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INTRODUCTION

Numerical Inverse Laplace Transforms (NILT) methods are classified by researchers to be methods
that are profoundly utilized in time-domain simulations, and they are broadly used in various
scientific areas, for instance, applications that require the solution of ordinary differential equations
or those dealing with partial differential equations [1–8]. Realizing and solving signal integrity
issues, especially in high speed digital systems with sufficiently high-clock frequencies, is often
related to the analytic solutions of mathematical governing equations. In such situations the
Laplace transform ‘L{·}’ is often used, due to its simplicity and effectiveness, to deal with different
transient excitation functions (e.g. Dirac, Heaviside, periodic functions), and hence transforming
the solution into a linear simplified mathematical description [2]. Primarily these transforms are
very attractive in solving differential equations, which arise in fields such as automatics, control
theory, and transient process in linear time invariant systems [3]. Nevertheless, the inevitable
steps are to obtain the original result in the time domain which is considered to be the most
difficult part and, in some situations, can be even impossible to obtain analytically [4], among
which we can mention transcendental and/or irrational Laplace transforms. The NILT methods
can therefore be a potential tool to overcome these complications by determining the original in a
fast and accurate manner. Numerical inverse Laplace transform methods can be generally sorted
according to the number of variables or dimensions that the method is derived upon, which can
be categorized as follows [5–10]:

• One-dimensional NILT methods (1D NILT):
Most of the NILT methods available in literature are considered to be one-dimensional
methods; these methods are fundamental, especially for the solution of ordinary differential
equations.

• Two-dimensional NILT methods (2D NILT):
The two-dimensional methods are effective, and the need to use the 2D variables arise
mainly for solving problems such as partial differential equations; for instance, solution of
transmission line and related analysis.

• Multi-dimensional NILT methods (MNILT):
Multi-dimensional methods are important for solving more complex systems, such as that
for nonlinear circuit analysis.

Performing a research on one-dimensional NILT methods shows us that there exist multiple
methods, mainly those that are usually related to a specific field of application and hence could be
considered as limited methods. The different 1D-NILT methods differ from one another by their
range of applicability, stability, accuracy and, last but not least, the speed of computation. The
range of applications of a certain NILT method are usually difficult to anticipate without running
some tests on the method and computing their absolute errors. Then, after having performed
such tests, then it is possible to classify the method and decide on which field of application or
‘type of functions’ the specific NILT method performs best on. The second characteristic, the
stability of the method, which is an important phenomenon of the numerical method, i.e. if a
specific method is not stable on some type of function, then the method could lead to very absurd
results; mathematically speaking, a reason for instability could be for example when the NILT
algorithm is of a fractional form with a difference in the denominator, that could be, in some
cases, equal to zero and then infinity is a result at that specific point. Generally, a stable method
also means a wider range of application for the numerical method. The third characteristic to
list is the accuracy of the method, or in other words, to have relatively small absolute error when
performing error analysis for a NILT method. Finally, the computational speed of a NILT method;
with the constant development in science and technology, time becomes a more important factor,
and hence, the methods with a fast-computational time are preferred. The backbone of the NILT
methods is the inverse Laplace transform (ILT) technique, as shown in (1) and (2), representing

4



the Laplace transform and its inversion; where 𝑠 is the Laplace complex variable,

𝐹 (𝑠) =
∫︁ ∞

0
𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡, (1)

𝑓(𝑡) = 1
2𝜋j

∫︁ ∞

0
𝐹 (𝑠)𝑒𝑠𝑡𝑑𝑠, (2)

The Laplace transform is an effective tool used in science and engineering specially for solving
differential equations or generally assisting in time-domain simulations for different applications;
even though, the main difficulty is then inverting the Laplace domain solution back into real
time domain, in simple cases it could be done by using the Laplace inverting tables; however,
for more sophisticated applications, such as that for systems with distributed parameters, where
transcendental or irrational types of functions are involved, then the inversion is very difficult or
even impossible [1, 11]. In all of these mentioned cases, the NILT methods can play an efficient
role in solving these quantities of interest. In research, there exist several one-dimensional NILT
methods which are used for inverting functions of one variable; though much less attention was
paid to higher dimensional-NILTs, mainly due to the non-existent closed form inversions [9,12–14].
Therefore, multi-dimensional NILT methods are of our high interest due to the necessity to solve
scientific quantities of concern in deterministic and stochastic models, those especially arising in
the fields of electrical engineering, radio communications, and computer sciences [12].

1 DISSERTATION OBJECTIVES
The importance of the numerical inverse Laplace transforms (NILT) methods for 1D, 2D and
𝑛-dimensional inversion methods arises as for their large field of applications in science, physics,
and chemistry and, especially for our field of focus, the electrical and electronics engineering
field [8, 15, 16]. This brings us up to the open-ended question, could we develop a relatively
universal NILT method with one or more variables that is verified to be stable and accurate
enough for terms of electrical engineering? All this and more open issues will be addressed
shortly. The emphasis, in this dissertation, is to characterize and study the current developed
methods and to further devise a relatively universal, stable and accurate method which could be
easily applied and implemented for electrical engineering applications, such as transmission lines
analysis, multi-conductor lines or more sophisticated like non-linear circuit simulation [8, 16].

1.1 Theoretical basis analysis and comparative studies
I. Research of the theoretical basis of the numerical inversion methods, review and comparative

study of different developed NILT methods.
II. The development of single-variable NILT methods and their successful program

implementation.
III. Categorization of the different methods with regard to their applicability on electrical

engineering topics and their relevance to the scientific field.
IV. Incorporation of fractional-order calculus in the different applications of NILT methods, e.g.

fractional-order TL modeling and simulation using NILT method.

1.2 Multivariable integral transforms
I. Research study of the theoretical basis of multivariable integral transforms, review of

numerical methods of two and more variable inverse Laplace transformation methods, and
development of their program codes.
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II. Application of MNILT in electrical engineering field, and utilizing Volterra series theory with
the possibility of its application into non-linear systems analysis.

III. Inclusion of fractional-order calculus for the applications of MNILT, e.g. fractional-order
multiconductor transmission lines modeling and simulation.

1.3 Development of effective NILT techniques
I. Development of effective numerical techniques for the inversion of Laplace transforms of

one-variable and multi-variables.
II. Integration of efficient acceleration techniques to the proposed NILT methods, which yield

to result enhancements.
III. Development and implementation of the corresponding program codes.
IV. Error analysis and accuracy tests for each of the above mentioned cases.
V. Verification by successful application in linear and non-linear systems analysis.

VI. Incorporation of fractional-order elements for related NILT applications.
VII. Innovative approaches to the solution of PDE’s describing lossy coupled multiconductor

transmission lines (MTL).

2 1D HYPERBOLIC NILT METHOD
In this chapter, a potential method, which is relatively universal and has a desirable accuracy, is
presented and described. An advantage of this method is that its accuracy can be improved simply
without changing the algorithm but only on the cost of the computational time. In the following
sections, the related error analysis is studied, afterwards, an enhancement to the proposed method
is done by integrating several infinite series convergence accelerating algorithms, which improve
the accuracy and computational time of the method. Moreover, the corresponding analysis and
tests are shown by using relevant test functions of known originals.

2.1 Original proposed 1D hyperbolic-based NILT method
I. Principle formula and basic assumptions

The hyperbolic NILT method is based on approximating the Laplace transform definition
Bromwich integral, [1, 5, 17,18],

𝑓(𝑡) = 1
2𝜋j

∫︁ 𝑐+j∞

𝑐−j∞
𝐹 (𝑠)e𝑠𝑡𝑑𝑠, (2.1)

where 𝑠 = 𝑐 + j𝜔, while considering the basic assumptions,
∙ 𝐹 (𝑠) is regular for Re{𝑠} > 0,
∙ when |𝑠| → ∞ then 𝐹 (𝑠) → 0, and
∙ 𝐹 *(𝑠) = 𝐹 (𝑠*), where the symbol * represents the complex conjugate.

II. Recapitulation of original hyperbolic NILT
The Laplace transform’s inverse kernel 𝑒𝑠𝑡 in (2.1) can be approximated by two hyperbolic
relations, namely

𝐾𝑠ℎ(𝑠𝑡, 𝑎) = e𝑎

2 sinh(𝑎 − 𝑠𝑡) , (2.2)

𝐾𝑐ℎ(𝑠𝑡, 𝑎) = e𝑎

2 cosh(𝑎 − 𝑠𝑡) , (2.3)
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Henceforth, the reciprocal hyperbolic functions are expressed by the infinite sum of rational
functions in 𝑧 = 𝑎 − 𝑠𝑡,

1
sinh 𝑧

= 1
𝑧

+ 2𝑧
∞∑︁

𝑛=1

(−1)𝑛

𝑛2𝜋2 + 𝑧2 , (2.4)

1
cosh 𝑧

= 2𝜋
∞∑︁

𝑛=0

(−1)𝑛(𝑛 + 0.5)
(𝑛 + 0.5)2𝜋2 + 𝑧2 . (2.5)

Further, continuing the derivation with the successive application of the residual theorem
and performing simple mathematical manipulations, described in more detail in [5], we
obtain the following approximate formulae

𝑓𝑠ℎ(𝑡, 𝑎) = e𝑎

𝑡

(︃
1
2𝐹

(︂
𝑎

𝑡

)︂
+

∞∑︁
𝑛=1

(−1)𝑛Re
{︂

𝐹

(︂
𝑎

𝑡
+ 𝑛j𝜋

𝑡

)︂}︂)︃
, (2.6)

𝑓𝑐ℎ(𝑡, 𝑎) = e𝑎

𝑡

∞∑︁
𝑛=1

(−1)𝑛Im
{︂

𝐹

(︂
𝑎

𝑡
+ (𝑛 − 0.5)j𝜋

𝑡

)︂}︂
, (2.7)

There exists an alternative way to express the hyperbolic functions, i.e. their definition
exponential functions, (2.2) and (2.3) can be rearranged into the form of the sum of infinite
geometric series, and hence, from that, the absolute errors of formulae (2.6) and (2.7) can
be obtained, respectively, as listed bellow,

𝜀𝑠ℎ(𝑡, 𝑎) =
∞∑︁

𝑛=1
e−2𝑛𝑎𝑓((2𝑛 + 1)𝑡) , (2.8)

𝜀𝑐ℎ(𝑡, 𝑎) =
∞∑︁

𝑛=1
(−1)𝑛e−2𝑛𝑎𝑓((2𝑛 + 1)𝑡) . (2.9)

By performing several tests it is found that the arithmetic mean of both NILT
approximations (2.6) and (2.7) results in an even more enhanced and accurate inversion
algorithm, namely

𝑓𝑒𝑛(𝑡, 𝑎) = e𝑎

2𝑡

(︃
1
2𝐹

(︂
𝑎

𝑡

)︂
+

∞∑︁
𝑛=1

(−1)𝑛
(︂

Re
{︂

𝐹

(︂
𝑎

𝑡
+ 𝑛j𝜋

𝑡

)︂}︂
· · ·

+Im
{︂

𝐹

(︂
𝑎

𝑡
+ (𝑛 − 0.5)j𝜋

𝑡

)︂}︂)︂)︃
, (2.10)

the absolute error of (2.10) can be analytically obtained

𝜀𝑒𝑛(𝑡, 𝑎) =
∞∑︁

𝑛=1
e−4𝑛𝑎𝑓((4𝑛 + 1)𝑡). (2.11)

2.1.1 Generalization of the 1D hyperbolic NILT method

The work, presented in reference [1], describes the possibility for a generalization of the method for
a better accuracy, which basically allows to increase the accuracy of the method by the reduction
of the integration step with the possibility to predict the absolute limit error [17]. This alternative
approach to improve the accuracy provides a broader range of application to the hyperbolic NILT
method, with the ability of optimizing the free parameter 𝑎 to attain a marginally absolute error.
Mainly, the integration step is reduced by Ω = 𝜋/𝑚𝑡, where 𝑚 is an integer, while maintaining
the parameter 𝑐 as it was originally defined [1].
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2.1.2 Integration of infinite series convergence acceleration techniques

With the motivation to reduce the ‘static’ error effect and further enhance the proposed
hyperbolic NILT original method, the idea of adapting some infinite series convergence acceleration
techniques is proposed; and then after several tests, using the Matlab programming language, their
performance on the hyperbolic NILT method and compare their results. Specific convergence
acceleration techniques are available and suitable to be integrated with the proposed method.
Namely, the techniques incorporated to the hyperbolic NILT method are: the Euler transform,
the quotient-difference algorithm of Rutishauser and the epsilon algorithm of Wynn; this will be
shown in the following sections. In practice, the computation of formula (2.10) is done as follows;
first it can be formally rewritten as a combination of three parts, i.e. an initial, a finite sum and
an infinite sum,

𝑓𝑒𝑛(𝑡, 𝑎) = e𝑎

2𝑡

(︃
1
2𝐹

(︂
𝑎

𝑡

)︂
+

𝑛𝑠𝑢𝑚∑︁
𝑛=1

(· · · ) +
∞∑︁

𝑛=𝑛𝑠𝑢𝑚+1
(· · · )

)︃
, (2.12)

the initial part and the finite part are computed normally as they are, whereas the infinite part,
in practice, can be computed up to a relatively high number of terms, e.g. 500 terms or higher.
Nevertheless, by adapting suitable infinite series convergence acceleration techniques, the number
of computed terms can be highly reduced, and in the same time, providing an increase in the
accuracy of the method’s results, saving valuable memory storage, and reducing the computational
time.

