

deduced from (1.7), we obtain (computations are similar to those in (3.23))

𝑉 (𝑡0, 𝑥**
𝑡0 ) ≤

∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥**

𝑡 , 𝑢
*(𝑡, 𝑥**

𝑡 ))d𝑡. (3.28)

We show that the inequality (3.28) holds even in the case of the solution 𝑥**(𝑡)
being out of the domain ‖𝑥‖ ≤ ℎ on an interval (because of asymptotic stability,
this interval is finite). Assume such a behaviour. Let 𝑡1 > 𝑡0 be the moment of time,
at which 𝑥**(𝑡) goes back into the domain ‖𝑥‖ ≤ ℎ and stays in it for all 𝑡 ≥ 𝑡1.
Then, from that moment on, the inequality (3.26) will hold for 𝑥**(𝑡). Integrating
this inequality over (𝑡1,∞) and using the property (3.27) again, we obtain

𝑉 (𝑡1, 𝑥**
𝑡1 ) ≤

∫︁ ∞

𝑡1
𝜔(𝑡, 𝑥**

𝑡 , 𝑢
*(𝑡, 𝑥**

𝑡 ))d𝑡. (3.29)

Since 𝑥** satisfies ‖𝑥**(𝑡0)‖𝜏 ≤ 𝜂 and ‖𝑥**(𝑡1)‖ = ℎ, we have (estimates are derived
in much the same way as in (3.21))

𝑉 (𝑡0, 𝑥**
𝑡0 ) ≤ 𝑊 (‖𝑥**

𝑡0 ‖
𝜏
) ≤ 𝑊 (𝜂) < 𝑤(ℎ) = 𝑤(‖𝑥**(𝑡1)‖) ≤ 𝑉 (𝑡1, 𝑥**

𝑡1 ), (3.30)
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that is,
𝑉 (𝑡0, 𝑥**

𝑡0 ) < 𝑉 (𝑡1, 𝑥**
𝑡1 ). (3.31)

Due to the positive-definiteness of 𝜔 (assumption 𝑖)), we have∫︁ ∞

𝑡1
𝜔(𝑡, 𝑥**

𝑡 , 𝑢
*(𝑡, 𝑥**

𝑡 ))d𝑡 ≤
∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥**

𝑡 , 𝑢
*(𝑡, 𝑥**

𝑡 ))d𝑡. (3.32)

Now, from (3.29)–(3.32) it follows

𝑉 (𝑡0, 𝑥**
𝑡0 ) < 𝑉 (𝑡1, 𝑥**

𝑡1 ) ≤
∫︁ ∞

𝑡1
𝜔(𝑡, 𝑥**

𝑡 , 𝑢
*(𝑡, 𝑥**

𝑡 ))d𝑡 ≤
∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥**

𝑡 , 𝑢
*(𝑡, 𝑥**

𝑡 ))d𝑡

and (3.28) holds again.
Finally, assume that the initial function 𝑥0

𝑡0 (used, among others, on the left-hand
side of (3.24)) and the initial function 𝑥**

𝑡0 (used, among others, on the left-hand side
of (3.28)) are identical, that is 𝑥0(𝑡0 + 𝜃) = 𝑥**(𝑡0 + 𝜃), 𝜃 ∈ [−𝜏, 0]. Then, (3.24)
and (3.28) imply∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥0

𝑡 , 𝑢0(𝑡, 𝑥0
𝑡 ))d𝑡 = 𝑉 (𝑡0, 𝑥0

𝑡0) = 𝑉 (𝑡0, 𝑥**
𝑡0 ) ≤

∫︁ ∞

𝑡0
𝜔(𝑡, 𝑥**

𝑡 , 𝑢
*(𝑡, 𝑥**

𝑡 ))d𝑡,

that is, (3.8) holds with

𝑥𝑡 := 𝑥0
𝑡 , 𝑢0(𝑡, 𝑥𝑡) := 𝑢0(𝑡, 𝑥0

𝑡 )

on the left-hand side and with

𝑥*
𝑡 := 𝑥**

𝑡 , 𝑢
*(𝑡, 𝑥*

𝑡 ) := 𝑢*(𝑡, 𝑥**
𝑡 ))

on the right-hand side. Therefore, the optimal stabilization control function 𝑢 =
𝑢0(𝑡, 𝑥𝑡) ≡ 𝑢0(𝑡, 𝑥0

𝑡 ) solves Problem 3.1.1 and (3.13) holds. �

Remark 3.2.2. Theorem 3.2.1 is an extension to delayed differential equations of
Theorem IV in Malkin’s book [45, p. 485] formulated there for ordinary differential
equations. Optimal problems for delayed differential equations with integral quality
criteria are often considered for a finite upper limit in an integral quality criterion 𝐼
and are, in general, not applicable to the case of this limit being infinite (we refer,
for example, to [6, 8, 9, 29, 30, 36, 37, 44, 50, 51, 55, 60] and to the references
therein). In [27, 35], the quality criteria are considered in an integral form with
an infinite upper limit. Unlike our investigation, a control law is searching in the
prescribed class of functionals. In [10], an integral quality criterion with an infinite
upper limit is used for solving an optimal control problem, but a weight function of
an exponential type is used to preserve its convergence.
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3.3 Examples
This part uses four examples to illustrate Theorem 3.2.1 with the Lyapunov-
Krasovskii functional being chosen in the form

𝑉 (𝑡, 𝑥𝑡) = ℎ𝑥2(𝑡) + 𝑑
∫︁ 𝑡

𝑡−𝜏
𝑥2(𝑠)d𝑠

and
ℎ > 0, 𝑑 > 0. (3.33)

The first example shows that the method can be applied to nonlinear equations.

Example 3.3.1. Let 𝑚 = 𝑟 = 1. Let the equation (3.3) be reduced to a nonlinear
delayed equation

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢) := 𝑎𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) + 𝑐𝑥3(𝑡) + 𝑒𝑥(𝑡)𝑢, (3.34)

where 𝑎, 𝑏, 𝑐 and 𝑒 are real constants, 𝜏 > 0 is a delay and 𝑢 is a control function.
Solve the problem of minimizing 𝐼, where

𝜔 (𝑡, 𝑥𝑡, 𝑢) := 𝛼𝑥2(𝑡) + 2𝛽𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝛾𝑥2(𝑡− 𝜏) + 𝛿𝑢2

and assume
𝛼 > 0, 𝛼𝛾 − 𝛽2 > 0, 𝛿 > 0. (3.35)

Then, 𝜔 is a positive-definite functional. The functional 𝐵, defined by (3.11), equals

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) =d𝑉 (𝑡, 𝑥𝑡)
d𝑡 + 𝜔 (𝑡, 𝑥𝑡, 𝑢)

= d
d𝑡

(︂
ℎ𝑥2(𝑡) + 𝑑

∫︁ 𝑡

𝑡−𝜏
𝑥2(𝑠)d𝑠

)︂
+ 𝜔 (𝑡, 𝑥𝑡, 𝑢)

=2ℎ𝑥(𝑡)[𝑎𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) + 𝑐𝑥3(𝑡) + 𝑒𝑥(𝑡)𝑢] + 𝑑[𝑥2(𝑡) − 𝑥2(𝑡− 𝜏)]

+ 𝛼𝑥2(𝑡) + 2𝛽𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝛾𝑥2(𝑡− 𝜏) + 𝛿𝑢2

=2ℎ𝑐𝑥4(𝑡) + (2ℎ𝑎+ 𝑑+ 𝛼)𝑥2(𝑡) + (𝛾 − 𝑑)𝑥2(𝑡− 𝜏)

+ (2ℎ𝑏+ 2𝛽)𝑥(𝑡)𝑥(𝑡− 𝜏) + 2ℎ𝑒𝑥2(𝑡)𝑢+ 𝛿𝑢2.

To satisfy conditions 𝑖𝑖) and 𝑖𝑖𝑖) we look for an extremum of 𝐵 with respect to 𝑢.
We get

𝐵′
𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2ℎ𝑒𝑥2(𝑡) + 2𝛿𝑢

and the derivative equals zero if

𝑢 = 𝑢0 = −ℎ𝑒𝑥2(𝑡)
𝛿

. (3.36)
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Since 𝐵′′
𝑢𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2𝛿 > 0, the value (3.36) is a unique point of minimum. In

accordance with (3.12), it is necessary that 𝐵 ≡ 0 if the control function is defined
by (3.36), therefore, the following must hold

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢0) =
(︃

2ℎ𝑐− ℎ2𝑒2

𝛿

)︃
𝑥4(𝑡) + (2ℎ𝑎+ 𝑑+ 𝛼)𝑥2(𝑡)

+ (𝛾 − 𝑑)𝑥2(𝑡− 𝜏) + (2ℎ𝑏+ 2𝛽)𝑥(𝑡)𝑥(𝑡− 𝜏) ≡ 0.

This is possible if

2𝑐− ℎ𝑒2

𝛿
= 0, (3.37)

2ℎ𝑎+ 𝑑+ 𝛼 = 0, (3.38)
𝑑 = 𝛾, (3.39)

ℎ = −𝛽

𝑏
. (3.40)

From the above consideration, it follows that 𝑖𝑖𝑖) holds as well. If conditions (3.37)–
(3.40) together with (3.33) and (3.35) are fulfilled, Theorem 3.2.1 can be applied.
Therefore, 𝑢0 defined by the formula (3.36) is the desired optimal control function
and the equation (3.34) takes the form

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡,−ℎ𝑒𝑥2(𝑡)/𝛿) := 𝑎𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) − 𝑐𝑥3(𝑡). (3.41)

The coefficient conditions (3.33), (3.35), (3.37)–(3.40) are fulfilled, for example, for
the choice

𝑎 = −2, 𝑏 = 𝛾 = 𝛿 = 𝑑 = ℎ = 1, 𝑐 = 𝑒 = 2, 𝛼 = 3, 𝛽 = −1.

Then, 𝑢0 = −2𝑥2(𝑡) and equations (3.34), (3.41) take the form

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡,−2𝑥2(𝑡)) := −2𝑥(𝑡) + 𝑥(𝑡− 𝜏) − 2𝑥3(𝑡).

Remark 3.3.2. The above computations are applicable to some classes of equations
with variable coefficients. Consider, for example, the equation

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢) := (𝑎+ 1/𝑡2)𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) + 𝑐𝑥3(𝑡) + 𝑒𝑥(𝑡)𝑢,

where the coefficient 𝑎 is perturbed by a small function (assuming that 𝑡 ≥ 𝑡0 and
𝑡0 is sufficiently large). The problem of minimizing 𝐼, where

𝜔 (𝑡, 𝑥𝑡, 𝑢) := (𝛼− 2/𝑡2)𝑥2(𝑡) + 2𝛽𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝛾𝑥2(𝑡− 𝜏) + 𝛿𝑢2,

is solvable with the same control function.
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Example 3.3.3. Let 𝑚 = 𝑟 = 1. Let the equation (3.3) be reduced to a nonlinear
delayed equation

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢) := 𝑎𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) + 𝑐𝑥(𝑡)𝑥2(𝑡− 𝜏) + 𝑒𝑥(𝑡− 𝜏)𝑢, (3.42)

where 𝑎, 𝑏, 𝑐 and 𝑒 are real constants, 𝜏 > 0 is a delay and 𝑢 is a control function.
Solve the problem of minimizing 𝐼, where

𝜔 (𝑡, 𝑥𝑡, 𝑢) := 𝛼𝑥2(𝑡) + 2𝛽𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝛾𝑥2(𝑡− 𝜏) + 𝛿𝑢2,

and assume
𝛼 > 0, 𝛼𝛾 − 𝛽2 > 0, 𝛿 > 0. (3.43)

Then, 𝜔 is a positive-definite functional. The functional 𝐵, defined by (3.11), equals

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) =d𝑉 (𝑡, 𝑥𝑡)
d𝑡 + 𝜔 (𝑡, 𝑥𝑡, 𝑢)

= d
d𝑡

(︂
ℎ𝑥2(𝑡) + 𝑑

∫︁ 𝑡

𝑡−𝜏
𝑥2(𝑠)d𝑠

)︂
+ 𝜔 (𝑡, 𝑥𝑡, 𝑢)

=2ℎ𝑥(𝑡)[𝑎𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) + 𝑐𝑥(𝑡)𝑥2(𝑡− 𝜏) + 𝑒𝑥(𝑡− 𝜏)𝑢]

+ 𝑑[𝑥2(𝑡) − 𝑥2(𝑡− 𝜏)] + 𝛼𝑥2(𝑡) + 2𝛽𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝛾𝑥2(𝑡− 𝜏) + 𝛿𝑢2

=2ℎ𝑐𝑥2(𝑡)𝑥2(𝑡− 𝜏) + (2ℎ𝑎+ 𝑑+ 𝛼)𝑥2(𝑡) + (𝛾 − 𝑑)𝑥2(𝑡− 𝜏)

+ (2ℎ𝑏+ 2𝛽)𝑥(𝑡)𝑥(𝑡− 𝜏) + 2ℎ𝑒𝑥(𝑡)𝑥(𝑡− 𝜏)𝑢+ 𝛿𝑢2.

To satisfy conditions 𝑖𝑖) and 𝑖𝑖𝑖) we look for an extremum of 𝐵 with respect to 𝑢.
We get

𝐵′
𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2ℎ𝑒𝑥(𝑡)𝑥(𝑡− 𝜏) + 2𝛿𝑢

and the derivative equals zero if

𝑢 = 𝑢0 = −ℎ𝑒𝑥(𝑡)𝑥(𝑡− 𝜏)
𝛿

. (3.44)

Since
𝐵′′

𝑢𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2𝛿 > 0,

(3.44) is a unique point of minimum.
In accordance with (3.12), it is necessary that 𝐵 ≡ 0 if the control function is defined
by (3.44), therefore, the following must hold

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢0) =
(︃

2ℎ𝑐− ℎ2𝑒2

𝛿

)︃
𝑥2(𝑡)𝑥2(𝑡− 𝜏) + (2ℎ𝑎+ 𝑑+ 𝛼)𝑥2(𝑡)

+ (𝛾 − 𝑑)𝑥2(𝑡− 𝜏) + (2ℎ𝑏+ 2𝛽)𝑥(𝑡)𝑥(𝑡− 𝜏) ≡ 0.
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This is possible if

2𝑐− ℎ𝑒2

𝛿
= 0, (3.45)

2ℎ𝑎+ 𝑑+ 𝛼 = 0, (3.46)
𝑑 = 𝛾, (3.47)

ℎ = −𝛽

𝑏
. (3.48)

From the above consideration, it follows that 𝑖𝑖𝑖) holds as well. If conditions (3.45)–
(3.48) together with (3.33) and (3.43) are fulfilled, Theorem 3.2.1 can be applied.
Therefore, 𝑢0 defined by formula (3.44) is the desired optimal control function and
equation (3.42) takes the form

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡,−ℎ𝑒𝑥(𝑡)𝑥(𝑡− 𝜏)/𝛿) := 𝑎𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) − 𝑐𝑥(𝑡)𝑥2(𝑡− 𝜏). (3.49)

The coefficient conditions (3.33), (3.43), (3.45)–(3.48) are fulfilled, for example, for
the choice

𝑎 = −2,
𝑏 = 𝛾 = 𝛿 = 𝑑 = ℎ = 1,

𝑐 = 𝑒 = 2,
𝛼 = 3,
𝛽 = −1.

Then, 𝑢0 = −2𝑥(𝑡)𝑥(𝑡− 𝜏) and equations (3.42), (3.49) take the form

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡,−2𝑥(𝑡)𝑥(𝑡− 𝜏)) := −2𝑥(𝑡) + 𝑥(𝑡− 𝜏) − 2𝑥(𝑡)𝑥2(𝑡− 𝜏).

By the following example, which is sort of a generalization of Example 3.3.1, we
demonstrate the variability of the method if the control functions affect both the
nonlinear and linear terms.

Example 3.3.4. Let𝑚 = 1, 𝑟 = 2. Let a nonlinear delayed equation of the type (3.3)
be of the form

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢) := 𝑎𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) + 𝑐𝑥3(𝑡) + 𝑒1𝑥(𝑡)𝑢1 + 𝑒2𝑢2, (3.50)

where 𝑎, 𝑏, 𝑐, 𝑒1 and 𝑒2 are real constants, 𝜏 > 0 is a delay and 𝑢1, 𝑢2 are control
functions. We will solve the problem of minimizing 𝐼, where

𝜔 (𝑡, 𝑥𝑡, 𝑢) := 𝛼𝑥2(𝑡) + 2𝛽𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝛾𝑥2(𝑡− 𝜏) + 𝛿1𝑢
2
1 + 𝛿2𝑢

2
2,

and assume
𝛼 > 0, 𝛼𝛾 − 𝛽2 > 0, 𝛿1 > 0, 𝛿2 > 0. (3.51)
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Obviously, 𝜔 is positive-definite. The functional 𝐵 defined by (3.11) equals

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) =d𝑉 (𝑡, 𝑥𝑡)
d𝑡 + 𝜔 (𝑡, 𝑥𝑡, 𝑢)

= d
d𝑡

(︂
ℎ𝑥2(𝑡) + 𝑑

∫︁ 𝑡

𝑡−𝜏
𝑥2(𝑠)d𝑠

)︂
+ 𝜔 (𝑡, 𝑥𝑡, 𝑢)

=2ℎ𝑥(𝑡)[𝑎𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) + 𝑐𝑥3(𝑡) + 𝑒1𝑥(𝑡)𝑢1 + 𝑒2𝑢2]

+ 𝑑[𝑥2(𝑡) − 𝑥2(𝑡− 𝜏)] + 𝛼𝑥2(𝑡) + 2𝛽𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝛾𝑥2(𝑡− 𝜏)

+ 𝛿1𝑢
2
1 + 𝛿2𝑢

2
2

=2ℎ𝑐𝑥4(𝑡) + (2ℎ𝑎+ 𝑑+ 𝛼)𝑥2(𝑡) + (𝛾 − 𝑑)𝑥2(𝑡− 𝜏)

+ (2ℎ𝑏+ 2𝛽)𝑥(𝑡)𝑥(𝑡− 𝜏) + 2ℎ𝑒1𝑥
2(𝑡)𝑢1 + 2ℎ𝑒2𝑥(𝑡)𝑢2

+ 𝛿1𝑢
2
1 + 𝛿2𝑢

2
2.

To satisfy conditions 𝑖𝑖) and 𝑖𝑖𝑖) we look for an extremum of 𝐵 with respect to 𝑢1,
𝑢2. We get

𝐵′
𝑢1(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2ℎ𝑒1𝑥

2(𝑡) + 2𝛿1𝑢1,

𝐵′
𝑢2(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2ℎ𝑒2𝑥(𝑡) + 2𝛿2𝑢2.

The partial derivatives equal zero if

𝑢1 = 𝑢10 = −ℎ𝑒1𝑥
2(𝑡)

𝛿1
, (3.52)

𝑢2 = 𝑢20 = −ℎ𝑒2𝑥(𝑡)
𝛿2

. (3.53)

Since 𝐵′′
𝑢1𝑢1(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2𝛿1 > 0, 𝐵′′

𝑢2𝑢2(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2𝛿2 > 0, 𝐵′′
𝑢1𝑢2(𝑉, 𝑡, 𝑥𝑡, 𝑢) =

0, the values (3.52), (3.53) determine a unique point of minimum. In accordance
with (3.12), it is necessary that 𝐵 ≡ 0 if control functions are defined by (3.52),
(3.53), so the following must hold

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢0) =
(︃

2ℎ𝑐− ℎ2𝑒2
1

𝛿1

)︃
𝑥4(𝑡) +

(︃
2ℎ𝑎+ 𝑑+ 𝛼− ℎ2𝑒2

2
𝛿2

)︃
𝑥2(𝑡)

+ (𝛾 − 𝑑)𝑥2(𝑡− 𝜏) + (2ℎ𝑏+ 2𝛽)𝑥(𝑡)𝑥(𝑡− 𝜏) ≡ 0.

