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ABSTRAKT 

Práce se zabývá problematikou syntézy hudebních zvuků, konktrétně sestavováním 
algoritmů oscilátorů. K problému je přistupováno z pohledu skládání funkcí a fázového 
zkreslení. Při návrhu potřebných funkcí bylo užito interpolačních polynomů, iteračních 
metod a optimalizace. Byl zkonstruován fázový akumulátor a sinová tvarovací funkce. 
Dále byl předveden způsob, jak zkreslit průběh sinové vlny. Nakonec byla popsána 
metoda pro syntézu rozladěných hlasů pilové vlny. 

ABSTRACT 

This work concerns the problem of synthesizing musical sounds, specifically the problem 
of designing oscillator algorithms. The problem is approached from the perspective of 
function composition and phase distortion. Interpolation polynomials, iteration methods 
and optimization were employed when designing the necessary functions. Phase 
accumulator and a sine waveshaping function were constructed. Furthermore, a way of 
distorting the sine waveform was presented. Finally, a method of synthesizing detuned 
voices of a sawtooth wave was described. 

KLÍČOVÁ SLOVA 

syntéza zvuku, algoritmy oscilátorů, fázové zkreslení, fázový akumulátor, tvarovací 
funkce, unisono efekt 

KEYWORDS 

sound synthesis, oscillator algorithms, phase distortion, phase accumulator, waveshaping 
function, unison effect



 

 

 

BIBLIOGRAFICKÁ CITACE 
NOVÁK, Samuel. Algorithms for Synthesis of Musical Sounds. Brno, 2018. Bachelor’s 
thesis. Brno University of Technology, Faculty of Mechanical Engineering, Institute of 
Automation and Computer Science. 
 



 

 

 

ČESTNÉ PROHLÁŠENÍ 

Prohlašuji, že tato práce je mým původním dílem, zpracoval jsem ji samostatně pod 
vedením Ing. Jana Roupce, Ph.D. a s použitím literatury uvedené v seznamu literatury. 

 
V Brně dne 25. 5. 2018  ……………………………………………… 

Samuel Novák 
 



Contents

1 Introduction 8

2 Continuous Time Periodic Signals 9

3 Phase Accumulator 12

4 Sine Wave Oscillator 14

5 Sine Wave Distortion Effect 18

6 Sawtooth Wave Unison Effect 27

7 Conclusion 32

References 33

7



1 Introduction

Musical sounds can be produced on the devices called sound synthesizers. Ordinary
synthesizers consist of oscillators, filters and envelope generators. Oscillators pro-
duce a wave with a desired waveform and a given base frequency. Usually, the shape
of the produced waveform is static, however oscillators which allow for the waveform
to be continuously modulated do exist. Subsequently, filters are used to alter the
harmonic content of the produced waveveform. Finally, envelope generators intro-
duce a change in the intensity of the sound over time, typically in response to note
keypress events.

This work concerns oscillators only. In the first segment, basic terminology for
describing oscillator algorithms in terms of function composition and phase dis-
tortion is introduced. The problem is formally divided into assembling a phase
accumulator and obtaining a suitable waveshaping function. The construction of
the phase accumulator is performed step by step. Finally, a way of approximating
a sine wave is demonstrated and a sine waveshaping function is specified.

In the second segment, novel oscillator algorithms are presented. Self-modulation
of a sine function is investigated in order to produce a distorted sine waveform.
Subsequently, a particular phase distorting function for emulating the obtained effect
is devised. Later, the interference of slighly detuned sawtooth waves is investigated.
Obtained findings serve as a basis for an alternative method of producing a sawtooth
wave unison effect.

The aim of this work is to both provide a brief introduction into the matter of
sound synthesis and to present novel findings. Intentionally, this work begins with
the basic problems and gradually approaches the more difficult ones.

The complex oscillators presented in the second segment can be used as an alter-
native to the basic oscillators found in traditional sound synthesizers. Furthermore,
they can be used in phase distortion, phase modulation and frequency modulation
settings in order to obtain complex sounds more easily.

