PROGRAMOVÁNÍ CNC STROJŮ SE SYSTÉMEM FANUC.

PROGRAMMING CNC MACHINES WITH DIGITAL CONTROL SYSTEM FANUC.

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE
AUTHOR
ALENA TKÁČOVÁ

VEDOUCÍ PRÁCE
SUPERVISOR
Ing. MILAN KALIVODA

BRNO 2009
ABSTRAKT

Téma této práce je zaměřeno na programování CNC strojů, které se v současnosti využívá v mnoha odvětvích strojírenského průmyslu. Téma je rozpracováno a členěno v přehledných kapitolách, kdy v první části se zohledňuje vývoj řízení obráběcích strojů od tvrdé automatizace až po počítačem řízené obráběcí stroje, druhá část rozebírá obecně řídící systém Fanuc včetně popisu strojů a třetí část obsahuje aplikaci reálného obrábění s NC programem pro soustružení a frézování vzorové součásti v určité strojírenské firmě.

Klíčová slova
CNC stroj, programování, kód ISO, řídící systém Fanuc, programové funkce, hlavní program, podprogram, makro, blok programu, soustružení, frézování

ABSTRACT

The theme of this bachelor thesis focuses on the CNC-programming, which is currently used in many branches of the machine industry. The theme is elaborated and divided into well-arranged chapters. The first part deals with the development of the control system of cutting machines, beginning with the hard automatization and ending with the computer-controlled cutting machines. In the second part there is described the general control system Fanuc including the machine description. The third part contains the application of the real cutting procedure - with the NC program for turning and milling of the sample component in a certain company.

Key words
CNC machine, programming, code ISO, control system Fanuc, programming functions, main program, macro, partial program, turning, milling

BIBLIOGRAFICKÁ CITACE

Prohlášení

Prohlašuji, že jsem bakalářskou práci na téma Programování CNC strojů se systémem Fanuc vypracovala samostatně s použitím odborné literatury a pramenů, uvedených na seznamu, který tvoří přílohu této práce.

Datum

..

Alena Tkáčová
Poděkování

OBSAH

Prohlášení .. 5
Poděkování ... 6
Obsah .. 7
Úvod .. 8
1 PROGRAMOVÁNÍ CNC STROJŮ ... 9
 1.1 Vývoj programování .. 9
 1.2 Způsoby programování .. 10
2 PROGRAMOVÁNÍ POMOCÍ SYSTÉMU FANUC .. 13
 2.1 Popis obráběcích strojů .. 13
 2.1.1 CNC Soustruh Mori Seiki SL-25 .. 13
 2.1.2 Vertikální obráběcí centrum Mikron VCE 750 ... 14
 2.2 Struktura systému .. 15
 2.2.1 Definice vztažných bodů .. 15
 2.2.2 Nastavení nulového bodu obrobku ... 16
 2.2.3 Tvorba hlavního programu ... 18
 2.2.4 Základní funkce ... 18
 2.2.5 Podprogramy ... 23
 2.2.6 Makra .. 25
 2.3 Vlastnosti a využití .. 25
3 APLIKACE NA REÁLNÉ OBRÁBĚNÍ ... 26
 3.1 Soustružení .. 26
 3.2 Frézování .. 29
Závěr ... 31
Seznam použitých zdrojů .. 32
Seznam použitých zkratek a symbolů ... 33
Seznam příloh .. 34
ÚVOD

V současné době jsou kladeny stále vyšší požadavky na přesnost, kvalitu výroby, geometrickou shodnost vyráběné součásti a především na vyšší produktivitu práce s minimálními náklady na výrobu. Aby mohlo být těchto požadavků dosaženo, bylo zapotřebí zaměnit zastaralé jednoúčelové stroje řízené pomocí vaček, šablon, dorazů nebo narážek (pomocí tzv. tvrdé automatizace) za moderní CNC (computer numerical control) obrábcí centra s řídícími systémy. Na těchto obráběcích centrech lze součást snadno opakovaně vyrábět při zachování vysoké přesnosti.

Pomocí řídících systémů jsme schopni vytvářet stále dokonalejší programy, které s použitím podprogramů a makro podprogramů můžeme využívat pro tvarové podobné součásti.

Současné systémy umožňují nejen programování v základním kódu ISO, ale rovněž pomocí dialogů, CAD/CAM systémů nebo dílenského programování, které také zjednodušuje a urychluje samotný proces programování.