This is possible if

2𝑐− ℎ𝑒2
1

𝛿1
= 0, (3.54)

2ℎ𝑎+ 𝑑+ 𝛼− ℎ2𝑒2
2

𝛿2
= 0, (3.55)
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𝑑 = 𝛾, (3.56)

ℎ = −𝛽

𝑏
. (3.57)

From the above consideration, it follows that 𝑖𝑖𝑖) holds as well. If (3.54)–(3.57)
and (3.33), (3.51) are also fulfilled, then Theorem 3.2.1 holds. Therefore, 𝑢1,
𝑢2 defined by formulas (3.52), (3.53) are optimal control functions and the
equation (3.50) takes the form

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢1, 𝑢2) :=
(︃
𝑎− ℎ𝑒2

2
𝛿2

)︃
𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) − 𝑐𝑥3(𝑡). (3.58)

The coefficient conditions (3.33), (3.51), (3.54)–(3.57) are fulfilled, for example, for
the choice

𝑎 = −2, 𝑏 = 𝛾 = 𝛿1 = 𝛿2 = 𝑒2 = 𝑑 = ℎ = 1, 𝑐 = 𝑒1 = 2, 𝛼 = 4, 𝛽 = −1.

Then, 𝑢1 = −2𝑥2(𝑡), 𝑢2 = −𝑥(𝑡) and equations (3.50), (3.58) take the form

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡,−2𝑥2(𝑡),−𝑥(𝑡)) := −3𝑥(𝑡) + 𝑥(𝑡− 𝜏) − 2𝑥3(𝑡).

Remark 3.3.5. The coefficient (𝑎− ℎ𝑒2
2/𝛿2) in (3.58) is always negative. This is

obvious for 𝑎 ≤ 0. Let 𝑎 > 0. Then,

𝑎− ℎ𝑒2
2

𝛿2
= 1
ℎ

(︃
ℎ𝑎− ℎ2𝑒2

2
𝛿2

)︃
by (3.55)= 1

ℎ
(−ℎ𝑎− 𝑑− 𝛼) < 0.

In the last example, we show that the control function can depend on the solution
with delayed argument and this dependence is caused by the form of 𝜔.

Example 3.3.6. Let 𝑚 = 𝑟 = 1. Consider a delayed equation (3.3) of the form

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢) := 𝑎𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) + 𝑐𝑢, (3.59)

where 𝑎, 𝑏 ̸= 0 and 𝑐 are real constants, 𝜏 > 0 is a delay and 𝑢 is a control function.
Let 𝜔 in 𝐼 be defined as

𝜔 (𝑡, 𝑥𝑡, 𝑢) := 𝛼𝑥2(𝑡) + 2𝛽𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝛾𝑥2(𝑡− 𝜏)
+ 2𝛿𝑥(𝑡)𝑢+ 2𝜀𝑥(𝑡− 𝜏)𝑢+ 𝜉𝑢2 (3.60)

where 𝛼, 𝛽, 𝛾, 𝛿, 𝜀 ̸= 0 and 𝜉 are real constants. Assume

𝛼 > 0,

⃒⃒⃒⃒
⃒⃒𝛼 𝛽

𝛽 𝛾

⃒⃒⃒⃒
⃒⃒ > 0,

⃒⃒⃒⃒
⃒⃒⃒⃒𝛼 𝛽 𝛿

𝛽 𝛾 𝜀

𝛿 𝜀 𝜉

⃒⃒⃒⃒
⃒⃒⃒⃒ > 0. (3.61)
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Then, 𝜔 is positive-definite. The functional 𝐵 defined by (3.11) equals

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) =d𝑉 (𝑡, 𝑥𝑡)
d𝑡 + 𝜔 (𝑡, 𝑥𝑡, 𝑢)

= d
d𝑡

(︂
ℎ𝑥2(𝑡) + 𝑑

∫︁ 𝑡

𝑡−𝜏
𝑥2(𝑠)d𝑠

)︂
+ 𝜔 (𝑡, 𝑥𝑡, 𝑢)

=2ℎ𝑥(𝑡)[𝑎𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) + 𝑐𝑢(𝑡)] + 𝑑[𝑥2(𝑡) − 𝑥2(𝑡− 𝜏)]

+ 𝛼𝑥2(𝑡) + 2𝛽𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝛾𝑥2(𝑡− 𝜏) + 2𝛿𝑥(𝑡)𝑢

+ 2𝜀𝑥(𝑡− 𝜏)𝑢+ 𝜉𝑢2

=(2ℎ𝑎+ 𝑑+ 𝛼)𝑥2(𝑡) + (2ℎ𝑏+ 2𝛽)𝑥(𝑡)𝑥(𝑡− 𝜏) + (𝛾 − 𝑑)𝑥2(𝑡− 𝜏)

+ (2ℎ𝑐+ 2𝛿)𝑥(𝑡)𝑢+ 2𝜀𝑥(𝑡− 𝜏)𝑢+ 𝜉𝑢2.

To satisfy conditions 𝑖𝑖) and 𝑖𝑖𝑖) we look for an extremum of 𝐵 with respect to 𝑢.
We get

𝐵′
𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢) = (2ℎ𝑐+ 2𝛿)𝑥(𝑡) + 2𝜀𝑥(𝑡− 𝜏) + 2𝜉𝑢

and the derivative equals zero if

𝑢 = 𝑢0 = −1
𝜉

((ℎ𝑐+ 𝛿)𝑥(𝑡) + 𝜀𝑥(𝑡− 𝜏)). (3.62)

Since 𝐵′′
𝑢𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2𝜉 > 0, the value (3.62) is a unique point of minimum (the

positivity of 𝜉 follows from (3.61)). In accordance with (3.12), the value of 𝐵 for the
control function 𝑢0 defined by (3.62) equals zero. Since

(2ℎ𝑐+ 2𝛿)𝑥(𝑡)𝑢0 = − 1
𝜉

(2ℎ𝑐+ 2𝛿)𝑥(𝑡)((ℎ𝑐+ 𝛿)𝑥(𝑡) + 𝜀𝑥(𝑡− 𝜏))

= − 2
𝜉

(ℎ𝑐+ 𝛿)2𝑥2(𝑡) − 2𝜀
𝜉

(ℎ𝑐+ 𝛿)𝑥(𝑡)𝑥(𝑡− 𝜏),

2𝜀𝑥(𝑡− 𝜏)𝑢0 = − 2𝜀
𝜉
𝑥(𝑡− 𝜏)((ℎ𝑐+ 𝛿)𝑥(𝑡) + 𝜀𝑥(𝑡− 𝜏))

= − 2𝜀
𝜉

(ℎ𝑐+ 𝛿)𝑥(𝑡)𝑥(𝑡− 𝜏) − 2𝜀2

𝜉
𝑥2(𝑡− 𝜏),

𝜉𝑢2
0 = 𝜉

(︃
1
𝜉

((ℎ𝑐+ 𝛿)𝑥(𝑡) + 𝜀𝑥(𝑡− 𝜏))
)︃2

=1
𝜉

(ℎ𝑐+ 𝛿)2𝑥2(𝑡) + 2𝜀
𝜉

(ℎ𝑐+ 𝛿)𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝜀2

𝜉
𝑥2(𝑡− 𝜏),

the following must hold

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢0) =
(︃

2ℎ𝑎+ 𝑑+ 𝛼− (ℎ𝑐+ 𝛿)2

𝜉

)︃
𝑥2(𝑡) +

(︃
𝛾 − 𝑑− 𝜀2

𝜉

)︃
𝑥2(𝑡− 𝜏)
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+
(︃

2ℎ𝑏+ 2𝛽 − 2𝜀(ℎ𝑐+ 𝛿)
𝜉

)︃
𝑥(𝑡)𝑥(𝑡− 𝜏) ≡ 0

and, therefore,

2ℎ𝑎+ 𝑑+ 𝛼− (ℎ𝑐+ 𝛿)2

𝜉
= 0,

𝛾 − 𝑑− 𝜀2

𝜉
= 0,

ℎ𝑏+ 𝛽 − 𝜀(ℎ𝑐+ 𝛿)
𝜉

= 0.

So the coefficient 𝑑 could be found from the second equation as

𝑑 = 𝛾 − 𝜀2

𝜉
. (3.63)

The remaining two equations can be transformed as follows

2ℎ𝑎+ 𝑑+ 𝛼− 𝜉(ℎ𝑏+ 𝛽)2

𝜀2 = 0, (3.64)

(ℎ𝑏+ 𝛽)2 = 𝜀2(ℎ𝑐+ 𝛿)2

𝜉2 . (3.65)

Rewrite the equation (3.64) as

2ℎ𝑎𝜀2 + 𝑑𝜀2 + 𝛼𝜀2 − ℎ2𝑏2𝜉 − 2ℎ𝑏𝛽𝜉 − 𝛽2𝜉 = 0,

that is,
ℎ2𝑏2𝜉 + 2ℎ(𝑏𝛽𝜉 − 𝑎𝜀2) + 𝛽2𝜉 − 𝑑𝜀2 − 𝛼𝜀2 = 0.

The last equation is solvable with respect to ℎ if 𝐷 ≥ 0, where

𝐷 = 4(𝑏𝛽𝜉 − 𝑎𝜀2)2 − 4𝑏2𝜉(𝛽2𝜉 − 𝑑𝜀2 − 𝛼𝜀2)
= 4𝑏2𝛽2𝜉2 − 8𝑎𝑏𝛽𝜉𝜀2 + 4𝑎2𝜀4 − 4𝑏2𝜉2𝛽2 + 4𝑏2𝜉𝑑𝜀2 + 4𝑏2𝜉𝛼𝜀2

by (3.63)= 4𝑎2𝜀4 − 8𝑎𝑏𝛽𝜉𝜀2 + 4𝑏2𝜉𝛼𝜀2 + 4𝑏2𝜉𝛾𝜀2 − 4𝑏2𝜀4

= 4𝜀4(𝑎2 − 𝑏2) + 4𝑏2𝜉𝜀2(𝛼 + 𝛾) − 8𝑎𝑏𝛽𝜉𝜀2 ≥ 0.

Consequently, (3.64) is solvable with respect to ℎ if the inequality

𝜀2(𝑎2 − 𝑏2) + 𝑏2𝜉(𝛼 + 𝛾) ≥ 2𝑎𝑏𝛽𝜉 (3.66)

holds. Then we could find the coefficient ℎ from (3.64) and, subsequently, the
coefficient 𝑐 from (3.65).
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If conditions (3.66), (3.33) and (3.61) are fulfilled, then all assumptions of
Theorem 3.2.1 are fulfilled. Therefore, 𝑢0 defined by the formula (3.62) is the desired
optimal control function with the equation (3.59) taking the form

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢0) :=
(︃
𝑎− 𝑐

𝜉
(ℎ𝑐+ 𝛿)

)︃
𝑥(𝑡) +

(︃
𝑏− 𝑐𝜀

𝜉

)︃
𝑥(𝑡− 𝜏). (3.67)

Let 𝑚 = 𝑟 = 1 and 𝑎 = 2, 𝑏 = −2, 𝑐 = −4, that is, let the system (3.3) be reduced
to the scalar equation

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 𝑢) := 2𝑥(𝑡) − 2𝑥(𝑡− 𝜏) − 4𝑢, (3.68)

where 𝑢 is a control function. Set

𝜀 = ℎ = 𝑑 = 1, 𝜉 = 2, 𝛼 = 3, 𝛽 = 𝛿 = 0, 𝛾 = 3/2.

Conditions (3.33), (3.61), (3.63)–(3.65) for the coefficients are fulfilled and, by (3.62),

𝑢0 = 2𝑥(𝑡) − 0.5𝑥(𝑡− 𝜏).

Since 𝑏− 𝑐𝜀/𝜉 = 0, the equation (3.67) does not contain a delay and

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡, 2𝑥(𝑡) − 0.5𝑥(𝑡− 𝜏)) := −6𝑥(𝑡). (3.69)

Remark 3.3.7. The qualitative behaviour of the solutions of equation (3.68)
without a control function, that is, the equation

𝑥′(𝑡) = 2(𝑥(𝑡) − 𝑥(𝑡− 𝜏)), (3.70)

is well-known and can be described using the results published, for example, in [21]
and in a recent paper [20]. Assuming a solution of (3.70) in the exponential form
𝑥 = exp(𝜆𝑡) with a suitable constant 𝜆, we arrive at the equation 𝜆 = 2−2 exp(−𝜆𝜏)
which has a unique real root 𝜆 = 𝜆* > 0. For 𝑡 → ∞, every solution 𝑥 = 𝑥(𝑡) of (3.70)
has the following asymptotic representation

𝑥(𝑡) = 𝐾 exp(𝜆*𝑡) + 𝛿(𝑡),

where 𝐾 is a constant and 𝛿(𝑡) is a bounded solution of (3.70) (𝐾 and 𝛿(𝑡) depend
on 𝑥). Note that the qualitative properties of the solutions of both equations - the
controlled equation (3.69) and the equation without control (3.70), are diametrically
opposite.
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3.4 Application to linear equations and systems
In this part, we apply Theorem 3.2.1 to the linear equations and systems. Some
auxiliary computations here are done by “WolframAlpha” software.

3.4.1 Equations with a single delay

Consider linear scalar equations with constant coefficients and a single delay

𝑥′(𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) + 𝑐𝑢, (3.71)

where 𝑎, 𝑏 ̸= 0, 𝑐 are real constants, 𝜏 > 0 is a delay and 𝑢 is a control function.
Together with the equation (3.71), we will consider a quality criterion (3.6) with

𝜔(𝑡, 𝑥𝑡, 𝑢) = 𝛼𝑥2(𝑡) + 2𝛽𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝛾𝑥2(𝑡− 𝜏) + 𝛿𝑢2, (3.72)

i.e., (3.6) being a quadratic criterion

𝐼 =
∫︁ ∞

𝑡0

(︁
𝛼𝑥2(𝑡) + 2𝛽𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝛾𝑥2(𝑡− 𝜏) + 𝛿𝑢2

)︁
d𝑡, (3.73)

with
𝛼 > 0, 𝛼𝛾 − 𝛽2 > 0, 𝛿 > 0. (3.74)

The equation (3.71) is formally the same as the equation (3.59). But the relevant
quality criteria are different. Since 𝜀 ̸= 0, the quality criterion (3.60) in Example 3.3.6
does not reduce to the quality criterion (3.72). In addition, in the latter case
the coefficients of the Lyapunov-Krasovskii functional can be easily determined by
simple formulas.

Theorem 3.4.1. If, for the optimal control problem (3.71), (3.73), a Lyapunov-
Krasovskii functional is used in the form

𝑉 (𝑡, 𝑥𝑡) = ℎ𝑥2(𝑡) + 𝑑
∫︁ 𝑡

𝑡−𝜏
𝑥2(𝑠)d𝑠, ℎ > 0, 𝑑 > 0,

with ℎ = −𝛽/𝑏 (𝛽𝑏 < 0), 𝑑 = 𝛾,

𝛿(2ℎ𝑎+ 𝑑+ 𝛼) − ℎ2𝑐2 = 0, (3.75)

then the optimal stabilization control function 𝑢0 equals

𝑢0 = −ℎ𝑐

𝛿
𝑥(𝑡). (3.76)
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Proof. We will employ Theorem 3.2.1. In accordance with the condition 𝑖𝑖𝑖) of
Theorem 3.2.1, we analyze the non-negativity of the expression 𝐵 given by (3.11),
i.e.,

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) =d𝑉 (𝑡, 𝑥𝑡)
d𝑡 + 𝜔 (𝑡, 𝑥𝑡, 𝑢)

= d
d𝑡

(︂
ℎ𝑥2(𝑡) + 𝑑

∫︁ 𝑡

𝑡−𝜏
𝑥2(𝑠)d𝑠

)︂
+ 𝜔 (𝑡, 𝑥𝑡, 𝑢)

=2ℎ𝑥(𝑡)[𝑎𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏) + 𝑐𝑢] + 𝑑[𝑥2(𝑡) − 𝑥2(𝑡− 𝜏)]
+ 𝛼𝑥2(𝑡) + 2𝛽𝑥(𝑡)𝑥(𝑡− 𝜏) + 𝛾𝑥2(𝑡− 𝜏) + 𝛿𝑢2.

Simplifying the last expression, we get

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) =(2ℎ𝑎+ 𝑑+ 𝛼)𝑥2(𝑡) + (𝛾 − 𝑑)𝑥2(𝑡− 𝜏)
+ (2ℎ𝑏+ 2𝛽)𝑥(𝑡)𝑥(𝑡− 𝜏) + 2ℎ𝑐𝑥(𝑡)𝑢+ 𝛿𝑢2.

For 𝐵 to be non-negative, for any function 𝑢, the next inequalities should hold

2ℎ𝑎+ 𝑑+ 𝛼 ≥0, (3.77)
(2ℎ𝑎+ 𝑑+ 𝛼)(𝛾 − 𝑑) − (ℎ𝑏+ 𝛽)2 ≥0, (3.78)

𝛿(2ℎ𝑎+ 𝑑+ 𝛼)(𝛾 − 𝑑) − ℎ2𝑐2(𝛾 − 𝑑) − 𝛿(ℎ𝑏+ 𝛽)2 ≥0. (3.79)

For 𝑢 = 𝑢0, by 𝑖𝑖), we have

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢0) =(2ℎ𝑎+ 𝑑+ 𝛼)𝑥2(𝑡) + (𝛾 − 𝑑)𝑥2(𝑡− 𝜏)
+ (2ℎ𝑏+ 2𝛽)𝑥(𝑡)𝑥(𝑡− 𝜏) + 2ℎ𝑐𝑥(𝑡)𝑢0 + 𝛿𝑢2

0 = 0. (3.80)

Looking for an extremum of (3.80) with respect to 𝑢0, we get

𝐵′
𝑢0(𝑉, 𝑡, 𝑥𝑡, 𝑢0) = 2ℎ𝑐𝑥(𝑡) + 2𝛿𝑢0 = 0,

i.e.,
𝑢0 = −ℎ𝑐

𝛿
𝑥(𝑡),

which is the minimum of the function 𝐵 because

𝐵′′
𝑢0𝑢0(𝑉, 𝑡, 𝑥𝑡, 𝑢0) = 2𝛿 > 0.

For (3.80) to hold, i.e.,

𝐵

(︃
𝑉, 𝑡, 𝑥𝑡,−

ℎ𝑐

𝛿
𝑥(𝑡)

)︃

=
(︃

2ℎ𝑎+ 𝑑+ 𝛼− ℎ2𝑐2

𝛿

)︃
𝑥2(𝑡) + (𝛾 − 𝑑)𝑥2(𝑡− 𝜏) + (2ℎ𝑏+ 2𝛽)𝑥(𝑡)𝑥(𝑡− 𝜏) = 0
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we obtain

𝛿(2ℎ𝑎+ 𝑑+ 𝛼) − ℎ2𝑐2 = 0,
𝑑 = 𝛾,

ℎ = −𝛽

𝑏
.

So the left-hand side of (3.77) takes the form

2ℎ𝑎+ 𝑑+ 𝛼 = ℎ2𝑐2

𝛿
≥ 0,

and the inequalities (3.78)-(3.79) are true because their left-hand sides are equal to
zero.
Therefore,

𝑢0 = −ℎ𝑐

𝛿
𝑥(𝑡)

is the optimal stabilization control function. �

Remark 3.4.2. The equation (3.71) with 𝑢 = 𝑢0 given by (3.76) takes the form

𝑥′(𝑡) =
(︃
𝑎− ℎ𝑐2

𝛿

)︃
𝑥(𝑡) + 𝑏𝑥(𝑡− 𝜏).