It would be appropriate to highlight the paper [1], which initially motivated the
creation of this work. Without being inspired by the paper, this work wouldn’t em-
brace the concepts of function composition and phase distortion to such an extent.
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2 Continuous Time Periodic Signals

When synthesizing musical sounds a common problem we need to solve is that of
generating a periodic signal of a particular base frequency and a desired waveform.
In discrete time systems this is often accomplished by generating a primitive signal
of the particular base frequency and subsequently applying a suitable function onto
such signal in order to obtain the desired waveform. Before we reach the solution for
discrete time systems, let’s briefly delve into the matter of continuous time periodic
signals and their representation.

To illustrate the problem, let’s assume we want to obtain a sinusoidal signal.
Such signal can be represented symbolically by the following equation:

y(t) = sin(2πft) (1)

where y(t) is the output signal, f denotes the base frequency of the signal and t
stands for time. Even though in this particular case we consider f a parameter,
generally it may be a function of time. If we define ϕ(t) = ft we can rewrite
Equation 1 in the following way:

y(t) = sin(2πϕ(t)) (2)

where ϕ(t) represents the phase signal. If we also define g(x) = sin(2πx) we can
express Equation 2 in terms of function composition:

y(t) = (g ◦ ϕ)(t) (3)

where g is the waveshaping function. Furthermore, Equation 3 can be visualized
using a block diagram as depicted in Figure 1.

ϕt g
y(t)

f

Figure 1: Block diagram corresponding to Equation 3.

As apparent from Figure 1 the waveshaping function g is being applied on the
phase signal ϕ(t) in order to yield the output signal y(t). However, a different point of
view is also possible. We can imagine the phase signal ϕ(t) reading out corresponding
values from the waveshaping function g. This idea becomes of importance when we
synthesize musical sounds digitally. In such instance, the waveshaping function g
may be an interpolated wavetable.

Let’s further investigate the relationship of the phase signal ϕ(t) and the wave-
shaping function g by visually comparing the phase signal ϕ(t) with the output
signal (g ◦ ϕ)(t) as depicted in Figure 2.
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Figure 2: Graph comparing the phase signal ϕ(t) with the output
signal (g ◦ ϕ)(t).

As could be observed, the output signal (g ◦ ϕ)(t) is periodic even though the
phase signal ϕ(t) is aperiodic. Consequently, the waveshaping function g must be
periodic with period 1. Since the codomain of the phase signal ϕ(t) is R, the domain
of the waveshaping function g must also be R.

Now comes the time to ask ourselves if the phase signal ϕ(t) could be modified to
be periodic without affecting the output signal (g◦ϕ)(t)? Since the phase signal ϕ(t)
is linear, perhaps a suitable modification could be piecewise linear. Let’s introduce
a boundary function gb with the following definition:

gb(x) = x− floor(x) = x mod 1 (4)

Furthermore, let’s propose a modified phase signal ϕb(t) defined as follows:

ϕb(t) = (gb ◦ ϕ)(t) (5)

By visually comparing the phase signal ϕ(t) with the modified phase signal ϕb(t), it
could be verified that the proposed modification indeed produces a piecewise linear
periodic signal as depicted in Figure 3.
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Figure 3: Graph comparing the phase signal ϕ(t) with the modified
phase signal ϕb(t).

Finally, let’s compare the modified phase signal ϕb(t) with the output signal
(g ◦ ϕb)(t) obtained using the modified phase signal ϕb(t) as depicted in Figure 4.
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Figure 4: Graph comparing the modified phase signal ϕb(t) with
the output signal (g ◦ ϕb)(t).

It is possible to conclude that the output signal wasn’t affected by modifying the
phase signal ϕ(t). The periodic nature of the output signal (g ◦ ϕb)(t) is now satis-
fied by the modified phase signal ϕb(t) itself being periodic, thus the waveshaping
function g no longer needs to be periodic. Furthermore, since the codomain of the
modified phase signal ϕb(t) is 〈0, 1), the domain of the waveshaping function g also
becomes 〈0, 1) rather than R. Finally, it is now feasible to represent the values of
the phase signal using floating-point numbers.
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3 Phase Accumulator

Let’s shift our focus to discrete time systems and try to reproduce the modified
phase signal ϕb(t) in such setting. Since the modified phase signal ϕb(t) is piecewise
linear, it should be possible to recreate the linear segments by accumulating properly
sized phase increments on each successive tick of the sample rate clock.