I. By means of the Euler transform:
The infinite series in (2.10) for practical computation is truncated into a finite number of
terms 𝑛𝑠𝑢𝑚, as shown in (2.12), which leads to a decrease in the accuracy of the inversion
result. To suppress this effect the Euler transform (ET) is incorporated. The ET is a
well-known technique for accelerating the convergence of infinite series [19]. This technique
performs at its best for alternating infinite series [1,5,7]. Practically, the ET is applied after
𝑛𝑠𝑢𝑚 terms are computed numerically by the hyperbolic NILT algorithm then 𝑛𝑒𝑢𝑙 terms
are added, but weighted by factors, namely

2(−𝑛𝑒𝑢𝑙)𝑉(𝑛𝑒𝑢𝑙−𝑘+1), (2.13)

where 𝑘 = 1, 2, . . . , 𝑛𝑒𝑢𝑙, and 𝑉𝑟 is given by the recursive formula

𝑉𝑟+1 = 𝑉𝑟 +
(︃

𝑛𝑒𝑢𝑙

𝑟

)︃
, 𝑉1 = 1. (2.14)

The final result obtained is then added as a replacement to the infinite series part of
(2.12). The Euler transform gives a high improvement on the proposed method, for both
the accuracy and computational speed, as will be verified in following sections from the
several performed simulation test results. Mainly, an improvement on the accuracy of the
inversion, computational speed and less memory usage are achieved by introducing the Euler
transform to the proposed hyperbolic NILT method. Hereon, the hyperbolic NILT method
in conjunction with the Euler convergence acceleration technique is denoted as ‘Hyp-Eul
NILT’ .

II. By means of the quotient-difference algorithm:
The quotient-difference algorithm (QdA) of Rutishauser is considered to be a highly stable
and efficient acceleration method [20]. The QdA gives, under certain conditions, the roots
as the limits of similar quotient sequences [21]; for a power series, this algorithm corresponds
to a rational Padé approximation expressed as a continued fraction.
Practically, the infinite sum is computed up to 𝑛𝑠𝑢𝑚 number of terms and the QdA requires
only 𝑛𝑞𝑑 = 2𝑃 + 1 additional terms above 𝑛𝑠𝑢𝑚 as input data. Namely, considering (2.10)
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the ‘finite’ term is computed normally as it is, whereas, the ‘infinite’ term is rearranged,
for simplicity, as follows

∞∑︁
𝑛=1

(−1)𝑛
[︂
Re
{︂

𝐹

(︂
𝑎 + j𝑛𝜋

𝑡

)︂}︂
+ Im

{︂
𝐹

(︂
𝑎 + j(𝑛 − 0.5)𝜋

𝑡

)︂}︂]︂

=
∞∑︁

𝑛=1
𝑧𝑛𝑄𝑛 ≈

𝑛𝑠𝑢𝑚∑︁
𝑛=1

𝑧𝑛𝑄𝑛 + 𝑦(𝑧, 𝑃 ), (2.15)

where 𝑧 = −1, 𝑄𝑛 is the expression in the square brackets, and the term 𝑦(𝑧, 𝑃 ) represents
the result of the QdA applied on additional 𝑛𝑞𝑑 terms of the residual original infinite series,

𝑦(𝑧, 𝑃 ) = 𝑑0

1 + 𝑑1𝑧

1+ 𝑑2𝑧

1+ 𝑑3𝑧
1+···+𝑑2𝑃

, (2.16)

which considerably improves the precision of the results. In order to evaluate the coefficients
𝑑𝑛 = 0, · · · , 2𝑃 , a clear demonstration can be based on the quotient-difference algorithm
diagram illustrated in Fig. 2.1, [20,22]. The coefficients 𝑑𝑛 = 0, 1, · · · , 2𝑃 in (2.16) are based

Fig. 2.1: The quotient-difference algorithm’s lozenge diagram.

on the QdA lozenge diagram, see Fig. 2.1, which is computed by the following process; the
first two columns are filled by

𝑒
(𝑘)
0 = 0, 𝑘 = 0, · · · , 2𝑃, (2.17)

𝑞
(𝑘)
1 = 𝑄𝑘+1

𝑄𝑘
, 𝑘 = 0, · · · , 2𝑃 − 1, (2.18)

the consequent columns are formed by the following relations for 𝑟 = 1, · · · , 𝑃 ,

𝑒(𝑘)
𝑟 = 𝑞(𝑘+1)

𝑟 − 𝑞(𝑘)
𝑟 + 𝑒

(𝑘+1)
𝑟−1 , 𝑘 = 0, · · · , 2𝑃 − 2𝑟, (2.19)

for 𝑟 = 2, · · · , 𝑃 ,

𝑞(𝑘)
𝑟 =

𝑞
(𝑘+1)
𝑟−1 𝑒

(𝑘+1)
𝑟−1

𝑒
(𝑘)
𝑟−1

, 𝑘 = 0, · · · , 2𝑃 − 2𝑟 − 1, (2.20)
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now it is possible to obtain the coefficients 𝑑𝑛 = 0, 1, . . . , 2𝑃 by the following relations

𝑑0 = 𝑄0, 𝑑2𝑚−1 = −𝑞(0)
𝑚 , 𝑑2𝑚 = −𝑒(0)

𝑚 , 𝑚 = 1, · · · , 𝑃. (2.21)

A practical computation to get the solution of 𝑦(𝑧, 𝑃 ) can be done by processing the following
recursive formulae,

𝐴𝑛(𝑧) = 𝐴𝑛−1(𝑧) + 𝑑𝑛𝑧𝐴𝑛−2(𝑧), (2.22)

𝐵𝑛(𝑧) = 𝐵𝑛−1(𝑧) + 𝑑𝑛𝑧𝐵𝑛−2(𝑧), (2.23)

where 𝑛 = 1, · · · , 2𝑃 , and the initial coefficients given are 𝐴−1 = 0, 𝐵−1 = 1, 𝐴0 = 𝑑0, and
𝐵0 = 1. Finally, the continued fraction (2.16) can be given as 𝑦(𝑧, 𝑃 ) = 𝐴2𝑃 (𝑧)/𝐵2𝑃 (𝑧), for
any 𝑧. The simulation of the quotient-difference algorithm adaption to the proposed NILT
method is performed in the universal Matlab programming language.

III. By means of the 𝜀-algorithm of Wynn:
The next convergence acceleration technique integrated is the 𝜀-algorithm of Wynn [23].
The 𝜀-algorithm is categorized as a nonlinear technique used to accelerate the convergence
of infinite series and iterations. It has also been used to obtain useful results from divergent
series/iterations and to assist in the solution of differential and integral equations [23, 24].
The process followed to adapt the 𝜀-algorithm to the 1D hyperbolic NILT method is
theoretically similar to the QdA process, i.e. using a few number terms 𝑛𝑒𝑝𝑠 above 𝑛𝑠𝑢𝑚

which are used as input data to the 𝜀-algorithm. In its turn, the 𝜀-algorithm samples
the additional terms and extrapolates them by fitting them to a polynomial multiplied
by a decaying exponential [25]. Mathematically, the 𝜀-algorithm can be described first by
illustrating the lozenge diagram of the method, illustrated in Fig. 2.2. The diagram describes
the case where 𝑃 = 2, such that the total number of additional terms used is 2𝑃 + 1 terms.
To obtain the values of the lozenge diagram symbols used the following formulas will be

Fig. 2.2: The 𝜀-algorithm’s lozenge diagram.

used [10, 24]. Namely, to construct the first column 𝜀
(𝑘)
−1 = 0, 𝑘 = 1, · · · , 2𝑃 is used. The

initial term in the second column 𝜀
(0)
0 represents the result of the truncated finite sum (2.12).

Subsequently, the remaining entries of the second column represent partial sums computed
recurrently by

𝜀
(𝑘)
0 = 𝜀

(𝑘−1)
0 + 𝐹(𝑛𝑠𝑢𝑚+𝑘)𝑧

𝑘, 𝑘 = 1, . . . , 2𝑃. (2.24)

where 𝐹𝑛𝑠𝑢𝑚 is the result of the finite part of (2.12) computed up to 𝑛𝑠𝑢𝑚 terms, and 𝑧 = −1.
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The following columns for 𝑟 = 1, . . . , 2𝑃 , are obtained by the formula

𝜀(𝑘)
𝑟 =𝜀

(𝑘+1)
𝑟−2 + [𝜀(𝑘+1)

𝑟−1 − 𝜀
(𝑘)
𝑟−1]−1, 𝑘 = 0, . . . , 2𝑃 − 𝑟. (2.25)

When finishing the recurrent steps according to (2.25) the sequence of successive
approximations 𝜀

(0)
0 , 𝜀

(0)
2 , 𝜀

(0)
4 ... is obtained. This sequence converges much faster than

the original sequence of partial sums. The required result from the EA transform is the
entry 𝜀

(0)
2𝑃 . Nevertheless, the algorithm can be under instability if 𝑃 is chosen too high,

based on previous experiments 𝑃 = 2 or 𝑃 = 3 seem to be sufficient [10].

2.1.3 Experimental error analysis

In this section, an experimental error analysis is performed, with the intention to confirm the
theoretical error analysis (2.11). Moreover, it is interesting to investigate the effect of the different
acceleration techniques presented earlier on the proposed hyperbolic-NILT method, namely, these
techniques are the Hyp-𝜀 NILT, the Hyp-Qd NILT and the Hyp-Eul NILT. The test functions
used, shown in Tab. 2.1, are chosen intentionally to be of different mathematical types, i.e.
rational, irrational and transcendental functions with pre-known originals, to test the method’s
performance.

Tab. 2.1: List of test functions with their pre-known originals

Functions in the Laplace domain Original functions in the time domain

1 𝐹1(𝑠) = 2·𝜔3

[𝑠2+𝜔2]2 𝑓1(𝑡) = sin(𝜔𝑡) − 𝜔𝑡 cos(𝜔𝑡)

2 𝐹2(𝑠) = e−
√

𝑠

𝑠 𝑓2(𝑡) = erfc
(︀ 1

2
√

𝑡

)︀
3 𝐹3(𝑠) = 1−e−𝑠

2𝑠 e−𝑠 𝑓3(𝑡) = 0.5 if 1 ≤ 𝑡 ≤ 2, and 0 elsewhere .

The results of testing functions (𝐹1 −𝐹3) in conjunction with their absolute error plots are
displayed in Fig. 2.3 to Fig. 2.5 [26]. These results illustrate the inversions done by proposed
accelerated NILT methods discussed above. Respective adapted acceleration techniques have been
algorithmized in the Matlab language and were analyzed as for their accuracy, numerical stability
and optimal choice of their parameters. Generally, the following statements can be conceived as
for the hyperbolic NILT method; the quotient-difference is more numerically stable, mainly when
compared to the epsilon algorithm, i.e. due to the mathematical structure of the epsilon algorithm,
a probability exists that in the denominator two big numbers of near values are subtracted, which
leads to the denominator to approach zero and hence cause some instability [24]. On the other
hand, the Euler transform gives a high impact on the accuracy of the method’s results, it can
be clearly noticed by checking the absolute error in Fig. 2.3 to Fig. 2.5; this is mainly due to the
characteristics of the Euler transform when it behaves at its best for alternating power series,
which is the case of the hyperbolic NILT method. Furthermore, a precise quantitative conclusion
of the accuracy of the hyperbolic NILT method with the adapted acceleration techniques can be
observed by introducing the accuracy measure 𝜉, while considering a number of 200 points, namely

𝜉 =

√︃∑︀200
𝑖=1[𝑓(𝑡𝑖) − 𝑓(𝑡𝑖)]2

200 , (2.26)

where 𝑓(𝑡𝑖) is the pre-known original and 𝑓(𝑡𝑖) is the result of the hyperbolic NILT inversion. The
results are shown in Tab. 2.2 for each of the acceleration techniques.
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Fig. 2.3: Accuracy experiment results of the accelerated hyperbolic NILTs with test function 𝐹1.

Fig. 2.4: Accuracy experiment results of the accelerated hyperbolic NILTs with test function 𝐹2.

Fig. 2.5: Accuracy experiment results of the accelerated hyperbolic NILTs with test function 𝐹3.
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Tab. 2.2: 1D hyperbolic NILT 𝜉 accuracy measures.

𝐹𝑟 Hyp-𝜀 NILT Hyp-Qd NILT Hyp-Eul NILT

1 0.8 × 10−2 1.34 × 10−5 2.25 × 10−7

2 2.3 × 10−2 1.42 × 10−4 1.18 × 10−8

3 1.2 × 10−2 7.9 × 10−2 4.9 × 10−3

2.2 Comparative study for the 1D hyperbolic NILT method
The 1D NILT methods analyzed in this section include:

• The Zakian 1D method [27],
• the Talbot 1D method [28],
• the Stehfest method [29],
• the 1D accelerated FFT-based method (FFT-Qd NILT) [30], and
• the NILT method based on inverse Laplace transform kernel hyperbolic approximations

(Hyp-Eul NILT), [1, 5, 18,24].
These methods were implemented by using the Matlab mathematical language and were verified as
for their accuracy, stability, range of application as well as their computational speed. The methods
were verified by using test functions in the Laplace domain with their pre-known originals. Tab. 2.3
shows the functions and their known originals respectively [18]. The methods were implemented
by using the Matlab mathematical language and verified as for their accuracy, stability, range of
application as well as their computational speed.