Example 3.4.3. Consider the equation (3.71) with 𝑎 = 1, 𝑏 = −1, 𝑐 =
√

6, i.e.,

𝑥′(𝑡) = 𝑥(𝑡) − 𝑥(𝑡− 𝜏) +
√

6𝑢 (3.81)

with the quadratic quality criterion (3.73) with 𝛼 = 2 > 0, 𝛽 = 1, 𝛾 = 2, 𝛿 = 1 > 0,
𝑡0 = 0, i.e.,

𝐼 =
∫︁ ∞

0

(︁
2𝑥2(𝑡) + 2𝑥(𝑡)𝑥(𝑡− 𝜏) + 2𝑥2(𝑡− 𝜏) + 𝑢2

)︁
d𝑡.

Inequalities (3.74) are true (here 𝛼𝛾 − 𝛽2 = 3 > 0), ℎ = 1, 𝑑 = 2 and (3.75) holds.
By the formula (3.76), the optimal stabilization control function

𝑢0 = −ℎ𝑐

𝛿
𝑥(𝑡) = −

√
6𝑥(𝑡)

exists. The equation (3.81) with 𝑢 = 𝑢0 takes the form

𝑥′(𝑡) = −5𝑥(𝑡) − 𝑥(𝑡− 𝜏).
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3.4.2 Equations with multiple delays

Consider linear scalar equations with constant coefficients and delays

𝑥′(𝑡) = 𝑎𝑥(𝑡) +
𝑛∑︁

𝑖=1
𝑏𝑖𝑥(𝑡− 𝜏𝑖) + 𝑐𝑢, 𝑡 ≥ 0, (3.82)

where 𝑎, 𝑏𝑖 and 𝑐 are real constants, 𝑖 = 1, . . . , 𝑛, 𝜏1 < 𝜏2 < · · · < 𝜏𝑛 = 𝜏 are delays
and 𝑢 is a control function.
Together with the equation (3.82), we will consider a quality criterion (3.6) with

𝜔(𝑡, 𝑥𝑡, 𝑢) =
𝑛∑︁

𝑖=0
𝛼𝑖𝑥

2(𝑡− 𝜏𝑖) + 2
𝑛∑︁

𝑖=1
𝛽𝑖𝑥(𝑡)𝑥(𝑡− 𝜏𝑖) + 𝛾𝑢2,

where 𝜏0 = 0, i.e., (3.6) being a quadratic criterion

𝐼 =
∫︁ ∞

𝑡0

(︃
𝑛∑︁

𝑖=0
𝛼𝑖𝑥

2(𝑡− 𝜏𝑖) + 2
𝑛∑︁

𝑖=1
𝛽𝑖𝑥(𝑡)𝑥(𝑡− 𝜏𝑖) + 𝛾𝑢2

)︃
d𝑡, (3.83)

where 𝛼0, 𝛼𝑖, 𝛽𝑖 (𝑖 = 1, . . . , 𝑛) and 𝛾 > 0 are constants and the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛼0 𝛽1 𝛽2 . . . 𝛽𝑛

𝛽1 𝛼1 0 . . . 0
𝛽2 0 𝛼2 . . . 0
... ... ... . . . ...
𝛽𝑛 0 0 . . . 𝛼𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.84)

is positive-definite.

Theorem 3.4.4. Let
−𝛽𝑖/𝑏𝑖 = ℎ > 0, 𝑖 = 1, . . . , 𝑛. (3.85)

If for the optimal control problem (3.82), (3.83) a Lyapunov-Krasovskii functional
is used in the form

𝑉 (𝑡, 𝑥𝑡) = ℎ𝑥2(𝑡) +
𝑛∑︁

𝑖=1
𝑑𝑖

∫︁ 𝑡

𝑡−𝜏𝑖

𝑥2(𝑠)d𝑠, ℎ > 0, 𝑑𝑖 > 0,

with
𝑑𝑖 = 𝛼𝑖 (3.86)

and if

𝛾

(︃
2ℎ𝑎+

𝑛∑︁
𝑖=1

𝑑𝑖 + 𝛼0

)︃
− ℎ2𝑐2 = 0, (3.87)

then the optimal stabilization control function 𝑢0 equals

𝑢0 = −ℎ𝑐

𝛾
𝑥(𝑡). (3.88)
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Proof. We will employ Theorem 3.2.1. In accordance with the conditions 𝑖𝑖), 𝑖𝑖𝑖)
of Theorem 3.2.1, we analyze the expression 𝐵 given by (3.11), i.e.,

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) =d𝑉 (𝑡, 𝑥𝑡)
d𝑡 + 𝜔 (𝑡, 𝑥𝑡, 𝑢)

= d
d𝑡

(︃
ℎ𝑥2(𝑡) +

𝑛∑︁
𝑖=1

𝑑𝑖

∫︁ 𝑡

𝑡−𝜏𝑖

𝑥2(𝑠)d𝑠
)︃

+ 𝜔 (𝑡, 𝑥𝑡, 𝑢)

=2ℎ𝑥(𝑡)
[︃
𝑎𝑥(𝑡) +

𝑛∑︁
𝑖=1

𝑏𝑖𝑥(𝑡− 𝜏𝑖) + 𝑐𝑢

]︃
+

𝑛∑︁
𝑖=1

𝑑𝑖

(︁
𝑥2(𝑡) − 𝑥2(𝑡− 𝜏𝑖)

)︁
+ 𝛼0𝑥

2(𝑡) +
𝑛∑︁

𝑖=1
𝛼𝑖𝑥

2(𝑡− 𝜏𝑖) + 2𝑥(𝑡)
𝑛∑︁

𝑖=1
𝛽𝑖𝑥(𝑡− 𝜏𝑖) + 𝛾𝑢2.

Simplifying the last expression, we get

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) =
(︃

2ℎ𝑎+
𝑛∑︁

𝑖=1
𝑑𝑖 + 𝛼0

)︃
𝑥2(𝑡) +

𝑛∑︁
𝑖=1

(𝛼𝑖 − 𝑑𝑖)𝑥2(𝑡− 𝜏𝑖)

+ 2𝑥(𝑡)
𝑛∑︁

𝑖=1
(ℎ𝑏𝑖 + 𝛽𝑖)𝑥(𝑡− 𝜏𝑖) + 2ℎ𝑐𝑥(𝑡)𝑢+ 𝛾𝑢2. (3.89)

Looking for an extremum of (3.89), we get

𝐵′
𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2ℎ𝑐𝑥(𝑡) + 2𝛾𝑢 = 0,

i.e.,
𝑢 = −ℎ𝑐

𝛾
𝑥(𝑡), (3.90)

which is the minimum of the function 𝐵 because

𝐵′′
𝑢𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2𝛾 > 0.

For 𝐵(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 0 to hold, use (3.89)

𝐵

(︃
𝑉, 𝑡, 𝑥𝑡,−

ℎ𝑐

𝛿
𝑥(𝑡)

)︃

=
(︃

2ℎ𝑎+
𝑛∑︁

𝑖=1
𝑑𝑖 + 𝛼0 − ℎ2𝑐2

𝛾

)︃
𝑥2(𝑡) +

𝑛∑︁
𝑖=1

(𝛼𝑖 − 𝑑𝑖)𝑥2(𝑡− 𝜏𝑖)

+ 2𝑥(𝑡)
𝑛∑︁

𝑖=1
(ℎ𝑏𝑖 + 𝛽𝑖)𝑥(𝑡− 𝜏𝑖) = 0

we obtain conditions

𝛾

(︃
2ℎ𝑎+

𝑛∑︁
𝑖=1

𝑑𝑖 + 𝛼0

)︃
− ℎ2𝑐2 = 0, (3.91)

𝑑𝑖 = 𝛼𝑖, 𝑖 = 1, . . . , 𝑛 (3.92)

ℎ = −𝛽𝑖

𝑏𝑖

, 𝑖 = 1, . . . , 𝑛. (3.93)
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Since (3.85)–(3.87) hold, so do (3.91)–(3.93).
For the non-negativity of 𝐵, by 𝑖𝑖𝑖), and using (3.92)-(3.93) we obtain:

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) =
(︃

2ℎ𝑎+
𝑛∑︁

𝑖=1
𝑑𝑖 + 𝛼0

)︃
𝑥2(𝑡) + 2ℎ𝑐𝑥(𝑡)𝑢+ 𝛾𝑢2 ≥ 0.

So we need
2ℎ𝑎+

𝑛∑︁
𝑖=1

𝑑𝑖 + 𝛼0 > 0,

which, by (3.91), takes the form

2ℎ𝑎+
𝑛∑︁

𝑖=1
𝑑𝑖 + 𝛼0 = ℎ2𝑐2

𝛾
> 0.

We conclude that (3.90) gives an optimal stabilization control function, that is,

𝑢0 = −ℎ𝑐

𝛾
𝑥(𝑡).

�

Remark 3.4.5. The equation (3.82) with 𝑢 = 𝑢0 given by (3.88) takes the form

𝑥′(𝑡) =
(︃
𝑎− ℎ𝑐2

𝛾

)︃
𝑥(𝑡) +

𝑛∑︁
𝑖=1

𝑏𝑖𝑥(𝑡− 𝜏𝑖).

Example 3.4.6. Let 𝑛 = 2. Consider the equation (3.82) with 𝑎 = −3, 𝑏1 = −1,
𝑏2 = −1, 𝑐 = 1, i.e.,

𝑥′(𝑡) = −3𝑥(𝑡) − 𝑥(𝑡− 𝜏1) − 𝑥(𝑡− 𝜏2) + 𝑢 (3.94)

with the quadratic quality criterion (3.83) with 𝛼0 = 3, 𝛼1 = 𝛼2 = 2, 𝛽1 = 𝛽2 = 𝛾 =
1 and 𝑡0 = 0, i.e.,

𝐼 =
∫︁ ∞

0

(︁
2𝑥2(𝑡) + 2𝑥(𝑡)𝑥(𝑡− 𝜏) + 2𝑥2(𝑡− 𝜏) + 2𝑥2(𝑡− 𝛿) + 2𝑥(𝑡)𝑥(𝑡− 𝛿) + 𝑢2

)︁
d𝑡,

where the matrix (3.84), that is ⎛⎜⎜⎝
2 1 1
1 2 0
1 0 1

⎞⎟⎟⎠ ,
is positive-definite. Since −𝛽1/𝑏1 = −𝛽2/𝑏2 = ℎ = 1 > 0 and

𝛾 (2ℎ𝑎+ 𝛼0 + 𝛼1 + 𝛼2) − ℎ2𝑐2 = −6 + 7 − 1 = 0,

all the assumptions of Theorem 3.4.4 are fulfilled. By the formula (3.88), the optimal
stabilization control function

𝑢0 = −ℎ𝑐

𝛾
𝑥(𝑡) = −𝑥(𝑡)

exists and the equation (3.94) with 𝑢 = 𝑢0 takes the form

𝑥′(𝑡) = −4𝑥(𝑡) − 𝑥(𝑡− 𝜏1) − 𝑥(𝑡− 𝜏2).

57



3.4.3 Systems with a single delay and a scalar control
function

Consider linear systems with constant coefficients and a single constant delay

𝑥′(𝑡) = 𝐴0𝑥(𝑡) + 𝐴1𝑥(𝑡− 𝜏) + 𝑏𝑢, (3.95)

where 𝐴0, 𝐴1 are 𝑚 × 𝑚 constant matrices, 𝑏 ∈ R𝑚, 𝑢 ∈ R, and a quality
criterion (3.6) with

𝜔(𝑡, 𝑥𝑡, 𝑢) = 𝑥𝑇 (𝑡)𝐶11𝑥(𝑡) + 𝑥𝑇 (𝑡)𝐶12𝑥(𝑡− 𝜏)
+ 𝑥𝑇 (𝑡− 𝜏)𝐶21𝑥(𝑡) + 𝑥𝑇 (𝑡− 𝜏)𝐶22𝑥(𝑡− 𝜏) + 𝑑𝑢2,

where 𝑚×𝑚 matrices 𝐶11, 𝐶22 and an 2𝑚× 2𝑚 matrix

𝐶 =
⎛⎝𝐶11 𝐶12

𝐶21 𝐶22

⎞⎠ (3.96)

are positive-definite and symmetric, 𝐶21 = 𝐶𝑇
12 and 𝑑 > 0, i.e., (3.6) is a quadratic

criterion

𝐼 =
∫︁ ∞

𝑡0

(︁
𝑥𝑇 (𝑡)𝐶11𝑥(𝑡) + 𝑥𝑇 (𝑡)𝐶12𝑥(𝑡− 𝜏)

+𝑥𝑇 (𝑡− 𝜏)𝐶21𝑥(𝑡) + 𝑥𝑇 (𝑡− 𝜏)𝐶22𝑥(𝑡− 𝜏) + 𝑑𝑢2
)︁

d𝑡. (3.97)

We will employ a Lyapunov-Krasovskii functional

𝑉 (𝑡, 𝑥𝑡) = 𝑥𝑇 (𝑡)𝐻𝑥(𝑡) +
∫︁ 𝑡

𝑡−𝜏
𝑥𝑇 (𝑠)𝐺𝑥(𝑠)d𝑠, (3.98)

where 𝐻 and 𝐺 are 𝑚×𝑚, constant, positive-definite and symmetric matrices.

Theorem 3.4.7. Assume that there exists a positive-definite symmetric 𝑚 × 𝑚

matrix 𝐻 satisfying a matrix equation

𝐴𝑇
0𝐻 +𝐻𝐴0 + 𝐶11 + 𝐶22 − 1

𝑑
𝐻𝑏𝑏𝑇𝐻 = Θ𝑚×𝑚. (3.99)

If, moreover,
𝐻𝐴1 + 𝐶12 = Θ𝑚×𝑚, (3.100)

the optimal stabilization control function 𝑢 = 𝑢0 of the problem (3.95), (3.97) exists
and

𝑢0 = −1
𝑑
𝑏𝑇𝐻𝑥(𝑡). (3.101)
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Proof. We will use Theorem 3.2.1. In accordance with the conditions 𝑖𝑖), 𝑖𝑖𝑖) of
Theorem 3.2.1, we analyse the expression 𝐵 given by (3.11), i.e.,

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) =d𝑉 (𝑡, 𝑥𝑡)
d𝑡 + 𝜔 (𝑡, 𝑥𝑡, 𝑢)

= d
d𝑡

(︂
𝑥𝑇 (𝑡)𝐻𝑥(𝑡) +

∫︁ 𝑡

𝑡−𝜏
𝑥𝑇 (𝑠)𝐺𝑥(𝑠)d𝑠

)︂
+ 𝜔 (𝑡, 𝑥𝑡, 𝑢)

=[𝐴0𝑥(𝑡) + 𝐴1𝑥(𝑡− 𝜏) + 𝑏𝑢]𝑇𝐻𝑥(𝑡)
+ 𝑥𝑇 (𝑡)𝐻[𝐴0𝑥(𝑡) + 𝐴1𝑥(𝑡− 𝜏) + 𝑏𝑢] + 𝑥𝑇 (𝑡)𝐺𝑥(𝑡)
− 𝑥𝑇 (𝑡− 𝜏)𝐺𝑥(𝑡− 𝜏) + 𝑥𝑇 (𝑡)𝐶11𝑥(𝑡) + 𝑥𝑇 (𝑡)𝐶12𝑥(𝑡− 𝜏)
+ 𝑥𝑇 (𝑡− 𝜏)𝐶21𝑥(𝑡) + 𝑥𝑇 (𝑡− 𝜏)𝐶22𝑥(𝑡− 𝜏) + 𝑑𝑢2.

Simplifying the last expression, we get

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) =𝑥𝑇 (𝑡)[𝐴𝑇
0𝐻 +𝐻𝐴0 +𝐺+ 𝐶11]𝑥(𝑡) + 𝑥𝑇 (𝑡− 𝜏)[𝐴𝑇

1𝐻 + 𝐶21]𝑥(𝑡)
+ 𝑥𝑇 (𝑡)[𝐻𝐴1 + 𝐶12]𝑥(𝑡− 𝜏) + 𝑥𝑇 (𝑡− 𝜏)[𝐶22 −𝐺]𝑥(𝑡− 𝜏)
+ 2𝑥𝑇 (𝑡)𝐻𝑏𝑢+ 𝑑𝑢2. (3.102)

Looking for an extremum of (3.102) with regard to 𝑢, we get

𝐵′
𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2𝑥𝑇 (𝑡)𝐻𝑏+ 2𝑑𝑢,

i.e.,
𝑢 = −1

𝑑
𝑥𝑇 (𝑡)𝐻𝑏 = −1

𝑑
𝑏𝑇𝐻𝑥(𝑡), (3.103)

which is the minimum of the function 𝐵 because

𝐵′′
𝑢𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2𝑑 > 0.

For (3.12) to hold, i.e., for

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢0) =𝑥𝑇 (𝑡)[𝐴𝑇
0𝐻 +𝐻𝐴0 +𝐺+ 𝐶11]𝑥(𝑡)

+ 𝑥𝑇 (𝑡− 𝜏)[𝐴𝑇
1𝐻 + 𝐶21]𝑥(𝑡) + 𝑥𝑇 (𝑡)[𝐻𝐴1 + 𝐶12]𝑥(𝑡− 𝜏)

+ 𝑥𝑇 (𝑡− 𝜏)[𝐶22 −𝐺]𝑥(𝑡− 𝜏) − 1
𝑑
𝑥𝑇 (𝑡)𝐻𝑏𝑏𝑇𝐻𝑥(𝑡)

=𝑥𝑇 (𝑡)
[︂
𝐴𝑇

0𝐻 +𝐻𝐴0 +𝐺+ 𝐶11 − 1
𝑑
𝐻𝑏𝑏𝑇𝐻

]︂
𝑥(𝑡)

+ 𝑥𝑇 (𝑡− 𝜏)[𝐴𝑇
1𝐻 + 𝐶21]𝑥(𝑡) + 𝑥𝑇 (𝑡)[𝐻𝐴1 + 𝐶12]𝑥(𝑡− 𝜏)

+ 𝑥𝑇 (𝑡− 𝜏)[𝐶22 −𝐺]𝑥(𝑡− 𝜏) ≡ 0

we obtain

𝐴𝑇
0𝐻 +𝐻𝐴0 +𝐺+ 𝐶11 − 1

𝑑
𝐻𝑏𝑏𝑇𝐻 =Θ𝑚×𝑚,
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𝐻𝐴1 + 𝐶12 =Θ𝑚×𝑚,

𝐶22 =𝐺.

If the above conditions are fulfilled, the control function (3.103) defines an optimal
stabilization control function, the system (3.95) is asymptotically stable, and the
quality criterion (3.97) takes a minimum value. �

Remark 3.4.8. The equation (3.95) with 𝑢 = 𝑢0 given by (3.101) takes the form

𝑥′(𝑡) =
(︂
𝐴0 − 1

𝑑
𝑏𝑏𝑇𝐻

)︂
𝑥(𝑡) + 𝐴1𝑥(𝑡− 𝜏).