First, let’s determine the size of the phase increment. We will consider the base
frequency f to be a function of the sample number and denote it as f(n), where n
stands for the sample number. Also, let’s consider k to be the number of samples
per cycle, which can be calculated as follows:

k = T (n) · fs (6)

where T (n) stands for the base period, which is the reciprocal of f(n), and fs denotes
the sampling frequency. In order to proceed further, let’s consider i to be the size
of the phase increment. Assuming we keep the base frequency f(n) constant, the
phase signal must add up to 1 during the cycle, thus the size of the phase increment
i can be derived in the following way:

i =
1

k
=

1

T (n) · fs
=
f(n)

fs
(7)

For the sake of convenience, let’s also define an increment function ginc as follows:

ginc(f, fs) =
f

fs
(8)

Let’s continue by proposing a scheme that calculates a sum of the current value
of the phase increment and the previous value of the phase signal and passes the
sum into the boundary function gb in order to obtain the current value of the phase
signal. Such scheme describes a phase accumulator, which can be represented by
the block diagram shown in Figure 5.

ginc
f(n)

+ gb
ϕ(n)

z−1

fs

Figure 5: Block diagram representing the phase accumulator.

Note that z−1 denotes a unit delay and ϕ(n) stands for the current value of the
phase signal. If we choose ϕ(0) to be a predetermined initial phase, it becomes
possible to calculate the successive values of the phase signal in an iterative fashion
using the following formula:

ϕ(n) = gb

(
ginc
(
f(n), fs

)
+ ϕ

(
n− 1

))
(9)

By applying a waveshaping function g on the discrete time phase signal ϕ(n),
we obtain an oscillator (g ◦ϕ)(n) in accordance with the formal distinction outlined
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in the previous chapter. Also, it is possible to insert a phase distorting function
between the phase signal ϕ(n) and the waveshaping function g in order to perform
phase distortion synthesis. This work will further be devoted to constructing suitable
waveshaping and phase distorting functions.

Since the discrete time phase signal ϕ(n) reads out appropriate values from the
waveshaping function g, the time discretization is ensured solely by the discrete time
phase signal ϕ(n), which makes it possible to handle the waveshaping function g as
if the setting was continuous time.

For the sake of completeness, we shall note that the implementation of a phase
accumulator we described permits the base frequency f(n) to be negative, which
allows for a through-zero frequency modulation to be performed.
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4 Sine Wave Oscillator

The first waveshaping function we are going to create is that belonging to a sine
wave oscillator, which is commonly found in both analog and digital synthesizers. In
order to approximate a sine wave, it is sufficient to approximate the function in the
first quadrant only. The values from the remaining quadrants are to be resolved by
altering the way of reading out the values from the approximation and by changing
the sign.

For the sake of convenience, let’s define a function f in a way that the values
x ∈ 〈0, 1〉 align with the first quadrant:

f(x) = sin
(π

2
· x
)

(10)

Such function would typically be approximated using a Taylor polynomial. However,
the method we are about to demonstrate works by constructing an interpolation
polynomial between the endpoints of the segment being approximated. By prop-
erly prescribing first order derivatives at the endpoints, smoothness of the resulting
waveshaping function can be ensured.

Let’s introduce a shaping function gsh and prescribe the following properties:

gsh(0) = 0

g′sh(0) =
π

2
g′′sh(0) = 0

gsh(1) = 1

g′sh(1) = 0

(11)

By solving the corresponding system of linear equations the shaping function gsh
can be obtained in the following form:

gsh(x) = (−3 + π) · x4 +
8− 3π

2
· x3 +

π

2
· x (12)

The accuracy of the approximation can be verified by visually comparing the ap-
proximated function f with the shaping function gsh as shown in Figure 6.

-1 0 1 2

-1

0

1

f(x)

gsh(x)

Figure 6: Graph comparing the approximated function f with the
shaping function gsh.
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In order to proceed, we should notice that the half-periods of a sine wave differ
solely by their signs. Therefore it should be possible to generate both half-periods
using the same function, assuming the sign is subsequently changed if necessary.
Let’s consider a half-period function ghp, which creates an individual unit ramp for
each of the half-periods, defined as follows:

ghp(x) =

{
2x, if x < 0.5

2x− 1, if x ≥ 0.5
(13)

Additionally, let’s introduce a sign function gsgn defined in the following way:

gsgn(x) =

{
1, if x < 0.5

−1, if x ≥ 0.5
(14)

Both functions can be compared visually in Figure 7.