Zdokonalení řídících systémů také vedlo ke snížení nároku na detailní znalost programovacího jazyka v původním formátu DIN 66025. Současné jsou kladeny vyšší požadavky na software řídících systémů.
1 PROGRAMOVÁNÍ CNC STROJŮ

1.1 Vývoj programování

Programování CNC strojů se vyvíjelo z důvodu zvyšování kvality a produktivity práce. Nejdříve se začalo využívat „tvrdé automatizace“, což je řízení pomocí narážek, šablon, vaček a dorazů. V této automatizaci se uplatňují automatické výrobní linky a jednoúčelové stavebnicové stroje. Tvrdoúčelové stroje byly využívány v hromadných výrobních řízeních, protože je velmi náročné změnit typ obrobku.

Později byla vyvinuta „pružná automatizace“ (NC/CNC stroje).

Automatizace výrobních operací pomocí číslicového řízení byla, tak jako většina činností, limitována znalostním vývojem, schopnostmi techniky a technologie. Na konci druhé světové války začaly být vyráběny první motorové stroje pro stíhací letadla. Lopatky kompresorů a turbín těchto strojů jsou na výrobu tvarově velmi náročné výrobky, které navíc musí splňovat velmi přísná kritéria kvality. Konvenční výroba byla časově zdlouhavá a tím velmi nákladná. Vzhledem k tomu, že v průběhu II. světové války byly sebrány první elektronické počítače, které mohly být použity jako základ řídícího systému stroje, bylo možno zkonstruovat první stroje řízené číslicovým řídícím systémem. [5]

Pružnou automatizaci lze snadno přizpůsobit změnám a je vhodná pro malosériovou i hromadnou výrobu.

Během vývoje pružné automatizace se užívala tato nosná média informací:

- **děrný štítek, děrná páska** – hodnoty jsou zaznamenány v určitém kódu, který je tvořen seskupením děr podle určitých pravidel. Zápis programu měl být co nejstručnější,

 ![Obr. 1.1 Děrný štítek.](image1)

 ![Obr. 1.2 Děrná páska – desítkový záznam čísla 712,5.](image2)

- **magnetická páska** – narozdíl od děrného štítku a děrné pásky má vyšší záznamovou kapacitu a je možné pásku nebo její část vymazat a pak ji znovu použít.
V současnosti je program uchováván v řídicím systému jako datový soubor, z důvodu zpětné vazby zůstal formát programu zachován. Struktura programu a formát jednotlivých bloků (řádků programu) je dán normou ISO 6983. [4]

1.2 Způsoby programování

Program lze sestavit včetně využívání techniky podprogramů a parametrického programování následovně:

- **ručně,**
- **pomocí softwarových podpor.**

Ručně

Program je sestaven programátorem pomocí jeho znalostí ISO kódu a běžného textového editoru na základě výrobního výkresu.

Pomocí softwarových podpor

Program je uspořádán pomocí speciálního softwaru, do kterého už programátor nezadává ISO kód, ale speciální instrukce, na základě kterých software vygeneruje základní podobu programu. Programátor tedy nemusí detailně ovládat ISO kód, ale musí perfektně ovládat software. I do takto vygenerovaných systémů je možné „ručně“ vstoupit, což ovšem není doporučeno, protože by mohlo dojít k porušení vazeb.

- **Programování v dialogovém kódu** – programátor je veden nápovědou v podobě jednoduchých dialogů (zkratka) a grafických znázornění, které jsou uspořádány v tabulkách. Tento způsob programování je přehlednější a stručnější oproti ručnímu programování v kódu ISO (DIN 66025). Také je zapotřebí dokonalější podpory software.

Jedním z prvních na evropském kontinentu byla firma Heidenhain, která přišla s dialogovým formátem s názvem Klartext. Postupem času byl tento formát převzat i od jiných výrobců.

- **Programování pomocí CAD/CAM systému** – podmínkou je bezchybné zadávání dat. Výhodou systému je výrazné zkrácení doby určené pro programování stroje oproti ručnímu programování. Nevýhodou tohoto systému je možnost napadení sítě virem.

V dnešní době se v oblasti CAD/CAM systémů používají tyto typické softwary: AutoCAD, CATIA, Autodesk Inventor, Pro/ENGINEER, SolidWorks,
SurfCAM, TURBOCAM, Mastercam, PowerMILL atd. Svými vlastnostmi jsou téměř srovnatelné, rozdíl je především v ceně.