Tab. 2.3: List of test functions and their original-time domain values for the comparative study

𝑟 Functions in the Laplace domain 𝐹𝑟(𝑠) Functions in the time domain 𝑓𝑟(𝑡)

1 𝐹1(𝑠) = 𝜔
𝑠2+𝜔2 𝑓1(𝑡) = sin(𝜔𝑡)

2 𝐹2(𝑠) = e−𝑎
√

𝑠
√

𝑠
𝑓2(𝑡) = 1√

𝜋𝑡
· e −𝑎2

4𝑡

3 𝐹3(𝑠) = 1
𝑠 · 1

exp(𝑠)−1 Staircase Function.

The results of inverting the test functions on each of the described 1D NILT methods are
displayed in Fig. 2.6 to Fig. 2.8; each method was tested independently on the time interval
𝑡 = (0, 9) sec, [18]. The results show that for the chosen test functions, the Zakian method
generally lacks accuracy for the exponential and for the staircase function; as for the sinusoidal
function 𝑓1(𝑡), the Zakian method is inverted correctly for about six oscillations and then is slowly
damped. The Talbot method is more accurate on the whole-time interval, except for the staircase
function, the function has jump discontinuities, and the Gibbs effect is easily noticed, as is the
case with function 𝑓3(𝑡).
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Fig. 2.6: Test results of the Zakian, Talbot, Stehfest, FFT-Qd NILT and Hyp-Eul NILT methods
with function 𝐹1.

Fig. 2.7: Test results of the Zakian, Talbot, Stehfest, FFT-Qd NILT and Hyp-Eul NILT methods
with function 𝐹2.

The simulation results of the Stehfest NILT method are programmed in the Matlab language.
The inversion is relatively good for the exponential function 𝑓2(𝑡), although the results of the
other two functions, 𝑓1(𝑡) and 𝑓3(𝑡) are not possible to be considered for practical uses due to
the lack of accuracy [18]. Nevertheless, the method showed positive results in other types of
functions in other fields of applications, such as the solute transport or the applications in the
petrol engineering field [31]. Regarding the performed tests using the FFT-Qd NILT and the
Hyp-Eul NILT, as can be noticed, their results exhibit a high accuracy and stability on the whole
time interval for all the tested functions. The staircase function is an important case to look at as,
due to its several discontinuities, it is usually difficult to invert such functions, but both the FFT-
Qd NILT and the Hyp-Eul-NILT provide very accurate inversions for it. The Hyperbolic NILT
accuracy measurement, incorporated with different accelerating techniques, has been performed
by the experimental error analysis and the results have been published in [1, 24, 26]. From the
error analysis performed the accuracy of the Hyp-Eul NILT is shown to be relatively very high,
for instance the absolute error of the Hyp-Eul NILT inversion for the function 𝑓(𝑡) = cos(𝜔𝑡) is
bellow 10−10 on the time interval 𝑡 = (0, 8) sec.
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Fig. 2.8: Test results of the Zakian, Talbot, Stehfest, FFT-Qd NILT and Hyp-Eul NILT methods
with function 𝐹3.

3 APPLICATIONS OF THE 1D HYPERBOLIC
NILT METHOD

In this chapter, several applications using the 1D hyperbolic NILT method, among others, are
successfully implemented. These applications are focused on the simulation of voltage/current
waveforms along lossy transmission lines (TL), frequency dependent TL, multiconductor TL
(MTL), and including fractional-order elements in the modeling of these applications. Results
of each of these applications are programmed in Matlab and illustrated in respective figures.

3.1 Lossy transmission line simulation using the hyperbolic NILT
method

The NILT’s field of applications are, mainly, used to process Laplace transforms that arise from
the solution of systems with distributed parameters, in which their mathematical structures result
in transcendental and/or irrational Laplace transforms. A practical application of the proposed
1D hyperbolic NILT method is here presented; this application involves the solution of a lossy
TL and a simulation the conditions of the voltage/current waveforms along the TL wires. The
TL model in the Laplace domain is shown in Fig. 3.1 bellow [18]. The Laplace model of the

Fig. 3.1: Transmission line model in the Laplace domain.

transmission line results from the application of the Laplace transform of one variable (the time

15



𝑡) on the pair of telegrapher equations

− 𝜕𝑣(𝑡, 𝑥)
𝜕𝑥

= 𝑅0𝑖(𝑡, 𝑥) + 𝐿0
𝜕𝑖(𝑡, 𝑥)

𝜕𝑡
, (3.1)

− 𝜕𝑖(𝑡, 𝑥)
𝜕𝑥

= 𝐺0𝑣(𝑡, 𝑥) + 𝐶0
𝜕𝑣(𝑡, 𝑥)

𝜕𝑡
, (3.2)

where 𝑅0, 𝐿0, 𝐺0 and 𝐶0 are per–unit–length (p.u.l.) elements and represent resistance,
inductance, conductance and capacitance, respectively.
The Laplace transform of the solution with considering zero initial conditions, i.e. 𝑣(0, 𝑥) = 0 and
𝑖(0, 𝑥) = 0 , and by incorporating boundary conditions then we get [1],

𝑉 (𝑠, 𝑥) = 𝑉𝑖(𝑠) 𝑍𝑐(𝑠)
𝑍𝑖(𝑠) + 𝑍𝑐(𝑠) · e−𝛾(𝑠)𝑥 + 𝜌2(𝑠)e−𝛾(𝑠)[2𝑙−𝑥]

1 − 𝜌1(𝑠)𝜌2(𝑠)e−2𝛾(𝑠)𝑙 , (3.3)

𝐼(𝑠, 𝑥) = 𝑉𝑖(𝑠) 1
𝑍𝑖(𝑠) + 𝑍𝑐(𝑠) · e−𝛾(𝑠)𝑥 − 𝜌2(𝑠)e−𝛾(𝑠)[2𝑙−𝑥]

1 − 𝜌1(𝑠)𝜌2(𝑠)e−2𝛾(𝑠)𝑙 , (3.4)

where 𝑍𝑐(𝑠) and 𝛾(𝑠) represent the characteristic impedance and the propagation constant of the
line, respectively, and are given as

𝑍𝑐(𝑠) =
√︃

𝑍0(𝑠)
𝑌0(𝑠) =

√︃
𝑅0 + 𝑠𝐿0
𝐺0 + 𝑠𝐶0

, (3.5)

𝛾(𝑠) =
√︁

𝑍0(𝑠) · 𝑌0(𝑠) =
√︁

(𝑅0 + 𝑠𝐿0)(𝐺0 + 𝑠𝐶0) , (3.6)

where 𝑍0(𝑠) = 𝑅0 + 𝑠𝐿0 and 𝑌0(𝑠) = 𝐺0 + 𝑠𝐶0 are p.u.l. series impedance and shunt admittance,
respectively. The reflection coefficients at the beginning and end of the TL 𝜌1(𝑠) and 𝜌2(𝑠)
accordingly, are

𝜌1(𝑠) = 𝑍𝑖(𝑠) − 𝑍𝑐(𝑠)
𝑍𝑖(𝑠) + 𝑍𝑐(𝑠) ; 𝜌2(𝑠) = 𝑍2(𝑠) − 𝑍𝑐(𝑠)

𝑍2(𝑠) + 𝑍𝑐(𝑠) . (3.7)

In this test, the simulation of a uniform transmission line with length 𝑙 is performed and the
following parameters are considered; 𝑙 = 2 m, 𝑅0 = 10 mΩ/m, L0 = 227 nH/m, 𝐺0 = 2 mS/m,
𝐶0 = 90.9 pF/m, 𝑍𝑖 = 30 Ω, 𝑍2 = 3 kΩ. The transmission line is tested with an excitation wave
𝑣𝑖(𝑡) = sin2 (︀ 𝜋𝑡

4·10−9
)︀

with 0 ≤ 𝑡 ≤ 4 · 10−9, and 𝑣𝑖(𝑡) = 0, otherwise. The corresponding Laplace
domain of the excitation voltage waveform is 𝑉𝑖(𝑠) = 2𝜋2[1−exp(−4·10−9𝑠)]

𝑠[(4·10−9𝑠)2+4·𝜋2] .

Fig. 3.2: Voltage waveforms conditions along TL by via 1D Hyp-Eul NILT.

The time-domain conditions of the voltage, and current waveforms ore obtained by using the
hyperbolic 1D NILT method, the results are depicted in Fig. 3.2 and Fig. 3.3 for the beginning,
middle and end of the transmission line [18].
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Fig. 3.3: Current waveforms conditions along TL via 1D Hyp-Eul NILT.

The parameters used for the Hyp-Eul NILT to obtain the results are: 𝑛𝑠𝑢𝑚 = 200, 𝑛𝑒𝑢𝑙𝑒𝑟 = 100
and 𝑚 · 𝑎 = 9.

3.2 Incorporation of fractional-order transmission line primary
parameters

Research of fractional-order calculus was introduced more than 300 years ago, with a vast field of
applications benefiting from the introduction of fractional-order calculus, and still many potential
topics in this field that are open for further research and discussion [32–34]. Due to the advantage
of having the NILT methods in hand, it is thus possible to introduce the fractional-order domain
of different application models in the Laplace domain and thus highly simplifying the solution
process.
In the following subsections, we introduce the fractional-order primary parameters to the TL
mode, with detailed analysis being performed. Following, the fractional-order TL resulting model
is tested via an excitation waveform, and with the assistance of the Hyp-Qd NILT, we can simulate
the voltage/current waveforms along the TL in the time-domain.

I. Fractional-order primary parameters
Considering a TL of length 𝑙 with distributed elements, as in Fig. 3.1, the TL has the
elementary section shown in Fig. 3.4. The primary parameters 𝐿′

0, 𝐶 ′
0 have the fractional

orders 𝛼 and 𝛽, respectively, where the dash designation represents only the fractional order
immittances, keeping into account the numerical value of parameters is unchanged. As it

Fig. 3.4: Fractional-order primary parameters of the TL.

will be demonstrated, imposing fractional parameters give a higher degree of freedom for TL
modeling and optimization, enabling the realization of the losses, especially those resulting
from high frequencies [35], and furthermore building on the fact that the solution of the TL
traveling waveforms continuously depends on the fractional derivative. Incorporating the
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fractional-order primary parameters into transmission line systems of equations results in

𝑍𝑐𝑓 =
√︃

𝑍0𝑓 (𝑠)
𝑌0𝑓 (𝑠) =

√︃
𝑅0 + 𝑠𝛼𝐿′

0
𝐺0 + 𝑠𝛽𝐶 ′

0
, (3.8)

where 𝑍𝑐𝑓 (𝑠) annotates the fractional-order characteristic impedance, which is replaced
instead of the integer-order characteristic impedance 𝑍𝑐(𝑠) in (3.5). Consequently, the
propagation constant 𝛾(𝑠) changes accordingly with fractional parameters as

𝛾𝑓 (𝑠) =
√︁

𝑍0𝑓 (𝑠) · 𝑌0𝑓 (𝑠) =
√︁

(𝑅0 + 𝑠𝛼𝐿′
0)(𝐺0 + 𝑠𝛽𝐶 ′

0) . (3.9)

II. Fractional-order model analysis and results
R. Ismail et al. [36], discuss the effects of the fractional parameters 𝛼 and 𝛽 on the real
part of the propagation constant (the attenuation) and the real part of the characteristic
impedance (the resistive element). Moreover, in the recent work in [37], we argue that
by checking the sign of the real part of the propagation constant 𝛾, which should remain
negative as it represents attenuation and in practice 0 < 𝛼, 𝛽 < 2, then the region of the
fractional parameters 𝛼 and 𝛽 are found to be in the range 1 < 𝛼 + 𝛽 < 3; illustrations
of this study are shown in Fig. 3.5, [37]. Furthermore, it is interesting to notice, when
analyzing the fractional-order characteristic impedance, that the real part of 𝑍𝑐𝑓 , which
represents the resistive element, is affected by the fractional parameters 𝛼 and 𝛽. Mainly,
with a constant load, the TL response to applied voltage is resistive rather than reactive,
despite being composed of inductive, capacitive and resistive elements. The integer-model
case of characteristic impedance can be noticed in the Fig. 3.6 (a) and that is when 𝛼 = 1
and 𝛽 = 1. Interestingly, the real value of the characteristic impedance (resistive element) is
positive and increasing when the fractional values are in the range 0 < 𝛼, 𝛽 < 1 and hence
we bound our choices in this region; above this range the real value of the characteristic
impedance is negative and decreasing as shown in Fig. 3.6 (c).
The relation of 𝑍𝑐𝑓 (𝑠) and 𝛾𝑓 (𝑠) with the fractional parameters 𝛼 and 𝛽 are shown in Fig. 3.5
and Fig. 3.6, accordingly. The sub-figures (a), (b) and (c) illustrate the real value with the
regions of interest which bound the selection of 𝛼, 𝛽. The simulations are done in Matlab
with 𝑠 = j𝜔, where 𝜔 is the angular frequency and is chosen as 𝜔 = 1 × 109 rad · s−1.

(a) (b) (c)

Fig. 3.5: Real value of 𝛾𝑓 versus 𝛼 and 𝛽.
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(a) (b) (c)

Fig. 3.6: Real value of 𝑍𝑐𝑓 versus 𝛼 and 𝛽.