0 0.5 1

-1

0

1

gsgn(x)

ghp(x)

Figure 7: Graph comparing the sign function gsgn with the half-
period function ghp.

It should be possible to properly read out the half-periods from the shaping func-
tion gsh if we start reading out backwards when we approach the second quadrant.
In order to accomplish this, let’s propose a folding function gfold, which folds a unit
ramp into a triangle, defined as follows:

gfold(x) =

{
2x, if x < 0.5

2− 2x, if x ≥ 0.5
(15)

The effect of applying the folding function gfold on the half-period function ghp can
be observed in Figure 8.
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1

ghp(x)

(gfold∘ghp)(x)

Figure 8: Graph depicting the effect of applying the folding function
gfold on the half-period function ghp.

Further progress can be made by applying the shaping function gsh. In order to
merge the three operations, let’s introduce an unipolar function guni defined in the
following way:

guni(x) = (gsh ◦ gfold ◦ ghp)(x) (16)

It can be verified visually that the unipolar function guni indeed produces the half-
periods in Figure 9.

0 0.5 1

-1

0

1

(gfold∘ghp)(x)

guni(x)

Figure 9: Graph comparing the unipolar function guni with the
folding function gfold applied on the half-period function ghp.

Finally, the sign function gsgn as defined previously can be employed in order to
obtain a sine waveshaping function gsin defined as follows:

gsin(x) = gsgn(x) · guni(x) (17)

The effect of multiplying the unipolar function guni by the sign function gsgn can be
observed in Figure 10.
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0

1

gsgn(x)

gsin(x)

Figure 10: Graph comparing the sign function gsgn with the function gsin.

Additionally, it is possible to represent the sine waveshaping function gsin using
a block diagram as shown in Figure 11.

ghp
x gfold gsh ×

y(x)

gsgn

Figure 11: Block diagram representing the sine waveshaping function gsin.

In order to evaluate the quality of the approximation, harmonic analysis of the
sine waveshaping function gsin could be performed as shown in Table 1. Notice that
the approximation error manifests itself primarily in the form of parasitic higher-
order harmonic components.

Amplitude
Harmonic Linear dBFS
1 0.998506 -0.01
3 0.000629 -64.03
5 0.000688 -63.25
7 0.000078 -82.20
9 0.000056 -85.05
11 0.000015 -96.34
13 0.000012 -98.42
15 0.000005 -106.47

Table 1: The first 16 harmonic components of the sine waveshaping
function gsin. Only non-zero components appear in the table.

By subtracting the amplitude of the most prominent parasitic component, which
happens to be the 5th harmonic component, from the amplitude of the fundamental
component a signal-to-noise ratio equal to 63.24 dB can be obtained, which should
be deemed sufficient considering practical listening circumstances.
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5 Sine Wave Distortion Effect

With a sine waveshaping function at our disposal, the question that arises is whether
a way of distorting the phase signal reading out from the sine waveshaping function
that would manifest itself in altering the resulting waveform in a controlled manner
exists. Such alteration of the waveform could be performed in order to obtain a
richer harmonic spectrum.

One way of distorting the phase signal can be found through a self-modulation of
a sine function. Let’s consider the scheme depicted in Figure 12, where gnl represents
an arbitrary nonlinear function and m stands for a modulation index.

+
2πx

×

m

gnl

sin
y(x)

Figure 12: Block diagram depicting the self-modulation of a sine function.

