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ABSTRACT

The present thesis deals with processes controlled by systems of delayed differential
equations
?'(t) = f(t,xu), t>to

where ty € R, f is defined on a subspace of [ty,00) x C* x R", m,r € N, CI" =
C([—7,0,R™), 7 >0, 2(0) == z(t +0), 0 € [-7,0], x: [to — T7,00) — R™. Under the
assumption f(t,0%.60,) = 0,,, where 6%, € C™ is a zero vector-function, 6, and 6,, are r
and m-dimensional zero vectors, a control function u = u(t, x;), u: [tg, 00) x C — R,
u(t,0%) = 60, is determined such that the zero solution z(t) = 6,,, t > to — 7 of the

system is asymptotically stable and, for an arbitrary solution = = z(t), the integral

o0
/to w (t, x, u(t, z,)) dt,
where w is a positive-definite functional, exists and attains its minimum value in a
given sense. To solve this problem, Malkin's approach to ordinary differential systems is
extended to delayed functional differential equations and Lyapunov's second method is
applied. The results are illustrated by examples and applied to some classes of delayed
linear differential equations.

KEYWORDS

optimal stabilization, control function, Lyapunov-Krasovskii functional, asymptotic
stability, Malkin's approach

ABSTRAKT

Dizertacni prace se zabyva procesy, které jsou fizeny systémy zpozdénych diferencialnich
rovnic
l’/(t) - f(t,It,U), t Z tO

kde ty € R, funkce f je definovéna v jistém podprostoru mnoziny [tg, 00) X C™ x R”,
m,r € N, C™ = C([—7,01,R™), 7 > 0, 24(0) := xz(t +6), 0 € [-7,0], x: [to —
T,00) — R™. Za predpokladu f(t,65,,6,) = 0,,, kde 6} € CI je nulova vektorova
funkce, 60, a 0,, jsou r a m-dimenzionalni nulové vektory, je Fidici funkce u = wu(t, z;),
u: [tg,00) x C™ — R”, u(t, 8%,) = 0, urCena tak, ze nulové feseni z(t) = 0,,, t > to—7
systému je asymptoticky stabilni a pro libovolné feSeni = = x(t) integral

oo
/to w (t, x, u(t, z,)) dt,
kde w je pozitivné definitni funkcional, existuje a nabyva své minimalni hodnoty v daném
smyslu. Pro feSeni tohoto problému byla Malkinova metoda pro obycejné diferencialni
systémy rozsitena na zpozdéné funkcionalni diferencialni rovnice a byla pouzita druha
metoda Lyapunova. Vysledky jsou ilustrovany priklady a aplikovany na nékteré tridy
zpozdénych linearnich diferencialnich rovnic.

KLICOVA SLOVA

optimalni stabilizace, fidici funkce, funkcional Lyapunova-Krasovského, asymptoticka
stabilita, Malkinova metoda
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1 INTRODUCTION

Differential equations are a strong tool for modelling and solving numerous
engineering, mechanical, economic or population problems. It is well-known that
in such problems a time delay arises quite naturally. For example, in electrical
engineering, the time delay can be measured as the difference between the input of
a signal in an electrical circuit and its response. In general, there is always a time
delay in the real-life processes depending on time. So, differential equations with
time delay are an important field of research. As the systems with feedback can
be described (under certain conditions) by systems of differential equations with

a delay or by difference equations, a wide range of applications is opened for research.

In practical applications, the behaviour of many dynamical systems depends on
their previous history. This phenomenon can be brought about by the presence of
delays in the equations under consideration. In view of the intrinsic difficulties in
solving such problems, progress in this field is slow. This is why using the optimal

control of delay systems is so needed and important.
The thesis is devoted to the optimal control problem of delayed differential equations.

The fundamentals of the theory of functional and ordinary differential equations
are well described, for example, in books by R.D. Driver [23], J.K. Hale [34], L.E.
Elsgolts and S.B. Norkin [24], N.N. Krasovskii [37], R.P. Agarwal, L. Berezansky,
E. Braverman and A. Domoshnitsky [3], R.P. Agarwal, M. Bohner and Li Wan-
Tong [4], I. Gyori and G. Ladas [33]. Classics in the field of the optimal control
are R. Bellman [9], L.S. Pontryagin, V.G. Boltyanskij, R.V. Gamkrelidze and E.F.
Mishchenko [52], A.A. Fel'dbaum [25], A.M. Letov [40], [41], V.M. Alekseev, V.M.
Tikhomirov and S.V. Fomin [5], I.G. Malkin [45], R. Gabasov and F. Kirillova [29],
[30], D.E. Kirk [36], E. Fridman [27], A.V. Kim and A.V. Ivanov [35].



1.1 Current State

Differential equations have been the object of research since the 17th century (after
works by Newton and Leibniz) and have been intensively developed for the last
century. Monographs summarizing some outcomes were mentioned above in the

Introduction.

One of the most important sections of the qualitative theory of functional differential
equations is the theory of stability. The method of Lyapunov functionals, proposed
by Krasovskii in [37], is still one of the main methods in the research of the delayed
system’s stability. Analytical research of the stability of some dynamic systems led
to the emergence of a new independent field of science - the theory of automatic
control (regulation). The basis of this theory is usually associated with the book [47].
The theory of optimal control is an important part in the theory of automatic
control, formed primarily on the basis of the classical calculus of variations, the
Pontryagin maximum principle [52] and Bellman’s dynamic programming [9]. The
direct Lyapunov method (Lyapunov function method) [43], which is the basis of the
modern nonlinear theory of automatic control, is widely used in modeling control
structures of nonlinear systems. In addition to the stability conditions, the method

includes an analysis of the quality of control processes.

Numerous papers on the qualitative theory of differential equations, control theory,
and optimization are published every year. Some interesting results have been
published on representations of solutions of delayed systems [22], [38], on stability
of solutions [28], [42], and on optimal control for delayed differential equations [48],
[54], [57], [61]. Functional differential equations for modeling the biological problems
were first used and investigated in [56]. There are many later works on modeling of
biological processes, for example, [1], [2], [31], on applying optimal control in biology
and medicine [7], [39], [63]. In [59], the authors introduced a version of the stochastic
discrete-time maximum principle for solving an optimal control problem. In [49], the
damping of the solution problem is solved by means of a linear difference—differential
controller with a state feedback. Here a certain form of the control function was used
to stabilize the solution. There are numerous works (for example, [26], [58]) where

the authors study the control of systems using some specific control functions.



1.2 Aims of the thesis

The aim of the thesis is to solve the optimal stabilization problem for processes

described by a system of delayed differential equations
2'(t) = f(t,ze,u), t=>to,

where ¢ty € R, f is defined on a subspace of [tg,00) x CI* x R", m,r € N, C" =
C([—7,0,R™), 7 > 0, 24(0) := x(t+80), 0 € [-7,0], x: [to —7,00) — R™. Under the
assumption f(t, 6% .0,) = 0,,, where 0 € C” is a zero vector-function, 6, and 0,, are

r and m-dimensional zero vectors, a control function u = wu(t, z;), u: [ty,00) X C™* —
R", u(t, 0},) = 6, is such that the zero solution z(t) = 6,,, t > t, — 7 of the system

() = f(t, ze, u(t,xy)), t > to,

is asymptotically stable and, for an arbitrary solution x = x(t), the integral

/OO w (t, xy, u(t, z,)) dt,

to

where w is a positive-definite functional, exists and attains its minimum value in a
given sense.

The thesis solves a problem of optimal stabilization for differential non-delayed and
delayed equations and their systems.

The motivation of our research goes back to the results by I.G. Malkin. His book [45]
(we refer to the original book written in Russian, to the best of our knowledge,
there is no translation into English of the second revised edition, the book [46] is
an English translation of the first edition of Malkin’s book and does not include the
results mentioned) contains, among others, a general principle related to optimal
stabilization of ordinary differential systems and its application to linear ordinary
differential systems. This principle we apply to some types of linear differential
equations and their systems to solve optimal control problems. We analyzed Malkin’s
approach and, as a result of our investigation, we present its modification to
differential delayed systems. Illustrative examples showing how this principle can
be applied are developed and, in addition, linear differential delayed systems are
considered.

Some results of this work have been already published by the author of the thesis,

as a co-author, e.g., in [I1]-[19].



1.3 Preliminaries

1.3.1 Stability of functional differential equations

For the auxiliary material given in this part for the reader’s convenience, we refer,
for example, to [23] [34].

Let C" = C([—7,0],R™), where 7 > 0, m € N, be the Banach space of continuous
mappings ¢: [—7,0] — R™. If Ais any set in R™, we will set C™"(A) = C([—7,0], A).

Let C™(D) be the space of continuous mappings from the interval [—7, 0] into the
set D ={& € R™: ||£]| < M}, M is a positive constant (or M = 00).

For each t > t(, we define z; € C™ by 24(0) = z(t + 6), 6 € [—7,0].

Consider a delayed differential system
2 (t) = G(t, 1), (1.1)

where G: [a, 00) X C7'(D) — R™ and a € R. Given any ¢y > « and any ¢ € C™(D),
we shall study (L.1]) in conjunction with the initial condition

Ty, = ©. (1.2)

Let x: [to — T,00) — R™ be a continuous vector-function, ¢ty € R, and let 7 > 0 be a

number. To emphasize the dependence of x on ¢y and ¢, we will sometimes denote

x(t) by x(t; to, ).
Let g1 € R, ty < 81 < o0.

Definition 1.3.1. A continuous function x: [ty — 7, 51) — D with 5 € (tp,00) is
called a solution of the initial problem (1.1)), (1.2)) on [ty — 7, 51) if the equation ([1.1))
is satisfied on [tg, £1) and if z(tg + ) = (@) for every 6 € [—7,0].

For a given ¢ € [tg, 00), we define a norm
lz@®), =  max (|la(+0)[),
€[—7,0]

where
|z (s)|| := ZElrllauxn{|:1c,~(s)|}, s € [ty — T, 00). (1.3)

=1,...,

If ¢ € CT" then
©||. == max {]|p(0
H HT 96[—.&7'70}{H ( )||}7

where

le@Il = max {|¢(6)]}.

.....

10



Let us assume that, for each ¢, > «a, G satisfies the following Condition (C) on
[to, OO) X C;n(D)

Definition 1.3.2. Condition (C) We say that the functional G(t, z;) is continuous
if it is continuous with respect to ¢ in [tg,00) for each given continuous function
x: [t — 7,00) = R™.

If G satisfies Condition (C), then a continuous function z: [ty — 7,51) — D is a
solution of the initial problem ([1.1)), (1.2) if and only if

@(t —to) for to—7 <t <ty,
0(0)+ [ G(s,x5)ds for to <t <.

to

Moreover, we will assume that G is locally Lipschitzian and quasi-bounded, see

definitions below. Let the symbol J mean either [tg, 00) or [a, 00) as required.

Definition 1.3.3. The functional G: J x CI"(D) — R™ is locally Lipschitzian if,
for each given (t*, o*) € J x C™(D), there exist numbers a > 0 and b > 0 such that

C=(" —at"+anJ)x{pell:|p—¢ <b}

is a subset of J x C7(D) and G is Lipschitzian on C. In other words, for some

number K (a Lipschitz constant depending on C'),

IG (¢, @) = Gt ) < Kl — ",
whenever (t,¢) € C and (¢, ¢*) € C.

Definition 1.3.4. The functional G: [ty, 00) x C™(D) — R™ is said to be quasi-
bounded if G is bounded on every set of the form [tg, 5] x C™(A), where tq < f; < 00
and A is a closed bounded set of D.

The properties described in Definitions 1.3.4] are basic for ensuring, for

example, the existence and uniqueness of a noncontinuable solution of the problem

(1.1), (L.2), see Theorem below, and its continuation (Theorem [1.3.7). The

basic theorem on the existence and uniqueness is formulated along with its proof.

Theorem 1.3.5. (Local Existence) Let G: [tg,00) x C™(D) — R™ satisfy
Condition (C) and let it be locally Lipschitzian. Then, for each ¢ € CI(D), the
initial problem (1.1)), (1.2)) has a unique solution on [to — T,to+ A\) for some A > 0.

11



Proof. Choose any a > 0 and b > 0 sufficiently small so that
C* = [to,to+a] x {¢p € CT": [ — ||, < b}

is a subset of [ty,00) x C"(D) and G is Lipschitzian on C* (say, with a Lipschitz

constant K'). Define a continuous function x on [ty — 7,ty + a] — R™ by

7(t)— @(t—to) for tO—TStSto,
| »(0) for ty <t<ty+a.

Then, G(t, x:) depends continuously on ¢ and, hence, ||G(t, x:)|| < By on [to, to + a]
for some constant Bj.
Now define B = Kb+ By. Choose a; € (0, a] such that

1Xe = ¢l = lIXe = Xuoll, < b for 2o <t <to+ar.
Choose A > 0 such that
A < min{ay,b/B} and A <1/K.
Let S be the set of all continuous functions x : [to — 7, %y + A] — R™ such that
X(t) =t —ty) for tog—71 <t <ty,

and
Ix(t) =) <b for to <t <to+A.

Note that, if x € S and t € [tg,to + A], then ||x: — X¢||» < b; so that
1G @ x)ll < NG xe) = G X+ 1GE X < Kllxe = Xell + By < B
For each x € S, define a function T}, on [ty — 7,t° + A] by
o(t —to) for tog—7 <t <t,
©(0) + /tt G(s,xs)ds for to <t <ty+ A.
0
Then, since ||G(s, xs5)|| < B,

(T)(t) — @(0)]] < BA<b for tg <t <ty+A.

Also, T), is continuous. Thus, 7}, € S and we can say that 7" maps S — S.
Let us now construct “successive approximations” in the usual manner - choosing

any () € S and then defining

l‘(l) = Tl'(o), x(g) = Ta:(l), e

12



Bear in mind that
2@y = ot —1t), £=0,1,2,... on [ty — 7,1t

Let us prove that the sequence {z(} converges. For each ¢ = 0,1,2,..., when
to S t S to + A:

<

t
[2(e42)(8) = 2y ()] = H/to |:G(87 T(e+1)s) — G(s, x(@)s)} ds

KA - sup |z (t) — z@(t)].

to<s<to+A
From this and the fact that
[z) () — 2 (¢)]| < 20
one finds, for to <t <tg+ A,

|22 (t) — 2@y (t)]| < 20KA,
l2(3)(t) — 2 ()] < 20(KA)?,

and, by induction
21y (t) — 2@ (B)]| < 26(KA)', £=0,1,2,....

Now, since the series

2 [egan(t) — (O] < 3 2(KAY

p=0

converges, the convergence of the sequence {x )} follows by applying the comparison

test to each component of

on [to, to + Al]. The proof that

z(t) = éli)rgo x(o)(t)
satisfies the equation ([1.4]) is much the same as in the case of ordinary differential

equations and we omit it. O

Definition 1.3.6. Let x on [ty—7, 51) and y on [ty —T, 52), B2 > to, both be solutions
of the initial problem (L.1)), (1.2). If 55 > (51, we say y is a continuation of x, or x
can be continued to [ty — 7, 52). A solution x(¢) of the initial problem ([1.1f), (1.2)) is

noncontinuable (on an interval [ty — 7, 00)) if it has no continuation.

13



Theorem 1.3.7. (Extended Existence) Let G: [tg,00) x C'(D) — R™ satisfy
Condition (C) and let it be locally Lipschitzian and quasi-bounded. Then, for each
¢ € C™(D), the problem , has a unique noncontinuable solution x on
[to—T, 1), if B1 < 00, then, for every closed bounded set A C D, x(t) ¢ A for some

tin (th /61)
Definition 1.3.8. The trivial solution of (|1.1)) is said to be stable at ¢, > « (in
the sense of Lyapunov) if, for each ¢ > 0, there exists 6 = d(e,ty) > 0 such that,

whenever ||| < 6, the solution z(¢; ty, ) exists on [tg — 7, 00) and

[zt to, 0)|| < e

for all t > ty — 7. Otherwise, the trivial solution is said to be unstable at t,. The
trivial solution of ([1.1)) is said to be uniformly stable on [, 00) if it is stable at each
to > « and the number § is independent of ¢, i.e., § = d(¢) depends only on ¢.

Definition 1.3.9. Let Z: (v — 7,00) — D satisfy the equation on [a,00). We
say that z is stable at ¢y > « (in the sense of Lyapunov) if, for each ¢ > 0, there
exists a 0 = d(e,tg) > 0 such that, whenever || —Zy,||» < 6, it follows that z(-; o, ¢)
exists on [ty — 7,00) and
lz(t;to,0) —2(t)]| <€

for all t > to — 7. Otherwise, the solution Z is said to be unstable at ¢y (in the sense
of Lyapunov). The solution z of is said to be uniformly stable on [«, 00) if it is
stable at each typ > « and the number ¢ is independent of ¢, i.e., § = d(¢) depends

only on €.