Example 3.4.9. Consider the system (3.95) with 𝑚 = 𝑟 = 2 and

𝐴0 =
⎛⎝−2 1

1 −2

⎞⎠ , 𝐴1 =
⎛⎝ −1 −0.1

−0.5 −1

⎞⎠ , 𝑏 =
⎛⎝1

1

⎞⎠ ,
that is

𝑥′
1(𝑡) = − 2𝑥1(𝑡) + 𝑥2(𝑡) − 𝑥1(𝑡− 𝜏) − 0.1𝑥2(𝑡− 𝜏) + 𝑢,

𝑥′
2(𝑡) = 𝑥1(𝑡) − 2𝑥2(𝑡) − 0.5𝑥1(𝑡− 𝜏) − 𝑥2(𝑡− 𝜏) + 𝑢 (3.104)

with the quadratic quality criterion (3.97) with 𝑡0 = 0 and

𝐶11 =
⎛⎝3 0

0 3

⎞⎠ , 𝐶12 =
⎛⎝𝑐1 𝑐2

𝑐3 𝑐4

⎞⎠ , 𝐶21 =
⎛⎝𝑐1 𝑐3

𝑐2 𝑐4

⎞⎠ , 𝐶22 =
⎛⎝3 0

0 3

⎞⎠ , 𝑑 = 1,

i.e.,

𝐼

=
∫︁ ∞

0

⎛⎜⎝
⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠𝑇 ⎛⎝3 0
0 3

⎞⎠⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠+
⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠𝑇 ⎛⎝𝑐1 𝑐2

𝑐3 𝑐4

⎞⎠⎛⎝𝑥1(𝑡− 𝜏)
𝑥2(𝑡− 𝜏)

⎞⎠

+
⎛⎝𝑥1(𝑡− 𝜏)
𝑥2(𝑡− 𝜏)

⎞⎠𝑇 ⎛⎝𝑐1 𝑐3

𝑐2 𝑐4

⎞⎠⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠ +
⎛⎝𝑥1(𝑡− 𝜏)
𝑥2(𝑡− 𝜏)

⎞⎠𝑇 ⎛⎝3 0
0 3

⎞⎠⎛⎝𝑥1(𝑡− 𝜏)
𝑥2(𝑡− 𝜏)

⎞⎠+ 𝑢2

⎞⎟⎠ d𝑡

=
∫︁ ∞

0

(︁
3𝑥2

1(𝑡) + 3𝑥2
2(𝑡) + 2𝑐1𝑥1(𝑡)𝑥1(𝑡− 𝜏1) + 2𝑐3𝑥1(𝑡− 𝜏1)𝑥2(𝑡)

+2𝑐2𝑥1(𝑡)𝑥2(𝑡− 𝜏1) + 2𝑐4𝑥2(𝑡)𝑥2(𝑡− 𝜏1) + 3𝑥2
1(𝑡− 𝜏1) + 3𝑥2

2(𝑡− 𝜏1) + 𝑢2
)︁

d𝑡

By the formula (3.101) we obtain the optimal stabilization control function in the
form

𝑢0 = −1
𝑑
𝑏𝑇𝐻𝑥(𝑡) = −

⎛⎝1
1

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝𝑥1

𝑥2

⎞⎠ = −(ℎ1 +ℎ2)𝑥1 −(ℎ2 +ℎ3)𝑥2. (3.105)
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We need to find a suitable matrix 𝐻 such that (3.99) and (3.100) will hold.

𝐴𝑇
0𝐻 +𝐻𝐴0 + 𝐶11 + 𝐶22 − 1

𝑑
𝐻𝑏𝑏𝑇𝐻

=
⎛⎝−2 1

1 −2

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠+
⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝−2 1
1 −2

⎞⎠+
⎛⎝3 0

0 3

⎞⎠+
⎛⎝3 0

0 3

⎞⎠

−

⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝1
1

⎞⎠⎛⎝1
1

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠
=
⎛⎝ −4ℎ1 + 2ℎ2 + 6 − (ℎ1 + ℎ2)2 ℎ1 − 4ℎ2 + ℎ3 − (ℎ1 + ℎ2)(ℎ2 + ℎ3)
ℎ1 − 4ℎ2 + ℎ3 − (ℎ1 + ℎ2)(ℎ2 + ℎ3) 2ℎ2 − 4ℎ3 + 6 − (ℎ2 + ℎ3)2

⎞⎠
= Θ2×2.

It means that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−4ℎ1 + 2ℎ2 + 6 − (ℎ1 + ℎ2)2 = 0, (3.106)
ℎ1 − 4ℎ2 + ℎ3 − (ℎ1 + ℎ2)(ℎ2 + ℎ3) = 0, (3.107)
2ℎ2 − 4ℎ3 + 6 − (ℎ2 + ℎ3)2 = 0. (3.108)

To solve the above system we can, for example, add the second equation multiplied
by 2 to the sum of the first and the third equations ((3.106)+2(3.107)+(3.108)). We
obtain

−2ℎ1 − 4ℎ2 − 2ℎ3 + 12 − [(ℎ1 + ℎ2) + (ℎ2 + ℎ3)]2

= −2[ℎ1 + 2ℎ2 + ℎ3] + 12 − [ℎ1 + 2ℎ2 + ℎ3]2 = 0.

If put
ℎ1 + 2ℎ2 + ℎ3 = 𝐾, (3.109)

then we have
𝐾2 + 2𝐾 − 12 = 0

and 𝐾 = −1 ±
√

13.
After subtracting the first equation of the system from the third one, i.e., ((3.108)–
(3.106)), we obtain

4ℎ1 − 4ℎ3 + (ℎ1 + ℎ2)2 − (ℎ2 + ℎ3)2

= 4(ℎ1 − ℎ3) + (ℎ1 + 2ℎ2 + ℎ3)(ℎ1 − ℎ3) = (ℎ1 − ℎ3)(4 +𝐾) = 0

and, therefore,
ℎ1 = ℎ3. (3.110)

Using (3.110) to (3.109), we find

ℎ1 + ℎ2 = 𝐾

2 . (3.111)
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For the second equation of the system, i.e., for (3.107), we obtain

2ℎ1 − 4ℎ2 − (ℎ1 + ℎ2)2 = 0 ⇒ ℎ1 − 2ℎ2 = 𝐾2

8 . (3.112)

From (3.111) and (3.112) we find that

ℎ1 = ℎ3 = 𝐾

3 + 𝐾2

24 ,

ℎ2 = 𝐾

6 − 𝐾2

24 .

For 𝐾 = −1 −
√

13, the matrix 𝐻 is not positive-definite, so

𝐻 =

⎛⎜⎜⎜⎜⎝
1 +

√
13

4

√
13 − 3

4√
13 − 3

4
1 +

√
13

4

⎞⎟⎟⎟⎟⎠ .

The condition (3.100) should hold as well so that

𝐶12 = 𝐶𝑇
21 = −𝐻𝐴1 =

⎛⎝ 1.22708 0.266527
0.727082 1.16653

⎞⎠ ,
which is sufficient for (3.96) to be a positive-definite matrix. By (3.105) the optimal
stabilization control function will be

𝑢0 = 1 −
√

13
2 (𝑥1(𝑡) + 𝑥2(𝑡)),

with the system (3.104) taking the form (the coefficients of non-delayed terms are
computed approximately)

𝑥′
1(𝑡) = − 3.3𝑥1(𝑡) − 0.3𝑥2(𝑡) − 𝑥1(𝑡− 𝜏) − 0.1𝑥2(𝑡− 𝜏),
𝑥′

2(𝑡) = − 0.3𝑥1(𝑡) − 3.3𝑥2(𝑡) − 0.5𝑥1(𝑡− 𝜏) − 𝑥2(𝑡− 𝜏).

3.4.4 Systems with a single delay and a control vector-
function

Consider linear systems with constant coefficients and a single constant delay

𝑥′(𝑡) = 𝐴0𝑥(𝑡) + 𝐴1𝑥(𝑡− 𝜏) + 𝑃𝑢, (3.113)

where 𝐴0, 𝐴1 are 𝑚 × 𝑚 constant matrices, 𝑃 ∈ R𝑚×𝑟, 𝑢 ∈ R𝑟, and a quality
criterion (3.6)

𝐼 =
∫︁ ∞

𝑡0
(𝑥𝑇 (𝑡)𝐶11𝑥(𝑡) + 𝑥𝑇 (𝑡)𝐶12𝑥(𝑡− 𝜏)
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+ 𝑥𝑇 (𝑡− 𝜏)𝐶21𝑥(𝑡) + 𝑥𝑇 (𝑡− 𝜏)𝐶22𝑥(𝑡− 𝜏) + 𝑢𝑇𝐷𝑢)d𝑡, (3.114)

where 𝑚×𝑚 matrices 𝐶11, 𝐶22 and an 2𝑚× 2𝑚 matrix (3.96), i.e.,

𝐶 =
⎛⎝𝐶11 𝐶12

𝐶21 𝐶22

⎞⎠
are positive-definite and symmetric, 𝐶21 = 𝐶𝑇

12 and 𝐷 is a diagonal matrix, 𝐷 =
diag{𝑑𝑗}, 𝑑𝑗 > 0, 𝑗 = 1, . . . , 𝑟.
We will use a Lyapunov-Krasovskii functional (3.98), that is

𝑉 (𝑡, 𝑥𝑡) = 𝑥𝑇 (𝑡)𝐻𝑥(𝑡) +
∫︁ 𝑡

𝑡−𝜏
𝑥𝑇 (𝑠)𝐺𝑥(𝑠)d𝑠,

where 𝐻 and 𝐺 are 𝑚×𝑚 constant, positive-definite and symmetric matrices.

Theorem 3.4.10. Assume that there exists a positive-definite symmetric matrix 𝐻
satisfying the matrix equation

𝐴𝑇
0𝐻 +𝐻𝐴0 + 𝐶11 + 𝐶22 −𝐻𝑃𝐷−1𝑃 𝑇𝐻 = Θ𝑚×𝑚. (3.115)

If, moreover,
𝐻𝐴1 + 𝐶12 = Θ𝑚×𝑚, (3.116)

the optimal stabilization control function 𝑢 = 𝑢0 of the problem (3.113), (3.114)
exists and

𝑢0 = −𝐷−1𝑃 𝑇𝐻𝑥(𝑡). (3.117)

Proof. By the conditions 𝑖𝑖), 𝑖𝑖𝑖) of Theorem 3.2.1 we analyse the expression 𝐵

given by (3.11), i.e.,

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) =d𝑉 (𝑡, 𝑥𝑡)
d𝑡 + 𝜔 (𝑡, 𝑥𝑡, 𝑢)

= d
d𝑡

(︂
𝑥𝑇 (𝑡)𝐻𝑥(𝑡) +

∫︁ 𝑡

𝑡−𝜏
𝑥𝑇 (𝑠)𝐺𝑥(𝑠)d𝑠

)︂
+ 𝜔 (𝑡, 𝑥𝑡, 𝑢)

=[𝐴0𝑥(𝑡) + 𝐴1𝑥(𝑡− 𝜏) + 𝑃𝑢]𝑇𝐻𝑥(𝑡)
+ 𝑥𝑇 (𝑡)𝐻[𝐴0𝑥(𝑡) + 𝐴1𝑥(𝑡− 𝜏) + 𝑃𝑢(𝑡)] + 𝑥𝑇 (𝑡)𝐺𝑥(𝑡)
− 𝑥𝑇 (𝑡− 𝜏)𝐺𝑥(𝑡− 𝜏) + 𝑥𝑇 (𝑡)𝐶11𝑥(𝑡) + 𝑥𝑇 (𝑡)𝐶12𝑥(𝑡− 𝜏)
+ 𝑥𝑇 (𝑡− 𝜏)𝐶21𝑥(𝑡) + 𝑥𝑇 (𝑡− 𝜏)𝐶22𝑥(𝑡− 𝜏) + 𝑢𝑇𝐷𝑢.

Simplifying the last expression, we get

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) =𝑥𝑇 (𝑡)[𝐴𝑇
0𝐻 +𝐻𝐴0 +𝐺+ 𝐶11]𝑥(𝑡) + 𝑥𝑇 (𝑡− 𝜏)[𝐴𝑇

1𝐻 + 𝐶21]𝑥(𝑡)
+ 𝑥𝑇 (𝑡)[𝐻𝐴1 + 𝐶12]𝑥(𝑡− 𝜏) + 𝑥𝑇 (𝑡− 𝜏)[𝐶22 −𝐺]𝑥(𝑡− 𝜏)
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+ 2𝑥𝑇 (𝑡)𝐻𝑃𝑢+ 𝑢𝑇𝐷𝑢. (3.118)

Looking for an extremum of (3.118), with respect to 𝑢, we get

𝐵′
𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2𝑃 𝑇𝐻𝑥(𝑡) + 2𝐷𝑢 = 0,

i.e.,
𝑢 = −𝐷−1𝑃 𝑇𝐻𝑥(𝑡), (3.119)

which is the minimum of the function 𝐵 because the matrix 𝐵′′
𝑢𝑢 = 2𝐷 > 0.

For (3.12) to hold, i.e., for

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢0) =𝑥𝑇 (𝑡)[𝐴𝑇
0𝐻 +𝐻𝐴0 +𝐺+ 𝐶11 −𝐻𝑃𝐷−1𝑃 𝑇𝐻]𝑥(𝑡)

+ 𝑥𝑇 (𝑡− 𝜏)[𝐴𝑇
1𝐻 + 𝐶21]𝑥(𝑡) + 𝑥𝑇 (𝑡)[𝐻𝐴1 + 𝐶12]𝑥(𝑡− 𝜏)

+ 𝑥𝑇 (𝑡− 𝜏)[𝐶22 −𝐺]𝑥(𝑡− 𝜏) ≡ 0

it is necessary that

𝐴𝑇
0𝐻 +𝐻𝐴0 +𝐺+ 𝐶11 −𝐻𝑃𝐷−1𝑃 𝑇𝐻 = Θ𝑚×𝑚,

𝐻𝐴1 + 𝐶12 = Θ𝑚×𝑚,

𝐶22 = 𝐺.

If the above conditions are fulfilled, the control function (3.119) is the desired optimal
stabilization control function (3.117), the system (3.113) is asymptotically stable and
the quality criterion (3.114) takes a minimum value. �

Remark 3.4.11. The equation (3.113) with 𝑢 = 𝑢0 given by (3.117) takes the form

𝑥′(𝑡) =
(︁
𝐴0 − 𝑃𝐷−1𝑃 𝑇𝐻

)︁
𝑥(𝑡) + 𝐴1𝑥(𝑡− 𝜏).

Example 3.4.12. Consider the system (3.113) with the quality criterion (3.114).
Let 𝑡0 = 0 and the matrices have the form

𝐴0 =
⎛⎝−2 1

1 −2

⎞⎠ , 𝐴1 =
⎛⎝ −1 −0.1

−0.5 −1

⎞⎠ , 𝑃 =
⎛⎝1 𝜀

𝜀 1

⎞⎠ ,
where 𝜀 is an arbitrary constant, 𝜀 ̸= ±1, i.e.,

𝑥′
1(𝑡) = − 2𝑥1(𝑡) + 𝑥2(𝑡) − 𝑥1(𝑡− 𝜏) − 0.1𝑥2(𝑡− 𝜏) + 𝑢1 + 𝜀𝑢2,

𝑥′
2(𝑡) = 𝑥1(𝑡) − 2 𝑥2(𝑡) − 0.5𝑥1(𝑡− 𝜏) − 𝑥2(𝑡− 𝜏) + 𝜀𝑢1 + 𝑢2 (3.120)

and

𝐶11 =
⎛⎝3 0

0 3

⎞⎠ , 𝐶12 =
⎛⎝𝑐1 𝑐2

𝑐3 𝑐4

⎞⎠ , 𝐶21 =
⎛⎝𝑐1 𝑐3

𝑐2 𝑐4

⎞⎠ , 𝐶22 =
⎛⎝3 0

0 3

⎞⎠ , 𝐷 =
⎛⎝1 0

0 1

⎞⎠ ,
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i.e.,

𝐼 =
∫︁ ∞

0

⎛⎜⎝
⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠𝑇 ⎛⎝3 0
0 3

⎞⎠⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠+
⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠𝑇 ⎛⎝𝑐1 𝑐2

𝑐3 𝑐4

⎞⎠⎛⎝𝑥1(𝑡− 𝜏)
𝑥2(𝑡− 𝜏)

⎞⎠

+
⎛⎝𝑥1(𝑡− 𝜏)
𝑥2(𝑡− 𝜏)

⎞⎠𝑇 ⎛⎝𝑐1 𝑐3

𝑐2 𝑐4

⎞⎠⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠+
⎛⎝𝑥1(𝑡− 𝜏)
𝑥2(𝑡− 𝜏)

⎞⎠𝑇 ⎛⎝3 0
0 3

⎞⎠⎛⎝𝑥1(𝑡− 𝜏)
𝑥2(𝑡− 𝜏)

⎞⎠
+
⎛⎝𝑢1

𝑢2

⎞⎠𝑇 ⎛⎝1 0
0 1

⎞⎠⎛⎝𝑢1

𝑢2

⎞⎠
⎞⎟⎠ d𝑡

=
∫︁ ∞

0

(︁
3𝑥2

1(𝑡) + 3𝑥2
2(𝑡) + 2𝑐1𝑥1(𝑡)𝑥1(𝑡− 𝜏1) + 2𝑐3𝑥1(𝑡− 𝜏1)𝑥2(𝑡)

+2𝑐2𝑥1(𝑡)𝑥2(𝑡− 𝜏1) + 2𝑐4𝑥2(𝑡)𝑥2(𝑡− 𝜏1) + 3𝑥2
1(𝑡− 𝜏1) + 3𝑥2

2(𝑡− 𝜏1) + 𝑢2
1 + 𝑢2

2

)︁
d𝑡.

By (3.117) the optimal control function will be in the form

𝑢0 = −𝐷−1𝑃 𝑇𝐻𝑥(𝑡) = −

⎛⎝1 0
0 1

⎞⎠−1⎛⎝1 𝜀

𝜀 1

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠ ,
that is,

𝑢0
1 = −(ℎ1 + ℎ2)𝑥1 − (ℎ2 + ℎ3)𝑥2,

𝑢0
2 = −(ℎ1 + ℎ2)𝑥1 − (ℎ2 + ℎ3)𝑥2. (3.121)

We need to find a suitable matrix 𝐻 such that (3.115), (3.116) will hold. In our case
(3.115) equals

𝐴𝑇
0𝐻 +𝐻𝐴0 + 𝐶11 + 𝐶22 −𝐻𝑃𝐷−1𝑃 𝑇𝐻

=
⎛⎝−2 1

1 −2

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠+
⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝−2 1
1 −2

⎞⎠+
⎛⎝3 0

0 3

⎞⎠+
⎛⎝3 0

0 3

⎞⎠

−

⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝1 𝜀

𝜀 1

⎞⎠⎛⎝1 0
0 1

⎞⎠−1⎛⎝1 𝜀

𝜀 1

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠ = Θ2×2

which means that⎧⎪⎪⎪⎨⎪⎪⎪⎩
−4ℎ1 + 2ℎ2 + 6 − (ℎ1 + 𝜀ℎ2)2 − (𝜀ℎ1 + ℎ2)2 = 0, (3.122)
ℎ1 − 4ℎ2 + ℎ3 − (ℎ1 + 𝜀ℎ2)(ℎ2 + 𝜀ℎ3) − (𝜀ℎ1 + ℎ2)(𝜀ℎ2 + ℎ3) = 0, (3.123)
2ℎ2 − 4ℎ3 + 6 − (ℎ2 + 𝜀ℎ3)2 − (𝜀ℎ2 + ℎ3)2 = 0. (3.124)

To solve the above system we can, for example, subtract the first equation from the
third one, i.e., ((3.124)–(3.122)). We obtain

4ℎ1 − 4ℎ3 + (ℎ1 + 𝜀ℎ2)2 − (ℎ2 + 𝜀ℎ3)2 + (𝜀ℎ1 + ℎ2)2 − (𝜀ℎ2 + ℎ3)2

=4(ℎ1 − ℎ3) + (ℎ1 + 𝜀ℎ2 + ℎ2 + 𝜀ℎ3)(ℎ1 + 𝜀ℎ2 − ℎ2 − 𝜀ℎ3)
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+ (𝜀ℎ1 + ℎ2 + 𝜀ℎ2 + ℎ3)(𝜀ℎ1 + ℎ2 − 𝜀ℎ2 − ℎ3)
=4(ℎ1 − ℎ3) + ℎ2(1 + 𝜀)(ℎ1 − 𝜀ℎ3 + 𝜀ℎ1 − ℎ3)

+ (ℎ1 + 𝜀ℎ3)(ℎ1 + 𝜀ℎ2 − ℎ2 − 𝜀ℎ3) + (𝜀ℎ1 + ℎ3)(𝜀ℎ1 + ℎ2 − 𝜀ℎ2 − ℎ3)
=4(ℎ1 − ℎ3) + ℎ2(1 + 𝜀)2(ℎ1 − ℎ3)

+ ℎ2
1(1 + 𝜀2) + ℎ1ℎ2(2𝜀− 1 − 𝜀2) + ℎ2ℎ3(𝜀2 − 2𝜀+ 1) + ℎ2

3(−𝜀2 − 1)
=(ℎ1 − ℎ3)(4 + ℎ2(1 + 𝜀2)) + (1 + 𝜀2)(ℎ2

1 − ℎ2
3) − ℎ2(𝜀− 1)2(ℎ1 − ℎ3)

=(ℎ1 − ℎ3)(4 + ℎ2(1 + 𝜀2) + (ℎ1 + ℎ3)(1 + 𝜀2) − ℎ2(𝜀− 1)2)
=(ℎ1 − ℎ3)(4 + 2ℎ2𝜀+ (ℎ1 + ℎ3)(1 + 𝜀2)) = 0.