As evident from the block diagram, the output of the sine function sin is fed
back as an input after being transformed by the nonlinear function gnl. The amount
of feedback is controlled by the modulation index m. It is possible to express the
output signal y(x) in the form of an implicit function as follows:

y(x) = sin
(
2πx+m · (gnl ◦ y)(x)

)
(18)

In order to focus on a particular case, let’s define the nonlinear function gnl in
the following way:

gnl(x) = (cos ◦ arcsin)(x)− cos(0) =
√

1− x2 − 1 (19)

Consequently, a function f obtained by substituting for the nonlinear function gnl
in Equation 18 can be introduced:

f(x,m) = sin
(
2πx+m ·

√
1− f(x,m)2 −m

)
(20)

The different waveforms generated by the function f as we change the modulation
index m in the range 〈0, 1〉 can be observed in Figure 13.
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Figure 13: Graphs depicting the influence of the modulation index
m on the waveform generated by the function f .

As apparent from Figure 13, the resulting waveform morphs from a sine wave to a
waveform resembling sawtooth/triangle wave as the modulation index m increases.
In other words, the modulation index m mimicks the effect of a low-pass filter
as found in a traditional sound synthesizer. This property makes the function f
interesting from a musical perspective.

Since the function f is implicit, efforts on approximating the function typically
lead to iterative methods. In this case, approximating the function f would re-
quire too many iterations. To overcome the problem, we will propose a function for
generating a reasonable initial guess. Later, a way of achieving nearly optimal re-
laxation will be introduced. In the end, it should be possible to obtain a satisfactory
approximation using 2 iterations only.

Since the half-periods of the approximated function f are symmetric, we will
initially focus on approximating the first half-period. For the sake of convenience,
let’s introduce a half-period function fhp defined as follows:

fhp(x,m) = f
(x

2
,m
)

(21)

If we continue by solving the equation fhp(xdiv,m) = 1, a value xdiv that divides
the half-period in two distinctive segments can be obtained. Let’s define a division
function gdiv, which yields the value xdiv, in the following way:

gdiv(m) =
m

π
+

1

2
(22)

The segments can be visualized by plotting the half-period function fhp with the
value xdiv indicated as shown in Figure 14.
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Figure 14: Graph of the half-period function fhp.

In order to proceed, an interpolation polynomial for each of the segments will
be proposed. Let’s denote the first interpolation polynomal h1 and prescribe the
following properties:

h1(0) = 0

h′1(0) = π

h1(xdiv) = 1

h′1(xdiv) = 0

(23)

By solving the corresponding system of linear equations the first interpolation poly-
nomal h1 can be obtained in the following form:

h1(x, xdiv) =
−2 + πxdiv

x3div
· x3 +

3− 2πxdiv
x2div

· x2 + π · x (24)

In the same vein, let’s denote the second interpolation polynomal h2 and pre-
scribe the following properties:

h2(0) = 1

h′2(0) = s

h2(l) = 0

h′2(l) = −π

(25)

where l denotes the segment length and s stands for the slope. By solving the
corresponding system of linear equations the second interpolation polynomal h2 can
be obtained in the following form:

h2(x, l, s) =
2 + l(−π + s)

l3
· x3 +

−3 + l(π − 2s)

l2
· x2 + s · x+ 1 (26)

Both interpolation polynomials are used inside an initializing function ginit, which
computes the initial guess, defined as follows:

ginit(x, xdiv, s) =

{
h1(x, xdiv), if x < xdiv

h2(x− xdiv, 1− xdiv, s), if x ≥ xdiv
(27)
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In order to determine the slope s, the following optimization problem will be
solved for chosen values of the modulation index m:

min
s

1∫
gdiv(m)

(
ginit

(
x, gdiv(m), s

)
− fhp

(
x,m

))2
dx (28)

Subsequently, a function in the form a ·x4 is fitted to the points obtained by solving
the optimization problem. This way, a slope function gs can be determined as
follows:

gs(m) = −10.6736 ·m4 (29)

The slope function gs can be visually compared with the points obtained by solving
the optimization problem in Figure 15.

0 1

0

-2

-4

-6

-8

-10

-12

modulation index

gs (m)

Figure 15: Graph comparing the slope function gs (drawn red) with
the points obtained by solving Equation 28 (drawn black).

Finally, it is possible to define the initial guess yinit in the following way:

yinit(x,m) = ginit
(
x, gdiv(m), gs(m)

)
(30)

Furthermore, the initial guess yinit can be visually compared with the half-period
function fhp being approximated in Figure 16.
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Figure 16: Graph comparing the initial guess yinit with the half-
period function fhp.