3.3 Incorporation of frequency dependent transmission line
parameters

Due to continuous rapid increase in operational frequencies and transmission speeds in power
systems, an essential characteristic to be considered is the frequency dependence properties.
Generally, skin effect (SE) is an important frequency dependent parameter to be considered when
dealing with high frequency applications [38]; its impact is usually higher than the polarization
effect on the surrounding medium [39]. Mainly, skin effect increases the resultant losses of the
TL. By transforming the skin effect into the Laplace-domain the solution is effectively simplified,
rather than solving in the time-domain. The fractional-order series impedance is supplemented
by the term 𝐾

√
𝑠, to give

𝑍0𝑓 (𝑠) = 𝑅0 + 𝑠𝛼𝐿′
0 + 𝐾

√
𝑠 , (3.10)

where the added rightmost term represents both high-frequency internal resistance and internal
inductive reactance. Skin effect can be described as the tendency of a high-frequency electric
current to distribute itself in a conductor so that the current density near the surface is greater than
at its core. The transmission line parameters have obvious frequency-dependent phenomena due to
the skin and edge effect on high frequencies. Taking into account the SE and other conditions, the
calculation and analysis of frequency-dependent transmission line gives more accurate transmission
characteristics. Therefore, (3.10) will be used in (3.8) and (3.9) in the following analysis.

3.4 Fractional-order TL model simulation
For this study, let us consider a lossy transmission line of length 𝑙 = 2 m, 𝑅0 = 0.35 Ω/m,
𝐿0 = 265 nH/m, 𝐺0 = 0.1 mS/m, 𝐶0 = 95 pF/m, 𝑍𝑖 = 10 Ω, 𝑍2 = 2.5 kΩ, and the skin effect
parameter 𝐾 = 4.5 · 10−4 Ω

√
s/m for frequency dependent line or 𝐾 = 0 is used for the frequency

independent line [40], and with the fractional parameters 𝛼 and 𝛽 used for the inductance and
capacitance, accordingly. The fractional-order characteristic impedance with incorporating the
skin effect is given as

𝑍𝑐𝑓 =
√︃

𝑅0 + 𝑠𝛼𝐿′
0 + 𝐾

√
𝑠

𝐺0 + 𝑠𝛽𝐶 ′
0

. (3.11)

Consequently, the fractional-order propagation constant with the skin effect is given as

𝛾𝑓 (𝑠) =
√︁

(𝑅0 + 𝑠𝛼𝐿′
0 + 𝐾

√
𝑠)(𝐺0 + 𝑠𝛽𝐶 ′

0) . (3.12)

After substituting the characteristic impedance and the propagation constant, in their fractional-
order form, into (3.3) and (3.4), then the voltage/current waveforms are effectively obtained in the
time-domain by undergoing the proposed hyperbolic numerical inverse Laplace transform (Hyp-
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Qd NILT) method, accelerated with the quotient-difference algorithm. For this analysis the TL
was excited with the voltage waveform [37]

𝑣𝑖(𝑡) =
{︃

sin2 (︀ 𝜋·𝑡
2·10−9

)︀
, for 0 < 𝑡 < 2 · 10−9 ,

0 , elsewhere .

The excitation waveform is first converted to the Laplace domain i.e:

𝑉𝑖(𝑠) = 2𝜋2(1 − exp(−2 · 109𝑠))
𝑠((2 · 10−9𝑠)2 + 4𝜋2) ,

and then the voltage/current waveforms are simulated for three cases; the integer TL model,
the integer TL model with frequency dependence parameters and the fractional-order TL model
with frequency dependent parameters; results are illustrated in Fig. 3.7 and Fig. 3.8 for voltage
and current waveforms, respectively. By observing these and comparing the fractional-order model
including skin effect with the integer-model, it is noticed that the results capture more realistically
the TL properties which are neglected in the integer model.

Fig. 3.7: Voltage waveform in the middle of the TL (𝑥 = 1 m).

Fig. 3.8: Current waveform in the middle of the TL (𝑥 = 1 m).

In Fig. 3.9 and Fig. 3.10 are illustrated the voltage distributions, along the same TL example
described above, with the choices of fractional parameters 𝛼, 𝛽 = 0.98 in Fig. 3.9, and 𝛼, 𝛽 = 0.95
in Fig. 3.10; these values are selected to be in the range bounded by checking the sing of the
real value of 𝑍𝑐𝑓 and 𝛾𝑓 . It is evident that when 𝛼, 𝛽 = 0.95 the diffusion is faster than when
𝛼, 𝛽 = 0.98, [37]. These results are consistent with the behavior of fractional order systems. In
essence, as the forward wave and reflected wave travel in opposite directions, this leads to a change
in the traveling wave shape and range. As a result, the fractional transmission line model captures
the abnormal diffusion phenomena of the voltage wave in the TL much more precisely than the
classical integer mode. The simulation results shown in Fig. 3.7 and Fig. 3.8 were computed using
the 1D hyperbolic NILT method accelerated with the QdA, on the other hand the 3D voltage and
current distributions in Fig. 3.9 and Fig. 3.10, respectively, were obtained by the 2D FFT-NILT
method.
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Fig. 3.9: Voltage distribution along the TL with fractional-order parameters (𝛼 = 𝛽 = 0.98).

Fig. 3.10: Voltage distribution along the TL with fractional-order parameters (𝛼 = 𝛽 = 0.95).

3.5 Multiconductor transmission line systems with linear
terminations

Multiconductor transmission lines (MTLs) are often found in communication systems, power
distribution systems, and digital computers, [41]. Thus, the analysis of such systems comes out to
be of high practical importance. In the previous sections, we examined the time-domain analysis of
the TL system equations and incorporated frequency dependences, nonuniformity, and fractional-
order elements. In this section, we will focus on MTLs, which consist of more than two conductors,
with linear terminations. It will be shown that the process to expand the result obtained for the TL
to the MTL is straightforward, mainly done by introducing the matrix notation. Generally, there
are many methods that can be considered when simulating MTL, such as the derivation of the
MTL equations from the integral form of Maxwell’s equations, derivation of the MTL equations
from the p.u.l. equivalent circuit, utilizing the ‘implicit Wendroff and state variable’ method and
others, [39, 42, 43]. Nevertheless, by the advantage of using NILT method, the analysis of MTLs
can be done much more time effectively and enable us to introduce all different losses and effects
on the modeling, including fractional-order elements, in a simple and fast manner.
This section will be dedicated to an advanced solution of MTLs terminated on both ends with
linear networks; these terminations can be modeled by generalized Thevénin and/or Norton
equivalents. In the next section MTLs with more complex terminations and possible external
feedbacks, describable with a modified nodal analysis and utilizing the NILT method, will be
addressed. In this analysis, we will consider a MTL system containing an (𝑛 + 1)-conductor TL
with length 𝑙 for each of the lines, which has the p.u.l. 𝑛 × 𝑛 matrices R, L, G, and C; noting
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Fig. 3.11: General (𝑛 + 1)-conductor TL system with linear terminations.

that the bold symbols here represent matrices, in contrast to the normal parameters used for a
single TL in previous sections, [41].
Firstly, let us start with the description of a classical MTL, afterwards fractional-order elements
will be incorporated. A uniform (𝑛 + 1)-conductor TL can be presented by a pair of telegraph
equations in the time domain with assuming zero initial conditions, i.e. v(0, 𝑥) = 0 and i(0, 𝑥) = 0.

− 𝜕v(𝑡, 𝑥)
𝜕𝑥

= Ri(𝑡, 𝑥) + L𝜕i(𝑡, 𝑥)
𝜕𝑡

, (3.13)

− 𝜕i(𝑡, 𝑥)
𝜕𝑥

= Gv(𝑡, 𝑥) + C𝜕v(𝑡, 𝑥)
𝜕𝑡

, (3.14)

where v(𝑡, 𝑥) and i(𝑡, 𝑥) are 𝑛 × 1 column vectors of the voltages and currents of 𝑛 active wires at
the distance 𝑥 from the MTL’s left side, accordingly. For simplicity purposes, we can represent
the above telegraph equations (3.13) and (3.14) in a compact matrix form

𝜕

𝜕𝑥

[︃
v(𝑡, 𝑥)
i(𝑡, 𝑥)

]︃
=
[︃

0 −R
−G 0

]︃
·
[︃

v(𝑡, 𝑥)
i(𝑡, 𝑥)

]︃
−
[︃

0 L
C 0

]︃
· 𝜕

𝜕𝑡

[︃
v(𝑡, 𝑥)
i(𝑡, 𝑥)

]︃
, (3.15)

transforming (3.15) into the Laplace domain with respect to the time variable 𝑡

𝑑

𝑑𝑥

[︃
V(𝑠, 𝑥)
I(𝑠, 𝑥)

]︃
=
[︃

0 −Z(𝑠)
−Y(𝑠) 0

]︃
·
[︃

V(𝑠, 𝑥)
I(𝑠, 𝑥)

]︃
, (3.16)

where the 𝑛 × 1 voltage and current vectors V(𝑠, 𝑥) = L{v(𝑡, 𝑥)} and I(𝑠, 𝑥) = L{i(𝑡, 𝑥)},
respectively. The matrix 0 stands for the 𝑛 × 𝑛 order zero matrix, and the series impedance
matrix and shunt admittance matrix are given, respectively, as follows

Z(𝑠) = R + 𝑠L , (3.17)

Y(𝑠) = G + 𝑠C . (3.18)

When considering the boundary condition at 𝑥 = 0, V1(𝑠) = V(𝑠, 0) and I1(𝑠) = I(𝑠, 0), see
Fig. 3.11, a formal solution is[︃

V(𝑠, 𝑥)
I(𝑠, 𝑥)

]︃
= exp

(︂[︃
0 −Z(𝑠)

−Y(𝑠) 0

]︃
· 𝑥

)︂
·
[︃

V1(𝑠)
I1(𝑠)

]︃
. (3.19)

If the MTL is considered as a multiport then the matrix exponential function (3.19) can be
considered as a chain matrix

Φ(𝑠, 𝑥) =
[︃

Φ11(𝑠, 𝑥) Φ12(𝑠, 𝑥)
Φ21(𝑠, 𝑥) Φ22(𝑠, 𝑥)

]︃
= exp

(︂[︃
0 −Z(𝑠)

−Y(𝑠) 0

]︃
· 𝑥

)︂
, (3.20)
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where Φ𝑖𝑗(𝑠, 𝑥), 𝑖, 𝑗 = 1, 2, are respective 𝑛 × 𝑛 square submatrices. noting that due to the
MTL reciprocity, det

(︀
Φ(𝑠)

)︀
= 1, though, in general Φ11(𝑠) ̸= Φ22(𝑠) due to some possible

inhomogeneity. Now, for simplicity, let us designate the chain matrix of the whole MTL of
the length 𝑙 as Φ(𝑠, 𝑙) = Φ(𝑠). Then, by using e.g. a generalized Thévenin equivalents of
both terminating linear circuits the formulae for the boundary vectors I1(𝑠) and V1(𝑠) can be
determined as

I1(𝑠) =
[︀
(Φ11(𝑠) − Z𝑖2(𝑠)Φ21(𝑠))Z𝑖1(𝑠) + Z𝑖2(𝑠)Φ22(𝑠) − Φ12(𝑠)

]︀−1×[︀
(Φ11(𝑠) − Z𝑖2(𝑠)Φ21(𝑠))V𝑖1(𝑠) − V𝑖2(𝑠)

]︀ , (3.21)

V1(𝑠) = V𝑖1(𝑠) − Z𝑖1(𝑠)I1(𝑠) , (3.22)

where V𝑖1(𝑠), V𝑖2(𝑠), and Z𝑖1(𝑠), Z𝑖2(𝑠) are internal voltage vectors and internal impedance
matrices of the respective Thévenin equivalents, respectively. Nevertheless, other combinations of
Thévenin and/or Norton equivalents can be considered for both ends of the MTL, namely,
Norton left side → Norton right side:

V1(𝑠) =
[︀
(Φ22(𝑠) − Y𝑖2(𝑠)Φ12(𝑠))Y𝑖1(𝑠) + Y𝑖2(𝑠)Φ11(𝑠) − Φ21(𝑠)

]︀−1×[︀
(Φ22(𝑠) − Y𝑖2(𝑠)Φ12(𝑠))I𝑖1(𝑠) + I𝑖2(𝑠)

]︀
,

(3.23)

Thévenin left side → Norton right side:

I1(𝑠) =
[︀
(Φ21(𝑠) − Y𝑖2(𝑠)Φ11(𝑠))Z𝑖1(𝑠) + Y𝑖2(𝑠)Φ12(𝑠) − Φ22(𝑠)

]︀−1×[︀
(Φ21(𝑠) − Y𝑖2(𝑠)Φ11(𝑠))V𝑖1(𝑠) + I𝑖2(𝑠)

]︀ , (3.24)

Norton left side → Thévenin right side:

V1(𝑠) =
[︀
(Φ12(𝑠) − Z𝑖2(𝑠)Φ22(𝑠))Y𝑖1(𝑠) + Z𝑖2(𝑠)Φ21(𝑠) − Φ11(𝑠)

]︀−1×[︀
(Φ12(𝑠) − Z𝑖2(𝑠)Φ22(𝑠))I𝑖1(𝑠) + V𝑖2(𝑠)

]︀
,

(3.25)

Incorporating fractional-order elements into the MTL model is done first by interchanging the
p.u.l. series impedance Z(𝑠) and shunt admittance Y(𝑠) matrices with 𝑍𝑓 (𝑠) and Y𝑓 (𝑠),
respectively, as follows

Z𝑓 (𝑠) = R + 𝑠𝛼L𝛼 , (3.26)

Y𝑓 (𝑠) = G + 𝑠𝛽C𝛽 , (3.27)

The skin effect of the MTL can be incorporated in a similar manner as done for the single TL by
the modification of the series impedance (3.26) with the introduction of the term K

√
𝑠, though

with K as a matrix coefficient, i.e. Z𝑓 (𝑠) = R + 𝑠𝛼L𝛼 + K
√

𝑠 . A second simplified approach
to solve the MTL system equations can be also done by performing another Laplace transform
with respect to the geometric coordinate 𝑥, [44], while considering fractional-order MTL elements,
which leads to the following matrix equation in the (𝑠, 𝑞) Laplace domain,(︃

V(𝑠, 𝑞)
I(𝑠, 𝑞)

)︃
=
(︃

𝑞E Z𝑓 (𝑠)
Y𝑓 (𝑠) 𝑞E

)︃−1

·
(︃

V1(𝑠)
I1(𝑠)

)︃
, (3.28)

where E is the identity matrix, and the voltage and current vectors that correspond to the left side
of the MTL are obtained by computing the generalized Thévenin equivalents for both terminating
linear circuits, as shown in (3.21) and (3.22), respectively. Henceforth, the time domain results
can be obtained by undergoing the 2D 𝐹𝐹𝑇 -NILT method in a fast and accurate process [45];
further details on utilizing the 2D NILT are available in the following Chapters 4 and 5.
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3.5.1 Fractional-order MTL case study

A main characteristic of the proposed fractional-order MTL model and simulation is its direct
support of several physical phenomena which have not been supported yet. In this case study we
demonstrate the applicability of the NILT method to a practically-relevant MTL application. Let
us examine a (3+1)-conductor TL, as shown if Fig. 3.12, with the length 𝑙 = 1.2 m. The MTL
has the following terminal resistors 𝑅1𝑖 = 𝑅2𝑖 = 1 Ω, where 𝑖 = 1, 2, 3. The MTL’s p.u.l. matrices
are as follows: [46],

Fig. 3.12: A (3 + 1)-conductor TL system.