Definition 1.3.10. The trivial solution of (1.1) is said to be uniformly
asymptotically stable if it is uniformly stable and there exists a §; (independent

of to) such that, whenever ¢y > « and ||¢||, < 01, the expression

tends to 0 as t — oo in the following manner:
For each i > 0, there exists T'= T'(n) > 0 (independent of ¢y) such that

|z (t; to, 0)|| <m

forallt >ty +1T.

1.3.2 Lyapunov functionals

The following definitions are related to the estimation of functionals. Throughout
the thesis, we will denote by V' = V (¢, x;) a functional such that

V. [to, OO) X C:n — R. (15)

14



Definition 1.3.11. Let a functional V' be given. It is called positive-definite if there
exists a continuous non-decreasing function w: [0, M) — R, w(0) = 0, w(s) > 0 if
s € (0, M) such that

V(t.¥) = w(llv(0)]) (1.6)

on (a,00) x C™(D).

Definition 1.3.12. Let a functional V' be given. V is said to have an infinitesimal
upper bound if there exists a continuous non-decreasing function W: [0, M) — R,
W(0) =0, W(s) >0if s € (0, M) such that

Vit ) < W(l[vll,) (1.7)
on (a,00) x C™(D).

Definition 1.3.13. A positive-definite functional V' having an infinitesimal upper

bound is called a Lyapunov-Krasovskii functional.

To illustrate Definitions [1.3.11], [1.3.12] we set
0
V(t,y) =v*(0) +lal | ¥*(0)do,

where a # 0, ¢ € C". For the functional V', the following estimates hold. Since

V(t,v) =1*(0) + |al _OT V(o) do > 4*(0) = [ (0)]I* = w(|l (0)]]),

where w(s) = s* and w satisfies all necessary conditions, V is positive-definite.

Moreover,
V(t.0) = 020) +lal [ 90 do

0
< [0 +lal [ [0l do
= (1+la|n) ¢l = (1 + [a|n)W ([[]],),

where W(s) = (1 + |a|7)s® and W satisfies all necessary conditions, too. Thus, V

has an infinitesimal upper bound.

Definition 1.3.14. Let x: [ty — 7, 00) — R™. The derivative of a functional V (¢, z;)
at a point t > ¢, is defined as

dV (¢, ) | lim V(IE+ A za) = VIt 2)

dt T AS0 A ’

provided that the limit exists and is finite.

15



Below we assume that there exists the derivative dV (¢, x;)/dt of the functional
V(t,z;) along the trajectories of the differential delayed systems considered, that

is, we will assume that z is a solution of a given system.

Theorem 1.3.15. If there exists a Lyapunov-Krasovskii functional V' and if it

defines a non-increasing function of t on [ty,00) whenever
T = ZL'(';to,QO), le [tO -7, OO)

is the noncontinuable solution of (1.1)) through some (ty, p) € [a,00) x CT*(D), then
the trivial solution of (1.1|) is uniformly stable.

Proof. If, for a given ¢, we prove that, for a family of solutions x defined by

'small" initial functions, the inequality
w([lz(®)]]) < w(e)

holds, then we get
()]l < e
since w is a non-decreasing function. It leads to the stability of a trivial solution.

Let € > 0 be given. Without loss of generality we shall assume 0 < ¢ < M. Then,

w(e) > 0 and, as W is continuous, we can choose § = d(¢) € (0, ¢) such that
W(0) < w(e). (1.8)
Now consider any (to, ¢) € [a,00) x C(D) with |¢||, < é. Equation ([L.1) has a

unique noncontinuable solution z = x(-; g, ) through (¢, ¢) on [ty — 7, f1) for some
p1 > to. Thus, using the assumptions of the theorem and condition (|1.8]), we find
for to <t < Bl:

w(llz@®))) < V(t.ze) < Vito, 0) < W([lell,) < W(5) <w(e).
Now, since w is a non-decreasing function, this can hold only if
[z(t)[| <e
for to <t < 4. Thus, from Theorem [1.3.7], it follows that 3; = oo and the assertion

of the theorem is proved. O
In the work, we need the following theorem, taken from [23, Theorem C, p. 366].

Theorem 1.3.16. Let wy be a continuous non-decreasing function on [0, M) which
is zero at 0 and positive on (0,M). Let |G(t,¢)|| < B for some constant B > 0
for all (t,¢) € [a,00) x C™(D). If there exists a Lyapunov-Krasovskii functional V
such that, whenever (ty, p) € [a,00) x CI(D) and x = z(+;ty, ) on [ty — T,00), we
have

LVt <~ O)]) (19)

for t € [tg,00), then the trivial solution of (1.1)) is uniformly asymptotically stable.

16



Proof. 'The required uniform stability follows from Theorem [1.3.15, Select and fix
some M; € (0, M). Then, choose d; > 0 independent of ¢y such that

W (8)) < w(M,).

(It follows that 0, < M;.)
Let an arbitrary n € (0,d;] be given and let v > 0 satisfy W(y) < w(n). Then,
0 <~ <n < ;. Choose a positive integer

W (1) _
w2y 2P

and define T'(n) = K7, where 11 = max{r,~y/B}.
Now let z = xz(-;to,¢) be the solution of equation ([1.1)) through any (to,p) €
[, 00) x CT*(D) with ||¢]|. < 01. Then, it follows from the uniform stability proof

K >

and the choice of §; that x exists and
[l < My < M
for all ¢ >ty — 7. Now we show that for some ¢, € [to, to + T'(n)], we have
e, [l <.
Suppose that, on the contrary,
|lze]|. >~ for all ¢ € [tg,to+T(n)] (1.10)

From the assumptions of the theorem, we have ||G(t,)|| < B for a B > 0 and for
all (t,¢) € [a, 00) x C(D). It means that

1" @) = |G (t,z)l| < B
for every solution = x(t) such that z; € C™(D). Since

l2"(®)]| =, max {[a;(t)|} < B, t € [to, to +T(n)],

1,....m
we have
l2;(t)] < B, i=1,....m, t€[to,to+T(n)]. (1.11)
From ([1.11)) we get
—B<zi(t)< B, i=1,...m, tEe€ [to,to+ T(n). (1.12)

Integrating (1.12)) over an interval (to,to + ), where € < T'(n), we obtain

—Be <uzi(t+¢e)—x;(t) < Be, i=1,...n, t€[to,to+T(n) —¢]. (1.13)
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From (1.10)) it follows that there exists an index i =i* € {1,...,m} and t € [to,to +
T(n) — e
T (t) = 7y
and (|1.13) gives
xp(t +¢€) > x4 (t) — Be > v — Be.
For ¢ € [0,v/2B] we have

ro (2

and we conclude that, on an interval [t,t + v/2B], the inequality

v

o) > 1

holds. Then,

iv(t,xt) < —wi (@) < —wi(7/2)

and, integrating the last inequality over interval (¢, t), we derive
V(t%) - V(to, $t0) = V(t, l’t) - V<t07 80) < _wl(”Y/Q)(t - Z50)

Vi(t,ze) < Vto, 0) —wi(v/2)(t — o) <
< Vito, o) —wr(v/2)T(n) =V (to, 0) — wr(v/2) K.
Since ||¢l|; < 01 and V (tg, ) < W(]||¢ll-) < W (d1), we get
V(t,x) < Vto, ) — Kwi(y/2)v/(2B) <W(d1) — W (1) = 0.

This inequality contradicts the definition of V' (¢, ).
From the fact that ||z ||, < 7 for some t; € [to,to + T'(n)], it follows that, for all
t > 1,

w(l[z(@)]) < V(@) < V(ty,a,) < W(y) <w(n).

Thus, for all £ > t1, and in particular for all ¢ > to + T'(n),

lz@)] <n

as required for uniform asymptotic stability. O
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2 OPTIMIZATION IN NON-DELAYED CASE

In this part, we will investigate a stabilization problem for a system of differential
equations without delay. We will be looking for a control function for these systems
that satisfies all the desired conditions, such as the best possible quality of a
transition process and a minimum value of a quality criterion. A Lyapunov function
will be used. Below in parts [2.1] and 2.2] we denote by H a positive number. Parts
and are modifications of parts of [45]. We will use the original concepts and
definitions of [45].

2.1 Formulation of the problem
Consider a system of non-delayed functional differential equations
'(t) = F (t,x), (2.1)
where F': ®; — R™,
D = {(t,z) € [to,00) x R™, ||z| < H}.

Assume that F' is continuous and satisfies a local Lipschitz condition with respect
to x.
For controllability problems we will consider systems (2.1)) with explicitly indicated

control functions in the form
Z(t) = f(t,x,u), (2.2)
where f: © — R, f(t,0,,,0,) = O,
D :={(t,x,u) € [tg,00) x R x R", ||z|| < H}.

Applied stabilization problems with the requirement of asymptotic stability of a
given motion described by the system of differential equations (2.2)) require the best
possible quality of the transition process. The best quality criterion is very often

formulated minimizing the integral

o0

I= / w(t, z,u)dt, (2.3)
to

where w: ® — R. Frequently, the integrand is assumed to have a quadratic form

w(t,z,u) = 27 Cx +u’ Du

with a positive-definite constant m x m matrix C' and an r x r matrix D.
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Problem 2.1.1. The optimal control problem is formulated as follows. Find a
function u = ug such that the quality criterion ([2.3)) is fufilled and the trivial solution
of is asymptotically stable.

In other words, let a quality criterion of a process x(t) in the form be fixed. It
is necessary to find a control function u = wuy ensuring the asymptotic stability of
non-perturbed motion z(¢) = 0 such that, for any other admissible control function
u = u*, the inequality

/Oow(t,x,uo)dt < Oow(t,x,u*)dt

to to

holds. The function u = wug is called an optimal control function.

Definition 2.1.2. Let V': [ty, 00) X R™ — [tg,00) be a continuous function. Then,

V is called a Lyapunov function if it is a locally positive-definite function, i.e.
V(to,0) =0, V(tg,xz) >0 for Y(t,x) € [ty,00) x U\{0}
with U being a neighbourhood region around x = 0.

Definition 2.1.3. Let V be a Lyapunov function by Definition [2.1.2, V is said
to have an infinitesimal upper bound if there exists a continuous non-decreasing
function W: [0, H) — R, W(0) =0, W(s) > 0 if s € (0, H) such that

Vit z) < W([lz[))
on [tg, 00) X R™.

Theorem 2.1.4. If a function V can be found for the differential equations of
the disturbed motion satisfying Definition for which the derivative with
respect to time based on these equations AV /dt is negative and the function V itself

permits an infinitesimal upper bound, then the undisturbed motion is asymptotically
stable.

2.2 Malkin’s result

Define an auxiliary function B: ®5 — R,
Dy ={(v,t,z,u) € R x [ty,00) x R™" x R", ||z|| < H},

by the formula

dV(t
B(V,t,z,u) := Vét’x) + w(t, z,u), (2.4)

where V' is a Lyapunov function.

Let us formulate the main theorem of optimal stabilization presented in [45, p.
475-514] utilizing the second Lyapunov method as applied to ordinary differential
equations.
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Theorem 2.2.1. Assume that, for the system of differential equations , there
exists a Lyapunov function Vy(t,z) having an infinitesimal upper bound and a
function ug such that

i) the function w(t,x,u) is positive-definite for every t > to, ||z|| < H, u € R";
it) B (Vo t,z,up) =0;
iii) B (Vo,t,x,u) > 0 for any u # ug.

Then, the function ugy is a solution of the optimal control problem and

/toow(t,x, up)dt = min [/toow(t, x,u)dt} = Vo (to, ). (2.5)
0 0
Proof. For u = wug, the function Vj(t,z) satisfies all conditions of the second
Lyapunov theorem m For its derivative along the trajectories of the system (2.2)),
we have (see assumption i7) of the theorem)
dVo
dt
which means that it is a negative-definite function. That is why, for u = wug, the
undisturbed motion z(t) = 0 is, by Theorem asymptotically stable and
lim; o z(t) = 0 for all initial conditions z(¢y) of the region ||z(ty)| < 7.
Now it is sufficient to show that is true. Let a motion z(t) satisfy the condition
|zo(t)]] < h < H. Obviously, n < h. Thus, during this motion, for all ¢ > t¢, the
equation holds. Moreover, from the property of asymptotic stability and, by

Definition [2.1.3], we have

= —w(t, z, up), (2.6)

Jim Vo(t, zo(t)) = 0. (2.7)
Integrating equation ([2.6]) along the motion z((t) over (to, 00), using (2.7)), we obtain

Vo(to, zo(to)) = /t:ow(t,xo(t),uo)dt. (2.8)

On the other hand, let © = u, be an arbitrary function that is also a solution of
the optimal stabilization problem for the motion z(¢) = 0 and for initial conditions
|x(to)]] < n. Assume that, for ¢t > to, z.(t) lies inside the region ||z(t)|| < h. Then,

by assumption #ii), we get
dV¢
dTO > —w(t, z.(t), u). (2.9)

Integrating this inequality over (t, 00) and using the property

i Vi, (1) = 0, 210
we obtain
Vo(to, z4(to)) < wW(t, . (t), uy)dt. (2.11)

to
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A similar inequality can be obtained if the motion z.(t) goes out of the region
|z(t)|] < h on an interval. In this case, we have the following situation. Let v > ¢,
be the moment of time, when the motion z,(t) goes back into the region ||z(t)|| < h
and stays in it for all £ > v. Then, from that moment on, the equation (2.9) will
hold for z,(t). Integrating this inequality over (v, 00) and using the equation ([2.10)
again, we obtain

Vo(v, 2.(v)) < / w(t, z.(t), u,)dt. (2.12)

Since z(ty) satisfies ||z(to)]| < n, where 7 is sufficiently small, we have
Vo(to, z+(to)) < Vo(v, z.(v)), (2.13)
and, due to assumption i), we get

f”mam@%myu</mw@@4@wga. (2.14)

to

From (2.12) (214), we derive (2.11), and from (Z8), (ZII) we get (Z5). O

Remark 2.2.2. The proof of Theorem is taken from the book [45]. The
inequality (2.13) here is not proved in detail. In the generalization for delayed

equations, there is a more detailed proof of generalized inequality (see (3.30)), (3.31)))
from which the inequality (2.13)) follows.

2.3 Applications to linear equations and systems
In this part, we apply Theorem to a class of ordinary differential equations and

their systems. The results derived are not included in [45].

2.3.1 Non-delayed equations

Consider a scalar equation
Z'(t) = az(t) + bu, (2.15)

where a and b (b # 0) are real constants. Together with the equation (2.15]), we will
consider the quality criterion ({2.3|) with

w(t, z,u) = cx?(t) + du?,
where ¢ > 0, d > 0, that is,

Iz/m@£@+dﬁmt (2.16)

to
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Theorem 2.3.1. If, for the optimal control problem (2.15)), (2.16), a Lyapunov
function in the form

V(t,x) = ha*(t),

where
b= ad + v a?*d? + b%ed
= >
is used, then the optimal control function is
hb
uy = —Fx(t). (2.17)

Proof.  We need to find a control function u = wug for which the equation (2.15)) with
u = uyg is asymptotically stable and a given integral quality criterion ([2.16|) attains a
minimum value. Solving this problem, we need to write an auxiliary functional B by
formula ([2.4), which should be non-negative due to condition ) of Theorem [2.2.1]
We obtain

B(V,t,x,u) =2hz(t)(az(t) + bu) + cx?(t) + du?
=(2ha + ¢)z*(t) + 2hbx(t)u + du® > 0.

So we need

2ha + ¢ > 0,
(2ha + c¢)d — h*b* > 0. (2.18)

Moreover, B(V,t,x;,ug) = 0 due to condition i) of Theorem SO
dud + 2hbx(t)ug + (2ha + ¢)z*(t) = 0

and

hb t
Uy = —E:E(t) + 3c£i>\/h262 — d(2ha + ¢).
For optimal control function existence, the below inequality should hold
h*b* — d(2ha + c) > 0,
which is the opposite of inequality (2.18). So

R%b? — d(2ha + ¢) = 0,

and
ad + Va2d? + b%cd
h = 2 .
Then,
hb
Uy = —Ew(t)
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Remark 2.3.2. System ([2.15) with u = ug given by (2.17) takes the form
hb
Z'(t) = (a — d) z(t).

Example 2.3.3. Consider the equation (2.15) with a = —1, b =2, i.e.,
2 (t) = —x(t) + 2u (2.19)
with the quadratic quality criterion (2.16)), where c =1, d =1, t5 =0, i.e.,
Izém@%o+u%m.

By Theorem [2.3.1] an optimal control function is in the form

16

U =~ x(t)
and the equation (2.15)), (2.19)) with this control is
o' (t) = —V/5x(t).