In order to progress towards computing an interation, let’s introduce a phase
function gph defined as follows:

gph(x, y,m) =


x

2
+
m ·
√

1− y2 −m
2π

, if y < 1

x

2
− m

2π
, if y ≥ 1

(31)

where y is the current estimate. Note that the definition of the phase function gph
allows for the current estimate y to overshoot. Now it becomes possible to compute
the first iteration yiter in the following way:

yiter(x,m) = (gsin ◦ gph)
(
x, yinit(x,m),m

)
(32)

With the first iteration yiter at our disposal, it becomes possible to perform
relaxation. Let’s consider an approximate value yapprox defined as follows:

yapprox(x,m, ω) = yinit(x,m) + ω ·
(
yiter(x,m)− yinit(x,m)

)
(33)

where ω denotes the relaxation factor. In order to determine the relaxation factor ω,
the optimal relaxation factor will be computed for chosen values of the modulation
index m in each segment separately. In the first segment, the following optimization
problem will be solved:

min
ω

gdiv(m)∫
0

(
(gsin ◦ gph)

(
x, yapprox(x,m, ω),m

)
− fhp

(
x,m

))2
dx (34)

In the second segment, the optimization problem is formulated similarly:

min
ω

1∫
gdiv(m)

(
(gsin ◦ gph)

(
x, yapprox(x,m, ω),m

)
− fhp

(
x,m

))2
dx (35)
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By fitting a function in the form a ·x2 +b ·x+1 to the points obtained by solving
the optimization problem in the first segment, we obtain a polymonial h3 as follows:

h3(m) = 0.202709 ·m2 − 0.665161 ·m+ 1 (36)

The polymonial h3 can be visually compared with the points obtained by solving
the optimization problem in the first segment in Figure 17.
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h3(m)

Figure 17: Graph comparing the polymonial h3 (drawn red) with
the points obtained by solving Equation 34 (drawn black).

In the same vein, by fitting a function in the form a ·x3+1 to the points obtained
by solving the optimization problem in the second segment, a polymonial h4 can be
obtained as follows:

h4(m) = 3.39188 ·m3 + 1 (37)

The polymonial h4 can be visually compared with the points obtained by solving
the optimization problem in the second segment in Figure 18.
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Figure 18: Graph comparing the polymonial h4 (drawn red) with
the points obtained by solving Equation 35 (drawn black).
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Finally, it becomes possible to introduce a coefficient function gcoef defined in
the following way:

gcoef (x, xdiv,m) =

{
h3(m), if x < xdiv

h4(m), if x ≥ xdiv
(38)

Subsequently, the relaxation factor ω can be determined as follows:

ω(x,m) = gcoef
(
x, gdiv(m),m

)
(39)

With the relaxation factor ω at our disposal, we can proceed by contructing an
approximation function gapprox, which yields the final approximation of the phase
signal for the first half-period, defined in the following way:

gapprox(x,m) = gph

(
x, yapprox

(
x,m, ω(x,m)

)
,m
)

(40)

This operation represents the second iteration. By applying the sine waveshaping
function gsin on the approximation function gapprox, it becomes possible to visu-
ally evaluate the quality of the approximation by comparison with the half-period
function fhp as shown in Figure 19.

0 xdiv 1

0

1

fhp(x,1)

(gsin∘gapprox)(x,1)

Figure 19: Graph comparing the sine waveshaping function gsin
applied on the approximation function gapprox with the half-period
function fhp being approximated.

In order to proceed, the phase signal for the whole period must be reconstructed.
Let’s consider a shift function gshift defined as follows:

gshift(x) =

{
0, if x < 0.5

0.5, if x ≥ 0.5
(41)

Assuming the phase signal for the second half-period can be obtained by adding
a constant to the phase signal from the first half-period, it should be possible to
reconstruct the phase signal for the whole period as outlied in Figure 20.
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y(x)

gshift

Figure 20: Block diagram representing the distortion function gdist.

In accordance with Figure 20, we can introduce a distortion function gdist defined
in the following way:

gdist(x,m) = gapprox
(
ghp(x),m

)
+ gshift

(
x
)

(42)

Note that ghp refers to the half-period function defined in Equation 13. It can
be visually verified that the distortion function gdist indeed reads out the resulting
waveform from the sine waveshaping function gsin properly in Figure 21.
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gdist(x,1)

(gsin∘gdist)(x,1)

Figure 21: Graph depicting the distortion function gdist reading out
the resulting waveform from the sine waveshaping function gsin.