R =

⎛⎜⎝ 41.7 0 0
0 41.7 0
0 0 41.7

⎞⎟⎠ Ω
m; L𝛼 =

⎛⎜⎝ 2.4 0.69 0.64
0.69 2.36 0.69
0.64 0.69 2.4

⎞⎟⎠ 𝜇H
m ;

C𝛽 =

⎛⎜⎝ 21 −12 −4
−12 26 −12
−4 −12 21

⎞⎟⎠ pF
m ; G =

⎛⎜⎝ 0.6 0 0
0 0.6 0
0 0 0.6

⎞⎟⎠ mS
m .

(3.29)

The voltage source 𝑉𝑖1,2 driving the second wire in Fig. 3.12 is excited by the same waveform
used in Sect. 3.4. As this MTL is considered to have zero initial conditions, it is thus not
required to compute matrix convolution integrals. The time-domain final results are obtained
by using the 1D NILT method based on 𝐹𝐹𝑇 accelerated with the Qd algorithm in its matrix
form. The simulation results of the voltage/current propagations along the different MTL wires
are illustrated in Fig. 3.13 to Fig. 3.24, where three cases are shown; namely, the classic integer
case, i.e. 𝛼 = 𝛽 = 1, fractional-order case with 𝛼 = 𝛽 = 0.97, and the fractional-order case
𝛼 = 𝛽 = 0.87, respectively.

Fig. 3.13: Voltage distribution on the 1st and the 3rd line with integer-orders 𝛼 = 𝛽 = 1.
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Fig. 3.14: Voltage distribution on the 1st and the 3rd line with fractional-orders 𝛼 = 𝛽 = 0.97.

Fig. 3.15: Voltage distribution on the 1st and the 3rd line with fractional-orders 𝛼 = 𝛽 = 0.84.

Fig. 3.16: Current distribution on the 1st and the 3rd line with integer-orders 𝛼 = 𝛽 = 1.

Fig. 3.17: Current distribution on the 1st and the 3rd line with fractional-orders 𝛼 = 𝛽 = 0.97.
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Fig. 3.18: Current distribution on the 1st and the 3rd line with fractional-orders 𝛼 = 𝛽 = 0.84.

Fig. 3.19: Voltage distribution on the 2nd line with integer-orders 𝛼 = 𝛽 = 1.

Fig. 3.20: Voltage distribution on the 2nd line with fractional-orders 𝛼 = 𝛽 = 0.97.

Fig. 3.21: Voltage distribution on the 2nd line with fractional-orders 𝛼 = 𝛽 = 0.84.
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Fig. 3.22: Current distribution on the 2nd line with integer-orders 𝛼 = 𝛽 = 1.

Fig. 3.23: Current distribution on the 2nd line with fractional-orders 𝛼 = 𝛽 = 0.97.

Fig. 3.24: Current distribution on the 2nd line with fractional-orders 𝛼 = 𝛽 = 0.84.

In general, Fig. 3.13 to Fig. 3.24 exhibit the voltage and current waveform distribution along
the MTL wires for 𝛼, 𝛽 = 0.84, 0.97 and 1; while, Fig. 3.13, Fig. 3.16, Fig. 3.19, and Fig. 3.22 show
the solutions of voltage/current waveforms for the classical (integer-order) MTL. Comparing the
MTL simulation result figures with regard to the change in fractional-orders, we can find out
that with the increase of the fractional-orders from 0.84 to 0.97, the waveform has a faster spread
at the beginning; this agrees with the results of the single TL simulations obtained in Sect.
3.4, and with the diffusion theory investigated in [47, 48]. Moreover, observing the results when
introducing fractional-orders, such as a comparison between Fig. 3.22 and Fig. 3.23 for the current
distributions, shows that the waveform exhibits more attenuation along the wire, and hence this
compensates for power losses and gives a higher degree of optimization. Looking into Fig. 3.20
and Fig. 3.21, it is noticed that the superposition effect that happens on TL wires when the
forward wave and reflected wave interact is obvious in these two figures; this further shows that
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the physical phenomenon of MTL is more accurately modeled using fractional-order techniques.
The main advantage of utilizing the 1D 𝐹𝐹𝑇 -NILT accelerated by the Qd algorithm [49], in its
matrix form, can be seen from the obtained 3D MTL simulation results. The method allows us
to solve the waves on all the MTL’s wires in parallel. Depending on the defined resolution of
the results and the number of terms considered for the 1D 𝐹𝐹𝑇 -NILT computations, the average
CPU time for the simulations is approximately 4 to 6 seconds running on a common PC.
In principle, the 1D 𝐹𝐹𝑇 -NILT method is devised based on computing the inverse Laplace
transform (ILT), of Bromwich definition integral, numerically on a whole given interval (0, 𝑡𝑚).
The original approach of this method was proposed in reference [49], where the 𝐹𝐹𝑇 algorithm
is applied in order to provide the solution in an accurate and fast way. Moreover, further
improvements have been done on this method, such as incorporating acceleration techniques and
a development into a matrix form.

4 EXPANSION OF THE HYPERBOLIC NILT
METHOD INTO THE TWO-DIMENSIONAL
FORM

In continuation with the achieved results of the developed hyperbolic NILT method combined
the Euler transform as a convergence acceleration technique [1,26], in this chapter the method is
expanded from the 1D field to the 2D field. This grants the ability of solving applications that
contain two variables, such as continuous space-time systems simultaneously.

4.1 Numerical method of the hyperbolic NILT two-dimensional
expansion

In this section, the two dimensional expansion of the proposed 1D hyperbolic NILT is conducted
[26], inspired by the work done in [50], followed by a detailed error analysis.

4.1.1 Theoretical concept and basic formulae

The principal formula of a two-dimensional Laplace transform of a two variable function 𝑓(𝑡1, 𝑡2)
where 𝑡1, 𝑡2 ≥ 0, is given as

𝐹 (𝑠1, 𝑠2) =
∫︁ ∞

0

∫︁ ∞

0
𝑓(𝑡1, 𝑡2)𝑒−𝑠1𝑡1−𝑠2𝑡2𝑑𝑡1𝑑𝑡2. (4.1)

Considering the assumption |𝑓(𝑡1, 𝑡2)| < 𝑀e𝛼1𝑡1+𝛼2𝑡2 , where 𝑀, 𝛼1 and 𝛼2 are positive real
constants, the object function 𝑓(𝑡1, 𝑡2) can be given by [51]

𝑓(𝑡1, 𝑡2) = − 1
4𝜋2

∫︁ 𝛾1+j∞

𝛾1−j∞

∫︁ 𝛾2+j∞

𝛾2−j∞
𝐹 (𝑠1, 𝑠2)e𝑠1𝑡1+𝑠2𝑡2𝑑𝑠1𝑑𝑠2 , (4.2)

where 𝑠 = 𝛾 + j𝜔. A practical technique for the evaluation of the double integral (4.2) is done by
rearranging it to the forms

𝑓(𝑡1, 𝑡2) = 1
2𝜋j

∫︁ 𝛾1+j∞

𝛾1−j∞

(︂ 1
2𝜋j

∫︁ 𝛾2+j∞

𝛾2−j∞
𝐹 (𝑠1, 𝑠2)e𝑠2𝑡2𝑑𝑠2

)︂
e𝑠1𝑡1𝑑𝑠1

= 1
2𝜋j

∫︁ 𝛾2+j∞

𝛾2−j∞

(︂ 1
2𝜋j

∫︁ 𝛾1+j∞

𝛾1−j∞
𝐹 (𝑠1, 𝑠2)e𝑠1𝑡1𝑑𝑠1

)︂
e𝑠2𝑡2𝑑𝑠2 (4.3)
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and then we introduce the partial inverse Laplace transform as follows

L−1
2
{︀
𝐹 (𝑠1, 𝑠2)

}︀
= 𝐹2(𝑠1, 𝑡2) = 1

2𝜋j

∫︁ 𝛾2+j∞

𝛾2−j∞
𝐹 (𝑠1, 𝑠2)e𝑠2𝑡2𝑑𝑠2, (4.4)

and

L−1
1
{︀
𝐹 (𝑠1, 𝑠2)

}︀
= 𝐹1(𝑡1, 𝑠2) = 1

2𝜋j

∫︁ 𝛾1+j∞

𝛾1−j∞
𝐹 (𝑠1, 𝑠2)e𝑠1𝑡1𝑑𝑠1, (4.5)

consequently, the two equivalent formulae can be given as

𝑓(𝑡1, 𝑡2) = L−1
1
{︀
𝐹2(𝑠1, 𝑡2)

}︀
= 1

2𝜋j

∫︁ 𝛾1+j∞

𝛾1−j∞
𝐹2(𝑠1, 𝑡2)e𝑠1𝑡1𝑑𝑠1

= L−1
2
{︀
𝐹1(𝑡1, 𝑠2)

}︀
= 1

2𝜋j

∫︁ 𝛾2+j∞

𝛾2−j∞
𝐹1(𝑡1, 𝑠2)e𝑠2𝑡2𝑑𝑠2. (4.6)

A symbolic expression is given as [52,53]

𝑓(𝑡1, 𝑡2) = L−1
1

{︂
L−1

2
{︀
𝐹 (𝑠1, 𝑠2)

}︀}︂
= L−1

2

{︂
L−1

1
{︀
𝐹 (𝑠1, 𝑠2)

}︀}︂
. (4.7)

4.1.2 The numerical method

In order to expand the hyperbolic NILT method into a 2D form, let us first start with a
recapitulation of the hyperbolic relations used to approximate the exponential kernel of the i.
L. t. Bromwich integral; namely, 𝐸𝑠ℎ(𝑠𝑡, 𝑎) = 𝑒𝑎

2sinh(𝑎−𝑠𝑡) , 𝐸𝑐ℎ(𝑠𝑡, 𝑎) = 𝑒𝑎

2cosh(𝑎−𝑠𝑡) . First we start
with the 𝐸𝑐ℎ(𝑠𝑡, 𝑎) approximation for a 2D NILT expansion, then after the first 2D NILT is
devised we proceed with the second approximation i.e. the 𝐸𝑠ℎ(𝑠𝑡, 𝑎). Henceforth, the reciprocal
hyperbolic function appearing in 𝐸𝑐ℎ(𝑠𝑡, 𝑎) is expressed by the infinite sum of rational functions

1
cosh 𝑧

= 2𝜋
∞∑︁

𝑛=0

(−1)𝑛(𝑛 + 0.5)
(𝑛 + 0.5)2𝜋2 + 𝑧2 . (4.8)

Replacing both exponential kernels that appear in the double integral (4.3), by their respective
approximations 𝐸𝑐ℎ2 and 𝐸𝑐ℎ1, we get

𝑓𝑐ℎ(𝑡1, 𝑡2) = 1
2𝜋j

∫︁ 𝛾1+j∞

𝛾1−j∞

(︂ 1
2𝜋j

∫︁ 𝛾2+j∞

𝛾2−j∞
𝐹 (𝑠1, 𝑠2)𝐸𝑐ℎ2𝑑𝑠2

)︂
𝐸𝑐ℎ1𝑑𝑠1, (4.9)

where the respective exponential kernels are given by

𝐸𝑐ℎ2(𝑠2𝑡2, 𝑎) = 𝜋e𝑎
∞∑︁

𝑛2=0

(−1)𝑛2(𝑛2 + 0.5)
(𝑛2 + 0.5)2𝜋2 + (𝑎 − 𝑠2𝑡2)2 , (4.10)

𝐸𝑐ℎ1(𝑠1𝑡1, 𝑎) = 𝜋e𝑎
∞∑︁

𝑛1=0

(−1)𝑛1(𝑛1 + 0.5)
(𝑛1 + 0.5)2𝜋2 + (𝑎 − 𝑠1𝑡1)2 . (4.11)