This implies
ℎ1 = ℎ3 (3.125)

since
4 + 2ℎ2𝜀+ (ℎ1 + ℎ3)(1 + 𝜀2) > 0

(this inequality holds since the matrix 𝐻 is positive-definite and ℎ1 > |ℎ2|).
We add the second equation multiplied by 2 to the sum of the first and the third
equations ((3.122)+2(3.123)+(3.124)) to obtain

−2ℎ1 − 4ℎ2 − 2ℎ3 + 12 − (ℎ1 + 𝜀ℎ2 + ℎ2 + 𝜀ℎ3)2 − (𝜀ℎ1 + ℎ2 + 𝜀ℎ2 + ℎ3)2 = 0

and, using (3.125), we get

−4(ℎ1 + ℎ2) + 12 − 2(ℎ1 + ℎ2)2(1 + 𝜀)2 = 0.

If we put
ℎ1 + ℎ2 = 𝐾 > 0, (3.126)

then we have
𝐾2(1 + 𝜀)2 + 2𝐾 − 6 = 0 (3.127)

and

𝐾 =
−1 +

√︁
1 + 6(1 + 𝜀)2

(1 + 𝜀)2 . (3.128)

Using (3.125) and rewriting (3.126), i.e.,

ℎ1 = 𝐾 − ℎ2 ⇒ 𝐾 > ℎ2, (3.129)

for (3.123) we obtain

ℎ1 − 2ℎ2 − (ℎ1 + 𝜀ℎ2)(𝜀ℎ1 + ℎ2)
= 𝐾 − 3ℎ2 − (𝐾 − ℎ2 + 𝜀ℎ2)(𝜀𝐾 − 𝜀ℎ2 + ℎ2) = 0.
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After simplification, we obtain the following equation

ℎ2
2(𝜀− 1)2 + ℎ2(−𝐾(𝜀− 1)2 − 3) +𝐾 −𝐾2𝜀 = 0,

where

ℎ2 =
𝐾(𝜀− 1)2 + 3 ±

√︁
(𝐾(𝜀− 1)2 + 3)2 − 4(𝜀− 1)2(𝐾 −𝐾2𝜀)

2(𝜀− 1)2

and

(𝐾(𝜀− 1)2 + 3)2 − 4(𝜀− 1)2(𝐾 −𝐾2𝜀)
= 𝐾2(𝜀− 1)4 + 6𝐾(𝜀− 1)2 + 9 − 4(𝜀− 1)2(𝐾 −𝐾2𝜀)
= 𝐾2(𝜀− 1)2((𝜀− 1)2 + 4𝜀) + 2𝐾(𝜀− 1)2 + 9
= 𝐾2(𝜀− 1)2(𝜀+ 1)2 + 2𝐾(𝜀− 1)2 + 9
by (3.127)= (𝜀− 1)2(−2𝐾 + 6) + 2𝐾(𝜀− 1)2 + 9 = 6(𝜀− 1)2 + 9.

So

ℎ2 =
𝐾(𝜀− 1)2 + 3 ±

√︁
6(𝜀− 1)2 + 9

2(𝜀− 1)2 . (3.130)

For, say, 𝜀 = 0.5, we obtain approximate values from (3.128), (3.130), (3.129), (3.125)

𝐾
.= 1.24795, ℎ2

.= 0.143234, ℎ1 = ℎ3
.= 1.104716

(another solution for ℎ2
.= 13.1047 does not satisfy (3.129)). Moreover, (3.116) should

hold as well so that

𝐶12 = 𝐶𝑇
21 = −𝐻𝐴1 =

⎛⎝ 1.17633 0.253706
0.695592 1.11904

⎞⎠ ,
which is sufficient for (3.96) to be a positive-definite matrix.
By (3.121), the optimal stabilization control function will be (the coefficients are
computed approximately)

𝑢0
1 = −1.176333𝑥1(𝑡) − 0.695592𝑥2(𝑡),

𝑢0
2 = −0.695592𝑥1(𝑡) − 1.176333𝑥2(𝑡),

with the system (3.120) taking the form

𝑥′
1(𝑡) = − 3.52413 𝑥1(𝑡) − 0.283759𝑥2(𝑡) − 𝑥1(𝑡− 𝜏) − 0.1𝑥2(𝑡− 𝜏),
𝑥′

2(𝑡) = − 0.283759𝑥1(𝑡) − 3.52413 𝑥2(𝑡) − 0.5𝑥1(𝑡− 𝜏) − 𝑥2(𝑡− 𝜏).
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3.4.5 Systems with multiple delays and a scalar control
function

In this part, we consider systems of linear differential equations with delays

𝑥′(𝑡) =
𝑛∑︁

𝑖=0
𝐴𝑖𝑥(𝑡− 𝜏𝑖) + 𝑐𝑢, 𝑡 ≥ 𝑡0, (3.131)

where 𝐴𝑖, 𝑖 = 0, . . . , 𝑛 are 𝑚 × 𝑚 real matrices, 𝑐 ∈ R𝑚, 0 = 𝜏0 < 𝜏1 < · · · < 𝜏𝑛,
𝑥 : [𝑡0 − 𝜏,∞) → R𝑚, 𝑡0 ∈ R and 𝑢 ∈ R is a control function. Set 𝜏 := 𝜏𝑛. A
minimization problem (3.6) with

𝜔 (𝑡, 𝑥𝑡, 𝑢) :=
𝑛∑︁

𝑖=0
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖𝑖𝑥(𝑡− 𝜏𝑖) +

𝑛∑︁
𝑖=1

𝑥𝑇 (𝑡)𝐶0𝑖𝑥(𝑡− 𝜏𝑖)

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖0𝑥(𝑡) + 𝑑𝑢2 (3.132)

will be solved for the system (3.131), where constant symmetric 𝑚×𝑚 matrices 𝐶𝑖𝑖

and an auxiliary matrix

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐶00 𝐶01 . . . 𝐶0𝑛

𝐶10 𝐶11 . . . 𝐶1𝑛

... ... . . .
𝐶𝑛0 𝐶𝑛1 . . . 𝐶𝑛𝑛

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.133)

(with 𝐶𝑖𝑗 = 𝐶𝑗𝑖 = Θ𝑚×𝑚, 𝑖 > 𝑗 ≥ 1, 𝑖, 𝑗 = 1, . . . , 𝑛) are positive-definite, 𝐶0𝑖 and
𝐶𝑖0, 𝐶0𝑖 = 𝐶𝑇

𝑖0 are 𝑚 × 𝑚 constant matrices, 𝑑 > 0. We will employ a Lyapunov-
Krasovskii functional

𝑉 (𝑡, 𝑥𝑡) = 𝑥𝑇 (𝑡)𝐻𝑥(𝑡) +
𝑛∑︁

𝑖=1

∫︁ 𝑡

𝑡−𝜏𝑖

𝑥𝑇 (𝑠)𝐺𝑖𝑥(𝑠)d𝑠, (3.134)

where 𝑚 × 𝑚 matrices 𝐻 and 𝐺𝑖, 𝑖 = 1, . . . , 𝑛 are constant, positive-definite and
symmetric.

Theorem 3.4.13. Assume that the matrix 𝐶 is positive-definite and there exists a
positive-definite symmetric matrix 𝐻 satisfying the matrix equation

𝐴𝑇
0𝐻 +𝐻𝐴0 +

𝑛∑︁
𝑖=0

𝐶𝑖𝑖 − 1
𝑑
𝐻𝑐𝑐𝑇𝐻 = Θ𝑚×𝑚. (3.135)

If, moreover,
𝐴𝑇

𝑖 𝐻 + 𝐶𝑖0 = Θ𝑚×𝑚, 𝑖 = 1, . . . , 𝑛 (3.136)

then the optimal stabilization control function of the problem (3.131), (3.132) exists
and equals

𝑢0 = −1
𝑑
𝑐𝑇𝐻𝑥(𝑡). (3.137)
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Proof. By Theorem 3.2.1 we will analyze the expression 𝐵 given by (3.11). We get

𝐵(𝑉,𝑡, 𝑥𝑡, 𝑢) = d𝑉 (𝑡, 𝑥𝑡)
d𝑡 + 𝜔 (𝑡, 𝑥𝑡, 𝑢)

=
[︃

𝑛∑︁
𝑖=0

𝐴𝑖𝑥(𝑡− 𝜏𝑖) + 𝑐𝑢

]︃𝑇

𝐻𝑥(𝑡) + 𝑥𝑇 (𝑡)𝐻
[︃

𝑛∑︁
𝑖=0

𝐴𝑖𝑥(𝑡− 𝜏𝑖) + 𝑐𝑢

]︃

+
𝑛∑︁

𝑖=1

[︁
𝑥𝑇 (𝑡)𝐺𝑖𝑥(𝑡) − 𝑥𝑇 (𝑡− 𝜏𝑖)𝐺𝑖𝑥(𝑡− 𝜏𝑖)

]︁
+

𝑛∑︁
𝑖=0

𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖𝑖𝑥(𝑡− 𝜏𝑖)

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡)𝐶0𝑖𝑥(𝑡− 𝜏𝑖) +

𝑛∑︁
𝑖=1

𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖0𝑥(𝑡) + 𝑑𝑢2

=
[︃
𝐴0𝑥(𝑡) +

𝑛∑︁
𝑖=1

𝐴𝑖𝑥(𝑡− 𝜏𝑖) + 𝑐𝑢

]︃𝑇

𝐻𝑥(𝑡) + 𝑥𝑇 (𝑡)𝐻
[︃
𝐴0𝑥(𝑡) +

𝑛∑︁
𝑖=1

𝐴𝑖𝑥(𝑡− 𝜏𝑖) + 𝑐𝑢

]︃

+
𝑛∑︁

𝑖=1

[︁
𝑥𝑇 (𝑡)𝐺𝑖𝑥(𝑡) − 𝑥𝑇 (𝑡− 𝜏𝑖)𝐺𝑖𝑥(𝑡− 𝜏𝑖)

]︁
+ 𝑥𝑇 (𝑡)𝐶00𝑥(𝑡)

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖𝑖𝑥(𝑡− 𝜏𝑖) +

𝑛∑︁
𝑖=1

𝑥𝑇 (𝑡)𝐶0𝑖𝑥(𝑡− 𝜏𝑖) +
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖0𝑥(𝑡) + 𝑑𝑢2.

A simplification of 𝐵 leads to

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) = 𝑥𝑇 (𝑡)
[︃
𝐴𝑇

0𝐻 +𝐻𝐴0 +
𝑛∑︁

𝑖=1
𝐺𝑖 + 𝐶00

]︃
𝑥(𝑡)

+
𝑛∑︁

𝑖=1

[︁
𝑥𝑇 (𝑡− 𝜏𝑖)[𝐴𝑇

𝑖 𝐻 + 𝐶𝑖0]𝑥(𝑡) + 𝑥𝑇 (𝑡)[𝐻𝐴𝑖 + 𝐶0𝑖]𝑥(𝑡− 𝜏𝑖)
]︁

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)[𝐶𝑖𝑖 −𝐺𝑖]𝑥(𝑡− 𝜏𝑖) + 2𝑥𝑇 (𝑡)𝐻𝑐𝑢+ 𝑑𝑢2. (3.138)

Looking for an extremum of (3.138), with respect to 𝑢, we get

𝐵′
𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 2𝑐𝑇𝐻𝑥(𝑡) + 2𝑑𝑢 = 0,

that is,
𝑢 = −1

𝑑
𝑐𝑇𝐻𝑥(𝑡), (3.139)

which is the minimum of the function 𝐵 because 𝐵′′
𝑢𝑢 = 2𝑑 > 0. Since

2𝑥𝑇 (𝑡)𝐻𝑐𝑢+ 𝑑𝑢2

= − 2
𝑑
𝑥𝑇 (𝑡)𝐻𝑐𝑐𝑇𝐻𝑥(𝑡) + 1

𝑑
𝑥𝑇 (𝑡)𝐻𝑐𝑐𝑇𝐻𝑥(𝑡) = −1

𝑑
𝑥𝑇 (𝑡)𝐻𝑐𝑐𝑇𝐻𝑥(𝑡),

for (3.12) to hold, that is, for

𝐵
(︂
𝑉, 𝑡, 𝑥𝑡,−

1
𝑑
𝑐𝑇𝐻𝑥(𝑡)

)︂
≡ 0
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we need

𝑥𝑇 (𝑡)
[︃
𝐴𝑇

0𝐻 +𝐻𝐴0 +
𝑛∑︁

𝑖=1
𝐺𝑖 + 𝐶00 − 1

𝑑
𝐻𝑐𝑐𝑇𝐻

]︃
𝑥(𝑡)

+
𝑛∑︁

𝑖=1

[︁
𝑥𝑇 (𝑡− 𝜏𝑖)[𝐴𝑇

𝑖 𝐻 + 𝐶𝑖0]𝑥(𝑡) + 𝑥𝑇 (𝑡)[𝐻𝐴𝑖 + 𝐶0𝑖]𝑥(𝑡− 𝜏𝑖)
]︁

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)[𝐶𝑖𝑖 −𝐺𝑖]𝑥(𝑡− 𝜏𝑖) ≡ 0. (3.140)

The identity (3.140) will hold if

𝐴𝑇
0𝐻 +𝐻𝐴0 + 𝐶00 +

𝑛∑︁
𝑖=1

𝐺𝑖 − 1
𝑑
𝐻𝑐𝑐𝑇𝐻 = Θ𝑚×𝑚,

𝐴𝑇
𝑖 𝐻 + 𝐶𝑖0 = Θ𝑚×𝑚, 𝑖 = 1, . . . , 𝑛

𝐶𝑖𝑖 = 𝐺𝑖, 𝑖 = 1, . . . , 𝑛

that is, if the assumptions (3.135), (3.136) hold and in (3.134) 𝐺𝑖 = 𝐶𝑖𝑖, 𝑖 = 1, . . . , 𝑛.
Thus, for the control function defined by (3.139), that is, for 𝑢0 defined by (3.137)
the system (3.131) is asymptotically stable and the quality criterion (3.132) takes a
minimum value. �

Example 3.4.14. Consider the system (3.131) with 𝑛 = 𝑚 = 𝑟 = 2 and

𝐴0 =
⎛⎝−2 1

1 −2

⎞⎠ , 𝐴1 =
⎛⎝ −1 −0.25

−0.5 −1

⎞⎠ , 𝐴2 =
⎛⎝ −1 −0.2

−0.1 −1

⎞⎠ , 𝑐 =
⎛⎝1

1

⎞⎠ ,
i.e.,

𝑥′
1(𝑡) = − 2𝑥1(𝑡) + 𝑥2(𝑡) − 𝑥1(𝑡− 𝜏) − 0.25𝑥2(𝑡− 𝜏) − 𝑥1(𝑡− 𝛿)

− 0.2𝑥2(𝑡− 𝛿) + 𝑢(𝑡),
𝑥′

2(𝑡) = 𝑥1(𝑡) − 2𝑥2(𝑡) − 0.5𝑥1(𝑡− 𝜏) − 𝑥2(𝑡− 𝜏) − 0.1𝑥1(𝑡− 𝛿)
− 𝑥2(𝑡− 𝛿) + 𝑢(𝑡) (3.141)

with the quadratic quality criterion (3.132), where

𝐶11 =
⎛⎝3 0

0 3

⎞⎠ , 𝐶12 =
⎛⎝𝑐1 𝑐2

𝑐3 𝑐4

⎞⎠ , 𝐶21 =
⎛⎝𝑐1 𝑐3

𝑐2 𝑐4

⎞⎠ , 𝐶22 =
⎛⎝3 0

0 3

⎞⎠ ,

𝐶13 =
⎛⎝𝑐*

1 𝑐*
2

𝑐*
3 𝑐*

4

⎞⎠ , 𝐶31 =
⎛⎝𝑐*

1 𝑐*
3

𝑐*
2 𝑐*

4

⎞⎠ , 𝐶33 =
⎛⎝3 0

0 3

⎞⎠ , 𝑑 = 1

i.e.,

𝜔(𝑡, 𝑥𝑡, 𝑢)
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=
⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠𝑇 ⎛⎝3 0
0 3

⎞⎠⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠+
⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠𝑇 ⎛⎝𝑐1 𝑐2

𝑐3 𝑐4

⎞⎠⎛⎝𝑥1(𝑡− 𝜏1)
𝑥2(𝑡− 𝜏1)

⎞⎠
+
⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠𝑇 ⎛⎝𝑐*
1 𝑐*

2

𝑐*
3 𝑐*

4

⎞⎠⎛⎝𝑥1(𝑡− 𝜏2)
𝑥2(𝑡− 𝜏2)

⎞⎠+
⎛⎝𝑥1(𝑡− 𝜏1)
𝑥2(𝑡− 𝜏1)

⎞⎠𝑇 ⎛⎝𝑐1 𝑐3

𝑐2 𝑐4

⎞⎠⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠
+
⎛⎝𝑥1(𝑡− 𝜏2)
𝑥2(𝑡− 𝜏2)

⎞⎠𝑇 ⎛⎝𝑐*
1 𝑐*

3

𝑐*
2 𝑐*

4

⎞⎠⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠+
⎛⎝𝑥1(𝑡− 𝜏1)
𝑥2(𝑡− 𝜏1)

⎞⎠𝑇 ⎛⎝3 0
0 3

⎞⎠⎛⎝𝑥1(𝑡− 𝜏1)
𝑥2(𝑡− 𝜏1)

⎞⎠
+
⎛⎝𝑥1(𝑡− 𝜏2)
𝑥2(𝑡− 𝜏2)

⎞⎠𝑇 ⎛⎝3 0
0 3

⎞⎠⎛⎝𝑥1(𝑡− 𝜏2)
𝑥2(𝑡− 𝜏2)

⎞⎠+ 𝑢2

= 3𝑥2
1(𝑡) + 3𝑥2

2(𝑡) + 2𝑐1𝑥1(𝑡)𝑥1(𝑡− 𝜏1) + 2𝑐3𝑥1(𝑡− 𝜏1)𝑥2(𝑡)
+ 2𝑐2𝑥1(𝑡)𝑥2(𝑡− 𝜏1) + 2𝑐4𝑥2(𝑡)𝑥2(𝑡− 𝜏1) + 2𝑐*

1𝑥1(𝑡)𝑥1(𝑡− 𝜏2)
+ 2𝑐*

3𝑥1(𝑡− 𝜏2)𝑥2(𝑡) + 2𝑐*
2𝑥1(𝑡)𝑥2(𝑡− 𝜏2) + 2𝑐*

4𝑥2(𝑡)𝑥2(𝑡− 𝜏2)
+ 3𝑥2

1(𝑡− 𝜏1) + 3𝑥2
2(𝑡− 𝜏1) + 3𝑥2

1(𝑡− 𝜏2) + 3𝑥2
2(𝑡− 𝜏2) + 𝑢2.