Výrobní etapy systému CAD/CAM

Většina etap probíhá na počítači mimo stroj. Pouze vlastní výroba se provádí na stroji a tím je tedy vhodně využita časová kapacita stroje. Schématické zobrazení je na obr. 1.3.

Obr. 1.3 Výrobní etapy CAD/CAM systému.

- **Konstrukční příprava** – vytvoření 2D výkresu a 3D modelu obrobku a polotovaru (2D model pro určení dráhy nástroje, 3D model pro simulaci obrábění).
- **Technologická a plánovací příprava** – volba materiálu, nástrojů, strojů, technologických podmínek, technologie výroby atd.
- **Kontrolní a výstupní etapa** – simulace včetně kontroly kolizí.
- **Výroba** – vlastní výroba na CNC stroji.
 - **Dílensky orientované programování** (WOP – workshop oriented programming) – do řídícího softwaru je začleněna grafická podpora, což umožňuje programovat i poměrně složité součásti přímo na CNC stroji.

Dílenské programování lze shrnout do těchto bodů: [2]
- stejné programování pro různé technologie obrábění (frézování, soustružení, broušení, …),
- jednotné programování v dílně a na externím programátorském pracovišti,
- programování s přímým vstupem do stroje s grafickou podporou,
- popis geometrie nezávislý na technologii obrábění,
- grafická dynamická simulace obrábění,
- je možné program opakovaně editovat ve WOP nebo do něj vstoupit „ručně“ a upravovat ho (nevýhodné, protože se mohou porušit vazby),
- programovat je možné současně s obráběním,
- systém musí obsahovat mnoho kontrol (např. vstupní data), aby bylo v programu zamezeno výskytu chyb,
- možnost přebírání dat z jiných systémů (např. přenos geometrie z CAD systému),
- návaznost na vyšší úroveň řízení.

V současnosti jsou užívány např. tyto systémy WOP: GE Fanuc – Manual Guide; Siemens – ShopMill (frézování), ShopTurn (soustružení); Heidenhain – smarT.NC, z nichž jsou některé uvedeny na obr. 1.4 a 1.5.

Obr. 1.4 ShopTurn. [11]
Obr. 1.5 SmarT.NC. [12]
2 PROGRAMOVÁNÍ POMOCÍ SYSTÉMU FANUC

2.1 Popis obráběcích strojů

2.1.1 CNC Soustruh Mori Seiki SL-25

Obr. 2.1 Mori Seiki SL-25.

Technické údaje stroje:
- max. délka soustružení: 530 mm,
- max. průměr soustružení: 260 mm,
- max. průměr soustružení nad ložem: 520 mm,
- průchod tyčí: 68 mm,
- pojezdové dráhy osa X: 160 mm,
- osa Z: 590 mm,
- rychloposuv (X/Z): 12/15 m.min⁻¹,
- otáčky vřetene: 35 – 3500 min⁻¹,
- výkon motoru vřetena: 15/11 kW,
- nástrojová místa: 10,
- rozměry stroje: výška 1800 mm,
- délka 2900 mm,
- šířka 1600 mm,
- hmotnost stroje: 4200 kg.
2.1.2 Vertikální obráběcí centrum Mikron VCE 750

Obr. 2.2 Mikron VCE 750.

Technické údaje stroje:

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>pojezdové dráhy osa X</td>
<td>760 mm</td>
</tr>
<tr>
<td>osa Y</td>
<td>400 mm</td>
</tr>
<tr>
<td>osa Z</td>
<td>500 mm</td>
</tr>
<tr>
<td>rychloposuv</td>
<td>20 m.min⁻¹</td>
</tr>
<tr>
<td>otáčky vřetene</td>
<td>0 – 12000 min⁻¹</td>
</tr>
<tr>
<td>výkon motoru vřetena</td>
<td>11 kW</td>
</tr>
<tr>
<td>upínací kužel</td>
<td>ISO 40</td>
</tr>
<tr>
<td>nástrojová místa</td>
<td>20</td>
</tr>
<tr>
<td>max. průměr nástroje</td>
<td>200 mm</td>
</tr>
<tr>
<td>max. délka nástroje</td>
<td>160 mm</td>
</tr>
<tr>
<td>max. hmotnost nástroje</td>
<td>8 kg</td>
</tr>
<tr>
<td>velikost stolu</td>
<td>(910 x 310) mm</td>
</tr>
<tr>
<td>max. zatížení stolu</td>
<td>400 kg</td>
</tr>
<tr>
<td>rozměry stroje: výška</td>
<td>2600 mm</td>
</tr>
<tr>
<td>délka</td>
<td>4000 mm</td>
</tr>
<tr>
<td>šířka</td>
<td>3700 mm</td>
</tr>
<tr>
<td>hmotnost stroje</td>
<td>5500 kg</td>
</tr>
</tbody>
</table>
2.2 Struktura systému

Kompletní popis tohoto poměrně rozšířeného systému je obsažen ve firemním manuálu Fanuc [1] a v uživatelské příručce [9]. (Tyto citace platí všeobecně pro celou práci.)