By Theorem [2.3.1] the control function for the problem (2.15)), (2.16) is given by
formula (2.17)). In the following example, we demonstrate this statement within a

class of control functions.

Example 2.3.4. Consider the equation
2'(t) = ax(t) + bu, (2.20)
where b # 0, with the quadratic quality criterion (2.16)) with ¢y = 0, i.e.,
I= /Ooo(cx2(t) + du?)dt. (2.21)

An optimal control function by formula (2.17)) is in the form

J2d2 - B2
vy = — 1y = LA E VL Ved (2.22)
d bd
After substituting it into equation ([2.20]), we obtain
272 1 2
(1) = as(t) — ad + \/add +0b Cdm(t),

that is,

1
' (t) = —V a?d? + b?cdx(t),
which has the general solution in the form:

Vad? + bQCdt
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Using it to find the value of the quality criterion (2.21]) with u = wug, we obtain

0o d 2d2 b2d2
I:/O <c+(a +”ab2d+ C)>x2(t)dt

Va?d? + bied
_Ved + (ad + Va?d? 4 b2cd)? /00 xQ(@)@—Q#t

b2d 0

dt

9 va2d? + bQCdt
b’ed + (ad + Vad? + V?cd)® | de d
b2d 2V a?d? + b2ed

—2?(0)

b’ed + (ad + v a2d? + b2cd)? d
b*d 2va?d? + bced
b’ed + (ad + v a2d? + b2cd)?
202\ a?d? + b2cd

5, ad+va*d® + b%cd
2 (0) 1Y

Now we show that (2.22]) is the best possible control function in a class of functions.

Counsider control functions in the form

=22(0)

=2%(0)

= 1(0,2(0)). (2.23)

u. = ex(t),
where ¢ is a parameter. Again, we substitute it into equation to get
Z'(t) = (a+ be)x(t). (2.24)
The general solution of the last equation is
z(t) = z(0)el@ bt

Assume z(0) # 0 and find the value of the quality criterion with a new control
function wu,.
If a 4 be > 0, then the integral

= [ () + du2)at = [ (c+ )y = |

0

e}

(c + d52)x2 (0)e2etbe)tqy

N €2t(a+ba) 1
= 1. —_ p—
(0220 i s | =+

is obviously divergent (note that c+de? > 0). If a+be = 0, then the integral diverges
as well since

I= /OO (c + d52):1:2(0)dt = 4o0.
0
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For a + be < 0, equation (2.24)) is asymptotically stable and we get

1

T (2.25)

I= —(c + deQ)xQ(O)

Now we will show that the quality criterion (2.21]) attains a minimum value for the

optimal control function ug defined by (2.22)). Comparing (2.23)) with (2.25)), we need
to prove that

d+ va?d? + b%ed 1
2(0)% < —(c+ de?)a?(0)=—— 2.26
SOEER ST B I W
or, after some simplification,
ad + v a2d? + b*cd < _C* de? (2.27)
b? — 2a+be) '
Define a function 2
c+de
f(g) T _2(a + bg)a
and find its minimum. First, the derivative f'(¢) will be equal to zero if
1
1N _ 2
f'©) =57 CEAE [2de(a + be) — (c + de?)b|
— 2 _ —
T [2adz + bde? — be| = 0. (2.28)

The equation (2.28)) holds if
2ade + bde? — be = 0

and the roots e, 9 are

—ad + Va?d? + b%cd
€12 = bd .

The assumption a + be < 0, that is in our case,

—ad+ VEETRd 1
abery = a+h— =L o — Va4 e < 0

holds only for
—ad — Va?d? + b%ed
bd '
The function f(es) is equal to the left-hand side of inequality (2.27)), since

(—ad — VTt b2cd>2
9 c+d
Fen) = — c+dsd bd

2(a + beg) 2V a2d? + bed

E9 =
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_ bVed+ (ad + VaPd? + bPed)?  2b%cd + 2a°d? 4 2ady/ a?d? + bPed
- 202/a2d? + bPcd B 202V a?d? + bPed

_ Vard* + b*ed + ad
- E )

To show that it is a minimum value of the function f, we need to find the second

derivative

F(es) = [ T +1 i |(2ad + 2bde)(a + be)? — (2ade + bde® — be)2(a + bs)b”

£=¢€9
d
a -+ bEQ

| d(be + a) b
B [ (a+bc)2  (a+be)?

(2ade + bds* — bc)]

E=E9

and

f ”(62) > 0.
So (2.26)) holds and ([2.22)) yields the minimum value of the quality criterion (2.21]).

2.3.2 Non-delayed systems with a scalar control function

Consider a linear system with a scalar control function:
2 (t) = Ax(t) + bu, (2.29)

where A € R™™ ph € R™ z(t) € R™, u € R. We need to find a control function
u = ug for which the system (2.29)) is asymptotically stable and a given integral

quality criterion

1= (2T (0)C(t) + du?) e (2.30)

to
has a minimum value provided that C'is an m xm symmetric positive-definite matrix
and d > 0.

In the sequel, define O, as a zero kK X Kk matrix.

Theorem 2.3.5. Assume that there exists a positive-definite symmetric matriz H

satisfying the matriz equation
1
ATH+ HA+C — gbeTH = Oxm- (2.31)

Then, the optimal stabilization control function u = uq of the problem (2.29)), (2.30))
exists and

1 T
— VT Ha(t). (2.32)

Uy =

27



Proof. We will employ Theorem [2.2.1] Define a Lyapunov function
V(t,x) = a7 (t)Hx(t),

where H is an m x m positive-definite symmetric matrix. Then, in accordance with
the conditions i), iii) of Theorem we analyse the expression B given by (2.4]),

ie.,

BV t,z,u) =

dVéi, 7) +w(t, o, u) = (ilt (iCT(t)HiC(t)) +w(t,z, u)

=[Ax(t) + bu]" Ha(t) + 2" (t) H[Az(t) + bu]
+ 2T (1) Cx(t) + du?,

Simplifying the last expression, we get
B(V,t,z,u) = 2T ()[ATH + HA + Clz(t) + 20" Hz(t)u + du®. (2.33)
Looking for an extremum of (2.33) with respect to u, we get
B (V,t,z,u) = 2b" Hx(t) + 2du = 0,
i.e.,

1
u= —ngHx(t), (2.34)

which is the minimum of the function B because
B!l (Vit,x,u) = 2d > 0.

For B(V,t,z,u) = 0 to hold, by (2.33)) we have

TWATH + HA + Cla(t) — clz (v Ha(t))’

1
— () |ATH + HA 1 C — debTH} 2(t) = 0,

that is, .
ATH+ HA+ C — gbeTH = O,sm-

Thus, for the control function defined by (2.34) the desired optimal stabilization
control function is

1
uy = —ngHx(t).

The formula (2.32)) is proved. For the control function (2.32) and the Lyapunov
function wused, the system (2.29) is asymptotically stable and the quality
criterion (2.30)) takes a minimum value. O
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Remark 2.3.6. System ([2.29)) with u = ug given by ([2.32) takes the form
1
2(t) = (A _ deH) (1),

Example 2.3.7. Let the system ([2.29) be reduced to

wo(t) = a1(t) = 2m2(t) + v, (2.35)
with the quality criterion ([2.30))

I= /OOO (Sxf(t) + 375(t) + u2)dt,

I b= ! L C = 30 L d=1, ty=0.
1 -2 1 0 3

By formula ([2.32]), we obtain the optimal stabilization control function in the form

Uy = —ClibTHx(t) = — (1) (hl h2> (3:1) = —(h1 + ho)z1 — (ha + h3)zs. (2.36)

where

1 hg hg )
We need to find the matrix H in (2.36)). In our case, by (2.31]),

ATH+HA+C—;beTH
o 1\ [h h hy h 9 1 30
_ - 1 2 _'_ 1 2 - +
1 2] \hy by hy hs) \ 1 —2 0 3
T
he ko) (1\ (1N (ke he
hg h3 1 1 h2 h3

_ —4hy + 2hy + 3 — (hy + hy)? hy — 4hy + hs — (hy + ho)(ha + h3)
hy — 4hy + hg — (h1 + ha)(ha + h3) 2hy — 4h3 + 3 — (hg + hs3)?

= O2y2,
which means that
—4hy + 2hy +3 — (hy + he)? =0, (2.37)
hy — 4hy + hs — (hy + hy)(ho + hs) = 0, (2.38)
2hg — 4hs + 3 — (hy + h3)® = 0. (2.39)

To solve it we can, for example, add the second equation multiplied by 2 to the sum
of the first and the third equations ((2.37)+(2.39)+2(2.38))). We obtain

—2hy — 4hy — 2h3 + 6 — [(hy + hy) + (hg + h3)]?
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= —2[hy + 2hs + hs] + 6 — [y + 2hy + hs)* = 0.
Denoting
hi 4+ 2hy + hy = K, (2.40)

we get
K?+2K—-6=0

and K = —14 /7.
After subtracting the first equation of the system from the third one, i.e., ((2.39)—
(2.37))), we obtain

4hy — 4hs + (hy + hy)? — (hg + h3)? =4(hy — h3) + (hy + 2hy + h3)(hy — hs3)

and
hl = hg.

Using the last equation to ([2.40]), we find

K
hy + hy = 5 (2.41)
Next, from ([2.38]) we obtain
K2
2(hy — 2hy) — (h1 + h)?> =0 = hy — 2hy = = (2.42)
By (2.41) and ((2.42)), we have
K K?
By = ha = — 4+ —
TS
K K2
hy=— — —.
76 24

For K = —1 — +/7, the matrix H is not positive-definite so, by (2.36) the optimal

stabilization control function is

1oy

Uy = 9
With u = ug, the system ({2.35|) takes the form
3+V7 3— V7

zy(t) = — 5 x1(t) +

37 3+V7

5 z(t) —

(@1(8) + z2(2)).

(1) =
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2.3.3 Non-delayed systems with a control vector-function

As the next application consider a system:
2'(t) = Ax(t) + Pu, (2.43)

where A € R™*™ P € R™" z(t) € R™, u € R". We need to find an optimal control
function u = ug for which the system is asymptotically stable and an integral quality

criterion

I= /OO (xT(t)Cx(t) + uTDu> dt (2.44)

to
takes a minimum value provided that C' € R™*™ is a symmetric, positive-definite

matrix and D is a diagonal control matrix, D = diag{d;}, d; >0, 7 =1,...,r.

Theorem 2.3.8. Assume that there exists a positive-definite symmetric matric H

satisfying the matriz equation
ATH + HA+C — HPD 'P"H = 0,,m. (2.45)

Then, the optimal stabilization control function u = uq of the problem ([2.43)), (2.44))
exists and
ug = —D 'PTHu(t). (2.46)

Proof.  We will employ Theorem [2.2.1] Define a Lyapunov function
V(t,x) = a" (t)Ha(t),

where H is an m x m positive-definite symmetric matrix. Then, in accordance with
the conditions i7), i77) of Theorem [2.2.1} we analyse the expression B given by (12.4)),

ie.,

T e = § (TOH0) 4,0

=[Ax(t) + Pu]" Hx(t) + 27 (t) H[Az(t) + Pu]
+ 27 (t)Ca(t) + u” Du.

BVt z,u) =

Simplifying the last expression, we get

B(V,t,z,u) =z" (t)[ATH + HA + Cla(t) + u” (t)PT Ha(t)
+ 27 (t)H Pu + u” Du. (2.47)

Looking for an extremum of ([2.47]), with respect to u, we get

B! (V,t,x,u) = 2PTHx(t) + 2Du = 0,
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ie.,
u=—D"'PTHux(t), (2.48)

which is the minimum of the function B because B!, = 2D, and D is a positive-

definite matrix.
For B(V,t,x,u) = 0 to hold, from ({2.47)) we get
B(Vit,x,u)
=T(t)|[A"H + HA+ C — [D'P"H)"P"H — HPD'P"H
+ D7 PTH" DD PT H|a(t)
t"()|A"H+ HA+C — HPD'P"H — HPD™'P"H + HPD ™' P" H|u(t)
(

t)
t"()[ATH + HA+ C — HPD'P"H|x(t) =0,

that is,
ATH+ HA+C — HPD 'PTH =0,,4,.

From ([2.48)) and the above computations, we get
uwy = —D ' PTHa(t).

Thus, for the control function (2.46) and the Lyapunov function used, the
system (2.43)) is asymptotically stable and the quality criterion ([2.44)) has a minimum

value. O

Remark 2.3.9. System ([2.43]) with u = uy given by ([2.46) takes the form
(t)= (A= PD'PTH) x(t).

Example 2.3.10. Consider the system ([2.43)) with the quality criterion ([2.44)). Let

the matrices have the form
= -2 1 ’P:15’C:307D:10’
1 =2 e 1 0 3 01
where € # —1, so

$,1(t) = — 2$1(t) + l‘g(t) + u; + EU2,
zo(t) = x1(t) — 2xa(t) + eug + ua. (2.49)

By (2.46)) the optimal control function will be in the form
10\ (1 ¢\ [ h t
wo = —D'PTHz(t) = — © v ohe) folt))
0 1 e 1 hQ h3 i) (t)
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SO

ui = —(hy + eho)wy — (ho + ehs)xs,
ug = —(€h1 + h2)5E1 - (5h2 + h3)$2- (2‘50)

Determine the matrix H. Compute the expression ([2.45)), i.e.,

ATH+ HA+C — HPD 'PTH
o 1\ [h h hy h 9 1 30
_ - 1 2 + 1 2 - +
1 -2 hy hs hy hs 1 =2 0 3
—1 T
hi  hs 1 ¢ 10 1 € hy hy
- — @2><27
hz h3 e 1 01 e 1 hg h3

which means that

—4h1 + 2]’L2 +3— (hl + €h2)2 - (Ehl -+ h2)2 = 0, (251)
hl - 4h2 -+ hg — (hl -+ 8h2)(h2 -+ €h3) — (Ehl + hg)(fihg + hg) = O, (252)
2hy — 4hs + 3 — (hy + ch3)? — (chy + h3)? = 0. (2.53)

To solve this we can, for example, subtract the first equation from the third one,

i.e., ((2.53)—(2.51])) to obtain

4hy — 4hs + (hy + €hg)® — (ha + h3)® + (ehy + ha)? — (ehy + h3)?
=4(hy — h3) + (hy 4+ €hg + ho + €hs3)(hy + ehy — hy — €hg)
+ (ehy + hg + ehg + h3)(ehy + hy — chy — h3)
=4(hy — h3) + ho(1 +€)(hy — chg + ehy — h3)
+ (hy +€hs)(hy + €hy — hy — €hg) + (ehy + h3)(ehy + hy — €hy — h3)
=4(hy — h3) + ha(1 +¢)*(hy — hs)
+ h3(1 4+ &) 4 hiha(2e — 1 — &%) + hohs(e? — 26 + 1) + h3(—e* — 1)
(71 = 3)(4 + ha(1+ %) + (L +€%)(h] — h3) — hae — 1)*(ha — hy)
(h1 — h3)(4 + ha(1 + &) + (hy + h3)(1 + &%) — ho(e — 1)?)
(h1 — h3)(4 4 2hge + (hy + h3)(1 4+ £2)) = 0.

This implies
hy = hs (2.54)

since (because the matrix H is positive-definite and hy > |ho|)

4+ 2hge + (hy + h3)(1 +€*) > 0.
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We add the second equation multiplied by 2 to the sum of the first and the third

equations ((2.51)+2(2.52))+(2.53))) obtaining

—2hy — 4hy — 2h3 + 6 — (hl + chy + he + €h3)2 — (Ehl + ho +chy + h3)2 = 0.

Next, using (2.54)), we have

—4(hy + hy) +6 — 2(hy + hg)*(1 +¢)* = 0.

If we put
hi+hy =K >0,
then
K*(1+¢)*+2K-3=0
and

—1+/1+3(1+¢)?
(1+¢)? ’

From ([2.55)), we get
hi =K — hy = K > hs.

From (2.52)), we obtain

h1 — 2h2 — (hl + €h2)(6h1 + hg)
=K — Shg — (K — h2 +€h2)<€K - 6]12 + ]’LQ) =0.

After simplification, we obtain the following equation

hi(e —1)* + ho(—K(e = 1)* = 3) + K — K?*: =0,

where
K174+ V(K (e —1)2+3)2 — 4(e — 12(K — K2%)
2 2(s —1)2
and
(K(e —1)*+3)? —4(e — 1)*(K — K%)
=K*(e—1)"+6K(c—1)>+9—4(c — 1)*(K — K%)
=K*(e—1)*((e = 1)> +4¢) + 2K (e — 1)*+9
=K*(e—-1)* e+ 1) +2K(e—1)*+9
WER oo 1)(—2K +3)+2K(e — 12+ 9=3(c—1)2+9.
So

K(e—12+34,/3e—1)2+9

2(e — 1)2
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For, say, ¢ = 0.5, from (2.57)), (2.59) and ({2.58]), we obtain

K =0.792837, hy =0.151421, hy; = hg = 0.641416

(another solution for hy = 12.6414 does not satisfy (2.58))).
By (2.50), the optimal stabilization control function will be (coefficients are
computed approximately)

ul = —0.71712657, (t) — 0.472129 x5(t),

uy = —0.472129 x,(t) — 0.717126525(t).