By performing the first partial i. L. t. based on (4.4) , with the intention to reach the symbolic
expression (4.7), we get

𝐹𝑐ℎ2(𝑠1, 𝑡2, 𝑎) = e𝑎

2j

∫︁ 𝛾2+j∞

𝛾2−j∞
𝐹 (𝑠1, 𝑠2)

∞∑︁
𝑛2=0

(−1)𝑛2(𝑛2 + 0.5)
(𝑛2 + 0.5)2𝜋2 + (𝑎 − 𝑠2𝑡2)2 𝑑𝑠2 , (4.12)
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interchanging the sequence of summation and integration for the variable 𝑠2 we get

𝐹𝑐ℎ2(𝑠1, 𝑡2, 𝑎) = e𝑎

2j

∞∑︁
𝑛2=0

(−1)𝑛2(𝑛2 + 0.5)𝐼2𝑛 , (4.13)

where 𝐼2𝑛 is

𝐼2𝑛 =
∫︁ 𝛾2+j∞

𝛾2−j∞

𝐹 (𝑠1, 𝑠2)
(𝑛2 + 0.5)2𝜋2 + (𝑎 − 𝑠2𝑡2)2 𝑑𝑠2

=
∫︁ 𝛾2+j∞

𝛾2−j∞

𝐹 (𝑠1, 𝑠2)
𝐺2𝑛(𝑠1, 𝑠2)𝑑𝑠2 =

∫︁ 𝛾2+j∞

𝛾2−j∞
𝐻2𝑛(𝑠1, 𝑠2)𝑑𝑠2 , (4.14)

while, for this integral, we consider 𝑠1 a constant parameter and 𝑠2 as a variable. To evaluate
this integral we complete the integration path by a semi-circle with an infinite radius, where the
function 𝐹 (𝑠1, 𝑠2) equals zero along this semi-circle. Using the residual theorem the result of 𝐼2𝑛

is equal to the sum of the residua of 𝐻2𝑛(𝑠1, 𝑠2) in the poles lying inside the integration contour
multiplied by 2𝜋j [5]. In our case the poles of 𝐻2𝑛(𝑠1, 𝑠2) are formed by poles of 𝐹 (𝑠1, 𝑠2) and roots
of 𝐺2𝑛(𝑠1, 𝑠2), see (4.14). On principle, the poles of 𝐹 (𝑠1, 𝑠2) lay on the left side of the Gaussian
plane, because 𝐹 (𝑠1, 𝑠2) represents mainly stable systems, whereas the roots of 𝐺2𝑛(𝑠1, 𝑠2) lay on
the right side of the complex plane, namely

𝑠21 = 𝑎 + j(𝑛2 + 0.5)𝜋
𝑡2

, 𝑠22 = 𝑎 − j(𝑛2 + 0.5)𝜋
𝑡2

. (4.15)

The process we follow when applying the residual theorem is to choose the contour of integration
around the poles of 𝐻2𝑛(𝑠1, 𝑠2), i.e. the roots of 𝐺2𝑛(𝑠1, 𝑠2), while multiplying the result by minus
2𝜋j. The reason of multiplying by minus sign is due to integrating in a mathematically opposite
direction, we integrate on the right side of the complex plane. Solving for 𝐼2𝑛 and substituting
back to (4.13) we get

𝐹𝑐ℎ2(𝑠1, 𝑡2, 𝑎) = −e𝑎

𝑡2

∞∑︁
𝑛2=0

(−1)𝑛2Im
{︂

𝐹

(︂
𝑠1,

[︂
𝑎 + j(𝑛2 + 0.5)𝜋

𝑡2

]︂)︂}︂
. (4.16)

Performing the 2nd partial i.L.t. with respect to 𝑠1 and considering 𝑡2 here to be a parameter we
get

𝑓𝑐ℎ(𝑡1, 𝑡2, 𝑎) = −e2𝑎

2j𝑡2

∫︁ 𝛾1+j∞

𝛾1−j∞

(︂ ∞∑︁
𝑛2=0

(−1)𝑛2Im
{︂

𝐹
(︀
𝑠1,

[︂
𝑎

𝑡2
+ j
(︀
𝑛2 + 0.5

)︀ 𝜋

𝑡2

]︂}︂)︂
· · ·

×
(︂ ∞∑︁

𝑛1=0

(−1)𝑛1(𝑛1 + 0.5)
(𝑛1 + 0.5)2𝜋2 + (𝑎 − 𝑠1𝑡1)2

)︂
𝑑𝑠1 . (4.17)

Interchanging the sequence of summation and integration,

𝑓𝑐ℎ(𝑡1, 𝑡2, 𝑎) = −e2𝑎

2j𝑡2

∞∑︁
𝑛1=0

∞∑︁
𝑛2=0

(−1)𝑛2

∫︁ 𝛾1+j∞

𝛾1−j∞
Im
{︂

𝐹

(︂
𝑠1,

[︂
𝑎

𝑡2
+ j
(︀
𝑛2 + 0.5

)︀ 𝜋

𝑡2

]︂)︂}︂
· · ·

×
(︂ (−1)𝑛1(𝑛1 + 0.5)

(𝑛1 + 0.5)2𝜋2 + (𝑎 − 𝑠1𝑡1)2

)︂
𝑑𝑠1 , (4.18)

𝑓𝑐ℎ(𝑡1, 𝑡2, 𝑎) = −e2𝑎

2j𝑡2

∞∑︁
𝑛1=0

∞∑︁
𝑛2=0

(−1)𝑛2(−1)𝑛1(𝑛1 + 0.5)𝐼𝑛1 , (4.19)
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where 𝐼𝑛1 is

𝐼𝑛1 =
∫︁ 𝛾1+j∞

𝛾1−j∞

Im
{︀
𝐹
(︀
𝑠1,
[︀

𝑎
𝑡2

+ j(𝑛2 + 0.5) 𝜋
𝑡2

]︀)︀}︀
(𝑛1 + 0.5)2𝜋2 + (𝑎 − 𝑠1𝑡1)2 , (4.20)

now, similarly as done for the first partial i.L.t., i.e. evaluating the integral by completing the
integration path on a semi-circle with an infinite radius and using the residual theorem and then
performing some mathematical manipulations the resulting approximate algorithm is, [26],

𝑓𝑐ℎ(𝑡1, 𝑡2, 𝑎) = e2𝑎

𝑡1𝑡2

∞∑︁
𝑛1=0

∞∑︁
𝑛2=0

(−1)𝑛1+𝑛2 · · ·

× Im
{︂

𝐹

(︂ [𝑎 + j(𝑛1 + 0.5)𝜋]
𝑡1

,
[𝑎 + j(𝑛2 + 0.5)𝜋]

𝑡2

)︂}︂
, (4.21)

noting that the parameter 𝑎 can be same or different valued for each variable, which can help
optimize the results. Furthermore, we continue with the 2D expansion of the second i.L.t.
Bromwich integral exponential kernel, i.e. the 𝐸𝑠ℎ(𝑠𝑡, 𝑎) part. Henceforth, the reciprocal
hyperbolic function appearing in 𝐸𝑠ℎ(𝑠𝑡, 𝑎) is expressed by the infinite sum of rational functions

1
sinh 𝑧

= 1
𝑧

+ 2𝑧
∞∑︁

𝑛=1

(−1)𝑛

𝑛2𝜋2 + 𝑧2 , (4.22)

Replacing both exponential kernels that appear in the double integral (4.3), by their respective
approximations 𝐸𝑠ℎ2 and 𝐸𝑠ℎ1, we get

𝐸𝑠ℎ2(𝑠2𝑡2, 𝑎) = e2𝑎

[︃
1

2(𝑎 − 𝑠2𝑡2) + (𝑎 − 𝑠2𝑡2)
∞∑︁

𝑛2=1

(−1)𝑛2

𝑛2
2𝜋2 + (𝑎 − 𝑠2𝑡2)2

]︃
, (4.23)

𝐸𝑠ℎ1(𝑠1𝑡1, 𝑎) = e2𝑎

[︃
1

2(𝑎 − 𝑠1𝑡1) + (𝑎 − 𝑠1𝑡1)
∞∑︁

𝑛1=1

(−1)𝑛1

𝑛2
1𝜋2 + (𝑎 − 𝑠1𝑡1)2

]︃
, (4.24)

Afterwards, following similar process as done for the first derivation i.e. from (4.12) to (4.21),
namely performing the first and second partial i. L. t. with the similar assumptions and
considerations, then the second approximation is obtained and the resulting algorithm is given
as, [26],

𝑓𝑠ℎ(𝑡1, 𝑡2, 𝑎) = e2𝑎

2𝑡1𝑡2

[︂1
2𝐹

(︂
𝑎

𝑡1
,

𝑎

𝑡2

)︂
+

∞∑︁
𝑛2=1

(−1)𝑛2Re
{︂

𝐹

(︂
𝑎

𝑡1
,

[︂
𝑎 + j𝑛2𝜋

𝑡2

]︂)︂}︂
· · ·

+
∞∑︁

𝑛1=1
(−1)𝑛1Re

{︂
𝐹

(︂[︂
𝑎 + j𝑛1𝜋

𝑡1

]︂
,

𝑎

𝑡2

)︂}︂
· · ·

+ 2
∞∑︁

𝑛1=1

∞∑︁
𝑛2=1

(−1)𝑛1+𝑛2Re
{︂

𝐹

(︂[︀𝑎 + j𝑛1𝜋

𝑡1

]︀[︀𝑎 + j𝑛2𝜋

𝑡2

]︀)︂}︂]︂
. (4.25)

Finally, for a higher accuracy of the method, the arithmetic mean of (4.21) and (4.25) is
considered as the 2D hyperbolic NILT algorithm, and Euler transform is used to accelerate the
convergence of infinite series, since it has shown the best results for the 1D hyperbolic NILT. It is
worth mentioning that the original variables i.e. 𝑡1, 𝑡2 can be any two variables, such as time and
space for instance.
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4.2 Error analysis of devised 2D hyperbolic NILT method
Investigating the 2D NILT algorithm (4.21) and its derivation steps, it can be noticed that there
exist two sources of errors, namely, the static error and the dynamic error [5]. The latter resulting
from the practical truncation of the infinite series of the algorithm up to a certain number of terms
when performing a practical computation, this error can be significantly reduced by successfully
adapting suitable convergence acceleration techniques, such as those presented in Sect. 3.2 for
the 1D hyperbolic NILT method. In contrast, the static error is caused by the approximation of
the exponential kernel e𝑠𝑡 by the proposed hyperbolic relation approximations, and this can be
decreased by an optimization of the parameter 𝑎, as will be investigated in more details in this
section [26].

In order to efficiently compute the static error of (4.21), first, we start by expressing the
approximate kernels 𝐸𝑐ℎ1(𝑠1𝑡1, 𝑎) and 𝐸𝑐ℎ2(𝑠2𝑡2, 𝑎) both by an alternative manner, namely

e𝑠𝑡 ≈ 𝐸𝑐ℎ(𝑠𝑡, 𝑎) = e𝑎

2cosh(𝑎 − 𝑠𝑡) = e𝑠𝑡

1 + e−2𝑎e2𝑠𝑡
, (4.26)

When the parameter 𝑎 > 𝛾𝑡, it is possible to expand the fraction in (4.26) by a convergent
MacLaurin series

𝐸𝑐ℎ(𝑠𝑡, 𝑎) = e𝑠𝑡 +
∞∑︁

𝑛=1
(−1)𝑛e−2𝑛𝑎e(2𝑛+1)𝑠𝑡, (4.27)

Considering the alternative approximation of the exponential kernel, and performing the first
partial i.L.t. with respect to 𝑠2 we get

𝐹𝑐ℎ2(𝑠1, 𝑡2, 𝑎) = 𝐹2(𝑠1, 𝑡2) + 𝜀𝑐ℎ2(𝑠1, 𝑡2, 𝑎), (4.28)

where the expression 𝜀𝑐ℎ2(𝑠1,𝑡2, 𝑎) = −e−2𝑎𝐹2(𝑠1, 3𝑡2)+e−4𝑎𝐹2(𝑠1, 5𝑡2)−· · · . Assuming e−2𝑎 << 1
and continuing for the second partial i.L.t. with respect to 𝑠1, the result is

𝑓𝑐ℎ(𝑡1, 𝑡2, 𝑎) = 𝑓(𝑡1, 𝑡2) − e−2𝑎𝑓(𝑡1, 3𝑡2) +
∞∑︁

𝑛1=1

(︂
(−1)𝑛1e−2𝑛1𝑎𝑓

(︀
[2𝑛1 + 1]𝑡1, 𝑡2

)︀)︂
· · ·

− e−2𝑎
∞∑︁

𝑛1=1

(︂
(−1)𝑛1e−2𝑛1𝑎𝑓

(︀
[2𝑛1 + 1]𝑡1, 3𝑡2

)︀)︂
= 𝑓(𝑡1, 𝑡2) + 𝜀𝑐ℎ(𝑡1, 𝑡2, 𝑎). (4.29)

At this point the static error can be theoretically computed through the resulting absolute error,
namely

𝜀𝑐ℎ(𝑡1, 𝑡2, 𝑎) = 𝑓𝑐ℎ(𝑡1, 𝑡2, 𝑎) − 𝑓(𝑡1, 𝑡2) ≈ −e−2𝑎𝑓(3𝑡1, 𝑡2) − e−2𝑎𝑓(𝑡1, 3𝑡2)
≈ 2𝑀𝑒−2𝑎, (4.30)

where 𝑀 is a maximal absolute value of an original function 𝑓(𝑡1, 𝑡2). It is evident that the static
error declines rapidly by increasing the parameter 𝑎.