Technologické texty, které se vyskytují v této práci, jsou převzaty z originálního firemního manuálu, který neprošel ediční a jazykovou úpravou.

Současná verze systému Fanuc umožňuje tvorbu programů všemi metodami (viz kapitola 1.2) včetně sestavení hlavního programu, podprogramů a parametrického programování. Tak jako všechny ostatní systémy, tak i systém Fanuc se neustále vyvíjí, proto se některé uvedené údaje v této práci vázané na určitou verzi mohou lišit od novějších typů systému.

Celková struktura systému Fanuc je postupně rozebírána v následujících podkapitolách.

2.2.1 Definice vztažných bodů [4], [8]

Vztažné body určují vzájemnou polohu položky stroj–nástroj–obrobek. Dělí se na vztažné body souřadného systému, které jsou dány výrobcem a jejich polohu nelze měnit a na body, jejichž polohu volí programátor podle obráběné součásti.

- **M** – nulový bod stroje – dán výrobcem. Je to počátek souřadného systému stroje.
- **N** – nulový bod nástrojového držáku – dán výrobcem. Je to bod, ke kterému se vztahuje rozměry všech nástrojů.
- **P** – nulový bod nástroje – položku stanoví programátor. U soustružnického nože leží tento bod na teoretické špičce nože a u rotačního nástroje leží na jeho čele v ose nástroje.
- **C** – výchozí bod programu – polohu volí programátor. Výchozí bod programu leží mimo obrobek, aby bez problémů mohlo dojít např. k výměně nástroje nebo obrobku.
- **A** – dorazový bod – položku stanovuje programátor. Je to většinou bod, na který dosedá součást v upínacím přípravku.

Na obr. 2.1 je zobrazeno uspořádání vztažných bodů na dvouosém soustruži a na obr. 2.2 je uspořádání na tříosé frézce.
2.2.2 Nastavení nulového bodu obrobku

Nulový bod je bod, od kterého se odvíjí všechny programované souřadnice (při přírůstkovém programování vychází následující souřadnice z předchozího bodu). Označuje se funkcí G54 až G59. Nulový bod obrobku volí programátor, popř. technolog.

Po nastavení nulového bodu se přesouvá počátek souřadného systému do tohoto bodu.

Při soustružení se nulový bod zpravidla volí a také pohybuje po ose z (osa vřetena). Při frézování se pohybuje libovolně po všech osách.
Pro nalezení nulového bodu obrobku se využívá:

- **dotykové sondy** – do nástrojového držáku je upnuta sonda a odměří se součást v jednotlivých osách,

![Obr. 2.5 Dotyková sonda.](image)

- **nástroje** – nulový bod je nastaven dotykem definovaného hrotu na povrch obráběné součásti. Pokud nechceme poškodit povrch obrobku, je možné mezi obrobek a hrot nástroje vložit materiál o známé tloušťce, kterou odečteme od zjištěné hodnoty.

![Obr. 2.6 Dotyk nástrojem.](image)

Zjištěné hodnoty se ukládají do tabulky nulových bodů a jsou vyvolávány pomocí kódu G54 až G59.
2.2.3 Tvorba hlavního programu

U systému Fanuc hlavní program začíná symbolem „%“, název programu se značí písmenem „O“ a číslem programu (např. O0001).

Program je sestaven z jednotlivých bloků (řádek programu). Blok je tvořen jednotlivými kódovanými slovy (např. G01, M30), která se skládají z adresné části (písmeno, např. G, M) a významové části (číslice, např. 01, 30). Slova se od sebe oddělují mezerou, jejich části se neoddělují.

Ukončení programu je také provedeno pomocí symbolu „%“. V případě vynechání tohoto symbolu není schopen stroj načíst program.

2.2.4 Základní funkce

- Název bloku – adresa N
 Významová část kódu N značí číslo bloku.
- Přípravné funkce – adresa G
 G-funkce ovlivňují většinou dráhu nástroje. Používají se k vydávání povelů stroji k přesně stanoveným úkolům (k jednoduchým pohybům stroje, k funkci vrtání, k nesvislému obrábění …) a jsou rozděleny do skupin. V každé skupině funkcí jsou povele pro vytvoření zvláštních úkonů.