Finally, the quality of the approximation can be inspected by comparing the
composed function (gsin ◦ gdist) with the function f being approximated for varying
values of the modulation index m as shown in Figure 22.
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Figure 22: Graphs depicting the composed function (gsin ◦ gdist)
(drawn red) laid over the the function f (drawn black) for varying
values of the modulation index m.

It should be noted that the distortion function gdist can be used with any wave-
shaping function. Furthermore, it could be used alongside other functions distorting
the phase. For example, let’s consider a reverse function grev defined as follows:

grev(x) =

{
0.5− x, if x < 0.5

x, if x ≥ 0.5
(43)

If we distort the phase signal using the reverse function grev before reaching the
distortion function gdist, it is possible to obtain a waveform resembling a sawtooth
wave as depicted in Figure 23.
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Figure 23: Graph depicting the reverse function grev and the wave-
form obtained using the reverse function grev.
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6 Sawtooth Wave Unison Effect

In this chapter, the effect emerging from the interference of slightly detuned saw-
tooth waves will be examined and a method for emulating the effect will be devised.
Slightly detuned waves are often combined in order to create a musically interesting
change in timbre. This way, a time-variant timbre can be obtained from a combina-
tion of otherwise static sounds. The effect resulting from the combinaton of slightly
detuned waves of the same waveform is usually called unison effect.

With regards to the particular case of combining slightly detuned sawtooth
waves, a well-known instance of the effect can be found in the virtual analog synthe-
sizer Roland JP-8000. This synthesizer featured a special oscillator called Supersaw,
which emulated the sound of seven slightly detuned sawtooth waves combined. The
resulting effect and its subtleties were extensively described in [2], including an em-
ulation of the effect. Rather than emulating the particular effect found in Roland
JP-8000, this work concerns obtaining a similar effect for use in the context of phase
distortion synthesis.

Generally, synthesizing detuned voices requires introducing a separate phase ac-
cumulator for each of the voices. However, an algorithm for synthesizing a sawtooth
wave with an arbitrary number of detuned sidebands using two phase accumulators
only will be explained.

Assume a detuned sideband consisting of two sawtooth waves with the relative
frequencies (1− d) and (1 + d). This scenario can be described using the following
function:

f1(x) =
1

2
·
(
(1− d) · x mod 1 + (1 + d) · x mod 1

)
(44)

where d stands for the relative spread. With d = 0.001, the wavefroms generated
by the function f1 are shown in Figure 24. Notice that the individual snapshots
align with a cycle of a sawtooth wave with a unit frequency. The interference of the
sideband costituents can be perceived as a continous variation in the waveshape.
Furthermore, the resulting variation in the waveshape is periodic, with the period
determined as follows:

Tside =
1

d
· Tbase (45)

where Tbase represents the base period, which corresponds to a unit frequency in the
relative terms.
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Figure 24: Graphs depicting the wavefroms generated by the function f1.

Considering the resulting waveforms are piecewise linear, let’s try subtracting a
sawtooth wave with a unit frequency from the function f1. This way, the following
function is obtained:

f2(x) = f1(x)− x mod 1 (46)

As in the previous case, the snapshots of the function f2 are visualized in Figure 25.
Apparently, the subtraction yields waveforms which are piecewise constant. Such
waveforms should be trivial to reproduce.
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Figure 25: Graphs depicting the wavefroms generated by the function f2.
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In order to reporduce the function f2, let’s consider a difference function gdiff
defined as follows:

gdiff (x,m) =


0.5, if x <

m

2

0, if
m

2
≤ x < 1− m

2

−0.5, if 1− m

2
≤ x

(47)

where m stands for the modulation parameter. The waveforms generated by the
difference function gdiff for different values of the modulation parameter m can be
observed in Figure 26. Apparently, in comparison with Figure 25, the difference
function gdiff reproduces only half of the period Tside.