The system ([2.49) with u = ug takes the form

2 (1) = —2.95319 1 (t) + 0.169308z4 (1),
Zy(t) = 0.169308z (t) — 2.95319 5(1).
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3 OPTIMIZATION IN DELAYED CASE

In this part, we will consider systems of delayed scalar equations with constant
coefficients. For such equations, we will find control functions theoretically and, in
specific examples, by using the formulas obtained. The results of this chapter are

new.

3.1 Formulation of the problem

Consider an arbitrary dynamic process and assume that it can be described by a

system of functional differential equations of delayed type
() = F(t,x), (3.1)
where F': D; — R™,
Dy :=A{(t, z1) € [to, 00) x CT", ||zl < My}

and M, is a given positive constant. Let the functional F' be continuous, locally
Lipschitzian and quasi-bounded. Together with (3.1)), we consider the initial problem

Ty, = ¢, (32)

where t, > ty, and ¢ € CI".
Our goal is to be able to control the process. Consider a process x: [tog—7,00) — R™,

controlled by means of a control function (or control functional) v = u(t, x;), where
u: Dy = R", wu(t,0)) =0,

such that [Ju(t,z;)|| < M,, (t,x;) € Dy, M, is a given positive constant, and
assuming that u is continuous, locally Lipschitzian and quasi-bounded. Assume that

the process can be modelled by a system of differential equations of delayed type
' (t) = f(t,ze,u), t>tg, (3.3)
where f: D — R™,
D= {(t, x1,u) € [to,00) X O X R, [z, < My, [Jul] < M.}
and ||u| is defined as in (1.3). Assume that
F(6,65.6,) = b,

and that f is continuous, locally Lipschitzian and quasi-bounded. Let, moreover, for
a constant Ky > 0, || f(t, z, u)|| < K; whenever (t,x;,u) € D.
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If we specify F(t,z;) := f(t, x4, u), where u = u(t, x;), then the system
zl(t) = f(ta xtau(tazt))a t Z tO (34)

is a particular case of the system and and, consequently, the auxiliary
concepts formulated for in part can be applied to the system as well.
In what follows, we will assume, without loss of generality, that the constant M, is
so large that the below solutions of the system (3.4)), defined on [ty — T, 00), satisfy
|lx(t)|| < My, t € [to — T,00).

The problem under consideration is formulated as follows.

Problem 3.1.1. Find a control function u = wg(t, z;) such that the zero solution
x(t) = O, t > to — 7 of the system

2'(t) = f(t, 2, uo(t, ), t>to, (3.5)

is asymptotically stable and, for an arbitrary solution x: [ty — 7, 00) — R™ of (3.5)),
satisfying ||z ||, < n, n is a sufficiently small positive number such that n < M,,
the integral quality criterion

I= w (t, xy, up(t, z¢)) dt, (3.6)

to

where w: D — R is a given positive-definite functional, exists and attains the
minimum value. This means that, for an arbitrary control function v = u*(t, z;)

such that the zero solution z(t) = 6,,, t > ty — 7 of system
' (t) = f(t, ze, u*(t, 24)), t> to, (3.7)

is asymptotically stable, we have
o

/ Tt anuolta))dt < [ w(t,xtut(t 2)) dt, (3.8)

to to

where z: [to—7,00) — R™ is the solution of (3.5)) defined by the initial problem ({3.2))
where t, := tg, and z*: [to—7,00) — R™ is the solution of (3.7)) defined by the same
initial problem. The initial function ¢ in (3.2)) is arbitrary except for the assumption

el <.

Remark 3.1.2. Modifying the above Definition [I.3.11] of a positive-definite
functional to the functional w: D — R used in ([3.6)), we specify that w is a positive-
definite functional if there exists a continuous non-decreasing function w*(yi,ys)
defined on the set S := {[0, 00) % [0,00)} such that w*(0,0) = 0 and w*(y;,y2) > 0

if (y1,42) € S\ {(0,0)}, and

w(t,x,w) = w([lz @], lull), t=to (3.9)
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whenever (¢, z;,u) € D. The non-decreasing property of w* means that

w (Y1, y2) < w (Y1, 42) (3.10)
whenever y1 < 41, yo <92 and (y1,92) €S, (U1,42) € S.

Remark 3.1.3. We call the function wu(t,x;) solving Problem the optimal
stabilization control function. Moreover, the problem of minimizing the integral I
by an optimal stabilization control function, as described in Problem [3.1.1] can be
formulated more succinctly using the following notation

I = min /mw(t,xt,u(t,xt))dt.

u t()

Problem [3.1.1] extends to delayed differential equations Problem II formulated
for ordinary differential equations in Malkin’s book [45, p. 479]. This problem is

formulated above in part as well (Problem [2.1.1).

Remark 3.1.4. The optimal stabilization control function wg(t,z;), solving
Problem as well as every other control function u(t,z;) mentioned in the
work, is actually a function of the variable ¢. Therefore, without loss of generality,

we sometimes use u(t), u(t) or ug, u for short if there is no danger of ambiguity.

3.2 Generalization of Malkin’s result

To solve the problem we are motivated by Malkin’s approach, presented in

Section 2.2
Define a functional B: Dy — R,

Dy = {(v,t,2¢,u) € R x [tg,00) x CT" x R", ||z, < My, |lul| < M,},

by the formula

BVt a) = LT

where V' is defined by ([1.5)) and the derivative of V' is computed as in Definition|1.3.14
provided that x is an arbitrary fixed solution of the system (3.3)).
The next theorem is a generalization of Theorem [2.2.1] for the case of delayed

+ w(t, e, u), (3.11)

differential equations.

Theorem 3.2.1. Assume that, for the system of differential equations of delayed
type (3.3)), there exists a Lyapunov-Krasovskii functional V(t,z,;) and a control

function uy(t, xy) such that

i) the functional w: D — R is positive-definite;
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i1) the identity

B(V,t,x,ug(t,zy)) =0 (3.12)
holds on [ty,o0) for every solution x: [ty — 7,00) — R™ of the system (3.3)), where
u=uo(t,xy);
i1i) the inequality B(V,t,z;,u) > 0 holds on [ty,00) for every solution x: [ty —
7,00) — R™ of the system (3.3|) with arbitrary fized control function u = u(t, ;).

Then, the function uy(t,x;) is the optimal stabilization control function solving

Problem that is,

I = min /Oow(t, zy,u(t, z))dt = /Oow(t, xy, uo(t, z¢))dt (3.13)
u to to
and, moreover,
/ W(t, 24, uo(t, 20))dt = V(t, 24, ). (3.14)
to

Proof. For the derivative dV (¢, z;)/dt along the trajectories of the system (3.3

where u = u(t, z;), from (3.11)) and (3.12)), it follows that

dV(t, .’Ift)

Ta —w(t, s, up(t, ze)), t>to. (3.15)

By (3.9), we have
—w(t, zy, u(t, z0)) < —w([[x(E)]], [uolt, )[]), ¢ = to.

Set
wi([[z(@)]]) == w*([lz(£)]], 0).
Since, by ,

w([lz@)]; lluo(t, z)[) = w*([l@)], 0) = wi([Jx@)]),

we have

dV(t, ﬂft)

o S W llz@l lluo(t, z)ll) < —wi(llz @), t = to. (3.16)

The functional w; is a continuous non-decreasing function on [0, 00), w;(0) = 0, and
wi(t) > 0 for t € (0,00). That is, the functional V (¢, z;) satisfies all the assumptions
of Theorem (the derivative dV/ (¢, z;)/dt satisfies (1.9)).
So, the trivial solution z(t) = 6,, of the system ({3.3)) with u = ug(t, z;) is uniformly
asymptotically stable and there exists an n € (0, M,] such that, for all initial
conditions x, satisfying ||z(to)||. <, the solution x(ty, z¢,)(t) exists on an interval
[to — 7,00) and

Jim 2(t0, 7)) = B, Jim o) =0 .17
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It remains to show that (3.13]) and (3.14]) are true. Below we will assume that, for a

given h € (0, M, ) the number 7 is so small that the inequality

sup  V(to,x,) < inf  V(to,x4,) (3.18)

ll=(to)ll-<n llz(to)ll-=h

is true. Such a choice of the number 7 is always possible due to the formula (1.6]) in

Definition [1.3.11 and the formula ([1.7]) in Definition [1.3.12| Indeed, assuming 1 so
small that W (n) < w(h), we have

sup  V(to,x,) < W(n) <w(h) < inf  V(ty,xy,)

llz(to)ll<n =)l =h

and (3.18]) holds. Obviously, n < h. This inequality is a simple consequence of the
chain of inequalities
W(n) <w(h) <V(t,h) < W(h).

Next, we prove that every solution z°(t), satisfying

|| <n (3.19)

T

satisfies the condition
on(t)H <h<M,, telty,o0) (3.20)

as well. Indeed, due to the properties of w, W and the formula (3.16)) saying that

the functional V (¢, x;) is non-increasing, we have
w(ll2°(@)]) < V(t,27) < V(to, z,) < W(llzg ll,) < W) < w(h), (3.21)
where t € [tg, 00), and inequality
w(ll2°(®)]) <w(h), t € [t, 00)

implies (3.20). Moreover, from the property of asymptotic stability and from ([1.7]),
(13.17), we have
~ 0 : of| \
0 < lim V(t,2)) < lim wi(|=9] ) =o. (3.22)
Set in (3.15)) 2 := 2° where z = 2° is an arbitrary but fixed solution satisfying (3.19).
Then, integrating equation (3.15]) over an interval (¢y, 00) and using ([3.22)), we obtain

< (dV(t,27) .
[T ()= v - Vi)
:—V(to,xo):—/ wit, 20, up(t, 20))dt (3.23)

t
0 tO
and

V(ty, 20) = / ot 22, uo(t, 22))dt. (3.24)

to
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By , the improper integral exists. Moreover, a consequence of is the
formula as well, provided that ug solves Problem |3.1.1}

On the other hand, let © = «* be an arbitrary control function that is also a solution
of Problem Let = ** be a solution of the system

2'(t) = ft, o, u'(t, @), t 2> to, (3.25)

satisfying [|2**(¢o)||. < n (recall that the trivial solution of (3.25]) is assumed to be
asymptotically stable, see the formulation of Problem [3.1.1]). Assume

|z ()|l < h, t € [to,00).
By i), we get

B(V,t,xy,u) = B(V(t,z;"), t, z;", u*(t, ;"))

dV (t, x;*
= VBT 4 ot a7 0,2570) 2 0, 1€ [t,00)
or, equivalently,
dV (t,z;*
(d’txt ) > —w(t, 7, u*(t,27")), t € [ty,00). (3.26)

Integrating this inequality over (ty, 00) and using the property

lim V(¢t,z;") =0, (3.27)

t—o00

deduced from ({1.7)), we obtain (computations are similar to those in ([3.23))
V(to, 21") < / Wty T, (¢, o))dE. (3.28)
to

We show that the inequality holds even in the case of the solution z**(t)
being out of the domain ||z|| < h on an interval (because of asymptotic stability,
this interval is finite). Assume such a behaviour. Let ¢; > ¢y be the moment of time,
at which z**(t) goes back into the domain ||z|| < h and stays in it for all ¢ > ¢;.
Then, from that moment on, the inequality will hold for z**(¢). Integrating
this inequality over (¢1,00) and using the property again, we obtain

V(ty, xf") < w(t, zf u™(t, z"))dt. (3.29)

1 t

Since x** satisfies ||[x**(to)||- < n and ||x**(¢1)|| = h, we have (estimates are derived

in much the same way as in (3.21)))

Vito, i) < W(llzill,) < W(n) <w(h) = w(lz™(t)l]) < V0, 277),  (3.30)
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that is,
Vito,vy) < V(t,zy). (3.31)
Due to the positive-definiteness of w (assumption i)), we have
o0

/Oow(t,xj*,u*(t,xf*))dtg Wlt, 7wt (7). (3.32)

t1 to
Now, from ([3.29)—(3.32) it follows

Vito, ) < V(t,zp) < / w(t, zy" u™(t, 2y"))dt < w(t, zy u(t, z;"))dt

t1 to

and ((3.28)) holds again.
0

Finally, assume that the initial function 2 (used, among others, on the left-hand
side of (3.24)) and the initial function 2} (used, among others, on the left-hand side
of (3.2§)) are identical, that is 2°(to + ) = z**(to + ), 6 € [—7,0]. Then, (3.24)
and imply

/:w(t,xg, wo(t, 20))dt = V(to, 20 ) = V (ty, %) < /t w(t, 2 (b, 2))dt,
that is, holds with

xpi= ), ug(t, ) = ug(t, x))
on the left-hand side and with

xf =y, ui(txy) = ut(tx)T))

on the right-hand side. Therefore, the optimal stabilization control function u =
ug(t, z¢) = ug(t, 2Y) solves Problem [3.1.1] and (3.13)) holds. O

Remark 3.2.2. Theorem |3.2.1]is an extension to delayed differential equations of
Theorem IV in Malkin’s book [45] p. 485] formulated there for ordinary differential
equations. Optimal problems for delayed differential equations with integral quality
criteria are often considered for a finite upper limit in an integral quality criterion [
and are, in general, not applicable to the case of this limit being infinite (we refer,
for example, to [6, 8, @, 29, B0, 36, B7, 44, B0, 51, B3, 60] and to the references
therein). In [27, [35], the quality criteria are considered in an integral form with
an infinite upper limit. Unlike our investigation, a control law is searching in the
prescribed class of functionals. In [I0], an integral quality criterion with an infinite
upper limit is used for solving an optimal control problem, but a weight function of

an exponential type is used to preserve its convergence.
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3.3 Examples

This part uses four examples to illustrate Theorem with the Lyapunov-

Krasovskii functional being chosen in the form

V(t,z,) = ha*(t) +d t 2% (s)ds

t—1

and
h>0, d>0. (3.33)

The first example shows that the method can be applied to nonlinear equations.

Example 3.3.1. Let m = r = 1. Let the equation (3.3]) be reduced to a nonlinear

delayed equation
2'(t) = f(t,mp,u) == ax(t) + bx(t — 1) + cx®(t) + ex(t)u, (3.34)

where a, b, ¢ and e are real constants, 7 > 0 is a delay and u is a control function.

Solve the problem of minimizing I, where
w(t, zy,u) == ax®(t) + 2Bz (t)x(t — 7) + y2*(t — 1) + 6u?
and assume
a>0, ay—3>0, 6>0. (3.35)
Then, w is a positive-definite functional. The functional B, defined by , equals

B (‘/’ t7l’t,U) :d‘/g;;xt) +w (t,l’t,U)

t
:(ilt (hxz(t) +d xQ(s)ds) +w (t, 24, u)
t—1

=2hx(t)[ax(t) + br(t — 7) + cx®(t) + ex(t)u] + d[z*(t) — 2°(t — 7)]
+ az®(t) + 2Bz (t)x(t — 7) + vz (t — 7) + Su?
=2hca* (t) + (2ha +d + a)z*(t) + (v — d)z*(t — 7)

+ (2hb + 2B)x(t)z(t — 7) + 2hex®(t)u + du’.

To satisfy conditions i) and 7i7) we look for an extremum of B with respect to u.
We get
B! (V,t,z,u) = 2hex*(t) + 20u

and the derivative equals zero if

(3.36)
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Since B! (V. t,x4,u) = 2§ > 0, the value (3.36]) is a unique point of minimum. In
accordance with (3.12), it is necessary that B = 0 if the control function is defined
by (3.36]), therefore, the following must hold

h2e?
)
+ (y = d)2?(t — 7) + (2hb + 28)z(t)z(t — 7) = 0.

B (V,t, x4, up) = <2hc - ) 2 (t) + (2ha + d + a)2*(t)

This is possible if

h 2
2 — % = 0 (3.37)
2ha+d+a= 0, (3.38)
d= -, (3.39)
h= —i. (3.40)

From the above consideration, it follows that #i7) holds as well. If conditions (3.37])—

(3.40) together with (3.33)) and (3.35) are fulfilled, Theorem can be applied.
Therefore, ug defined by the formula (3.36]) is the desired optimal control function

and the equation (3.34]) takes the form

o' (t) = f(t, 2, —hex®(t)/d) := ax(t) + bx(t — 7) — ca®(t). (3.41)

The coefficient conditions (3.33)), (3.35), (3.37)—(3.40) are fulfilled, for example, for

the choice

a=-2, b=y=0=d=h=1, c=e=2, a=3, f=—-1
Then, uy = —2x(t) and equations (3.34), (3.41)) take the form
o' (t) = f(t, 2, —22°%(t)) := —2x(t) + 2(t — 7) — 22°(¢).