In previous work [5], it was shown that the hyperbolic NILT method can be considered to
behave as a low-pass filter with the cutoff frequency varying with time, i.e. 𝑓cut = 𝑛𝑠𝑢𝑚

2𝑡 . Taking
this point into consideration can have a more clear understanding for the derived theoretical
static error for the 2D hyperbolic NILT and its relation to the appointed number of terms and the
cutoff frequency. Namely, when multiplicative constants at the variables 𝑡𝑖, 𝑖 = 1, 2, increase in
the error formula (4.30), its corresponding harmonic component disappears earlier. For instance,
considering the approximate static error 𝜀𝑐ℎ(𝑡1, 𝑡2, 𝑎) = −e−2𝑎𝑓(3𝑡1, 𝑡2) − e−2𝑎𝑓(𝑡1, 3𝑡2) · · · when
𝑛𝑠𝑢𝑚 = 120 we get 𝑡1 = 𝑛𝑠𝑢𝑚

(2·3) = 20 s, 𝑡2 = 𝑛𝑠𝑢𝑚
(2·1) = 60 s and so on. In Table 4.1 the theoretical

absolute static errors of the proposed 2D hyperbolic NILT method for some typical 2D Laplace
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transforms and their known originals are shown.

Tab. 4.1: Absolute static errors of the hyperbolic 2D NILT

Function I II

𝐹 (𝑠1,𝑠2) 1
(𝑠1+1)(𝑠2+2)

1
((𝑠1+1)(𝑠2+1))2

𝑓(𝑡1,𝑡2) e−𝑡1−2𝑡2 𝑡1𝑡2e−(𝑡1+𝑡2)

Abs.error −e−(3𝑡1+2𝑡2+2𝑎)−e−(𝑡1+6𝑡2+2𝑎) −3𝑡1𝑡2e−2𝑎
(︀
e−(3𝑡1+𝑡2)+e−(𝑡1+3𝑡2))︀

In the next section, the developed 2D hyperbolic NILT accelerated with Euler transform is
compared with some other available 2D NILT methods as for their accuracy and computational
efficiency. As these compared methods do not have any open access program codes available for
use, thus, they were programmed in the Matlab language in order to fairly test them.

4.3 Comparative analysis of the 2D hyperbolic NILT method
The developed 2D hyperbolic NILT method under discussion is compared with two other methods;
namely, the 2D NILT method from K. Singhal et al. [14], and the 2D-NILT proposed by M.
Moorthy [54]. To evaluate the accuracy, the 𝜁2 measure with a grid of 64 × 64 points is used, and
is expressed as follows

𝜁2 = 2

⎯⎸⎸⎸⎷ 64∑︁
𝑖=1

64∑︁
𝑗=1

[︀
𝑓(𝑡1𝑖, 𝑡2𝑗) − 𝑓(𝑡1𝑖, 𝑡2𝑗)

]︀2
(64 × 64) (4.31)

where 𝑓 is the original function and 𝑓 is the corresponding 2D-NILT result. Three test functions
with known originals are used for the accuracy test; namely,

• 𝐹1(𝑠1, 𝑠2) = [(𝑠2
1 + 1)(𝑠2

2 + 1)]−1 → 𝑓1(𝑡1, 𝑡2) = sin(𝑡1)sin(𝑡2),

• 𝐹2(𝑠1, 𝑠2) = (𝑠1 + 𝑠2)[(𝑠2
1 + 1)(𝑠2

2 + 1)]−1 → 𝑓2(𝑡1, 𝑡2) = sin(𝑡1)cos(𝑡2), and

• 𝐹3(𝑠1, 𝑠2) = (𝑠2
2 − 1)[(𝑠1 + 0.2)2 + 1]−1(𝑠2

2 + 1)−2 → 𝑓3(𝑡1, 𝑡2) = 𝑡2e−0.2𝑡1sin(𝑡1)sin(𝑡2).
Respective accuracy results for each of the 2D NILT methods, using the test functions 𝐹1, 𝐹2 and
𝐹3, are shown in Table 4.2.

Tab. 4.2: Accuracy measures of 2D NILT methods using three test functions

2D NILT Method 𝐹1 𝐹2 𝐹3

Proposed 2.33 · 10−1 0.462 0.233

2D Singhal-NILT 1.56 · 10−3 0.499 0.291

2D Moorthy-NILT 0.6706 0.984 0.124
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5 APPLICATIONS OF MNILT METHODS IN THE
FIELD OF ELECTRICAL ENGINEERING

The multidimensional NILT (MNILT) methods have some potential advantages, in contrast to the
1D NILT method, which lay on the type of applications that can be solved, e.g. nonlinear circuit
solution, and the ability of solving systems mathematically described by two variables, such as
continuous space-time related systems. Moreover, using MNILT applications described by more
than two variables can be solved, for example using 3D NILT to solve nearly nonlinear systems
usinng Volterra series expanssion. The following sections are structured as follows: first the
application of 2D hyperbolic NILT on simulating a lossy TL is presented [26], second a possibility
of simulating weakly nonlinear circuit via MNILT methods [55].

5.1 Transmission line simulation using the 2D hyperbolic NILT
method

Here, the 2D hyperbolic NILT method will be used to simulate voltage/current distributions along
the TLs, as shown on a Laplace-domain TL model in Fig. 5.1 [26,56].

Fig. 5.1: Transmission line model in Laplace-domain with respect to the time variable.

As it is known, a TL can be described mathematically by a pair of partial differential equations
(telegraphic equations) of the form

− 𝜕𝑣(𝑡, 𝑥)
𝜕𝑥

= 𝑅0𝑖(𝑡, 𝑥) + 𝐿0
𝜕𝑖(𝑡, 𝑥)

𝜕𝑡
, −𝜕𝑖(𝑡, 𝑥)

𝜕𝑥
= 𝐺0𝑣(𝑡, 𝑥) + 𝐶0

𝜕𝑣(𝑡, 𝑥)
𝜕𝑡

; (5.1)

the Laplace-domain TL model in Fig. 5.1 results from the application of the Laplace transform,
with respect to time, on the set of telegraphic equations (5.1), which is also represented by the
equations (3.3) and (3.4) given in Chapt. 3; henceforth, these equations can be further simplified
by transforming them not only with respect to the time 𝑡, but also with respect to the geometric
coordinate 𝑥, resulting with fully algebraic equations,

𝑉 (𝑠, 𝑞) = 𝑞𝑉1(𝑠) − 𝛾(𝑠)𝑍𝑐(𝑠)𝐼1(𝑠)
𝑞2 − 𝛾2(𝑠) , (5.2)

𝐼(𝑠, 𝑞) =
𝑞𝐼1(𝑠) − 𝛾(𝑠)

𝑍𝑐(𝑠)𝑉1(𝑠)
𝑞2 − 𝛾2(𝑠) , (5.3)

where zero initial conditions is considered and the boundary conditions are incorporated based on
the terminating circuits. 𝑍𝑐(𝑠1) and 𝛾(𝑠1) are the characteristic impedance and the propagation
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constant, respectively. 𝑉1(𝑠1) and 𝐼1(𝑠1) are given as follows

𝑉1(𝑠1) = 𝑉𝑖(𝑠1) 𝑍𝑐(𝑠1)
𝑍𝑖(𝑠1) + 𝑍𝑐(𝑠1) · 1 + 𝜌2(𝑠1)e−𝛾(𝑠1)2𝑙

1 − 𝜌1(𝑠1)𝜌2(𝑠1)e−2𝛾(𝑠1)𝑙 (5.4)

𝐼1(𝑠1) = 𝑉𝑖(𝑠1) 1
𝑍𝑖(𝑠1) + 𝑍𝑐(𝑠1) · 1 − 𝜌2(𝑠1)e−𝛾(𝑠1)2𝑙

1 − 𝜌1(𝑠1)𝜌2(𝑠1)e−2𝛾(𝑠1)𝑙 . (5.5)

where 𝜌1(𝑠1) and 𝜌2(𝑠1) are reflection coefficients at the beginning and end of the TL respectively.
It is evident from the devised TL equations that the solution in the original domain is not possible
to obtain analytically, though it is feasible by utilizing the 2D hyperbolic NILT method, and hence
obtaining the simulations of the voltage/current waveform distributions along the TL numerically.

5.1.1 Transmission line via 2D hyperbolic NILT case study

As an example let us consider a TL, as in Fig. 5.1., with length of 𝑙 = 1 m [26]. The TL is
characterized by the following p.u.l. parameters: 𝑅0 = 1 mΩ/m, 𝐿0 = 600 nH/m, 𝐺0 = 2 mS/m,
𝐶0 = 80 pF/m. The TL is terminated by the impedances 𝑍𝑖 = 10 Ω, 𝑍2 = 1 kΩ. The TL is
excited with the source voltage waveform:

𝑣𝑖(𝑡) =
{︃

sin2 (︀ 𝜋𝑡
2·10−9

)︀
, for 0 ≤ 𝑡 ≤ 2 · 10−9.

0, otherwise.
(5.6)

The voltage waveform (5.6) has the corresponding Laplace-domain transform: 𝑉𝑖(𝑠1) =
2𝜋2[1−exp(−2·10−9𝑠1)]

𝑠1[(2·10−9𝑠1)2+4𝜋2] . After undergoing the 2D hyperbolic NILT the simulation results of the
voltage/current propagation profiles along the TL are shown, respectively, in Fig. 5.2 and Fig. 5.3.

Fig. 5.2: Voltage distribution along the TL via 2D hyperbolic NILT.

Fig. 5.3: Current distribution along the TL via 2D hyperbolic NILT.
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5.2 Weakly nonlinear-circuit solution via MNILT
Predicting the response of nonlinear systems has been a challenge for scientists and researchers
alike for many years, due to the analytical difficulties in analysing such systems. The significant
importance of analysing nonlinear systems mainly arrises due to the fact that, in the physical
world, several systems are to some extent nonlinear ones. In this section, it will be demonstrated
the possibility of utilizing a MNILT method for the simulation of nonlinear networks based on a
classical approach of Volterra series expansion [55]. There exist several approaches to solve and
analyze nonlinear circuits; these approaches are based mainly on specific numerical techniques
that can solve nonlinear differential equations. When considering a weakly nonlinear system, a
method based on Volterra series expansion can mathematically describe the system accurately
enough from a practical point of view. Nevertheless, the main limitation of this approach lies on
the difficulty of obtaining the time domain results, and hence comes the advantage of using an
MNILT method.

A weakly nonlinear circuit has a leverage that it can be described by third order Volterra
kernels with a very reasonable accuracy. Another advantage is based on the fact that these
Volterra kernels can be experimentally obtained by measuring the 𝑋-parameters through the use
of a nonlinear vector network analyzer (NVNA) and afterwards transferring the results properly
[55, 57]. In theory, the process of the solution is as follows: By utilizing the multidimensional
Laplace transform (MLT) of a time domain nonlinear impulse response a result is a respective
Laplace domain transfer function, and this, in fact, helps to obtain the needed Volterra kernels [58],
by using, for example, a harmonic input method [59]. Then, after solving the system in the Laplace
domain, the final step is to transfer the solution back into the time domain. This process will be
mathematically shown in more detail in this section.
Assuming a response 𝑦(𝑡) to a stimulus 𝑥(𝑡) [60], has the form

𝑦(𝑡) =
∞∑︁

𝑛=1
𝑦𝑛(𝑡) , (5.7)

the infinite sum has the following terms

𝑦𝑛(𝑡) =
∫︁ ∞

−∞

𝑛-fold−−−→
∫︁ ∞

−∞
ℎ𝑛(𝜏1, 𝜏2, · · · , 𝜏𝑛)

𝑛∏︁
𝑖=1

𝑥(𝑡 − 𝜏𝑖)𝑑𝜏𝑖 , (5.8)

with ℎ𝑛(𝜏1, 𝜏2, · · · , 𝜏𝑛) representing a nonlinear impulse response, also known as the 𝑛-th order
Volterra kernel. These equations are shown more clearly as a flow chart in Fig. 5.4. In order to
perform the Laplace-domain approach new variables are introduced by 𝑡1 = 𝑡2 = · · · = 𝑡𝑛 = 𝑡, and
then an 𝑛-dimensional Laplace transform is applied transforming the 𝑛-fold convolution integral
(5.8) into a multidimensional Laplace-domain response [58],

𝑌𝑛(𝑠1, 𝑠2, · · · , 𝑠𝑛) = 𝐻𝑛(𝑠1, 𝑠2, · · · , 𝑠𝑛)
𝑛∏︁

𝑖=1
𝑋(𝑠𝑖) , (5.9)

with 𝐻𝑛(𝑠1, 𝑠2, · · · , 𝑠𝑛) as a nonlinear transfer function, which can be solved for some nonlinear
circuit using for instance the harmonic input method [61]. At this point the time-domain terms
𝑦𝑛(𝑡1, 𝑡2, · · · , 𝑡𝑛) can be obtained by an 𝑛-D ILT, while considering 𝑡1 = 𝑡2 = · · · = 𝑡𝑛 = 𝑡 in the
final results; a graphical representation is shown in Fig. 5.4. As we are limiting our computations
to weakly nonlinear networks, i.e. considering Volterra series expansion up to the 3rd order, thus
the NILTs of 1D, 2D and 3D are needed to get the required time-domain response; for more clarity,
a block diagram of this process is depicted in Fig. 5.4.
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Fig. 5.4: Diagram of a nonlinear circuit solution by using Volterra series expansion and
multidimensional ILTs.