By formula (3.137), we look for the optimal stabilization control function in the
form

𝑢0 = −1
𝑑
𝑐𝑇𝐻𝑥(𝑡) = −

⎛⎝1
1

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝𝑥1

𝑥2

⎞⎠ = −(ℎ1 +ℎ2)𝑥1 −(ℎ2 +ℎ3)𝑥2. (3.142)

Let us determine the matrix 𝐻. In our case, we can compute the expression (3.135),
i.e.,

𝐴𝑇
0𝐻 +𝐻𝐴0 + 𝐶11 + 𝐶22 + 𝐶33 − 1

𝑑
𝐻𝑐𝑐𝑇𝐻

=
⎛⎝−2 1

1 −2

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠+
⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝−2 1
1 −2

⎞⎠+
⎛⎝3 0

0 3

⎞⎠+
⎛⎝3 0

0 3

⎞⎠

+
⎛⎝3 0

0 3

⎞⎠−

⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝1
1

⎞⎠⎛⎝1
1

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠ = Θ2×2

which means that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−4ℎ1 + 2ℎ2 + 9 − (ℎ1 + ℎ2)2 = 0,

ℎ1 − 4ℎ2 + ℎ3 − (ℎ1 + ℎ2)(ℎ2 + ℎ3) = 0,

2ℎ2 − 4ℎ3 + 9 − (ℎ2 + ℎ3)2 = 0.

By the “WolframAlpha” software, we obtain two sets of solutions of this system

ℎ1 = ℎ3 = 1
2 +

√
19
4 , ℎ2 = −1 +

√
19
4 ,

ℎ1 = ℎ3 = 1
2 −

√
19
4 , ℎ2 = −1 −

√
19
4 .
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Only the first solution is suitable for the matrix 𝐻 to be positive-definite. Therefore,

𝐻 =

⎛⎜⎜⎜⎝
1
2 +

√
19
4 −1 +

√
19
4

−1 +
√

19
4

1
2 +

√
19
4

⎞⎟⎟⎟⎠ .

As (3.136) should hold as well, we obtain

𝐶01 = 𝐶𝑇
10 = −𝐻𝐴1 =

⎛⎝ 1.63459 0.487156
0.884587 1.61216

⎞⎠ ,

𝐶02 = 𝐶𝑇
20 = −𝐻𝐴2 =

⎛⎝ 1.5987 0.40767
0.248697 1.60767

⎞⎠ ,
which is sufficient for (3.133) to be a positive-definite matrix. In our case, we have

𝒞 =

⎛⎜⎜⎝
𝐶00 𝐶01 𝐶02

𝐶10 𝐶11 𝐶12

𝐶20 𝐶21 𝐶22

⎞⎟⎟⎠ ,
where 𝐶12, 𝐶21 are null matrices, that is,

𝒞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 1.63459 0.487156 1.5987 0.40767
0 3 0.884587 1.61216 0.248697 1.60767

1.63459 0.884587 3 0 0 0
0.487156 1.61216 0 3 0 0
1.5987 0.248697 0 0 3 0
0.40767 1.60767 0 0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By (3.142) the optimal stabilization control function equals

𝑢0 = 1 −
√

19
2 (𝑥1(𝑡) + 𝑥2(𝑡))

with the system (3.141) taking the form

𝑥′
1(𝑡) = − 3 +

√
19

2 𝑥1(𝑡) + 3 −
√

19
2 𝑥2(𝑡) − 𝑥1(𝑡− 𝜏) − 0.25𝑥2(𝑡− 𝜏)

− 𝑥1(𝑡− 𝛿) − 0.2𝑥2(𝑡− 𝛿),

𝑥′
2(𝑡) = 3 −

√
19

2 𝑥1(𝑡) − 3 +
√

19
2 𝑥2(𝑡) − 0.5𝑥1(𝑡− 𝜏) − 𝑥2(𝑡− 𝜏)

− 0.1𝑥1(𝑡− 𝛿) − 𝑥2(𝑡− 𝛿).
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3.4.6 Systems with multiple delays and a control vector-
function

In this part, we consider systems of linear differential equations with delays

𝑥′(𝑡) =
𝑛∑︁

𝑖=0
𝐴𝑖𝑥(𝑡− 𝜏𝑖) + 𝐶𝑢, 𝑡 ≥ 𝑡0, (3.143)

where 𝐴𝑖, 𝑖 = 0, . . . , 𝑛 are 𝑚×𝑚 real matrices, 𝐶 is an 𝑚× 𝑟 real matrix, 0 = 𝜏0 <

𝜏1 < · · · < 𝜏𝑛, 𝑥 : [𝑡0 − 𝜏,∞) → R𝑚, 𝑡0 ∈ R and 𝑢 : 𝒟1 → R𝑟 is a control function.
Set 𝜏 := 𝜏𝑛. A minimization problem

𝐼 = min
𝑢

∫︁ ∞

𝑡0
𝜔 (𝑡, 𝑥𝑡, 𝑢) d𝑡, (3.144)

where

𝜔 (𝑡, 𝑥𝑡, 𝑢) :=
𝑛∑︁

𝑖=0
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖𝑖𝑥(𝑡− 𝜏𝑖) +

𝑛∑︁
𝑖=1

𝑥𝑇 (𝑡)𝐶0𝑖𝑥(𝑡− 𝜏𝑖)

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖0𝑥(𝑡) +

𝑛∑︁
𝑖=0

𝑢𝑇𝐷𝑖𝑥(𝑡− 𝜏𝑖)

+
𝑛∑︁

𝑖=0
𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*

𝑖 𝑢+ 𝑢𝑇𝐷𝑢 (3.145)

will be solved for the system (3.143), where 𝐶𝑖𝑖 are 𝑚 × 𝑚 constant symmetric
matrices, 𝐶0𝑖 and 𝐶𝑖0, 𝐶0𝑖 = 𝐶𝑇

𝑖0 are 𝑚×𝑚 constant matrices, 𝐷 is an 𝑟×𝑟 symmetric
matrix and 𝐷𝑖, 𝐷*

𝑖 , 𝐷𝑖 = (𝐷*
𝑖 )𝑇 are 𝑟×𝑚 and 𝑚×𝑟 constant matrices, respectively.

Define auxiliary matrices 𝐶𝑖𝑗 = 𝐶𝑗𝑖 = Θ𝑚×𝑚, (𝑖 > 𝑗 ≥ 1, 𝑖, 𝑗 = 1, . . . , 𝑛). Let 𝑋(𝑡)
be an [(𝑛+ 1)𝑚+ 𝑟] × 1 vector defined by the formula

𝑋(𝑡) = (𝑥𝑇 (𝑡), 𝑥𝑇 (𝑡− 𝜏1), . . . , 𝑥𝑇 (𝑡− 𝜏𝑛), 𝑢)𝑇

and

𝒞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶00 𝐶01 . . . 𝐶0𝑛 𝐷*
0

𝐶10 𝐶11 . . . 𝐶1𝑛 𝐷*
1

... ... . . . ...
𝐶𝑛0 𝐶𝑛1 . . . 𝐶𝑛𝑛 𝐷*

𝑛

𝐷0 𝐷1 . . . 𝐷𝑛 𝐷

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.146)

Then, the formula (3.145) can be written in the form

𝜔 (𝑡, 𝑥𝑡, 𝑢) = 𝑋𝑇 (𝑡)𝒞𝑋(𝑡).

Below we assume that the matrix 𝒞 is positive-definite, that is, the functional
𝜔(𝑡, 𝑥𝑡, 𝑢) is positive-definite. In the following, we will employ a Lyapunov-Krasovskii
functional (3.134), that is

𝑉 (𝑡, 𝑥𝑡) = 𝑥𝑇 (𝑡)𝐻𝑥(𝑡) +
𝑛∑︁

𝑖=1

∫︁ 𝑡

𝑡−𝜏𝑖

𝑥𝑇 (𝑠)𝐺𝑖𝑥(𝑠)d𝑠,
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where 𝑚 × 𝑚 matrices 𝐻 and 𝐺𝑖, 𝑖 = 1, . . . , 𝑛 are constant, positive-definite and
symmetric. Their elements will be defined in the formulation of the theorem below.
In the proof, we use some well-known formulas for vectors and matrices, taking into
account their assumed properties, such us (𝐴0𝑥(𝑡))𝑇 = 𝑥𝑇 (𝑡)𝐴𝑇

0 , (𝐷−1)𝑇 = 𝐷−1,
etc., without mentioning this in each particular case (for matrix calculus we refer,
for example, to [32]). Matrix computations are performed in detail.

Theorem 3.4.15. Assume that the matrix 𝒞 is positive-definite and there exist
positive-definite symmetric matrices 𝐻 and 𝐺𝑖, 𝑖 = 1, . . . , 𝑛, satisfying

𝐴𝑇
0𝐻 +𝐻𝐴0 + 𝐶00 +

𝑛∑︁
𝑖=1

𝐺𝑖 − [𝐻𝐶 +𝐷*
0]𝐷−1

[︁
𝐶𝑇𝐻 +𝐷0

]︁
= Θ𝑚×𝑚, (3.147)

𝐴𝑇
𝑖 𝐻 + 𝐶𝑖0 −𝐷*

𝑖𝐷
−1
[︁
𝐶𝑇𝐻 +𝐷0

]︁
= Θ𝑚×𝑚, 𝑖 = 1, . . . , 𝑛, (3.148)

𝐺𝑖 − 𝐶𝑖𝑖 −𝐷*
𝑖𝐷

−1𝐷𝑖 = Θ𝑚×𝑚, 𝑖 = 1, . . . , 𝑛. (3.149)

If, moreover,
𝐷*

𝑖𝐷
−1𝐷𝑗 = Θ𝑚×𝑚, 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ̸= 𝑗, (3.150)

then the optimal stabilization control function of the problem (3.143)–(3.145) exists
and equals

𝑢0 = −𝐷−1
[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) −𝐷−1

𝑛∑︁
𝑖=1

𝐷𝑖𝑥(𝑡− 𝜏𝑖). (3.151)

Proof. In accordance with Theorem 3.2.1, analyzing the expression 𝐵 given
by (3.11), we get

𝐵(𝑉,𝑡, 𝑥𝑡, 𝑢) = d𝑉 (𝑡, 𝑥𝑡)
d𝑡 + 𝜔 (𝑡, 𝑥𝑡, 𝑢)

=
[︃

𝑛∑︁
𝑖=0

𝐴𝑖𝑥(𝑡− 𝜏𝑖) + 𝐶𝑢

]︃𝑇

𝐻𝑥(𝑡) + 𝑥𝑇 (𝑡)𝐻
[︃

𝑛∑︁
𝑖=0

𝐴𝑖𝑥(𝑡− 𝜏𝑖) + 𝐶𝑢

]︃

+
𝑛∑︁

𝑖=1

[︁
𝑥𝑇 (𝑡)𝐺𝑖𝑥(𝑡) − 𝑥𝑇 (𝑡− 𝜏𝑖)𝐺𝑖𝑥(𝑡− 𝜏𝑖)

]︁
+

𝑛∑︁
𝑖=0

𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖𝑖𝑥(𝑡− 𝜏𝑖)

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡)𝐶0𝑖𝑥(𝑡− 𝜏𝑖) +

𝑛∑︁
𝑖=1

𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖0𝑥(𝑡)

+
𝑛∑︁

𝑖=0
𝑢𝑇𝐷𝑖𝑥(𝑡− 𝜏𝑖) +

𝑛∑︁
𝑖=0

𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*
𝑖 𝑢+ 𝑢𝑇𝐷𝑢

=
[︃
𝐴0𝑥(𝑡) +

𝑛∑︁
𝑖=1

𝐴𝑖𝑥(𝑡− 𝜏𝑖) + 𝐶𝑢

]︃𝑇

𝐻𝑥(𝑡)

+ 𝑥𝑇 (𝑡)𝐻
[︃
𝐴0𝑥(𝑡) +

𝑛∑︁
𝑖=1

𝐴𝑖𝑥(𝑡− 𝜏𝑖) + 𝐶𝑢

]︃
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+
𝑛∑︁

𝑖=1

[︁
𝑥𝑇 (𝑡)𝐺𝑖𝑥(𝑡) − 𝑥𝑇 (𝑡− 𝜏𝑖)𝐺𝑖𝑥(𝑡− 𝜏𝑖)

]︁
+ 𝑥𝑇 (𝑡)𝐶00𝑥(𝑡)

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖𝑖𝑥(𝑡− 𝜏𝑖) +

𝑛∑︁
𝑖=1

𝑥𝑇 (𝑡)𝐶0𝑖𝑥(𝑡− 𝜏𝑖) +
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖0𝑥(𝑡)

+ 𝑢𝑇𝐷0𝑥(𝑡) + 𝑥𝑇 (𝑡)𝐷*
0𝑢+

𝑛∑︁
𝑖=1

𝑢𝑇𝐷𝑖𝑥(𝑡− 𝜏𝑖)

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*

𝑖 𝑢+ 𝑢𝑇𝐷𝑢.

A simplification of 𝐵 leads to

𝐵 (𝑉, 𝑡, 𝑥𝑡, 𝑢) = 𝑥𝑇 (𝑡)
[︃
𝐴𝑇

0𝐻 +𝐻𝐴0 +
𝑛∑︁

𝑖=1
𝐺𝑖 + 𝐶00

]︃
𝑥(𝑡)

+
𝑛∑︁

𝑖=1

[︁
𝑥𝑇 (𝑡− 𝜏𝑖)[𝐴𝑇

𝑖 𝐻 + 𝐶𝑖0]𝑥(𝑡) + 𝑥𝑇 (𝑡)[𝐻𝐴𝑖 + 𝐶0𝑖]𝑥(𝑡− 𝜏𝑖)
]︁

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)[𝐶𝑖𝑖 −𝐺𝑖]𝑥(𝑡− 𝜏𝑖) + 𝑢𝑇 (𝑡)

[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡)

+ 𝑥𝑇 (𝑡)
[︁
𝐻𝐶 +𝐷*

0

]︁
𝑢+

𝑛∑︁
𝑖=1

𝑢𝑇𝐷𝑖𝑥(𝑡− 𝜏𝑖) +
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*

𝑖 𝑢+ 𝑢𝑇𝐷𝑢. (3.152)

Looking for an extremum of (3.152), we solve the equation

𝐵′
𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢) = 0,

where

𝐵′
𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢)

=
[︃
𝑢𝑇
[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) + 𝑥𝑇 (𝑡) [𝐻𝐶 +𝐷*

0]𝑢+
𝑛∑︁

𝑖=1
𝑢𝑇𝐷𝑖𝑥(𝑡− 𝜏𝑖)

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*

𝑖 𝑢+ 𝑢𝑇𝐷𝑢

]︃′

𝑢

=2
[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) + 2

𝑛∑︁
𝑖=1

𝐷𝑖𝑥(𝑡− 𝜏𝑖) + 2𝐷𝑢.

That is,

𝑢 = 𝑢0 = −𝐷−1
[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) −𝐷−1

𝑛∑︁
𝑖=1

𝐷𝑖𝑥(𝑡− 𝜏𝑖), (3.153)

which is the minimum of the function 𝐵 because 𝐵′′
𝑢𝑢 = 2𝐷 and the matrix 𝐷 is

positive-definite due to the positive-definiteness of 𝒞.
Below we prove that 𝑢0 given by (3.153) is the optimal stabilization control function
of the problem (3.143)–(3.145), so the formula (3.151) will be proved. Consider the
identity (3.12) and derive conditions for its validity, formulated in the theorem.

75



First, simplify the terms in 𝐵(𝑉, 𝑡, 𝑥𝑡, 𝑢) involving argument 𝑢 (above, these terms
are contained between square brackets in the computation of 𝐵′

𝑢(𝑉, 𝑡, 𝑥𝑡, 𝑢)). Using
𝑢 = 𝑢0 defined by (3.153) we get

𝑢𝑇
0

[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) + 𝑥𝑇 (𝑡)

[︁
𝐻𝐶 +𝐷*

0

]︁
𝑢0 +

𝑛∑︁
𝑖=1

𝑢𝑇
0𝐷𝑖𝑥(𝑡− 𝜏𝑖)

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*

𝑖 𝑢0 + 𝑢𝑇
0𝐷𝑢0

= −

⎛⎝𝐷−1
[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) +𝐷−1

𝑛∑︁
𝑗=1

𝐷𝑗𝑥(𝑡− 𝜏𝑗)
⎞⎠𝑇 [︁

𝐶𝑇𝐻 +𝐷0
]︁
𝑥(𝑡)

− 𝑥𝑇 (𝑡)
[︁
𝐻𝐶 +𝐷*

0

]︁⎛⎝𝐷−1
[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) +𝐷−1

𝑛∑︁
𝑗=1

𝐷𝑗𝑥(𝑡− 𝜏𝑗)
⎞⎠

−
𝑛∑︁

𝑖=1

⎛⎝𝐷−1
[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) +𝐷−1

𝑛∑︁
𝑗=1

𝐷𝑗𝑥(𝑡− 𝜏𝑗)
⎞⎠𝑇

𝐷𝑖𝑥(𝑡− 𝜏𝑖)

−
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*

𝑖

⎛⎝𝐷−1
[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) +𝐷−1

𝑛∑︁
𝑗=1

𝐷𝑗𝑥(𝑡− 𝜏𝑗)
⎞⎠

+
⎛⎝𝐷−1

[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) +𝐷−1

𝑛∑︁
𝑗=1

𝐷𝑗𝑥(𝑡− 𝜏𝑗)
⎞⎠𝑇

×𝐷

(︃
𝐷−1

[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) +𝐷−1

𝑛∑︁
𝑘=1

𝐷𝑘𝑥(𝑡− 𝜏𝑘)
)︃

= −𝑥𝑇 (𝑡)
(︁
𝐷−1

[︁
𝐶𝑇𝐻 +𝐷0

]︁)︁𝑇 [︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡)

⏟  ⏞  
⟨1⟩

−
𝑛∑︁

𝑗=1
𝑥𝑇 (𝑡− 𝜏𝑗)

(︁
𝐷−1𝐷𝑗

)︁𝑇 [︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡)

⏟  ⏞  
⟨2⟩

−𝑥𝑇 (𝑡)
[︁
𝐻𝐶 +𝐷*

0

]︁
𝐷−1

[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡)

⏟  ⏞  
⟨3⟩

−𝑥𝑇 (𝑡)
[︁
𝐻𝐶 +𝐷*

0

]︁
𝐷−1

𝑛∑︁
𝑗=1

𝐷𝑗𝑥(𝑡− 𝜏𝑗)⏟  ⏞  
⟨4⟩

−
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡)

(︁
𝐷−1

[︁
𝐶𝑇𝐻 +𝐷0

]︁)︁𝑇
𝐷𝑖𝑥(𝑡− 𝜏𝑖)⏟  ⏞  

⟨5⟩

−
𝑛∑︁

𝑖=1

⎛⎝ 𝑛∑︁
𝑗=1

𝑥𝑇 (𝑡− 𝜏𝑗)
(︁
𝐷−1𝐷𝑗

)︁𝑇

⎞⎠𝐷𝑖𝑥(𝑡− 𝜏𝑖)⏟  ⏞  
⟨6⟩
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−
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*

𝑖𝐷
−1
[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡)

⏟  ⏞  
⟨7⟩

−
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*

𝑖𝐷
−1

𝑛∑︁
𝑗=1

𝐷𝑗𝑥(𝑡− 𝜏𝑗)⏟  ⏞  
⟨8⟩

+𝑥𝑇 (𝑡)
(︁
𝐷−1

[︁
𝐶𝑇𝐻 +𝐷0

]︁)︁𝑇 [︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡)⏟  ⏞  

⟨9⟩

+𝑥𝑇 (𝑡)
(︁
𝐷−1

[︁
𝐶𝑇𝐻 +𝐷0

]︁)︁𝑇
𝑛∑︁

𝑘=1
𝐷𝑘𝑥(𝑡− 𝜏𝑘)⏟  ⏞  

⟨10⟩

+
𝑛∑︁

𝑗=1
𝑥𝑇 (𝑡− 𝜏𝑗)

(︁
𝐷−1𝐷𝑗

)︁𝑇 [︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡)

⏟  ⏞  
⟨11⟩

+
𝑛∑︁

𝑗=1
𝑥𝑇 (𝑡− 𝜏𝑗)

(︁
𝐷−1𝐷𝑗

)︁𝑇
𝑛∑︁

𝑘=1
𝐷𝑘𝑥(𝑡− 𝜏𝑘)

⏟  ⏞  
⟨12⟩

.