Remark 3.3.2. The above computations are applicable to some classes of equations

with variable coefficients. Consider, for example, the equation
2'(t) = f(t,zp,u) == (a+ 1/t)x(t) + br(t — 7) + cx®(t) + ex(t)u,

where the coefficient a is perturbed by a small function (assuming that ¢ > ¢y, and

to is sufficiently large). The problem of minimizing I, where
w(t,m,u) = (a — 2/tH2*(t) + 2Bz (t)x(t — 7) + 22 (t — 7) + du?,

is solvable with the same control function.
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Example 3.3.3. Let m = r = 1. Let the equation ({3.3]) be reduced to a nonlinear

delayed equation
o' (t) = f(t, v, u) = ax(t) +bx(t — 7) + cx(t)2*(t — 1) + ex(t — 7)u, (3.42)

where a, b, ¢ and e are real constants, 7 > 0 is a delay and wu is a control function.

Solve the problem of minimizing I, where
w(t,zp,u) = ax®(t) + 2Bx(t)z(t — 1) + 2> (t — 7) + 0u?,
and assume
a>0, ay—p3>>0, 6 >0. (3.43)
Then, w is a positive-definite functional. The functional B, defined by , equals

dV(t
B(V,t,l‘t,U) - V(d_z_ xt)

:;t (W(t) vl x2(8)d8> +w (b, w, u)

t—1

+ w (t, x4, u)

=2hx(t)[ax(t) + bx(t — 7) + cx(t)2*(t — 7) + ex(t — T)u]

+d[a*(t) — 2 (t — 7)) + ax®(t) + 282 ()x(t — 1) + v (t — 7) + ou’
=2hcx®(t)a*(t — 1) + (2ha + d + a)2*(t) + (y — d)z*(t — 7)

+ (2hb + 2B)x(t)z(t — T) + 2hex(t)z(t — T)u + Su’.

To satisfy conditions i) and 7i7) we look for an extremum of B with respect to u.
We get
B;(‘/a t,xy,u) = 2hex(t)x(t — 7) + 20u

and the derivative equals zero if

(3.44)

Since

B! (Vi t,z4,u) = 26 > 0,

(3.44) is a unique point of minimum.
In accordance with (3.12]), it is necessary that B = 0 if the control function is defined

by (3.44]), therefore, the following must hold

2,2
B (V,t,x,up) = <2hc — h;) 22(t)2*(t — 1) + (2ha + d + )23 (t)

+ (v — d)x*(t — 7) + (2hb + 28)z(t)z(t — 7) = 0.
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This is possible if

2
2% — h; _— (3.45)
2ha+d+a= 0, (3.46)
d= 7, (3.47)
h = —f. (3.48)

From the above consideration, it follows that #i7) holds as well. If conditions (3.45])—

(3.48) together with (3.33)) and (3.43) are fulfilled, Theorem can be applied.
Therefore, ug defined by formula (3.44) is the desired optimal control function and

equation (3.42) takes the form

o' (t) = f(t, z, —hex(t)x(t — 7)/6) = ax(t) + bx(t — 7) — cx(t)z?(t — 7). (3.49)

The coefficient conditions (3.33)), (3.43), (3.45)—(3.48)) are fulfilled, for example, for

the choice

= -2
b=y=d=d=h= 1,
c=e= 2,

a= 3,

= —1.

Then, uy = —2z(t)z(t — 7) and equations ([3.42), (3.49) take the form
() = f(t,x, 2z(t)x(t — 7)) = —22(t) + 2(t — 7) — 2x(t)2*(t — 7).

By the following example, which is sort of a generalization of Example [3.3.1] we
demonstrate the variability of the method if the control functions affect both the

nonlinear and linear terms.

Example 3.3.4. Let m = 1, r = 2. Let a nonlinear delayed equation of the type (3.3)
be of the form

o' (t) = f(t,z,u) = ax(t) + br(t — 1) + cx®(t) + eyv(t)us + equa, (3.50)

where a, b, ¢, e; and ey are real constants, 7 > 0 is a delay and u;, us are control

functions. We will solve the problem of minimizing I, where
w(t, oy, u) == ax?(t) + 2Bz(t)x(t — 1) + vz (t — 7) + 6u? + Spul,

and assume
a>0, ay—p32>0, 6 >0, & >0. (3.51)
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Obviously, w is positive-definite. The functional B defined by (3.11]) equals

B(‘/a t,It,U) :d‘/gf{ixt) ‘|‘W(t,l’t,U,)

:jt (ha?() +a :T P ()ds) + o t,1,0)
=2hx(t)[ax(t) + bx(t — 7) + cx®(t) + erx(t)u; + exus)
+d[z*(t) — 2*(t — 7)] + az®(t) + 2Bz (t)x(t — 7) + 2P (t — 7)
+ 6113 + dous
=2hcx(t) + (2ha + d + a)2*(t) + (v — d)z*(t — 7)
+ (2hb + 2B)x(t)z(t — T) + 2hey 2 (t)uy + 2heax(t)ug
+ 6113 + dous.

To satisfy conditions i) and 7ii) we look for an extremum of B with respect to uy,
uy. We get

BllLl (Vva t,xy, u) = 2h611}2(t) + 261’&1,
B, (V.t,z¢,u) = 2heyx(t) + 205u,.

The partial derivatives equal zero if

heyz*(t
U = U = — 61; ®) , (3.52)
1
h t
Ug = U9 — — 6251'( ) . (353)
2

Since By, (V,t,z¢,u) = 261 > 0, B, (V.t,2,,u) = 20, > 0, By, (V,t,24,u) =
0, the values , determine a unique point of minimum. In accordance
with , it is necessary that B = 0 if control functions are defined by ,
, so the following must hold

2,2

h%e?\ h%e3\
B (V,t,x,up) = 2hc—5— z*(t) + 2ha+d—|—oz—5— x*(t)
1 2

+ (v — d)z*(t — 7) + (2hb + 2B8)z(t)z(t — 7) = 0.

This is possible if

h2
c—éiz 0, (3.54)
1
h22
%ha+d+ o — ;2: 0, (3.55)
2
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d= -+, (3.56)

h=—"C. (3.57)

From the above consideration, it follows that i) holds as well. If (3.54)—(3.57)

and (3.33), (3.51) are also fulfilled, then Theorem holds. Therefore, wu;,
us defined by formulas (3.52), (3.53) are optimal control functions and the

equation (3.50)) takes the form

2 (t) = ft, 2y, ur, ug) := (a — ) z(t) + bt — 1) — cx’(t). (3.58)

The coefficient conditions (3.33)), (3.51)), (3.54)—(3.57) are fulfilled, for example, for
the choice

a=-2, b=y=6=0=e=d=h=1, c=e,=2, a=4, f=—-1

Then, vy, = —22%(t), uy = —x(t) and equations (3.50)), (3.58)) take the form
7' (t) = f(t, 2, —222(t), —(t)) := =3z(t) + z(t — 7) — 22°(t).

Remark 3.3.5. The coefficient (a — he3/dy) in (3.58)) is always negative. This is
obvious for a < 0. Let a > 0. Then,

hey _ 1 (ha— hz%) WEB L _po—d—a) <0
. .

S h
In the last example, we show that the control function can depend on the solution

with delayed argument and this dependence is caused by the form of w.

Example 3.3.6. Let m = r = 1. Consider a delayed equation (3.3]) of the form
2'(t) = f(t, 2, u) == ax(t) + bx(t — 7) + cu, (3.59)

where a, b # 0 and c are real constants, 7 > 0 is a delay and u is a control function.
Let w in I be defined as

Wtz u) = ax®(t) + 28x(t)z(t — 1) +y2*(t — 7)
+ 20z (t)u + 2ex(t — 7)u + Eu*  (3.60)
where «, 5, v, 0, € # 0 and £ are real constants. Assume

a [ 0
>0, |6 v ¢ >0. (3.61)
0 e &

a >0,

b
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Then, w is positive-definite. The functional B defined by ({3.11]) equals

dV(t
B (‘/7 ta xtau) :‘/<d£$t) +w (t7$t7u)

d t
=53 (th(t) +d xQ(s)ds> +w (t, 24, u)
t—1

=2hx(t)[az(t) + bx(t — 7) + cu(t)] + d[z*(t) — 2*(t — 7)]
+ az®(t) + 2Bx(t)x(t — 7) + y2*(t — 7) + 20z (t)u
+ 2ex(t — 7)u + Eu®
=(2ha + d + a)z*(t) + (2hb + 28)z(t)x(t — 7) + (7 — d)2*(t — 7)
+ (2hc + 20)x(t)u + 2ex(t — T)u + Eu’.
To satisfy conditions ii) and iii) we look for an extremum of B with respect to u.

We get
B! (V,t,2,u) = (2hc + 20)x(t) + 2ex(t — 7) + 2&u

and the derivative equals zero if

u=up= —;((hc +0)x(t) +ex(t —7)). (3.62)

Since Bl (V,t,x;,u) = 2 > 0, the value (3.62)) is a unique point of minimum (the
positivity of £ follows from (3.61))). In accordance with (3.12)), the value of B for the
control function ug defined by (3.62)) equals zero. Since

(2he + 26)2(F)ug = — 2(211@ +26)2(t)(he + 8)x(t) + ex(t — 7))

2 22204 — % c r(t)x(t — 1
= = glhe+87%2%(t) - (ke + a(a(t - 7),
2t — T = — 25%@ ~ ) ((he + 8)a(t) + ex(t — 7))
2e 2¢” 204 _ 1
— z(hc + &) x(t)z(t —7) — T (t—7),

2
2 —¢ (2(@@ + 8)a(t) + ealt — ﬂ))

:é(hc 8%t + 2§€(hc +8)alt)a(t =)+ Ta(t =)
the following must hold

B (V,t,2y, up) :<2ha+d+a—<’w£”>2> 2(1) + (7_d_2> 2t 1)

49



2e(he +6)

+ <2hb+26— :

) z(t)x(t—7)=0

and, therefore,

So the coefficient d could be found from the second equation as

d=n— 2 (3.63)

The remaining two equations can be transformed as follows

E(hb + B)?

2ha +d+ o — 5
€

=0, (3.64)

he + 6)?

(hb+ B)* = al & (3.65)

Rewrite the equation (3.64) as
2hae® + de? + ae® — h2b*€ — 2hbBE — % = 0,

that is,
R2V2E + 2h(DBE — ag?) + B — de® — ae® = 0.

The last equation is solvable with respect to h if D > 0, where

D = 4(bB¢ — ag®)? — 4b*¢(B%€ — de® — aeg?)
= 4b?B2E? — SabBEe® + da’e — AVPE? B2 4 4b*Ede? + 4b*Eacs?
BT g 200 _gapBee? + abPeac® + AbiEne? — Abe!
=4e(a® — b*) + 4b*¢* (o + 7) — 8abpBée? > 0.

Consequently, (3.64]) is solvable with respect to h if the inequality
e2(a* — b*) + b*E(a + ) > 2abB¢ (3.66)

holds. Then we could find the coefficient h from (3.64)) and, subsequently, the
coefficient ¢ from ((3.65)).
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If conditions (3.66), (3.33) and (3.61) are fulfilled, then all assumptions of
Theorem are fulfilled. Therefore, ug defined by the formula (3.62)) is the desired

optimal control function with the equation (3.59)) taking the form

2(t) = f(t, 20, u0) = (a . g(hc + 5)) (t) + (b - Cg) ot — 7). (3.67)

Let m=r=1and a =2, b= —2, c = —4, that is, let the system ({3.3)) be reduced

to the scalar equation
' (t) = f(t,zp,u) :=22(t) — 2x(t — 7) — 4u, (3.68)
where u is a control function. Set

e=h=d=1 ¢=2 a=3, B=6=0, v=3/2

Conditions ([3.33)), (3.61]), (3.63)—(3.65|) for the coefficients are fulfilled and, by (3.62)),

uyg = 2z(t) — 0.5z(t — 7).
Since b — ce/€ = 0, the equation ([3.67)) does not contain a delay and

2 (t) = f(t, 2y, 22(t) — 0.52(t — 7)) := —6x(). (3.69)

Remark 3.3.7. The qualitative behaviour of the solutions of equation (|3.68)

without a control function, that is, the equation
'(t) =2(x(t) — x(t — 1)), (3.70)

is well-known and can be described using the results published, for example, in [21]
and in a recent paper [20]. Assuming a solution of in the exponential form
x = exp(At) with a suitable constant A, we arrive at the equation A = 2—2exp(—Ar)
which has a unique real root A = A\* > 0. For t — oo, every solution z = x(t) of

has the following asymptotic representation
x(t) = K exp(A\'t) + (1),

where K is a constant and 6(¢) is a bounded solution of (3.70)) (K and d(t) depend
on x). Note that the qualitative properties of the solutions of both equations - the
controlled equation (3.69)) and the equation without control (3.70)), are diametrically
opposite.
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3.4 Application to linear equations and systems

In this part, we apply Theorem to the linear equations and systems. Some

auxiliary computations here are done by “WolframAlpha” software.

3.4.1 Equations with a single delay

Consider linear scalar equations with constant coefficients and a single delay
Z'(t) = ax(t) + bx(t — 7) + cu, (3.71)

where a, b # 0, ¢ are real constants, 7 > 0 is a delay and u is a control function.

Together with the equation (3.71)), we will consider a quality criterion (3.6 with
w(t, z,u) = ax?(t) + 2B2()x(t — 1) + y2*(t — 1) + ou?, (3.72)
i.e., (3.6) being a quadratic criterion

I= / (axQ(t) +2Bz(t)x(t — 7) + vz (t — 7) + 5u2>dt, (3.73)
to

with

a>0, ay—p2>0, 6>0. (3.74)
The equation (3.71)) is formally the same as the equation (3.59)). But the relevant
quality criteria are different. Since £ # 0, the quality criterion (3.60]) in Example
does not reduce to the quality criterion (3.72)). In addition, in the latter case
the coefficients of the Lyapunov-Krasovskii functional can be easily determined by

simple formulas.

Theorem 3.4.1. If, for the optimal control problem (3.71)), (3.73), a Lyapunov-
Krasovskii functional is used in the form

¢
V(t,x,) = ha*(t) +d z?(s)ds, h >0, d >0,

t—T1
with h = —3/b (Bb<0), d =7,
5(2ha + d + a) — h*¢* = 0, (3.75)

then the optimal stabilization control function ug equals

he
Uy = —Fa:(t). (3.76)
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Proof. We will employ Theorem [3.2.1, In accordance with the condition i) of
Theorem we analyze the non-negativity of the expression B given by (3.11)),

ie.,

dV(t
B(V7t7xt7u) - VEh; xt)

:jt <hx2(t) v w2(s)d8> +w(t,z,u)

t—1

+ w (L, x4, u)

=2hx(t)[ax(t) + bx(t — 7) + cu] + d[z*(t) — 2*(t — 7)]
+ ar?(t) + 2Bz(t)x(t — 1) + y2*(t — 1) + ou.

Simplifying the last expression, we get

B (V,t,z,u) =(2ha +d + a)x*(t) + (y — d)2*(t — 7)
+ (2hb + 2B)x(t)x(t — 7) + 2hex(t)u + du’.

For B to be non-negative, for any function u, the next inequalities should hold

2ha +d + a >0, (3.77)
(2ha +d + a)(y — d) — (hb + B)* >0, (3.78)
§(2ha+d+ a)(y — d) — h*c*(y — d) — §(hb + B)* >0. (3.79)

For u = wug, by ii), we have

B (V,t, x4, u0) =(2ha + d + a)z*(t) + (v — d)z*(t — 7)
+ (2hb + 2B)x(t)z(t — ) + 2hex(t)ug + duf = 0. (3.80)

Looking for an extremum of (3.80]) with respect to ugy, we get
By, (V,t, 24, up) = 2hcx(t) 4+ 20uy = 0,

ie.,
h
Uy = ——Cx(t),

J

which is the minimum of the function B because

By o (Vit, @y, ug) = 28 > 0.
For (3.80]) to hold, i.e.,
h
B (v,t,xt, —;w(t)>

= <2ha +d+a— h2502> 2 (t) + (v — d)2*(t — 7) + (2hb + 2B)z(t)z(t — 7) =
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we obtain

§(2ha +d + a) — h*c* = 0,

d =,
s
h=-".
b
So the left-hand side of (3.77]) takes the form
h2 2
2ha+d+a=—— >0,

)
and the inequalities (3.78])-(3.79) are true because their left-hand sides are equal to

Zero.