 V jednom bloku nesmí být použito více G–funkcí ze stejné skupiny (např. nesmí být na jednom řádku G00 – polohování rychloposuvem a zároveň G01 – pohyb lineární interpolace).

Tab. 2.1 Přípravné funkce pro dráhu nástroje.

<table>
<thead>
<tr>
<th>Funkce</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soustružení + frézování</td>
<td></td>
</tr>
<tr>
<td>G00</td>
<td>Polohování rychloposuvem</td>
</tr>
<tr>
<td>G01</td>
<td>Pohyb lineární interpolace</td>
</tr>
<tr>
<td>G02</td>
<td>Kruhová interpolace po směru hodinových ručiček</td>
</tr>
<tr>
<td>G03</td>
<td>Kruhová interpolace proti směru hodinových ručiček</td>
</tr>
<tr>
<td>G04</td>
<td>Prodleva</td>
</tr>
<tr>
<td>G17 (G18) (G19)</td>
<td>Volba pracovní roviny XY (XZ) (YZ)</td>
</tr>
<tr>
<td>G40</td>
<td>Zrušení vyrovnání špičky nože</td>
</tr>
<tr>
<td>G41</td>
<td>2D vyrovnání špičky nože doleva (korekce zleva)</td>
</tr>
<tr>
<td>G42</td>
<td>2D vyrovnání špičky nože doprava (korekce zprava)</td>
</tr>
<tr>
<td>G83</td>
<td>Normální opakovací cyklus navrtávání</td>
</tr>
<tr>
<td>G84</td>
<td>Opakovací cyklus řezání vnitřních závitů</td>
</tr>
<tr>
<td>G85</td>
<td>Opakovací cyklus vyvrtávání</td>
</tr>
<tr>
<td>G90</td>
<td>Absolutní programování</td>
</tr>
<tr>
<td>G91</td>
<td>Přírůstkové programování</td>
</tr>
<tr>
<td>G94</td>
<td>Posuv za minutu</td>
</tr>
<tr>
<td>G95</td>
<td>Posuv za otáčku</td>
</tr>
<tr>
<td>Soustružení</td>
<td></td>
</tr>
<tr>
<td>G20</td>
<td>Cyklus podélného soustružení</td>
</tr>
<tr>
<td>G21</td>
<td>Cyklus řezání závitů</td>
</tr>
<tr>
<td>G24</td>
<td>Cyklus čelního soustružení</td>
</tr>
<tr>
<td>G33</td>
<td>Řezání závitů</td>
</tr>
<tr>
<td>G72</td>
<td>Dokončovací cyklus kontury</td>
</tr>
<tr>
<td>G73</td>
<td>Cyklus podélného hrubování kontury</td>
</tr>
<tr>
<td>G74</td>
<td>Cyklus čelního hrubování kontury</td>
</tr>
<tr>
<td>G75</td>
<td>Cyklus opakování kontury</td>
</tr>
<tr>
<td>G77</td>
<td>Zapichovací cyklus v ose X</td>
</tr>
<tr>
<td>G78</td>
<td>Cyklus víceasobného řezání závitů</td>
</tr>
<tr>
<td>G96</td>
<td>Konstantní řezná rychlost</td>
</tr>
<tr>
<td>G97</td>
<td>Programování počtu otáček</td>
</tr>
</tbody>
</table>
Frézování

<table>
<thead>
<tr>
<th>Název</th>
<th>Popis</th>
<th>Schéma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korekce zleva</td>
<td>nůž je posouván vlevo od naprogramované dráhy, aby bylo provedeno vyrovnání velikosti nože</td>
<td></td>
</tr>
<tr>
<td>Korekce zprava</td>
<td>nůž je posouván vpravo od naprogramované dráhy, aby bylo provedeno vyrovnání velikosti nože</td>
<td></td>
</tr>
</tbody>
</table>

Některé přípravné funkce s komplikovanějším použitím jsou vysvětleny následujících tabulkách 2.2, 2.3 a 2.4.

Tab. 2.2 Vyrovnání špičky nože – korekce průměrové.
Tab. 2.3 Vyrování délky nože – korekce délkové.