0 1

-0.5

0

0.5
m=0.00

0 1

-0.5

0

0.5
m=0.25

0 1

-0.5

0

0.5
m=0.50

0 1

-0.5

0

0.5
m=0.75

0 1

-0.5

0

0.5
m=1.00

Figure 26: Graphs depicting the wavefroms generated by the dif-
ference function gdiff for different values of the parameter m.

In order to reproduce the whole period, let’s recall the folding function gfold from
Equation 15 and define the difference as:

ydiff (x,m) = gdiff
(
x, gfold(m)

)
(48)

We can propose reproducing the function f1 in the following way:

f3(x,m) = x+ ydiff (x,m) (49)

As depicted in Figure 27, it is possible to reproduce the function f1 using the function
f3, assuming the modulation parameter m is modulated by a sawtooth wave. The
frequency of the sawtooth wave should correspond to the period Tside.
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Figure 27: Graphs depicting the wavefroms generated by the function f3.

For the sake of convenience, let’s recall the boundary function gb from Equation
4 and introduce a sideband function gside defined as follows:

gside(x,m, i) = x+ ydiff
(
x, gb(i ·m)

)
(50)

The sideband function gside can be used to generate i-th sideband consisting of two
sawtooth waves with the relative frequencies (1 − i · d) and (1 + i · d), each with
the amplitude 1

2
. Finally, it is possible to propose a unison function gunison in the

following form:

gunison(x,m) =
1

2n+ 1
·
(
x+ 2 ·

n∑
i=1

gside(x,m, i)
)

(51)

The unison function gunison generates 2n + 1 voices with the relative frequecies(
1 − n · d

)
, . . . , 1, . . . ,

(
1 + n · d

)
, each with the amplitude 1

2n+1
. As proposed,

only two phase accumulators are necessary regardless of the number of voices being
synthesized, since the unison function gunison has only two inputs.

This approach brings a few advantages. First, even though the unison function
gunison should be modulated with a sawtooth wave in order to reproduce the unison
effect, it may be modulated in an arbitrary way. For example, it becomes possible
to create rhythmic variations in timbre by controlling the modulation parameter m
using a sequencer. Also, synchronizing the change in timbre with the song tempo
becomes effortless. Lastly, the unison function gunison can be used alongside other
phase distorting functions and waveshaping functions.

To illustrate the point, let’s consider using the unison function gunison alongside
the functions from the previous chapters in the following way:

f4(x,m) = −(gsin ◦ gdist)
(
(grev ◦ gunison)(x,m), 1

)
(52)
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With the number of the detuned sidebands n = 3, the waveforms generated by the
function f4 for different values of the parameter m are depicted in Figure 28.
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Figure 28: Graphs depicting the wavefroms generated by the function f4.
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7 Conclusion

After introducing the basic terminology, this work explained how to assemble a
phase accumulator. A possible way of constructing a sine waveshaping function
based upon an iterpolation polynomial approximating the first quadrant of a sine
function was shown.

Self-modulation of a sine function was used to create a distorted sine waveform.
Also, a phase distorting function capable of reading out a satisfactory approximation
of the distorted waveform from the sine waveshaping function was designed.

The effect caused by an interference of slightly detuned sawtooth waves was ob-
served. Subsequently, a method of producing a sawtooth wave unison effect, which
requires only two phase accumulators regardless of the number of the detuned side-
bands being synthesized, was described. Finally, an example showcasing functions
presented in the different chapters being composed together was given.

Future work could be dedicated to obtaining additional distorted waveforms us-
ing the process of a self-modulation. Different nonlinear functions could be proposed
and the sine function could be substituted. Alternatively, an emulation of the Su-
persaw oscillator found in Roland JP-8000 could be built based on the sawtooth
wave unison effect presented.
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VÄLIMÄKI. Phaseshaping Oscillator Algorithms for Musical Sound
Synthesis. SMC Proceedings of the 7th Sound and Music Computing
Conference, Barcelona, Spain, July 21-24, 2010. 2010. Available at:
http://smcnetwork.org/files/proceedings/2010/15.pdf

[2] SZABO, Adam. How to Emulate the Super Saw. Stockholm, 2010. Bachelor’s
thesis. Royal Institute of Technology, School of Computer Science and Commu-
nication.

33