Therefore,
he t)
Uy = ——1x
T
is the optimal stabilization control function. 0

Remark 3.4.2. The equation (3.71) with u = ug given by (3.76) takes the form
h 2
2 (t) = (a - g) x(t) + bx(t — 7).
Example 3.4.3. Consider the equation (3.71) with a =1, b= —1, ¢ = /6, i.e.,

2'(t) = x(t) — x(t — 1) + V6u (3.81)

with the quadratic quality criterion (3.73) witha=2>0,8=1,v=2,0=1> 0,

toiz O,ii&,
I= /OOO (2:52(15) +2x(t)x(t — 7) + 22°(t — 7) + u2>dt.

Inequalities (3.74) are true (here ay — 3?2 =3 >0), h =1, d = 2 and (3.75)) holds.
By the formula (3.76]), the optimal stabilization control function

uy = —};Cx(t) = —V6x(t)

exists. The equation (3.81]) with u = g takes the form

2'(t) = =bx(t) — x(t — 7).
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3.4.2 Equations with multiple delays

Consider linear scalar equations with constant coefficients and delays
—|—be )+ cu, t>0, (3.82)

where a, b; and ¢ are real constants, t = 1,....,n, 71 < T, < --- < 7, = T are delays
and wu is a control function.

Together with the equation (3.82)), we will consider a quality criterion (3.6 with
w(t, zy,u Zam t—;) —i-QZﬁZ x(t — 1) + yu?,

where 75 = 0, i.e., (3.6) being a quadratic criterion

/ <Za$ t—m) +2ZBZ t—ﬂ)+7u>dt, (3.83)

where g, a;, 5; (1 =1,...,n) and v > 0 are constants and the matrix
ag B B2 .. P
61 (0%} 0 e 0
/82 0 Qo ... 0 (384)
G, 0 0 ... a,

is positive-definite.

Theorem 3.4.4. Let

If for the optimal control problem (3.82)), (3.83) a Lyapunov-Krasovskii functional

is used in the form

V(t,z) = ha*( +Zd / 2*(s)ds, h >0, d; > 0,

t—T7;

with
and if
v <2ha +> d; + a0> — h*c® =0, (3.87)
i=1
then the optimal stabilization control function uy equals
h
Uy = — < a(t). (3.88)
Y
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Proof. We will employ Theorem [3.2.1} In accordance with the conditions i), ii7)
of Theorem we analyze the expression B given by (3.11)), i.e.,

dV(t, It)
a

(;1 ( +Zd /t ) 2(5)ds> +w (t, x, u)
=2hx(t) [a:)j(t) + Z bix(t — ;) + cu] + Zn: d; (xQ(t) — (- 7‘1))

=1 i=1

BV t,zy,u) = w (t, x4, u)

+aa®(t) + Y aa®(t — ) + 2a(t z@ (t=7) + e

Simplifying the last expression, we get

n

B(V,t,x,u) = <2ha + i d; + Oé()) 3 (t) + Z(ozi —d;)2*(t — 7)
+ 2z(t) Zn:(hbi + B)x(t — 73) + 2hex(t)u + yu®. (3.89)

i=1

Looking for an extremum of (3.89)), we get
B! (V,t,zy,u) = 2hcx(t) + 2yu = 0,

ie.,
h
w=—"Sat), (3.90)
v

which is the minimum of the function B because
BZU(M taxhu) = 27 > 0.

For B(V,t,x;,u) = 0 to hold, use (3.89)

B <‘/7 t? Ty, _}:SC‘I({;))

<2ha + Xn: di + g — hff) 22 (t) + Xn:(ai —d;)2*(t — 7)
i=1 i=1
+ 22(t )Zn:(hb + Bi)a(t —7;) =0
=1
we obtain conditions
v <2ha + Zn: d; + a0> — h** =0, (3.91)
=1
di=a;, i=1,....n (3.92)
h_—fj, i=1....n. (3.93)
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Since (B.85)-(3:87) hold, so do (3:91)(B-95).
For the non-negativity of B, by i), and using (3.92))-(3.93)) we obtain:

B (V,t,xy,u) = <2ha +> d;i+ a0> 22 (t) + 2hex(t)u + yu® > 0.

i=1
So we need .
2ha + ZdZ + ap > 0,

i=1
which, by (3.91)), takes the form

n h202

2ha—|—2di+o¢0: — > 0.

i=1 g

We conclude that (3.90]) gives an optimal stabilization control function, that is,
hc

Uy = —;w(t).

0
Remark 3.4.5. The equation (3.82) with u = ug given by (3.88) takes the form

f@%:G—h&>ﬂﬂ+§wﬂ@—ﬁ)

v i=1

Example 3.4.6. Let n = 2. Consider the equation (3.82) with a = -3, by = —1,
by=—1,c=1, ic.,

2(t)=-3z(t)—z(t—71) —z(t—m)+u (3.94)
with the quadratic quality criterion (3.83)) with ag =3, 01 =ax =2, 51 = o= =
1 and tg =0, i.e.,
I = / (2952(15) +22(t)x(t — 1) + 227 (t — 7) + 22%(t — 6) + 22(t)x(t — 6) + u2> dt,

0

where the matrix (3.84)), that is

2 1
1 2
1 01

is positive-definite. Since —f; /by = —f2/bs = h =1 > 0 and

o =

v (2ha + ap + g + ag) — h*t = —6+T7—-1=0,
all the assumptions of Theorem are fulfilled. By the formula (3.88)), the optimal

stabilization control function

he
uy = —7m(t) = —xz(t)

exists and the equation (3.94) with u = u, takes the form

() = —dx(t) —x(t — 1) — 2(t — 7).
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3.4.3 Systems with a single delay and a scalar control

function

Consider linear systems with constant coefficients and a single constant delay
z'(t) = Apx(t) + Arz(t — 7) + bu, (3.95)

where Ay, A; are m X m constant matrices, b € R™, v € R, and a quality

criterion ({3.6)) with

w(t, zp,u) = 27 (1) Cra(t) + 27 (1) Oz (t — 7)
+ 2t (t — 7)Corz(t) + 27 (t — 7)Coz(t — 7) + du?,

where m x m matrices C11, Cy and an 2m X 2m matrix

Cy C
c=|" " (3.96)
C'21 022

are positive-definite and symmetric, Cy; = CJ, and d > 0, i.e., (3.6) is a quadratic

criterion

I= /OO (2" () Cnx(t) + 2" () Crax(t — 7)

to

+al (t — 7)Coa(t) + 27 (t — 7)Copz(t — 7) + du?) dt. (3.97)

We will employ a Lyapunov-Krasovskii functional
t
V(t,x) = a7 (t)Hao(t) + 27 (5)Gx(s)ds, (3.98)

t—1

where H and G are m x m, constant, positive-definite and symmetric matrices.

Theorem 3.4.7. Assume that there exists a positive-definite symmetric m X m

matriz H satisfying a matriz equation
1
AVH + HAg + Oy + Cog — gbeTH = Opxm- (3.99)
If, moreover,
HAl + 012 - @mxma (3100)
the optimal stabilization control function u = ugy of the problem (3.95)), (3.97)) exists

and

1
Uy = —ngHx(t). (3.101)
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Proof. We will use Theorem [3.2.1, In accordance with the conditions ii), i) of
Theorem [3.2.1}, we analyse the expression B given by (3.11)), i.e.,

B (‘/a t) T, U) :d‘/gft’xt)

:;t (:vT(t)H:E(t) + ttT :cT(s)Gx(s)ds> +w(t 2, u)

=[Apz(t) + Ay (t — 7) + bu)" Ha(2)

+ 2T () H[Agx(t) + Avx(t — 1) + bu] + 27 (1)Gx(t)

— 2T (t = 7)Gr(t —7) + 27 () Cprx(t) + 27 (t)Croz(t — 7)
Tt — 1) Opa(t) + 27 (t — 7)Coo(t — 7) + du®.

+ w (L, 24, u)

+x
Simplifying the last expression, we get

B(V,t,xy,u) =2" (t)[ALH + HAg + G + Ciyz(t) + 27 (t — 7)[A] H + Cyy)z(2)
+ 2T (O)[HA; + Cro)o(t — 1) + 27 (t — 7)[Coa — Glw(t — 7)
+ 227 (t) Hbu + du?®. (3.102)

Looking for an extremum of (3.102]) with regard to u, we get
B! (V,t,z,u) = 227 (t) Hb + 2du,

ie.,
1 1
U= —ng(t)Hb = —ngHx(t), (3.103)

which is the minimum of the function B because
Bl (V. t,xp,u) = 2d > 0.

For (3.12)) to hold, i.e., for
B(V,t,2,up) =27 (1)[ATH + HAy + G + Cpi]z(t)
+ 27 (t — 7)[ATH + Cy]a(t) + 2 ()[HA, + Ciox(t — 7)
+ 2Tt —7)[Cas — Gt — 7) — Clia:T(t)beTH:c(t)
1
=27 (t) |ATH + HAy+ G + Cyy — gbeTH x(t)
+ 2t — 7)[ATH + Co)z(t) + 2" (1) [HA, + Cra)z(t — 7)
+ LCT(t — T)[CQQ — G]LC(t — T) =0

we obtain

1
AVH + HAy+ G+ Cyy — gbeTH =0, xm;
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HA; + Cia =0 5m,
Cy =G.

If the above conditions are fulfilled, the control function (3.103)) defines an optimal
stabilization control function, the system ([3.95)) is asymptotically stable, and the
quality criterion (3.97)) takes a minimum value. O

Remark 3.4.8. The equation (3.95) with u = ug given by ([3.101)) takes the form
1
() = (AO _ dbbTH> 2() + Ava(t — 7).

Example 3.4.9. Consider the system (3.95) with m =r = 2 and
-2 1 -1 -0.1 1

AO = ) Al = ) b= )
1 =2 —-0.5 -1 1

—2x1(t) + 22(t) —  x(t—71)—0.122(t — 7) + u,
zo(t) = m(t) —222(t) = 0521 (t —7) —  z(t—7)+u (3.104)

that is

8
=~
—~

~+
~—

I

with the quadratic quality criterion (13.97)) with {5 = 0 and

3 0 C1 C2 C1 C3 3 0
O = . Cio = . Gy = | Gy = Cd=1,

(G G )
0 zo(1) 0 3 t t cs cq) \z2(t —7)

z1(t — 1) ! c1 r1(t 1 ! 3 0\ [x(t—1) 2
e I ) R i e S

—/ 322(t) + 3x3(t) + 2121 (V)21 (t — T1) + 2301 (t — 1) w9 (t)

+2¢011 () o (t — 71) + 2c4ma ()0 (t — 1) + 323(t — 71) + 303(t —71) +u ) dt

By the formula (3.101)) we obtain the optimal stabilization control function in the

form

T
1 1 hi h
up = —=bT Ha(t) = — CT) = = B — (et ). (3.105)
d 1 hy hs) \x2
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We need to find a suitable matrix H such that (3.99)) and (3.100)) will hold.

1
A0TH+HA0+CH+022—EbeTH
T
-2 1 hy hy hi hy\ (-2 1 30 30
= + + +
1 —2) \hy hs hy hy) \ 1 =2 03 0 3
T
_ h,l h2 1 1 hl h2
hy hs) \1) \1) \hy hs

- —4hy + 2hy + 6 — (hy + hg)? hy — 4hy + hs — (hy + ha)(ho + h3)
hy — 4ho + hy — (hy + ha)(he + h3) 2hy — 4hg + 6 — (hy + h3)?

= @2><2~
It means that
—4hy + 2hy + 6 — (hy + hy)? =0, (3.106)
hy — 4hy + hs — (hy + ha)(hg + h3) =0, (3.107)
2hy — 4hy + 6 — (hy + h3)* = 0. (3.108)

To solve the above system we can, for example, add the second equation multiplied
by 2 to the sum of the first and the third equations ((3.106)+2(3.107)+(3.108)). We

obtain

—2hy — 4hy — 2h3 + 12 — [(hy + ha) + (hy + hs))?
= —2[hy + 2hy + hg] + 12 — [hy + 2hy + hs)* = 0.
If put
hy +2hy + hy = K, (3.109)
then we have
K*+2K —-12=0

and K = —1 4+ +/13.
After subtracting the first equation of the system from the third one, i.e., ((3.108)—
(3.106))), we obtain

4hy — 4hs + (hy + hy)? — (hg + hs3)?

and, therefore,

Using (3.110) to (3.109)), we find

K
hathy = - (3.111)
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For the second equation of the system, i.e., for (3.107)), we obtain

K2
2hy — 4hy — (hy + ho)> =0 = hy — 2hy = = (3.112)
From (3.111)) and (3.112)) we find that
K K?
hy = hs = 3 + BYR
K K?
hy=— — —.
T 6 24
For K = —1 — /13, the matrix H is not positive-definite, so
1++v13 V13-3
H— 4 4
V13 -3 1++13
4 4

The condition (3.100)) should hold as well so that

1.22708 0.266527
012:C£:—HA1: )
0.727082 1.16653

which is sufficient for (3.96]) to be a positive-definite matrix. By (3.105|) the optimal
stabilization control function will be

1-13
2
with the system ([3.104) taking the form (the coefficients of non-delayed terms are

computed approximately)

g (z1(t) + 22(1)),

2y (t) = —3.321(t) — 0.322(t) —  x1(t —7) — 0.129(t — 7),
xo(t) = — 0.321(t) — 3.3xa(t) — 0521 (t — 7) —  xa(t — 7).

3.4.4 Systems with a single delay and a control vector-

function

Consider linear systems with constant coefficients and a single constant delay
2'(t) = Aox(t) + Ajx(t — 7) + Pu, (3.113)

where Ay, A; are m X m constant matrices, P € R™*", u € R", and a quality
criterion (|3.6))

1= [ (@ (6)Cua(t) + " (£)Croa(t — 7)

to
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+ 2T (t — 7)Corz(t) + 27 (t — 7)Coox(t — 7) + u’ Du)dt, (3.114)

where m x m matrices C1y, Cy and an 2m x 2m matrix (3.96)), i.e.,

Cp C
o= [ G
Co1 Co
are positive-definite and symmetric, Cy; = C], and D is a diagonal matrix, D =

diag{dj}, dj >0,5=1,...,7.
We will use a Lyapunov-Krasovskii functional (3.98]), that is

Vit 2) = T He(t) + [ 27 (s)Ga(s)ds,

t—1

where H and G are m x m constant, positive-definite and symmetric matrices.

Theorem 3.4.10. Assume that there exists a positive-definite symmetric matriz H

satisfying the matriz equation
ATH + HAy +Cy + Coy — HPD'PTH = 6,1 . (3.115)

If, moreover,

HA; + Cis = O, (3.116)

the optimal stabilization control function uw = wuy of the problem (3.113)), (3.114)

exists and
ug = —D'PTHa(t). (3.117)

Proof. By the conditions i), i) of Theorem we analyse the expression B
given by , ie.,

dV(t,z
B t,) =2
d
- (xT(t)Hx(t) +

=[Apx(t) + Ayx(t — 1) + Pu]" Hx(t)
+ 2T () H[Agx(t) + Ayz(t — 7) 4+ Pu(t)] + 27 (£)Gx(t)
— 2Tt —7)Ga(t — 1) + 27 (#)Cnyz(t) + 27 () Crow(t — 7)
+ 2T (t — 7)Cor2(t) + 27 (t — 7)Copx(t — 7) + u’ Du.

+ w (t, ¢, u)

t :UT(S)Gx(S)dS) + w (t, T4, u)

t—7

Simplifying the last expression, we get

B(V,t,x;,u) =2 ()[ALH + HAg + G + Cpy]a(t) + 27 (t — 7)[AT H + Oy (t)
+ 2T () [HA; + Cppla(t — 7) + 27 (t — 7)[Cop — Gla(t — 7)
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+ 227 (t)H Pu + u” Du. (3.118)
Looking for an extremum of (3.118]), with respect to u, we get
B! (V,t, v, u) = 2PTHx(t) + 2Du = 0,

i.e.,
uw=—D'PTHzx(t), (3.119)

which is the minimum of the function B because the matrix B, = 2D > 0.

For (3.12)) to hold, i.e., for

B(V,t,2,up) =27 (1)[ATH + HAy+ G + C1y — HPD ' PT H)x(t)
+ 2t — 7)[ATH + Co)z(t) + 27 (1) [HA, + Cra)z(t — 7)
+.’]7T(t—7')[022 — G]Q?(t —T) =0

it is necessary that

AYH + HAp+ G+ Cyy — HPD'PTH = 0,5,
HA; 4 Ci2 = Orsim;
022 = G

If the above conditions are fulfilled, the control function (3.119)) is the desired optimal
stabilization control function (3.117)), the system ([3.113]) is asymptotically stable and
the quality criterion (3.114]) takes a minimum value. U

Remark 3.4.11. The equation (3.113]) with u = ug given by (3.117)) takes the form
2(t) = (Ao — PD7'PTH) x(t) + Aya(t — 7).