<table>
<thead>
<tr>
<th>Název</th>
<th>Popis</th>
<th>Schéma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korekce zdola</td>
<td>vyrovnaní délky nože v kladném směru, délka nože je přičtena k poloze osy (k nulovému bodu nástrojového držáku)</td>
<td></td>
</tr>
<tr>
<td>Korekce shora</td>
<td>vyrovnaní délky nože v záporném směru, délka nože je odečtena od polohy osy (od nulového bodu nástroje)</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2.4 Absolutní a přírůstkové (inkrementální) programování.

<table>
<thead>
<tr>
<th>Název</th>
<th>Popis</th>
<th>Schéma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolutní program.</td>
<td>všechny souřadnice jednotlivých bodů vychází z počátku souřadného systému (obvykle z nulového bodu obroku). [4]</td>
<td></td>
</tr>
<tr>
<td>Přírůstkové program.</td>
<td>souřadnice nového programovaného bodu se vztahují k předchozímu bodu. [4]</td>
<td></td>
</tr>
</tbody>
</table>
• Rozměrové funkce – adresy X, Y, Z, F, S
 o Adresy X, Y, Z – určují pohyb osy a jsou doplněny konkrétní číselnou hodnotou dané souřadnice. Některé systémy, stejně jako Fanuc, vyžadují psaní tečky za touto hodnotou.
 o Adresa F – slouží k zadávání rychlosti posuvu. Většinou používané jednotky jsou posuv za minutu nebo posuv za otáčku. Pro soustružení se většinou používá posuv za otáčku a pro frézování posuv za minutu. Přepínání jednotek je pomocí funkcí G94 (posuv za minutu) a G95 (posuv za otáčku).
 o Adresa S – používá se pro zadávání otáček. Neslouží k roztočení vřetene, ale k určení jeho rychlosti. Vřeteno se zapíná pomocí funkcí M03 nebo M04 a zastaví funkcí M05.

• Nástrojové funkce – adresa T
 Funkce T nespouští operaci výměny nástroje, ale používá se pouze k výběru nástroje. Operace změny se spouští pomocí M06 (např. T5 M06 zasune nástroj 5 do vřetene).

• Pomocné funkce – adresa M
 Funkce M ovlivňují většinou technologii. Jsou to povely k činnostem, které se nevztahují přímo k osám.
 Pro jeden blok může být naprogramována pouze jedna M–funkce, která bývá umístěna na konci řádku.
 Standardně bývají obsazené jen některé funkce. Ostatní si přiřazuje výrobce stroje a jsou vysvětleny v dodatkovém manuálu.
 M–funkce je otevřená skupina, ve které se vyvíjí stále nové funkce.

Tab. 2.5 Pomocné funkce.

<table>
<thead>
<tr>
<th>Funkce</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soustružení + frézování</td>
<td></td>
</tr>
<tr>
<td>M00</td>
<td>Zastavení programu</td>
</tr>
<tr>
<td>M01</td>
<td>Volitelné zastavení programu</td>
</tr>
<tr>
<td>M02</td>
<td>Konec programu</td>
</tr>
<tr>
<td>M03</td>
<td>Zapnutí vřetena ve směru hodinových ručiček</td>
</tr>
<tr>
<td>M04</td>
<td>Zapnutí vřetena proti směru hodinových ručiček</td>
</tr>
<tr>
<td>M05</td>
<td>Zastavení vřetena</td>
</tr>
<tr>
<td>M08</td>
<td>Zapnutí vnějšího chlazení</td>
</tr>
<tr>
<td>M09</td>
<td>Vypnutí vnějšího chlazení</td>
</tr>
<tr>
<td>M30</td>
<td>Konec programu a návrat na začátek</td>
</tr>
<tr>
<td>M41</td>
<td>První převodový stupeň</td>
</tr>
</tbody>
</table>
M42 Nejvyšší převodový stupeň
M98 Vyvolání podprogramu
M99 Návрат k hlavnímu programu z podprogramu

Soustružení

M13 Zapnutí poháněných nástrojů ve směru hod. ručiček
M14 Zapnutí poháněných nástrojů proti směru hod. ručiček
M15 Vypnutí poháněných nástrojů
M20 Pinola vzad
M21 Pinola vpřed
M25 Otevřít upínací zařízení
M26 Zavřít upínací zařízení

Frézování

M06 Výměna nástroje
M19 Orientace vřetena
M21–M28 Volitelné uživatelské funkce
M88 Zapnutí vnitřního chlazení
M89 Vypnutí vnitřního chlazení

Funkce M21 – M28 jsou u frézky volitelné, výrobce si je definuje podle toho, jakou operaci potřebuje na stroji vykonat (např. automatické otevření dveří, zapnutí přídavného chlazení atd.).