Finally, the following simplification is carried out: expressions ⟨1⟩, ⟨2⟩, ⟨5⟩ and ⟨8⟩
are rewritten, as indicated. The sum of ⟨3⟩ and ⟨9⟩ equals zero, as well as the sum
of ⟨4⟩ and ⟨10⟩, ⟨6⟩ and ⟨12⟩, ⟨7⟩ and ⟨11⟩. We have

𝑢𝑇
0

[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) + 𝑥𝑇 (𝑡)

[︁
𝐻𝐶 +𝐷*

0

]︁
𝑢0 +

𝑛∑︁
𝑖=1

𝑢𝑇
0𝐷𝑖𝑥(𝑡− 𝜏𝑖)

= −𝑥𝑇 (𝑡)
[︁
𝐻𝐶 +𝐷*

0

]︁
𝐷−1

[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡)

⏟  ⏞  
⟨1⟩

−
𝑛∑︁

𝑗=1
𝑥𝑇 (𝑡)

[︁
𝐻𝐶 +𝐷*

0

]︁
𝐷−1𝐷𝑗𝑥(𝑡− 𝜏𝑗)⏟  ⏞  

⟨5⟩

−
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*

𝑖𝐷
−1
[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡)

⏟  ⏞  
⟨2⟩

−
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*

𝑖𝐷
−1

𝑛∑︁
𝑗=1

𝐷𝑗𝑥(𝑡− 𝜏𝑗)⏟  ⏞  
⟨8⟩

.

(3.154)

For (3.12) to hold we need to transform (3.152) using (3.154) to derive

𝐵

(︃
𝑉, 𝑡, 𝑥𝑡,−𝐷−1

[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) −𝐷−1

𝑛∑︁
𝑖=1

𝐷𝑖𝑥(𝑡− 𝜏𝑖)
)︃

=𝑥𝑇 (𝑡)
[︃
𝐴𝑇

0𝐻 +𝐻𝐴0 +
𝑛∑︁

𝑖=1
𝐺𝑖 + 𝐶00

]︃
𝑥(𝑡)

+
𝑛∑︁

𝑖=1

[︁
𝑥𝑇 (𝑡− 𝜏𝑖)[𝐴𝑇

𝑖 𝐻 + 𝐶𝑖0]𝑥(𝑡) + 𝑥𝑇 (𝑡)[𝐻𝐴𝑖 + 𝐶0𝑖]𝑥(𝑡− 𝜏𝑖)
]︁

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)[𝐶𝑖𝑖 −𝐺𝑖]𝑥(𝑡− 𝜏𝑖)

− 𝑥𝑇 (𝑡)
[︁
𝐻𝐶 +𝐷*

0

]︁
𝐷−1

[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) −

𝑛∑︁
𝑗=1

𝑥𝑇 (𝑡)
[︁
𝐻𝐶 +𝐷*

0

]︁
𝐷−1𝐷𝑗𝑥(𝑡− 𝜏𝑗)
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−
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*

𝑖𝐷
−1
[︁
𝐶𝑇𝐻 +𝐷0

]︁
𝑥(𝑡) −

𝑛∑︁
𝑖=1

𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*
𝑖𝐷

−1
𝑛∑︁

𝑗=1
𝐷𝑗𝑥(𝑡− 𝜏𝑗)

=𝑥𝑇 (𝑡)
[︃
𝐴𝑇

0𝐻 +𝐻𝐴0 +
𝑛∑︁

𝑖=1
𝐺𝑖 + 𝐶00 −

[︁
𝐻𝐶 +𝐷*

0

]︁
𝐷−1

[︁
𝐶𝑇𝐻 +𝐷0

]︁]︃
𝑥(𝑡)

+ 2
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)[𝐴𝑇

𝑖 𝐻 + 𝐶𝑖0 −𝐷*
𝑖𝐷

−1
[︁
𝐶𝑇𝐻 +𝐷0

]︁
]𝑥(𝑡)

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)[𝐶𝑖𝑖 −𝐺𝑖 −𝐷*

𝑖𝐷
−1𝐷𝑖]𝑥(𝑡− 𝜏𝑖)

−
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐷*

𝑖𝐷
−1

𝑛∑︁
𝑗=1,𝑗 ̸=𝑖

𝐷𝑗𝑥(𝑡− 𝜏𝑗) ≡ 0. (3.155)

The identity (3.155) will hold if

𝐴𝑇
0𝐻 +𝐻𝐴0 + 𝐶00 +

𝑛∑︁
𝑖=1

𝐺𝑖 −
[︁
𝐻𝐶 +𝐷*

0

]︁
𝐷−1

[︁
𝐶𝑇𝐻 +𝐷0

]︁
= Θ𝑚×𝑚,

𝐴𝑇
𝑖 𝐻 + 𝐶𝑖0 −𝐷*

𝑖𝐷
−1
[︁
𝐶𝑇𝐻 +𝐷0

]︁
= Θ𝑚×𝑚, 𝑖 = 1, . . . , 𝑛,

𝐶𝑖𝑖 −𝐺𝑖 −𝐷*
𝑖𝐷

−1𝐷𝑖 = Θ𝑚×𝑚, 𝑖 = 1, . . . , 𝑛,
𝐷*

𝑖𝐷
−1𝐷𝑗 = Θ𝑚×𝑚, 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑖,

that is if the assumptions (3.147)–(3.150) are fulfilled. All the assumptions of
Theorem 3.2.1 are fulfilled, therefore, for the control function defined by (3.151) and
the Lyapunov-Krasovskii functional (3.134), the system (3.143) is asymptotically
stable and the quality criterion (3.144) takes a minimum value. �

As a particular case of Theorem 3.4.15, consider the system (3.143) with the quality
criterion (3.144) where matrices 𝐷𝑖, 𝐷*

𝑖 , 𝑖 = 0, . . . , 𝑛 are zero matrices, that is, let

𝜔 (𝑡, 𝑥𝑡, 𝑢) :=
𝑛∑︁

𝑖=0
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖𝑖𝑥(𝑡− 𝜏𝑖) +

𝑛∑︁
𝑖=1

𝑥𝑇 (𝑡)𝐶0𝑖𝑥(𝑡− 𝜏𝑖)

+
𝑛∑︁

𝑖=1
𝑥𝑇 (𝑡− 𝜏𝑖)𝐶𝑖0𝑥(𝑡) + 𝑢𝑇𝐷𝑢. (3.156)

Then, the following holds.

Theorem 3.4.16. Assume that the matrix 𝒞 is positive-definite and there exist
positive-definite symmetric matrices 𝐻 and 𝐺𝑖, 𝑖 = 1, . . . , 𝑛, satisfying

𝐴𝑇
0𝐻 +𝐻𝐴0 + 𝐶00 +

𝑛∑︁
𝑖=1

𝐺𝑖 −𝐻𝐶𝐷−1𝐶𝑇𝐻 = Θ𝑚×𝑚, (3.157)

𝐴𝑇
𝑖 𝐻 + 𝐶𝑖0 = Θ𝑚×𝑚, 𝑖 = 1, . . . , 𝑛. (3.158)

If, moreover
𝐺𝑖 = 𝐶𝑖𝑖, 𝑖 = 1, . . . , 𝑛, (3.159)
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then the optimal stabilization control function of the problem (3.143), (3.144), (3.156)
exists and equals

𝑢0 = −𝐷−1𝐶𝑇𝐻𝑥(𝑡). (3.160)

Example 3.4.17. Consider the system (3.143) with 𝑛 = 𝑚 = 𝑟 = 2 and

𝐴0 =
⎛⎝−2 1

1 −2

⎞⎠ , 𝐴1 =
⎛⎝ −1 −0.1

−0.5 −1

⎞⎠ , 𝐴2 =
⎛⎝ −1 −0.2

−0.1 −1

⎞⎠ , 𝐶 =
⎛⎝1 1

2 1

⎞⎠ ,
that is,

𝑥′
1(𝑡) = − 2𝑥1(𝑡) + 𝑥2(𝑡) − 𝑥1(𝑡− 𝜏1) − 0.1𝑥2(𝑡− 𝜏1) − 𝑥1(𝑡− 𝜏2)

− 0.2𝑥2(𝑡− 𝜏2) + 𝑢1(𝑡) + 𝑢2(𝑡),
𝑥′

2(𝑡) = 𝑥1(𝑡) − 2𝑥2(𝑡) − 0.5𝑥1(𝑡− 𝜏1) − 𝑥2(𝑡− 𝜏1) − 0.1𝑥1(𝑡− 𝜏2)
− 𝑥2(𝑡− 𝜏2) + 2𝑢1(𝑡) + 𝑢2(𝑡). (3.161)

Let the matrices in (3.156) be defined as follows

𝐶00 =
⎛⎝3 0

0 3

⎞⎠ , 𝐶01 =
⎛⎝𝑐1 𝑐2

𝑐3 𝑐4

⎞⎠ , 𝐶10 =
⎛⎝𝑐1 𝑐3

𝑐2 𝑐4

⎞⎠ , 𝐶11 =
⎛⎝3 0

0 3

⎞⎠ ,

𝐶02 =
⎛⎝𝑐*

1 𝑐*
2

𝑐*
3 𝑐*

4

⎞⎠ , 𝐶20 =
⎛⎝𝑐*

1 𝑐*
3

𝑐*
2 𝑐*

4

⎞⎠ , 𝐶22 =
⎛⎝3 0

0 3

⎞⎠ , 𝐷 =
⎛⎝1 0

0 1

⎞⎠ .
Then,

𝜔 (𝑡, 𝑥𝑡, 𝑢)

=
⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠𝑇 ⎛⎝3 0
0 3

⎞⎠⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠+
⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠𝑇 ⎛⎝𝑐1 𝑐2

𝑐3 𝑐4

⎞⎠⎛⎝𝑥1(𝑡− 𝜏1)
𝑥2(𝑡− 𝜏1)

⎞⎠
+
⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠𝑇 ⎛⎝𝑐*
1 𝑐*

2

𝑐*
3 𝑐*

4

⎞⎠⎛⎝𝑥1(𝑡− 𝜏2)
𝑥2(𝑡− 𝜏2)

⎞⎠+
⎛⎝𝑥1(𝑡− 𝜏1)
𝑥2(𝑡− 𝜏1)

⎞⎠𝑇 ⎛⎝𝑐1 𝑐3

𝑐2 𝑐4

⎞⎠⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠
+
⎛⎝𝑥1(𝑡− 𝜏2)
𝑥2(𝑡− 𝜏2)

⎞⎠𝑇 ⎛⎝𝑐*
1 𝑐*

3

𝑐*
2 𝑐*

4

⎞⎠⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠+
⎛⎝𝑥1(𝑡− 𝜏1)
𝑥2(𝑡− 𝜏1)

⎞⎠𝑇 ⎛⎝3 0
0 3

⎞⎠⎛⎝𝑥1(𝑡− 𝜏1)
𝑥2(𝑡− 𝜏1)

⎞⎠
+
⎛⎝𝑥1(𝑡− 𝜏2)
𝑥2(𝑡− 𝜏2)

⎞⎠𝑇 ⎛⎝3 0
0 3

⎞⎠⎛⎝𝑥1(𝑡− 𝜏2)
𝑥2(𝑡− 𝜏2)

⎞⎠+
⎛⎝𝑢1

𝑢2

⎞⎠𝑇 ⎛⎝1 0
0 1

⎞⎠⎛⎝𝑢1

𝑢2

⎞⎠
= 3𝑥2

1(𝑡) + 3𝑥2
2(𝑡) + 2𝑐1𝑥1(𝑡)𝑥1(𝑡− 𝜏1) + 2𝑐3𝑥1(𝑡− 𝜏1)𝑥2(𝑡)

+ 2𝑐2𝑥1(𝑡)𝑥2(𝑡− 𝜏1) + 2𝑐4𝑥2(𝑡)𝑥2(𝑡− 𝜏1) + 2𝑐*
1𝑥1(𝑡)𝑥1(𝑡− 𝜏2)

+ 2𝑐*
3𝑥1(𝑡− 𝜏2)𝑥2(𝑡) + 2𝑐*

2𝑥1(𝑡)𝑥2(𝑡− 𝜏2) + 2𝑐*
4𝑥2(𝑡)𝑥2(𝑡− 𝜏2)

+ 3𝑥2
1(𝑡− 𝜏1) + 3𝑥2

2(𝑡− 𝜏1) + 3𝑥2
1(𝑡− 𝜏2) + 3𝑥2

2(𝑡− 𝜏2) + 𝑢2
1 + 𝑢2

2.
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If it is possible to find a matrix 𝐻 and the entries 𝑐𝑖, 𝑐*
𝑖 , 𝑖 = 1, 2 of the matrices 𝐶01,

𝐶10, 𝐶02 and 𝐶20 then, by the formula (3.160), we obtain the optimal stabilization
control function in the form

𝑢0 = −𝐷−1𝐶𝑇𝐻𝑥(𝑡) = −

⎛⎝1 0
0 1

⎞⎠−1⎛⎝1 1
2 1

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠𝑥(𝑡)

= −

⎛⎝1 2
1 1

⎞⎠⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠𝑥(𝑡) =
⎛⎝−(ℎ1 + 2ℎ2) −(ℎ2 + 2ℎ3)

−(ℎ1 + ℎ2) −(ℎ2 + ℎ3)

⎞⎠⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠ . (3.162)

We need to find the matrix 𝐻. In our case, we verify the expression (3.157),
using (3.159). Set

𝒜 := 𝐴𝑇
0𝐻 +𝐻𝐴0 + 𝐶00 + 𝐶11 + 𝐶22 −𝐻𝐶𝐷−1𝐶𝑇𝐻,

where

𝒜 =
⎛⎝𝒜11 𝒜12

𝒜21 𝒜22

⎞⎠ .
That is,

𝒜 :=
⎛⎝−2 1

1 −2

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠+
⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝−2 1
1 −2

⎞⎠+
⎛⎝3 0

0 3

⎞⎠+
⎛⎝3 0

0 3

⎞⎠+
⎛⎝3 0

0 3

⎞⎠
−

⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠⎛⎝1 1
2 1

⎞⎠⎛⎝1 0
0 1

⎞⎠−1⎛⎝1 1
2 1

⎞⎠𝑇 ⎛⎝ℎ1 ℎ2

ℎ2 ℎ3

⎞⎠
=
⎛⎝−2ℎ1 + ℎ2 −2ℎ2 + ℎ3

ℎ1 − 2ℎ2 ℎ2 − 2ℎ3

⎞⎠+
⎛⎝−2ℎ1 + ℎ2 ℎ1 − 2ℎ2

−2ℎ2 + ℎ3 ℎ2 − 2ℎ3

⎞⎠+
⎛⎝9 0

0 9

⎞⎠
−

⎛⎝ℎ1 + 2ℎ2 ℎ1 + ℎ2

ℎ2 + 2ℎ3 ℎ2 + ℎ3

⎞⎠⎛⎝ℎ1 + 2ℎ2 ℎ2 + 2ℎ3

ℎ1 + ℎ2 ℎ2 + ℎ3

⎞⎠
=
⎛⎝−4ℎ1 + 2ℎ2 + 9 ℎ1 − 4ℎ2 + ℎ3

ℎ1 − 4ℎ2 + ℎ3 2ℎ2 − 4ℎ3 + 9

⎞⎠−

⎛⎝ (ℎ1 + 2ℎ2)2 + (ℎ1 + ℎ2)2 (ℎ1 + 2ℎ2)(ℎ2 + 2ℎ3) + (ℎ1 + ℎ2)(ℎ2 + ℎ3)
(ℎ1 + 2ℎ2)(ℎ2 + 2ℎ3) + (ℎ1 + ℎ2)(ℎ2 + ℎ3) (ℎ2 + 2ℎ3)2 + (ℎ2 + ℎ3)2

⎞⎠ .
We get

𝒜11 = −4ℎ1 + 2ℎ2 + 9 − (ℎ1 + 2ℎ2)2 − (ℎ1 + ℎ2)2,

𝒜12 = ℎ1 − 4ℎ2 + ℎ3 − (ℎ1 + 2ℎ2)(ℎ2 + 2ℎ3) − (ℎ1 + ℎ2)(ℎ2 + ℎ3),
𝒜21 = 𝒜12,

𝒜22 = 2ℎ2 − 4ℎ3 + 9 − (ℎ2 + 2ℎ3)2 − (ℎ2 + ℎ3)2.
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Then, 𝒜 = Θ2×2 if

−4ℎ1 + 2ℎ2 + 9 − (ℎ1 + 2ℎ2)2 − (ℎ1 + ℎ2)2 = 0,
ℎ1 − 4ℎ2 + ℎ3 − (ℎ1 + 2ℎ2)(ℎ2 + 2ℎ3) − (ℎ1 + ℎ2)(ℎ2 + ℎ3) = 0,

2ℎ2 − 4ℎ3 + 9 − (ℎ2 + 2ℎ3)2 − (ℎ2 + ℎ3)2 = 0.

By the “WolframAlpha” software, we obtain four sets of solutions of this system

ℎ1
.= 1.45357, ℎ2

.= −0.178416, ℎ3
.= 1.04933,

ℎ1
.= 0.703179, ℎ2

.= −1.26542, ℎ3
.= −0.525272,

ℎ1
.= −23.7181, ℎ2

.= 12.4297, ℎ3
.= −5.26584,

ℎ1
.= −26.7254, ℎ2

.= 17.267, ℎ3
.= −13.0469.