Example 3.4.12. Consider the system (3.113)) with the quality criterion ((3.114]).
Let tg = 0 and the matrices have the form

-2 1 -1 —-0.1 1
AO = ) Al = ) P = : ;
1 =2 —-0.5 -1 e 1
where ¢ is an arbitrary constant, ¢ # £1, i.e.,

() ==2x(t) + xo(t) — 1 (t—7)—0.1xo(t — 7) + wy + cug,
2o(t) = x1(t) —2wa(t) — 0521 (t —7) —  wo(t —7) +eus + up (3.120)
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()( )6

- / (33(t) + 33(t) + 2121 ()1 (£ — 71) + 2esa (¢ — 71)a(t)

+2c0m1 ()22t — 71) + 2c4ma ()2 (t — 71) + 323(t — 1) + 35(t — 71) +ud + ug) dt.

By (3.117) the optimal control function will be in the form
1o\ (1 e (hoh t
wo = —D'PTHz(t) = — © v o) fo(B))
0 1 e 1 hQ h3 QTQ(t)

O = —(hy + ha)zy — (ho + h3)y,
uy = —(hy + ho)xy — (hy + hs)za. (3.121)

that is,

We need to find a suitable matrix H such that (3.115)), (3.116)) will hold. In our case

(3.115) equals
AYH + HAg+ Cyy + Coy — HPD'PTH

T
-2 1 hi ho hi hy\ [—2 1 3 0 3 0
= - - -
1 =2 hy hs ha hs 1 =2 0 3 0 3
-1 T
hl hg 1 ¢ 1 0 1 ¢ hl h2
- :@2><2
hQ hg e 1 01 e 1 h2 h3

which means that

—4hy + 2hy + 6 — (hy + cho)® — (ehy + hy)? = 0, (3.122)
hl — 4h2 + hg — (hl + &Thg)(hQ + €h3) — (€h1 + h2)(€h2 + hg) = 0, (3123)
2hg — 4hs + 6 — (hy + eh3)? — (ehy + h3)® = 0. (3.124)

To solve the above system we can, for example, subtract the first equation from the

third one, i.e., ((3.124)—(3.122))). We obtain

4h1 — 4h3 + (hl + €h2)2 — (hg + €h3>2 + (8h1 -+ h2)2 — (6h2 -+ h3)2
:4(h1 — hg) + (hl + €h2 + hg + €h3)(h1 + €h2 — hg — Ehg)
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+ (ehy + ho + ehg + h3)(ehy + hy — chy — h3)
=4(hy — h3) + ha(1 4+ ¢€)(h1 — chs +chy — h3)

+ (h1 + €hg)(hy + chy — hy — €h3) + (ehy + h3)(ehy + hy — chy — hs)
—A4(hy — hy) + ha(1 + )%(hy — hs)
+h3(1 4 %) + hihy(2e — 1 — &%) + hohs(e? — 26 + 1) + h3(—? — 1)
(7 = ha) (4 + ha(1 + %)) + (L +€%)(hT — h3) — ha(e — 1)*(h1 — hs)
(hy — h3)(4 + hao(1 +€%) + (hy + h3)(1 4+ &) — hy(e — 1)?)
(hy — h3)(4 + 2hoe + (hy + h3)(1 4+ %)) = 0.

This implies
hy = h3 (3.125)

since
4 + 2hoe + (hl -+ hg)(l -+ 82) >0

(this inequality holds since the matrix H is positive-definite and hy > |ha).
We add the second equation multiplied by 2 to the sum of the first and the third
equations ((3.122)+2(3.123))+(3.124))) to obtain

—2h1 — 4h2 — 2h3 +12 — (hl + Ehg + hg + €h3)2 — (€h1 + hQ + €h2 + h3)2 =0

and, using (3.125)), we get

—4(hy + ha) +12 — 2(hy + hg)*(1 +)* = 0.

If we put
hi+hy =K >0, (3.126)
then we have
K*(1+¢e)?+2K—-6=0 (3.127)
and
—14/1+6(1+¢)? 3198
B (14 ¢)2 (3-128)
Using ((3.125)) and rewriting (3.126)), i.e.,
hi = K — hg =K > h,z, (3129)
for (3.123)) we obtain

hl — 2h2 — (hl + €h2)(€h1 + hg)
=K — 3h2 — (K — hg +€h2)(€K — €h2 + hg) =0.
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After simplification, we obtain the following equation

hi(e —1)* + ho(—K(e = 1)* = 3) + K — K*¢ = 0,

where
- K(e—1)2+3%,/(K(e —1)2+3)2 — 4(c — 1)2(K — K%)
2T 2e —1)2
and
(K(e—1)>+3)> —4(e — 1)*(K — K?%)
= K*(e—1)"+6K(s—1)* +9 —4(s — 1)*(K — K%)
= K% (e —1)*((e = 1)* +4e) +2K(e —1)* +9
= KQ( (e +1)2+2K(e—1)>+9
PEED (o 1)2(<2K +6) + 2K (e — 1)> + 9 = 6(c — 1) +9.
So

C K(e—1)243+,/6(c—1)2+ g (5,150

By —
2 2e —1)2
For, say, e = 0.5, we obtain approximate values from (3.128)), (3.130)), (3.129)), (3.125))

K =1.24795, hy =0.143234, h; = hy = 1.104716

(another solution for hy = 13.1047 does not satisfy (3.129))). Moreover, (3.116]) should
hold as well so that

117633 0.253706
Cip=CL = HAl_( )

0.695592 1.11904

which is sufficient for (3.96)) to be a positive-definite matrix.
By (3.121)), the optimal stabilization control function will be (the coefficients are

computed approximately)
ul = —1.176333z1(t) — 0.695592x5(t),

uy = —0.695592z1 (t) — 1.176333x5(t),
with the system (3.120]) taking the form

2L (t) = — 3.52413 21(t) — 0.28375925() — @1 (t — 7) — 0.1za(t — 1),
xh(t) = — 0.283759x1 () — 3.52413 29(t) — 0.5z1(t — 7) —  22(t — 7).
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3.4.5 Systems with multiple delays and a scalar control

function

In this part, we consider systems of linear differential equations with delays

n

(1) = At —7) +cu, t>t, (3.131)
i=0
where A;, i = 0,...,n are m X m real matrices, c E R, 0 =19 < 74 < -+ < Ty,

x:[tg— 71,00) = R™ tg € R and u € R is a control function. Set 7 := 7,. A
minimization problem ({3.6) with
n

w(t,zg,u) =Y o' (t —1)Chz(t —7;) + > _ 2" (t)Coiz(t — 1)
1=0

=1
+ Zx (t — 73)Ciox(t) + du® (3.132)

will be solved for the system (3.131)), where constant symmetric m x m matrices Cj;

and an auxiliary matrix

Coo Cor ... Con
Cio Cii ... Cin
c=|"" o T (3.133)

(with Cj; = Cj; = Opxm, @ > j > 1,4,j = 1,...,n) are positive-definite, Cp; and
Cio, Coi = CL are m x m constant matrices, d > 0. We will employ a Lyapunov-

Krasovskii functional
noot
V(t,x) = 2T () Ha(t) + Y / 2T ()G (s)ds, (3.134)
i=17t"Ti
where m x m matrices H and G;, « = 1,...,n are constant, positive-definite and
symmetric.

Theorem 3.4.13. Assume that the matriz C' is positive-definite and there exists a

positive-definite symmetric matriz H satisfying the matrix equation

” 1
AFH+HA + > Cy — chcTH = Opxm- (3.135)
=0
If, moreover,
ATH + Cio = O, i =1,...,n (3.136)

then the optimal stabilization control function of the problem (3.131)), (3.132)) exists

and equals .
Uy = —gcTHa:(t). (3.137)
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Proof. By Theorem we will analyze the expression B given by ([3.11]). We get

dV(t, $t) i

B(V>t7 T, u) = dt

w(t, x4, u)

n

= [zn: Aix(t — 1) + cu] Hax(t) + 2" (t)H [Z Aix(t — 1) + cu

i=0 =0

n

+3 [T (O)Gix(t) — 2" (t — 7)Gix(t — )| + znj a7 (t — 1) Cr(t — 77)

=1 =0

+ Z " (1) Coix(t — 1) + D2’ (t — 1) Ciox(t) + du’

=1

= [on(t) + i Aix(t — 1) + cu] Hax(t)+ 27 (t)H [on(t) + i Aix(t — 1) + cu

i=1 i=1

n

+3° [aT () Gia(t) — 2" (t — 7)Gia(t — 73)| + 2T (1) Cop(t)

i=1
+ > 2t — 1) Cux(t — 1) + D2t () Cox(t — 1) + Y a” (t — 1) Crox(t) + du’.
i=1 i=1 i=1
A simplification of B leads to
B (‘/, t, T, u) = xT(t) lAgH + HA() + Z Gl + C()o] fI?(t)

i=1

+Z[ (t — )[AT H + Cila(t) + 2™ (8)[HA; + Coila(t — 71)]

+ Z 2T (t — 1)[Cyi — Gila(t — 1) + 227 (1) Heu + du®. (3.138)

=1

Looking for an extremum of ([3.138]), with respect to u, we get
B (V,t,zy,u) = 2¢" Ha(t) 4 2du = 0,

that is,

1
u = —gcTH$(t), (3.139)

which is the minimum of the function B because B)/, = 2d > 0. Since

227 (t)Heu + du®

2 1 1
=— 8xT(t)HccTH:v(t) + ng(t)HccTHa:(t) = —8xT(t)HccTHx(t),

for (3.12)) to hold, that is, for

B (V, t, xy, —ClicTHx(t)> =0
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we need

" 1
i=1

+Z[ (t = m)[ATH + Ciola(t) + ™ (8)[HA + Colo(t — )]
+ Z 2" (t = 7)[Cii = Gila(t — 1) = 0. (3.140)

The identity (3.140]) will hold if

° 1
ATH+ HAg+ Coo+ > _Gi — chcTH = O
=1
A?H—i_ci[):@mxma i=1...,n

C”:G“ izl,...,n

that is, if the assumptions (3.135)), (3.136]) hold and in (3.134) G; = Cy;, 1 =1,...,n.
Thus, for the control function defined by (3.139)), that is, for ug defined by (3.137)

the system (3.131]) is asymptotically stable and the quality criterion (3.132)) takes a
minimum value. 0

Example 3.4.14. Consider the system (3.131)) with n =m =r =2 and
-2 1 -1 —-0.25 -1 -0.2 1
Ao = , A= , Ay = , €= )
1 -2 —-0.5 -1 —-0.1 -1 1

oi(t) = =22 (t) + xo(t) — 1 (t—7)—0.25x(t —7)—  a1(t —0)
— 0.229(t — 9) + u(t),
2h(t) = x1(t) — 229(t) — 0.521(t — 7) — 2o(t — 7) — 0.1z, (t — 0)
— @t —9) +ul(t) (3.141)

with the quadratic quality criterion (3.132]), where

i.e.,
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=

O\ (210 [er o) (21t —m)
( ) ( )( <t)+(w2<t>) ( ) (xza—m)

Jll(t t—Tg) xl(t—ﬁ) ’ C1 C3 l’l(t)

+ Ig(t ) ) t — Tg) + (Ig(t — 7'1)) (CQ 04) (l‘g(t))
z1(t — 72) i\ [x(t) 1 (t — 1) 3 0\ [x:1(t —m)

g ] e W
.Tl(t—TQ) 3 0 .Tl(t—7'2> 2

et —m) (03>( u—@)+”

=322 (t) + 33 (t) + 2121 ()21 (t — 1) + 2e321 (t — 71)T2(2)
+ 2comq (t)xo(t — T1) + 2c4wo(t) 2o (t — 1) + 2¢i21 ()21 (t — T2)
+ 251 (t — o) x2(t) + 2¢5m1 (E) 2o (t — o) + 2¢)wa () 2o (t —
+327(t — 1) + 325(t — 71) + 327t — ) + 325(t — ) +u

\]
\_/

[\

By formula (3.137)), we look for the optimal stabilization control function in the

form

T

1 1

ug = ——c'Ha(t) = — e () —(h1+ho)xy = (ha+hs)zs. (3.142)
d 1 he hs ) \x2

Let us determine the matrix H. In our case, we can compute the expression (3.135]),
ie.,
1
AgH —+ HAO -+ Cll —+ 022 -+ 033 — QHCCTH

T
-2 1 hy he hy hy\ (-2 1 30 30
= + + +
1 -2 hy hs hy hs 1 -2 0 3 0 3
30 b ho\ (1) (1\ (B &
+ . 1 2 1 2 _ @2><2
0 3 hy hs) \1) \1 he hs
which means that

—4hy + 2hy + 9 — (hy + he)? = 0,
hl — 4h2 + hg — (hl —|— h2)<h2 ‘|‘ hg) - 0,
2h2 - 4h3 + 9 - (hg + h3>2 - O

By the “WolframAlpha” software, we obtain two sets of solutions of this system

1 V19 V19

= = — —_— :_1 -

hl hg 2+ A ’ h'2 + 4 ’
1 V1 V1
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Only the first solution is suitable for the matrix H to be positive-definite. Therefore,

1 19 V19
-+ —14+—
g—1|2 4 4
_1_|_7‘19 14_7,19
4 2 4

As (3.136)) should hold as well, we obtain

Cop =CE = —HA, =

~—

1.63459  0.487156
0.884587 1.61216 |’

Y

1. 4
Cop = CT = —H A, — 5987  0.40767
0.248697 1.60767

which is sufficient for (3.133) to be a positive-definite matrix. In our case, we have

Coo Coi Coo
C= ClO 011 012 5
020 Ca Cx

where (5, (51 are null matrices, that is,

3 0 1.63459 0.487156  1.5987  0.40767

0 3 0.884587 1.61216 0.248697 1.60767
c_ 1.63459 0.884587 3 0 0 0
0.487156 1.61216 0 3 0 0
1.5987  0.248697 0 0 3 0
0.40767  1.60767 0 0 0 3

By (3.142) the optimal stabilization control function equals

C1-V19
=5

with the system ([3.141)) taking the form

_ 3+2\/Exl(t) + 3_2\/Ex2(t) — ozt —7)—0.2525(t — 7)

U (z1(t) + 22(t))

3_2*/1_9331@) _ 3+2\@x2(t) C05m(t—T) = ma(t—7)

—01z1(t—=9) —  xo(t—9).
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3.4.6 Systems with multiple delays and a control vector-

function

In this part, we consider systems of linear differential equations with delays
ZAx )+ Cu, t > to, (3.143)

where A;,7=0,...,n are m X m real matrices, C' is an m X r real matrix, 0 = 75 <
T < o0 < Ty, [tg — T,00) = R™, g € R and u: D; — R is a control function.

Set 7 := 7,. A minimization problem

I= min/ w(t, z¢,u)dt, (3.144)
u tO
where
w(t, x,u Z of(t — 1) Cyu(t — 73) + ZxT(t)COix(t - 7)
=0 i=1

+> " (t — 7)Cioz(t) + Y u"Dix(t — ;)
=1 =0

+> 2"(t — 7)Dfu+u"Du (3.145)
i=0

will be solved for the system (3.143]), where Cj; are m X m constant symmetric
matrices, Co; and Cyg, Co; = C’Z-TO are mxm constant matrices, D is an r X r symmetric
matrix and D;, D}, D; = (D;)T are r x m and m x r constant matrices, respectively.
Define auxiliary matrices Cj; = Cji = Opyxem, (1 > 7 > 1,4,5 =1,...,n). Let X(¢)
be an [(n + 1)m + r] x 1 vector defined by the formula

X(t)= ("), 2Tt —7),...,2"(t —7),u)”

and
Coo Cor ... Con Dj
Cwo Cn ... Ci Dj
C=1 : S : . (3.146)
Cw Cn ... Cunn D
Dy Dy ... D, D

Then, the formula (3.145]) can be written in the form
w(t,z,u) = XT(4)CX(1).

Below we assume that the matrix C is positive-definite, that is, the functional
w(t, x4, u) is positive-definite. In the following, we will employ a Lyapunov-Krasovskii
functional (3.134)), that is

V(t,z) =" (t)Ha(t) + z: /;T 27 ()G (s)ds,
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where m x m matrices H and G;, ©« = 1,...,n are constant, positive-definite and
symmetric. Their elements will be defined in the formulation of the theorem below.
In the proof, we use some well-known formulas for vectors and matrices, taking into
account their assumed properties, such us (Agz(t))? = 27 (t)AL, (D™ = D71,
etc., without mentioning this in each particular case (for matrix calculus we refer,

for example, to [32]). Matrix computations are performed in detail.