2.2.5 Podprogramy

Podprogramy jsou používány ke zjednodušení, zpřehlednění a zkrácení programů s několikanásobně opakujícím se obráběným prvkem (díra, závit, …).

Díky používání podprogramů se mohou snížit chyby zapříčiněné pracovníkem.

Na obr. 2.7 je deska s opakujícími se obrazci děr. Pro vytvoření programu pro vytvoření děr na tomto výrobku je vhodné použití podprogramu.
Zobrazení programu pro vrtání děr po kružnici

% O1000 (název a číslo podprogramu)
N10 G92 G70 I75. J67.5. L6 R1. Z-15. F85. Q1.5 (vrtání 6 otvorů o rozteč kružnici 75 mm, úhel 67.5°, hloubka 15 mm, posuv 85 min⁻¹, hloubka příslušu 1.5 mm)
N20 G00 Z30. (výjezd 30 mm nad díl)
N30 G90 (zrušení přírůstkového programování)
N40 M99 (návrat do programu)
%

Zobrazení programu s vyvoláním podprogramu O1000
%
O0001 (název programu)
N10 T1 M06 (nastavení nástroje T1 do vřetene)
N20 G00 G90 G54 G40 (nájezd rychloposuvem do počátečního bodu, programování absolutní, zrušení průměrových korekcí)
N30 G00 X200. Y150. M08 (nájezd do polohy středu pole otvorů, zapnutí chladící kapaliny)
N40 G43 H01 Z5. (načtení délkové korekce, nájezd do výšky 5 mm nad díl)
N50 M98 P1000 (skok do podprogramu)
N60 G00 X800. Y150. (nájezd do druhé pozici otvorů)
N70 M98 P1000 (skok do podprogramu)
N80 G00 X800. Y350 (nájezd do třetí pozice otvorů)
N90 M98 P1000 (skok do podprogramu)
N100 G00 X200. Y350. (nájezd do čtvrté pozice otvorů)
N110 M98 P1000 (skok do podprogramu)
N120 G00 Z200. (výjezd osy z 200 mm nad díl)
N130 G52 Y0. (referenční bod stroje, najede osu y do nuly)
N140 M30 (ukončení programu)
%

2.2.6 Makra

Posloupnost výrazů může programátor nahradit jediným výrazem (makrem). Pro operace, které jsou využívány nejčastěji, si může uživatel vytvořit vlastní cyklus nebo makro podle svých požadavků.

Některé typy makro podprogramů jsou v CNC systému přednastaveny od výrobce, v případě potřeby lze objednat speciální makra.

Makro je každý běžný postup nebo podprogram, který může probíhat opakovaně. Je vytvořen v podstatě stejně jako hlavní program a je vyvolán pomocí funkce G65 a adresy P, jejíž číselné označení se shoduje s číslem názvu makra. Pro návrat k hlavnímu programu se používá kód M99.

Makra je možné využít např. pro jednoduchá schémata, která jsou v dílně často opakována. Mohou to být např. schémata:
- uspořádání otvorů pro šrouby,
- drážkování,
- úhlových uspořádání s libovolným množstvím otvorů pod určitým úhlem s libovolným rozestupem.

Důvod pro použití makro podprogramů je možnost zjednodušení a zkrácení programu, především doby určené pro jeho tvorbu.

2.3 Vlastnosti a využití

Systém Fanuc je považován mezi odborníky za stabilní a pružný systém se spolehlivou strukturou. Tento systém je možné využít téměř na všech typech strojů, nicméně firma se soustředí především na soustředně CNC stroje. Má dobrou návaznost mezi jednotlivými vývojovými stupni systému.

Vzhledem k tomu, že pochází vývojově z Japonska, je filozofie systému nepatrně odlišná, než je evropský standard. Tuto skutečnost však dokáže podchytit zpravidla odborník pracující dlouhodobě se systémem Fanuc a rovněž s evropským systémem. Přesto se jedná o srozumitelný a názorný systém.
3 APLIKACE NA REÁLNÉ OBRÁBĚNÍ

Následující podkapitoly uvádějí programy pro soustružení a frézování součástí, jejíž výkres je uveden v příloze 1. Tato součást je vyráběna ve firmě CCI Brno. Postup výroby je rozdělen do několika operací. Následující příklady se zabývají jednou soustružnickou a jednou frézovací operací, jejichž obráběné plochy jsou znázorněny na obr. 3.2 a 3.3. Komentáře v uvedených programech jsou omezeny jen na prvotní vysvětlení.