5.2.1 Weakly nonlinear circuits using 1D to 3D NILTs case study

To demonstrate the approach presented in Sect. 5.2, a solution of a weakly nonlinear circuit by
using 1D, 2D and 3D NILTs is presented. Let us consider a nonlinear serial LR circuit, see Fig. 5.5
[55]. The network consists of a linear inductor 𝐿, a linear resistor 𝑅, and a nonlinear resistive
element 𝑅𝑛, the network is excited by the voltage source 𝑣𝑖(𝑡). Assuming square nonlinearity, i.e.
the resistive element 𝑅𝑛 having a quadratic characteristics: 𝑣𝑅𝑛(𝑡) = 𝑅𝑛𝑖2(𝑡).

Fig. 5.5: Electrical circuit with nonlinear resistive element 𝑅𝑛.

In light of the foregoing, the first-order nonlinear ordinary differential equation (NODE) is
given as follows,

𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑅𝑖(𝑡) + 𝑅𝑛𝑖2(𝑡) = 𝑣𝑖(𝑡) . (5.10)

In association with the block diagram in Fig. 5.4, it can be noticed that the excitation voltage 𝑣𝑖(𝑡)
and the current 𝑖(𝑡) represent the stimulus 𝑥(𝑡) and the response 𝑦(𝑡), accordingly. Henceforth,
with respect to (5.9), and assuming a third-order expansion, the following Laplace-domain partial
solutions ought to be resolved,

𝐼1(𝑠1) = 𝐻1(𝑠1)𝑉𝑖(𝑠1), (5.11a)
𝐼2(𝑠1,2 ) = 𝐻2(𝑠1, 𝑠2)𝑉𝑖(𝑠1)𝑉𝑖(𝑠2), (5.11b)
𝐼3(𝑠1, 𝑠2, 𝑠3) = 𝐻3(𝑠1, 𝑠2, 𝑠3)𝑉𝑖(𝑠1)𝑉𝑖(𝑠2)𝑉𝑖(𝑠3) . (5.11c)

With the use of a suitable method, for e.g. here the harmonic input method is used, and hence,
the transfer functions (5.11) are solved,

𝐻1(𝑠1) = 1
𝑠1𝐿 + 𝑅

, (5.12a)

𝐻2(𝑠1, 𝑠2) = −𝑅𝑛𝐻1(𝑠1)𝐻1(𝑠2)𝐻1(𝑠1 + 𝑠2) , (5.12b)

𝐻3(𝑠1, 𝑠2, 𝑠3) = −𝑅𝑛

3 [𝐻1(𝑠1)𝐻2(𝑠2, 𝑠3) + 𝐻1(𝑠2)𝐻2(𝑠1, 𝑠3) · · ·

+𝐻1(𝑠3)𝐻2(𝑠1, 𝑠2)]𝐻1(𝑠1 + 𝑠2 + 𝑠3) . (5.12c)
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Suppose that an exponential pulse is chosen as the excitation voltage source 𝑣𝑖(𝑡),with its Laplace
transform given as follows,

𝑣𝑖(𝑡) = 𝑉0e−𝑎𝑡1(𝑡) L { . }−−−−−→ 𝑉𝑖(𝑠) = 𝑉0
𝑠 + 𝑎

, (5.13)

where 𝑎 ≥ 0, and then substituting (5.13) back into (5.11), solving the respective sub-equations.
The Laplace-domain responses will undergo the 1D, 2D and 3D NILT methods to obtain the
resultant time-domain current response, namely,

𝑖(𝑡) = L−1
1 [𝐼1(𝑠1)]|𝑡1=𝑡 + L−1

2 [𝐼2(𝑠1, 𝑠2)]|𝑡1=𝑡2=𝑡 + L−1
3 [𝐼3(𝑠1, 𝑠2, 𝑠3)]|𝑡1=𝑡2=𝑡3=𝑡

= 𝑖1(𝑡1)|𝑡1=𝑡 + 𝑖2(𝑡1, 𝑡2)|𝑡1=𝑡2=𝑡 + 𝑖3(𝑡1, 𝑡2, 𝑡3)|𝑡1=𝑡2=𝑡3=𝑡

= 𝑖1(𝑡) + 𝑖2(𝑡) + 𝑖3(𝑡) . (5.14)

For the simulation tests, the following parameters are considered: 𝐿 = 100 mH, 𝑅 = 100 mΩ,
𝑅𝑛 = 100 mΩA−1, 𝑉0 = 10 mV, and 𝑎 = 1. The results are illustrated in Fig. 5.6 and Fig. 5.7,
showing individual terms 𝑖𝑖(𝑡), namely: 𝑖1(𝑡), 𝑖2(𝑡), and 𝑖3(𝑡), respectively. Two cases are simulated
first is with 𝑎 = 1 (an exponential impulse), and the second one with 𝑎 = 0 (a unit step), see
(5.13), where the results are depicted in Fig. 5.6 and Fig. 5.7, respectively.

(a) (b) (c)

Fig. 5.6: Numerical inversions leading to current response Volterra series terms by (a) 1D NILT,
(b) 2D NILT, (c) 3D NILT, for an exponential impulse.

(a) (b) (c)

Fig. 5.7: Numerical inversions leading to current response Volterra series terms by: (a) 1D NILT,
(b) 2D NILT, (c) 3D NILT, for a unit step.

The resultant current responses, computed according to (5.14), are depicted in Fig. 5.8, for
both cases accordingly.
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(a) (b)

Fig. 5.8: Resulting current response for: (a) an exponential impulse, (b) a unit step.

Furthermore, the resulting current responce is computed, and the accuracy of the method,
considering the exponential input case 𝑎 = 1, is verified by comparing the resultant current
response of NODE, in (5.10), computed by a Matlab built-in function, particularly, the ODE45
Runge-Kutta function, which is applied directly to the NODE, and then analyzing the relative
errors, the results are shown in Fig. 5.9 [55].

(a) (b) (c)

Fig. 5.9: Resultant current responce for the case 𝑎 = 1 by: (a) Volterra series solution, (b)
Runge-Kutta method, and (c) the relative error.

The simulation results were obtained using Matlab language on a common PC, and the CPU
computation times were generally less than one min, while considering 64 points of time division.
The 1D NILT up to 3D NILT programming codes used are available in [55].
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6 RESEARCH CHALLENGES AND CONCLUSION
In this chapter, the conclusions of the doctoral thesis are presented and summarized. The main
goals can be listed as follows:

• Research and development of effective NILT methods.
• Development of a promising 1D NILT method, including the detailed study of its error

analysis and its successful program implementation and verification.
• Enhancements on the NILT method by incorporating different infinite series convergence

acceleration techniques.
• Expansion of the proposed hyperbolic NILT method to a higher dimension, including detailed

error analysis and program implementation.
• Experimental implementation of the developed NILT methods on different potential

electrical engineering topics, such as the solution of ODE, PDE and even weakly nonlinear
systems via MNILT method.

• Incorporating fractional-order calculus on the different NILT method field of applications.

In the first chapter, several 1D NILT methods have been tested and analyzed, mainly, regarding
their accuracy, computation speed and the types of functions supported. It is clear that most
available NILT methods are based on the necessity that the inverse transform of polynomial
time functions up to a specific and relatively high power is accurate. Moreover, most of the
available methods suffer from some limitations such as the accuracy of the method itself, the
range of different functions that can be correctly inverted and the large computational time (see
practical accuracy results in Fig. 2.6 and Fig. 2.7). Based on the findings, a proposed hyperbolic
NILT technique that differs from other similar algorithms, namely, by reacting as a nearly ideal
low pass filter with time-variable cutoff frequency, was developed and generalized. Mainly, this
numerical method is based on approximation of the Bromwich integral exponential kernel by
suitable hyperbolic approximations. Furthermore, the method was generalized by reducing the
integration step, while providing higher accuracy of the results. After performing several tests on
different types of functions, this numerical method has proved to yield results with a higher degree
of accuracy and stability, including a wide range of types of functions that can be inverted, e.g.
rational, irrational and transcendental functions in the Laplace domain; this is verified in Fig. 2.6
and Fig. 2.7. The hyperbolic NILT method is tested and compared to other highly cited 1D NILT
methods. Additionally, further enhancements to the hyperbolic NILT method were performed
by adapting several infinite series convergence accelerating algorithms. These algorithms include
the quotient difference algorithm, the epsilon algorithm and the Euler transform. The former
proved to be a method with high stability, while the latter, the Euler transform, improved the
method with a much higher precise inversion accuracy (the results were depicted in Fig. 2.3 to
Fig. 2.5). The 1D hyperbolic NILT, among other methods, was used in several applications in the
electrical engineering and electronics field. These applications include the solution of transient
processes in linear time invariant system. Once a given problem is resolved in the Laplace
domain, the difficult part is to obtain the original results in the time-domain, as, analytically,
it is usually impractical, hard or even impossible to obtain. Thus, using the NILT it is then
possible to overcome these difficulties and obtain the required solution and simulations of these
applications in the time domain. The applications that have been solved include: lossy TL,
fractional-order TL, frequency dependent TL, and furthermore, an expansion to MTL with
fractional-order elements. These successfully preformed simulations were presented in detail in
Chapter 3. Moreover, in Chapter 4, an innovative approach to the numerical computation of the
hyperbolic NILT method two-dimensional expansion was performed. The technique involves the
repeated application of partial inverse Laplace transform operations. The detailed error analysis
of the method was devised and studied in Section 4.2. The 2D hyperbolic NILT was verified
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by utilizing it in more sophisticated applications, such as multiconductor transmission lines
with simulations that contain both time and space variables obtained by a single computation
step (see Fig. 5.2 and Fig. 5.3). Moreover, the 𝑛D NILT is used for potential applications
such as weakly non-linear circuits, while using Volterra series method; these applications were
presented and a case study was done in Chapter 5. Moreover, a novel approach of modeling
some applications using the fractional-order domain, in contrast to the classical integer-orders
of the electronic components, was effectively incorporated in the conducted applications in a
straightforward manner. It was shown that with the benefit of utilizing the Laplace domain, it is
feasible to include these fractional-order elements in the respective models, due to the advantage
of obtaining the original time domain results with the different NILT methods. It was verified
that including fractional-order elements in the simulation tests provides a better representation
of the physical phenomena in such applications. Moreover, imposing fractional-order elements
gives a higher degree of freedom for the optimization of these applications and a better control of
its characteristics; such applications were simulated and the results were depicted in Chapter 3.
All the results displayed in this doctoral thesis were programmed and implemented in the Matlab
language package. For practical requirements, a CD is available which includes all the original
programming codes along with the exercises and experiments performed in this doctoral thesis.

The original contributions to the doctoral thesis are:

• The development of a NILT method with an achievable high degree of accuracy.
• The discovery that the hyperbolic NILT method can be enhanced by adapting suitable

infinite series convergence acceleration techniques, for instance, by providing an absolute
error of about 10−8 or even less for some tested functions.

• The demonstration that the NILT method is a computationally effective method able to
solve mathematical models of interconnects based on telegraphic equations or on RLCG
lumped elements.

• The discovery that using the NILT method followed by the simulation of TL/MTL high-
frequency losses, nonuniformity of the wires, and inclusion of fractional-order TL elements,
in contrast to the conventional integer ones, can be all done in a novel and simple manner.

• Implementation of previous findings into the new developed 2D hyperbolic NILT method,
followed by a detailed error analysis of the method and verification by solving practical
applications in the electrical engineering field.

• Solving weakly nonlinear systems using MNILT method of up to three variables with the
assistance of Volterra series expansion method.

• Optimization of the free parameter values for some 1D and 2D NILT methods.

Future work recommendations:

• Generalization of the hyperbolic 2D NILT method to three variables based on partial
inversions and including the error analysis.

• Familiarization with parallel programming techniques and the possible deployment to
MNILT methods.

• Programming implementations of the method and the simulation of potential applications
requiring MNILTs with a possibility of modeling in the fractional-order domain.

• Possible future collaboration with the Department of Engineering Science and Mechanics,
Pennsylvania State University for the application of the hyperbolic NILT method in direct
and inverse heat conduction and thermoelasticity with prof. A. E. Segall.
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ABSTRACT 
  

Numerical inverse Laplace transform (NILT) methods have become a fundamental part of 

the numerical toolset of practitioners and researchers in a large number of science and 

engineering fields, especially in the electrical engineering applied domain. Mainly, NILT 

techniques assist in getting the time-domain simulations in related applications, e.g. solving 

ordinary differential equations as those appearing when solving lumped-parameter circuits, 

solving partial differential equations as in linear distributed-parameter systems or those 

emerging while investigating signal integrity issues.  

Generally, most available 1D NILT methods are very specific, i.e. they perform well on a 

few type of functions and hence on a limited number of applications; thus the aim of this 

research is to provide a broad treatment of such numerical methods, the development of 

universal NILT method and its expansion to multidimensional NILT which can cover a wide 

field of applications and could provide a practical mechanism for a better diagnosis and 

analysis of time-domain simulations. The reach of the ideas is presented by discussing a 

wide range of case studies and applications; for example, the NILT methods are applied in 

solving transmission lines, including multiconductor ones, and even for the solution of 

weakly non-linear circuits while utilizing multivariable NILTs. With the assistance of  the 

NILT method an advantage of including frequency dependent parameters and using 

fractional-order elements in their respective models can be done in a very accurate and 

simple manner.  
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