Theorem 3.4.15. Assume that the matriz C is positive-definite and there exist

positive-definite symmetric matrices H and G;, 1 = 1,...,n, satisfying

ATH + HAg + Cog +>_ Gi — [HC + Dg) D' [CTH + Do| = O, (3.147)

=1

ATH + Cio — D;D ' [CTH + Do| = O, i=1,...,m, (3.148)
Gi—Cy— DD 'D;=0O,um, i=1,...,n. (3.149)

If, moreover,
D:D_le:@mea iuj:lw”anai#ja (3150)

then the optimal stabilization control function of the problem (3.143|)—(3.145)) ezists
and equals

ug = —D'[CTH + Do|a(t) - D' Dia(t — 7). (3.151)
=1

Proof. In accordance with Theorem (3.2.1] analyzing the expression B given

by (3.11), we get

B(‘/ata I, U) = d‘/(cizmt) +w (tv I, U)

[i Aiz(t — ) + Cur Hx(t)+ 2" (t)H lznj At — 1) + Cu

1=0

+3° [aT(0)Gia(t) — T (t — 1) Gia(t — )| + fj 2Tt — 7,)Chz(t — 77)

i=1 =0
=1 1=1

+Y u'Dix(t — 7))+ > 2" (t — 1) Diu+ u" Du
i=0 =0

- [on@) £ Aalt—m) + Cu] Hz(t)

=1

+ 2T () H [on(t) + z": Aix(t — ;) + C’u]
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n

+ 3 [&"(0)Gix(t) — 2" (t = 7)Gia(t — )| + 27 () Cop(t)

=1

n

+ zn: 2 (t — 1) Cruz(t — 1) + > 2" (1) Coz(t — 1) + Zn:xT(t — 73)Cyox(t)

i=1 =1 =1

+u"Dox(t) + 2" () Dju+ > u" Dix(t — ;)
i=1

+> z"(t — 7)Dju+ u" Du.

i=1

A simplification of B leads to

B(V,t,z,u) =z (t) lAOTH + HAy+ iG + COO] a(t)
+ 2":1 2" (t = m)[AT H + Ciola(t) + " (1) [HA; + Coila(t — 73)]
+ iile(t = 7)[Cii — Gila(t — ) + u” (£)[CTH + Dy | (t)
+a" (H)[HC + Dju+ znj W Dix(t — ;) + i 2" (t — 7)Dfu+u" Du.  (3.152)

i=1 =1

Looking for an extremum of (3.152f), we solve the equation

Bl (V,t,z,u) =0,

where
Bl (V,t, x4, u)
- [UT [CTH + Do| x(t) + 2" (t) [HC + D] u + f: uT Dzt — 1)
=1
+ Zn: 27 (t — ) Diu + uTDu],
=1 u
=2[C"H + Do) x(t) +2 i D;x(t — 1) 4+ 2Du.
i=1
That is,
u=uy=—D""! [CTH + Do}x(z&) — D! an Dix(t — ;), (3.153)
=1

which is the minimum of the function B because B,,, = 2D and the matrix D is
positive-definite due to the positive-definiteness of C.

Below we prove that ug given by is the optimal stabilization control function
of the problem f, so the formula (3.151f) will be proved. Consider the
identity and derive conditions for its validity, formulated in the theorem.
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First, simplify the terms in B(V,t, x;,u) involving argument u (above, these terms

are contained between square brackets in the computation of B (V,t, x;,u)). Using

u = ug defined by (3.153)) we get

ud [CTH + Do}x(t) + 27 (t) [HC + Dg}uo +> ulDix(t — 1)

=1

+ Z .Z'T(t — TZ')D:UQ + UgDUQ
=1

j=1

— (Dl [CTH + Do|a(t) + D znj Djx(t — Tj)) [CTH + Do|(t)

— 2" (t)[HC + Dy (Dl [CTH + Doa(t) + D! znj Djx(t — Tj))

j=1

- an (D—l [CTH + Doa(t) + D! ij Dx(t — rj)) Diz(t — )

j=1

- zn:xT(t —7,)D} (D—l [CTH + Do|(t) + D! zn: D;x(t — Tj))

i=1 Jj=1

+ (D‘l (CTH + Dy|a(t) + D! Zn: Djx(t — Tj))

%D (D‘l [O7H + Dyla(t) + DY Dyt - m))

k=1

= —z7(t) (D_l [CTH + DUDT [CTH + Do}m(t)

M)
- ixT(t —7)(D7'D;)" [CTH + Dola(t)

(2)
—a"'(t)[HC + Dj| D™ |CTH + Dola(t) —a" (t)[HC + Dj| D™ i Djx(t —7;)

J=1

3) (4)

n

=S aT () (D7 [CTH + Do)’ Dia(t — )
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n n

—> 2" (t-7)D;D™ [C’TH + Do}x(t) > 2" (t-7)D;D™! zn: Djx(t — 5)

i=1 =1 7j=1

(7) (8)
+a"(t) (D[CTH + Do) [CTH + Dolat)
o)

—l—xT(t) (D_l [C’TH + DODT zn: Dyx(t — 1)
k=1

(10)

+ f: "t =) (D7'D,)" [CTH + Dola(t)

(11)

+ i 2Tt — 1) (D_le)T i Dyx(t — 1) .

k=1

(12)

Finally, the following simplification is carried out: expressions (1), (2), (5) and (8)
are rewritten, as indicated. The sum of (3) and (9) equals zero, as well as the sum
of (4) and (10), (6) and (12), (7) and (11). We have

ug [CTH + Do|x(t) + 2" (1) [HC + Djuo + > ug Dia(t — 7)

1=1
=—2"(t)[HC + Dj| D7 |C"H + Doa(t) = 32" (t) [HC + Dg| D™ Dja(t — )
7=1
(1) (5)
—> 2" (t—7)D;D [C’TH + Do}x(t) —> 2" (t—7)D;D™'> " Dja(t — 7).
i=1

i=1 j=1

(2) (8)

(3.154)
For ) to hold we need to transform ) using m ) to derive
B (V,t,xt, “HCTH + Do|a(t 1217;5 )
=27 (t) [A{H + HA + i G+ COO] x(t)
i=1
+ Z [27(t — 7)[AT H + Ciola(t) + 2" (t)[HA; + Coila(t — 72)]
+ ZxT(t —7)[Cii — Gilz(t — )
i=1
— 2" ()[HC + Dy| D7 [CTH + Do|a(t znj (t)[HC + Dy| D Djao(t — 7;)
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n

- ZxT(t —7)DfD™? [C’TH + Do}x(t) - zn:xT(t —7)D;D™"Y " Djx(t — 7))

=1
—— [AEH + HAg+ Y Gi+ Coo — [HC + D[ D [CTH + DOH x(t)
=1

+23 " a"(t — 7)[AT H + Cio — D; D7 [CTH + Dy ] ()

=1

+> 2" (t —71)[Cii — Gi — D; D' Di]x(t — 7)

=1
—> 2"t —7)D;D" Y Dja(t—1;) =0. (3.155)
=1 j=1,j#1

The identity (3.155)) will hold if

ATH + HAg+ Coo+ 3 Gy — |HC + D3| D |CTH + Do| = O pscm,

i=1
ATH + Cio — D;D 7 [CTH + Do| = O, i=1,...,m,
Cii —Gi—DiD'D; = O, i=1,...,m,
D;D_le = @me7 Za] = 17 cee, N, ] 7é i?
that is if the assumptions (3.147)—(3.150) are fulfilled. All the assumptions of

Theorem are fulfilled, therefore, for the control function defined by (3.151]) and
the Lyapunov-Krasovskii functional (3.134)), the system (3.143)) is asymptotically

stable and the quality criterion (3.144]) takes a minimum value. 0
As a particular case of Theorem [3.4.15], consider the system (3.143)) with the quality
criterion (3.144)) where matrices D;, D}, ¢ = 0,...,n are zero matrices, that is, let
w(t,z,u) =Y z"(t —1)Chz(t — ;) + > _ " (t)Coiz(t — 1)
i=0 =1

+> 2"t — 7)Ciox(t) + u" Du. (3.156)

i=1
Then, the following holds.

Theorem 3.4.16. Assume that the matriz C is positive-definite and there exist

positive-definite symmetric matrices H and G;, i = 1,...,n, satisfying
ATH+ HAy+Coo+>_ Gi— HCD 'C"H = Oy, (3.157)
i=1
ATH + Cio = Opmxm, i=1,...,n. (3.158)

If, moreover
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then the optimal stabilization control function of the problem (3.143)), (3.144), (3.156))

exists and equals

uy = —D'CTHa(t). (3.160)

Example 3.4.17. Consider the system (3.143)) with n = m = r = 2 and

4y — (—2 1)’ Alz(_l —0.1)7 AQZ(—1 —0.2>’ o (1 1>’
1 -2 —0.5 -1 -0.1 -1 2 1
that is,
zi(t) = =221 (t) + 2o(t) — 21t —7) —01ae(t — 1) —  z1(t — 72)
— O2$2(t — 7'2) + Ul(t) + Ug(t),
zo(t) = x1(t) — 2x9(t) — 0.5, (t — 1) —  @a(t —71) — 0121 (¢ — 72)
— Xt — o) + 2wy (t) + ua(t). (3.161)

Let the matrices in (3.156]) be defined as follows

Then,
w (t, x4, u)
B xl(t))T (3 0) (xl(t)> . (mw)T (cl 02> (xl(t—ﬁ))
xo(t) 0 3/ \zo(t) xo(t) c3 cq) \xo(t — 1)
x1(t) ! i s\ [t — 1) x1(t — 1) ! 1 ez [x1(t)
* :zrg(t)) (c§ cj;) (xg(t—Tg))+<x2(t—71)) (02 c4> (:@(t))
at—m)\ (¢ &\ (0@ [(at-m)) (3 0\ (nt-mn)
* mg(t—72)> (03 CZ) (arg(t)>+(x2(t—ﬁ)) (O 3) (xQ(t—Tl))
{L‘l(t—Tg) ’ 3 0 ZL’l(t—Tg) U1 ’ 1 0 U1l

=322 () + 3x3(t) + 2121 () z 1 (t — 71) + 2c321(t — T1)22(2)
+ 20011 (t) 22 (t — 1) + 2¢49(t)xo(t — 1) + 2¢ 24 (1
+ 2521 (t — o) wa(t) + 26521 ()22 (t — T2) + 2¢22(t
+323(t — 1) + 3x5(t — 1) + 32T (t — ) + 375(t — 7

~— ~—
X
[\

~—  —~ —
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If it is possible to find a matrix H and the entries ¢;, ¢}, @ = 1,2 of the matrices Cpy,
Cho, Cpo and Cyy then, by the formula (3.160)), we obtain the optimal stabilization

control function in the form

-1 T
1 11 hi h
ug = —D'CTHx(t) = — 0 b (1)
0 1 2 1 ho hs
—(hy + 2hy) —(hgy +2h t
I R N AR P (hy +2ha) = (ha +2hs)) (22(t)) (3.162)
1 1 hg hg _(hl + h2) _(hQ + h3) wQ(t)
We need to find the matrix H. In our case, we verify the expression (3.157)),
using ((3.159)). Set

.A = AgH + HAO + Coo + CH + 022 — HCD_ICTH,
-'411 -/412
A= :
(A21 A22>
That is,

T
2 1 hy hs hi hy\ [—2 1 30 30 30
A= + + + +
-1 T

(b ha) (1 1) (10 11 hy hy

he hy) \2 1) \0 1 2 1 hy hs
o —2h1+h2 —2h2—|—h3 + —2h1+h2 h1—2h2 + 9 0
“\ hy—2hy  hy — 2hs —2hy + hy  hy — 2h3 0 9

- (m +2hy hy+ h2) <h1 +2hy hy+ 2h3)

where

ho +2hs  hg + hs hi+hy  hy+ hg

—4hy 4+ 2hy +9 hy —4hy + hg _
hy —4ho + hy  2hy —4hs +9

( (hy + 2h2)? + (hy + hs)? (hy + 2h2)(ha + 2h3) + (hy + ho)(ha + hs)
(

hy + 2hs)(ha + 2h3) + (hy + ho)(ha + h3) (ho + 2h3)? + (ha + hs3)?
We get

Ay = —4hy +2hy + 9 — (hy + 2h9)? — (hy + hy)?,

Auy = By — 4k + hy — (b1 + 2h9) (hs + 2hs) — (hy + ho)(ha + hs),
Az = A,

Agy = 2hy — 4hs +9 — (hg + 2h3)?* — (hg + hs)?.
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Then, A = Ogys if

—4hy 4+ 2hy +9 — (hy + 2h2)2 — (1 + h2)2 =0,
hi — 4hy + hy — (hy + 2h2)(ha + 2h3) — (hy + ha)(ha + hs) = 0,
2hy — dhs + 9 — (ha + 2h3)? — (ha + h3)® = 0.

By the “WolframAlpha” software, we obtain four sets of solutions of this system

hy = 1.45357, hy = —0.178416, hy = 1.04933,
hy = 0.703179, hy = —1.26542, hy = —0.525272,
hy = —23.7181, hy = 124297, hs = —5.26584,
hy = —26.7254, hy = 17.267, hy = —13.04609.
Only the first one is suitable for the matrix H to be positive-definite.

Therefore, (using the above-mentioned values, the following computations are only

approximate, further, we do not mention this circumstance)

iy 1.45357  —0.178416
 \—0.178416  1.04933 |

As (3.158)) should hold as well,

1.364 —0.
Cor = CT = —HA, — 36436 0.033059 ’
0.346249  1.03149

—0.073483 1.01365
which is sufficient for (3.146)) to be a positive-definite matrix. In our case, we have

1.43573  0.112298
COQICQIE):_HAQZ( ),

Coo Cor Co2 Dj
Cio Cun Cio Dy
Cy Cy Cy Dj|’
Dy Dy Dy D

where matrices Cla, Co1, D;, D}, i = 0,1, 2 are null matrices, that is,

3 0 1.36436 —0.033059  1.43573  0.112298 0 0

0 3 0.346249  1.03149 —0.073483 1.01365 0 O

1.36436 0.346249 3 0 0 0 0 0

c_ —0.033059  1.03149 0 3 0 0 0 0
1.43573  —0.073483 0 0 3 0 0 0
0.112298 1.01365 0 0 0 3 0 0

0 0 0 0 0 0 10

0 0 0 0 0 0 01
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By (3.162), the optimal stabilization control function equals
—1.096738 —1.920244\ [x1(t)
Uun =
° 7 \—1.275154  —0.870014 ) \2(t)
with the system ([3.161)) taking the form

2 (1) = — 4.37189221 () — 1.79115822(t) —  21(t — 71) — O.1za(t — 11),
xh(t) = — 2.46863 x1(t) — 6.711402x5(t) — 0.5x1(t — 71) —  @o(t — 71).
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4 CONCLUSION

The thesis considers the problem of optimal stabilization for ordinary and
functional differential systems. It is based on the result [Theorem , page
given in Malkin’s book [45, Theorem IV, page 485]. The book [45] is a revised
edition of the book [46] and, furthermore, contains new parts - Additions I-1V,
prepared by Malkin’s followers led by academician N. Krasovskii. In the thesis,
first Theorem [2.2.1] was applied to some classes of linear non-delayed differential
equations and then the previous result was extended to delayed differential
equations and systems. If the delay vanishes (7 = 0), our results reduce back to

those already known from [45].

The main result of the thesis is Theorem m (page , which solves the problem
of minimizing an integral quality criterion. In order to solve this problem, we find
an optimal stabilization control function, which simultaneously guarantees the
asymptotic stability of a given system of differential equations. The result obtained
is successfully applied to certain classes of linear differential equations with delays.

Moreover, the examples demonstrate that the theorem is applicable to nonlinear

equations with a delay (Examples 3.3.4) p. 43H46).

The problems and derived results, formulated in the thesis, can serve as a
motivation for further research. For example, in the thesis, the assumption i)
(B(V,t,z4,up) = 0) from Theorem m (page is considered only in cases
explicitly solvable with respect to ug. It is also an open question if the theory of
implicit functions can be applied to more complicated cases and, consequently, if
the results obtained in the thesis can be extended. Another challenge is to apply the
results to linear systems with variable coefficients, first in the case of the coefficients

being almost constant (for ¢ — 0o).

As a topic for future research, investigation of the solvability of the matrix equations
(in the thesis, for example, equations (3.99), (3.115)), (3.135]), (3.147))) with respect

to the matrix H can be suggested as well.

Application of the main result to linear systems leads to complicated systems of
nonlinear equations, which determine the elements of the matrix H that has a crucial
role in the formulated criteria. In the examples of this thesis, we sometimes overcome
this circumstance by using a suitable software. That is why it could be useful to

create a special program for solving certain classes of the problems considered.
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