Only the first one is suitable for the matrix 𝐻 to be positive-definite.
Therefore, (using the above-mentioned values, the following computations are only
approximate, further, we do not mention this circumstance)

𝐻 =
⎛⎝ 1.45357 −0.178416

−0.178416 1.04933

⎞⎠ .
As (3.158) should hold as well,

𝐶01 = 𝐶𝑇
10 = −𝐻𝐴1 =

⎛⎝ 1.36436 −0.033059
0.346249 1.03149

⎞⎠ ,
𝐶02 = 𝐶𝑇

20 = −𝐻𝐴2 =
⎛⎝ 1.43573 0.112298

−0.073483 1.01365

⎞⎠ ,
which is sufficient for (3.146) to be a positive-definite matrix. In our case, we have

𝒞 =

⎛⎜⎜⎜⎜⎜⎝
𝐶00 𝐶01 𝐶02 𝐷*

0

𝐶10 𝐶11 𝐶12 𝐷*
1

𝐶20 𝐶21 𝐶22 𝐷*
2

𝐷0 𝐷1 𝐷2 𝐷

⎞⎟⎟⎟⎟⎟⎠ ,

where matrices 𝐶12, 𝐶21, 𝐷𝑖, 𝐷*
𝑖 , 𝑖 = 0, 1, 2 are null matrices, that is,

𝒞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 1.36436 −0.033059 1.43573 0.112298 0 0
0 3 0.346249 1.03149 −0.073483 1.01365 0 0

1.36436 0.346249 3 0 0 0 0 0
−0.033059 1.03149 0 3 0 0 0 0

1.43573 −0.073483 0 0 3 0 0 0
0.112298 1.01365 0 0 0 3 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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By (3.162), the optimal stabilization control function equals

𝑢0 =
⎛⎝−1.096738 −1.920244

−1.275154 −0.870914

⎞⎠⎛⎝𝑥1(𝑡)
𝑥2(𝑡)

⎞⎠
with the system (3.161) taking the form

𝑥′
1(𝑡) = − 4.371892𝑥1(𝑡) − 1.791158𝑥2(𝑡) − 𝑥1(𝑡− 𝜏1) − 0.1𝑥2(𝑡− 𝜏1),
𝑥′

2(𝑡) = − 2.46863 𝑥1(𝑡) − 6.711402𝑥2(𝑡) − 0.5𝑥1(𝑡− 𝜏1) − 𝑥2(𝑡− 𝜏1).
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4 CONCLUSION
The thesis considers the problem of optimal stabilization for ordinary and
functional differential systems. It is based on the result [Theorem 2.2.1, page 21]
given in Malkin’s book [45, Theorem IV, page 485]. The book [45] is a revised
edition of the book [46] and, furthermore, contains new parts - Additions I–IV,
prepared by Malkin’s followers led by academician N. Krasovskii. In the thesis,
first Theorem 2.2.1 was applied to some classes of linear non-delayed differential
equations and then the previous result was extended to delayed differential
equations and systems. If the delay vanishes (𝜏 = 0), our results reduce back to
those already known from [45].

The main result of the thesis is Theorem 3.2.1 (page 38), which solves the problem
of minimizing an integral quality criterion. In order to solve this problem, we find
an optimal stabilization control function, which simultaneously guarantees the
asymptotic stability of a given system of differential equations. The result obtained
is successfully applied to certain classes of linear differential equations with delays.
Moreover, the examples demonstrate that the theorem is applicable to nonlinear
equations with a delay (Examples 3.3.1–3.3.4, p. 43–46).

The problems and derived results, formulated in the thesis, can serve as a
motivation for further research. For example, in the thesis, the assumption 𝑖𝑖𝑖)
(𝐵(𝑉, 𝑡, 𝑥𝑡, 𝑢0) = 0) from Theorem 3.2.1 (page 38) is considered only in cases
explicitly solvable with respect to 𝑢0. It is also an open question if the theory of
implicit functions can be applied to more complicated cases and, consequently, if
the results obtained in the thesis can be extended. Another challenge is to apply the
results to linear systems with variable coefficients, first in the case of the coefficients
being almost constant (for 𝑡 → ∞).

As a topic for future research, investigation of the solvability of the matrix equations
(in the thesis, for example, equations (3.99), (3.115), (3.135), (3.147)) with respect
to the matrix 𝐻 can be suggested as well.

Application of the main result to linear systems leads to complicated systems of
nonlinear equations, which determine the elements of the matrix 𝐻 that has a crucial
role in the formulated criteria. In the examples of this thesis, we sometimes overcome
this circumstance by using a suitable software. That is why it could be useful to
create a special program for solving certain classes of the problems considered.

83



BIBLIOGRAPHY
[1] Adimy, M., Crauste, F. Existence, positivity and stability for a nonlinear model

of cellular proliferation. Nonlinear Anal. Real World Appl., 6 (2005), no. 2, p.
337–366.

[2] Adimy, M., Pujo-Menjouet, L. A mathematical model describing cellular
division with a proliferating phase duration depending on the maturity of cells.
Electron. J. Differential Equations, 2003, no. 107, 14 pp.

[3] Agarwal, R.P., Berezansky, L., Braverman, E., Domoshnitsky, A. Nonoscillation
Theory of Functional Differential Equations with Applications. Springer, New
York, 2012. 520 pp. ISBN: 978-1-4614-3454-2.

[4] Agarwal, R.P., Bohner, M., Wan-Tong, Li Nonoscillation and Oscillation:
Theory for Functional Differential Equations. Monographs and Textbooks in
Pure and Applied Mathematics, 267. Marcel Dekker, Inc., New York, 2004. 376
pp. ISBN: 0-8247-5845-5.

[5] Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V. Optimal Control. (Russian)
Moscow, Nauka Publisher, 1979. 432 pp. Translated from the Russian by V. M.
Volosov. Contemporary Soviet Mathematics. Consultants Bureau, New York,
1987. 309 pp. ISBN: 0-306-10996-4.

[6] Athans, M., Falb, P.L. Optimal Control, An Introduction to the Theory and Its
Applications. Dover Publications, Inc., 2007.

[7] Barrea, A., Hernandez, M.E. Optimal control of a delayed breast cancer stem
cells nonlinear model. Optimal Control Appl. Methods, 37 (2016), no. 2, p. 248–
258.

[8] Bekiaris-Liberis, N., Krstic, M. Nonlinear Control Under Nonconstant Delays.
Advances in Design and Control, 25. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2013. 299 pp. ISBN: 978-1-611973-
17-4.

[9] Bellman, R. Dynamic Programming. Reprint of the 1957 edition. With a
new introduction by Stuart Dreyfus. Princeton Landmarks in Mathematics.
Princeton University Press, Princeton, NJ, 2010. 340 pp. ISBN: 978-0-691-
14668-3.

[10] Bokov, G.V. Pontryagin’s maximum principle of optimal control problems with
time delay. (Russian), Fundam. Prikl. Mat., 15 (2009), no. 5, p. 3–19; translation
in J. Math. Sci. (N.Y.), 172 (2011), no. 5, p. 623–634.

84



[11] Demchenko, H., Diblík, J. A problem of functional minimizing for single delayed
differential system. In Mathematics, Information Technologies and Applied
Sciences 2017, Post-conference proceedings of extended versions of selected
papers. Brno: University of Defence, 2017. p. 55-62. ISBN: 978-80-7582-026-6.
Available at: <http://mitav.unob.cz/data/MITAV2017Proceedings.pdf>.

[12] Demchenko, H., Diblík, J. Optimality conditions for a linear differential system
with a single delay. In MITAV 2017 (Matematika, informační technologie a
aplikované vědy). Brno: Univerzita obrany v Brně, 2017. p. 1–7. ISBN: 978-80-
7231-417-1.

[13] Demchenko, H. Optimality conditions for scalar linear differential system.
In Proceedings of the 23rd Conference STUDENT EEICT 2017. Brno: Brno
University of Technology, Faculty of Elecrical Engineering and Communication,
2017. p. 629–633. ISBN: 978-80-214-5496-5.

[14] Demchenko, H., Diblík, J. Optimality conditions for scalar linear delayed
differential equations. In Proceedings of 16th Conference on Applied
Mathematics Aplimat 2017, First Edition, Bratislava: Slovak University of
Technology in Bratislava, 2017, p. 440–444, ISBN: 978-80-227-4650-2. Available
at: <http://toc.proceedings.com/33721webtoc.pdf>.

[15] Demchenko, H., Diblík, J., Khusainov, D. Optimization of linear differential
systems with multiple delay. In MITAV 2016 (Matematika, informační
technologie a aplikované vědy). Brno: Univerzita obrany v Brně, 2016. p. 1–
7. ISBN: 978-80-7231-464-5.

[16] Demchenko, H. Optimization of linear differential systems with a delay by
Lyapunov’s direct method. In Proceedings of the 22nd Conference STUDENT
EEICT 2016. Brno: Brno University of Technology, Faculty of Elecrical
Engineering and Communication, 2016. p. 748–752. ISBN: 978-80-214-5350-0.

[17] Demchenko, H., Diblík, J., Khusainov, D. Optimization of linear differential
systems with delay by Lyapunov’s direct method. In Mathematics, Information
Technologies and Applied Sciences 2015, Post-conference proceedings of
extended versions of selected papers. Brno: University of Defence, 2015. p.
49–57. ISBN: 978-80-7231-436-2. Available at: <http://mitav.unob.cz/data/
MITAV2015Proceedings.pdf>.

[18] Demchenko, H., Diblík, J., Khusainov, D. Optimization of linear differential
systems with delay by Lyapunov’s direct method. In MITAV 2015 (Matematika,

85

<http://mitav.unob.cz/data/MITAV 2017 Proceedings.pdf>
<http://toc.proceedings.com/33721webtoc.pdf>
<http://mitav.unob.cz/data/MITAV 2015 Proceedings.pdf>
<http://mitav.unob.cz/data/MITAV 2015 Proceedings.pdf>


informační technologie a aplikované vědy). Brno: Univerzita obrany v Brně,
2015. p. 1–6. ISBN: 978-80-7231-998-5.

[19] Demchenko, H. Optimization of linear differential systems by Lyapunov’s
direct method. In Proceedings of the 21st Conference STUDENT EEICT 2015.
Brno: Brno University of Technology, Faculty of Elecrical Engineering and
Communication, 2015. p. 511–515. ISBN: 978-80-214-5148-3.

[20] Diblík, J. Long-time behaviour of solutions of delayed-type linear differential
equations. Electron. J. Qual. Theory Differ. Equ., 2018, no. 47, p. 1–23.

[21] Diblík, J. Asymptotic representation of solutions of equation �̇�(𝑡) = 𝛽(𝑡)[𝑦(𝑡) −
𝑦(𝑡− 𝜏(𝑡))]. J. Math. Anal. Appl., 217 (1998), no. 1, p. 200–215.

[22] Diblík, J., Kukharenko, O., Khusainov, D. Solution representation of the
first boundary value problem for equations with constant delay. Bulletin Kiev
University, series: Physics and Mathematics, 1 (2011), p. 59-62.

[23] Driver, R.D. Ordinary and Delay Differential Equations. Applied Mathematical
Sciences, Vol. 20. Springer-Verlag, New York-Heidelberg, 1977. 501 pp. ISBN:
0-387-90231-7.

[24] Elsgolts, L.E., Norkin, S.B. Introduction to the Theory of Differential Equations
with Delay. (Russian) Nauka Publisher, Moscow, 1971. 296 pp.

[25] Fel’dbaum, A. A. Fundamentals of the Theory of Optimal Automatic Systems.
Second revised and enlarged edition. (Russian) Nauka Publisher, Moscow, 1966.
623 pp.

[26] Feng, Y., Tu, D., Li, C., Huang, T. Alternate control delayed systems. Adv.
Difference Equ. 2015, 2015:146, 12 pp.

[27] Fridman, E. Introduction to Time-Delay Systems, Analysis and Control.
Systems & Control: Foundations & Applications, Birkhäuser/Springer, Cham,
2014. 362 pp. ISBN: 978-3-319-09392-5; 978-3-319-09393-2.

[28] Fridman, E., Nicaise, S., Valein, J. Stabilization of second order evoluion
equations with unbounded feedback with time-dependent delay. SIAM J.
Control Optim., 48 (2010), no. 8, p. 5028–5052.

[29] Gabasov, R., Kirillova, F. The Qualitative Theory of Optimal Processes.
Translated from the Russian by John L. Casti. Control and Systems Theory,
Vol. 3. Marcel Dekker, Inc., New York-Basel, 1976. 640 pp.

86



[30] Gabasov, R., Kirillova, F.M., Prischepova, S.V. Optimal Feedback Control.
Lecture Notes in Control and Information Sciences, 207. Springer-Verlag
London, Ltd., London, 1995. 202 pp. ISBN: 3-540-19991-8.

[31] Gan, Q., Xu, R., Zhang, X., Yang, P. Travelling waves of a three-species Lotka-
Volterra food-chain model with spatial diffusion and time delays. Nonlinear
Anal. Real World Appl., 11 (2010), no. 4, p. 2817–2832.

[32] Gantmacher, F.R. The Theory of Matrices, vol. I, II, AMS Chelsea Publishing,
Providence, RI, USA, 2002.

[33] Gyori, I., Ladas, G. Oscillation Theory of Delay Differential Equations. With
applications. Oxford Mathematical Monographs. Oxford Science Publications.
The Clarendon Press, Oxford University Press, New York, 1991. 368 pp. ISBN:
0-19-853582-1.

[34] Hale, J.K. Theory of Functional Differential Equations. Second edition. Applied
Mathematical Sciences, Vol. 3. Springer-Verlag, New York-Heidelberg, 1977. 365
pp.

[35] Kim, A.V., Ivanov, A.V. Systems with Delay. Analysis, control, and
computations. John Wiley & Sons, Inc., Hoboken, NJ; Scrivener Publishing,
Salem, MA, 2015. 164 pp. ISBN: 978-1-119-11758-2.

[36] Kirk, D.E. Optimal Control Theory, An Introduction. Dover Publications, Inc.,
2004.

[37] Krasovskii, N.N. Stability of Motion. Applications of Lyapunov’s second method
to differential systems and equations with delay. Translated by J. L. Brenner
Stanford University Press, Stanford, Calif. 1963. 188 pp.

[38] Kukharenko, O., Diblík, J., Morávková, B., Khusainov, D. Delayed exponential
functions and their application to representations of solutions of linear equations
with constant coefficients and with single delay. In Proceedings of the 2nd
International Conference on Mathematical Models for Engineering Science
(MMES ‘11), Puerto De La Cruz, Spain, 2011. p. 82–87.

[39] Laarabi, H., Abta, A., Hattaf, K. Optimal control of a delayed SIRS epidemic
model with vaccination and treatment. Acta Biotheoretica, 63(2), 2015, p. 87–
97.

[40] Letov, A. M. The analytical design of control systems. Avtomat. i Telemeh,
22, p. 425–435 (Russian. English summary); translated as Automat. Remote
Control, 22, 1961, p. 363–372.

87



[41] Letov, A. M. The analytical design of control systems. V. Further developments
in the problem. Avtomat. i Telemeh, 23, p. 1405–1413 (Russian. English
summary); translated as Automat. Remote Control, 23, 1962, p. 1319–1327.

[42] Ling, Q., Jin, X., Huang, Z. Stochastic stability of quasi-integrable Hamiltonian
systems with time delay by using Lyapunov function method. Science China
Technological Sciences, 53(3), 2010, p. 703–712.

[43] Lyapunov, A.M. Selected Works: Works on the Theory of Stability. (Russian)
Moscow, Nauka Publisher, 2007. 574 pp.

[44] Macki, J., Strauss, A. Introduction to Optimal Control Theory. Corrected second
printing, Undergraduate Texts in Mathematics, Springer-Verlag, 1995.

[45] Malkin, I.G. Theory of Stability of Motion. Second revised edition. (Russian)
Moscow, Nauka Publisher, 1966. 530 pp.

[46] Malkin, I.G. Theory of Stability of Motion. Translated from a
publication of the state publishing house of technical-theoretical
literature. Moscow-Leningrad, 1952, United State Atomic Energy
Commission, Office of Technical Information, Translation Series, 455 pp.
https://babel.hathitrust.org/cgi/pt?id=mdp.39015014359726;view=1up;seq=1.

[47] Maxwell, J.C., Vyshnegradsky, I.A., Stodola, A. Theory of Automatic Control.
(Russian) Moskow, USSR AS Publisher, 1949. 430 pp.

[48] Meng, Q., Shen, Y. Optimal control for stochastic delay evolution equations.
Appl. Math. Optim., 74 (2016), no. 1, p. 53–89.

[49] Metel’skiia, A. V., Urbanb, O. I., Khartovskiib, V. E. Damping of a solution
of linear autonomous difference–differential systems with many delays using
feedback. Translation of Izv. Ross. Akad. Nauk Teor. Sist. Upr. 2015, no. 2, p.
40–49. J. Comput. Syst. Sci. Int., 54 (2015), no. 2, p. 202–211.

[50] Michiels, W., Niculescu, S.I. Stability and Stabilization of Time-Delay Systems,
An Eigenvalue-Based Approach. Advances in Design and Control, 12. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007. 378
pp. ISBN: 978-0-898716-32-0.

[51] Pedregal, P. Introduction to Optimization. Texts in Applied Mathematics, 46.
Springer-Verlag, New York, 2004. 245 pp. ISBN: 0-387-40398-1.

[52] Pontryagin, L.S., Boltyanskij, V.G., Gamkrelidze, R.V., Mishchenko, E.F.
The Mathematical Theory of Optimal Processes. (Russian) Moscow, Nauka
Publisher, 1983. 392 pp.

88



[53] Rihan, F.A., Rihan, B.F. Numerical modelling of biological systems with
memory using delay differential equations. Appl. Math. Inf. Sci., 9 (2015), no.
3, p. 1645–1658.

[54] Shi, J. Optimal control for stochastic differential delay equations with poisson
jumps and applications. Random Oper. Stoch. Equ., 23 (2015), no. 1, p. 39–52.

[55] Yi, S., Nelson, P.W., Ulsoy, A.G. Analysis and Control Using the Lambert 𝑊
Function, World Scientific, 2010.

[56] Volterra, V.The Mathematical Theory of the Struggle for Existence. (Russian)
Moscow, Nauka Publisher, 1976. 288 pp.

[57] Wang, Q., Chen, F., Huang, F. Maximum principle for optimal control problem
of stochastic delay differential equations driven by fractional Brownian motions.
Optimal Control Appl. Methods, 37 (2016), no. 1, p. 90–107.

[58] Wang, C., Zuo, Z., Lin, Z., Ding, Z. Consensus control of a class of Lipschitz
nonlinear systems with input delay. IEEE Trans. Circuits Syst. I. Regul. Pap.,
62 (11), 2015, p. 2730–2738.

[59] Wang, H., Zhang, H., Wang, X. Optimal control for stochastic discrete-time
systems with multiple input delays. In Proceedings of the 10th World Congress
on Intelligent Control and Automation, 2012, p.1529–1534.

[60] Zabczyk, J. Mathematical Control Theory: an Introduction. Systems & Control:
Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992. 260
pp. ISBN: 0-8176-3645-5.

[61] Zhu, W., Zhang, Z. Verification theorem of stochastic optimal control with
mixed delay and applications to finance. Asian J. Control, 17 (2015), no. 4, p.
1285–1295.

89


	Introduction
	Current State
	Aims of the thesis
	Preliminaries
	Stability of functional differential equations
	Lyapunov functionals


	Optimization in non-delayed case
	Formulation of the problem
	Malkin's result
	Applications to linear equations and systems
	Non-delayed equations
	Non-delayed systems with a scalar control function
	Non-delayed systems with a control vector-function


	Optimization in delayed case
	Formulation of the problem
	Generalization of Malkin's result
	Examples
	Application to linear equations and systems
	Equations with a single delay
	Equations with multiple delays
	Systems with a single delay and a scalar control function
	Systems with a single delay and a control vector-function
	Systems with multiple delays and a scalar control function
	Systems with multiple delays and a control vector-function


	Conclusion
	Bibliography