Obr. 3.1 Obráběná součást.

3.1 Soustružení

![Obr. 3.2 Soustružené plochy.]

Ukázka programu pro soustružení

%
O0010 (název programu)
N10 G95 F0.4 (posuv na otáčku 0.4 mm)
N20 G92 S1200 (max. otáčky 1200 min⁻¹)
N30 G96 S250 M03 (konst. řezná rychlost 250 m.min⁻¹, spuštění vřetene ve směru hodinových ručiček)
N40 T1 M08 (nastavení nástroje T1, spuštění chlazení)
N50 G00 X60 Z2 (nájezd nástroje rychloposuvem k polotovaru)
N60 G74 W1 R1 (zarovnání čela pomocí hrubovacího cyklu, třiska 1 mm, odkop 1 mm)
N70 G74 P80 Q100 U0.4 W0.1
(čelní hrubovací cyklus, použití pro N80 až N100,
přídavek v ose x 0.4 mm, v ose z 0.1 mm)
N80 G01 Z0
(koncový bod cyklu)
N90 X–2
(přejezd v ose x)
N100 G01 Z2
(návrat do počátečního bodu cyklu)
N110 G73 U3 R1
(podélný hrubovací cyklus, tříška 3 mm, odskok
1 mm)
N120 G73 P130 Q170 U0.4 W0.1
N130 G01 X41
N140 Z–125
N150 X56.7
(souřadnice jednotlivých bodů kontury)
N160 Z–140
N170 G01 X60
N180 G28 U0 W0 M09
(odjezd do referenčního bodu, vypnutí chlazení)
N190 M01
(ukončení jednotlivých částí programu)
N200 G95 F0.04
N210 G97 S1500 M03
(konstantní otáčky 1500 min⁻¹)
N220 T2 M08
N230 G00 X0 Z2
(východzi bod navrtávání)
N240 G01 Z–3
(hloubka navrtání −3 mm)
N250 G00 Z5
(výjezd rychloposuvem z materiálu)
N260 G28 U0 W0 M09
N270 M01
N280 G95 F0.1
N290 G97 S700 M03
N300 T3 M08
N310 G00 X0 Z2
N320 G01 Z–183
N330 G97 S10
(snížení otáček před výjezdem z materiálu)
N340 G00 Z5
N350 G28 U0 W0 M09
N360 M01
N370 G95 F1
N380 G92 S500
N390 G96 S50 M03
N400 T4 M08
N410 G00 X20.5 Z5 (výchozí bod cyklu)
N420 G78 P020060 Q60 R0.025
 (opakovaný cyklus řezání závitů, 2 třísky, výběh 0 mm, vrcholový úhel závitu 60°, min. hloubka třísky 60 μm, přídavek 0.025 mm)
N430 G78 X22 Z–19 R0 P750 Q100 F1
 (opak. cyklus řezání závitů, souřadnice koncového bodu, válcový závit, hloubka závitu 750 μm, hloubka první třísky 100 μm, stoupání 1 mm)
N440 G28 U0 W0 M09
N450 M01
N460 G95 F0.15
N470 G92 S1200
N480 G96 S300 M03
N490 T5 M08 (nástroj pro dokončení vnějšího tvaru)
N500 G00 X45 Z0
N510 G01 X15
N520 G00 X40.2 Z2
N530 G01 Z0
N540 X41 Z–0.4
N550 Z–125
N560 X55.9
N570 X56.7 Z–125.4
N580 Z–139
N590 G28 U0 W0 M09
N600 M30 (ukončení programu)
%

3.2 Frézování

Obr. 3.3 Frézované plochy.

Ukázka programu pro frézování

%
O0020 (název programu)
N10 T1 M06 (nastavení nástroje T1 do vřetene)
N20 G00 G90 G110 G40 (nájezd rychloposuvem do počátečního bodu, programování absolutní, zrušení průměrových korekcí)
N30 S900 M03 F60 (roztočení vřetene ve směru hod. ručiček, otáčky 900 min⁻¹, posuv 60 mm)
N40 G00 X–147. Y0. A0. M08 (najetí rychloposuvem do pozice první díry)
N50 G43 H01 Z25. (délková korekce, nájezd v ose z 25 mm)
N60 G81 R22. Z–22. (opakovací cyklus vrtání)
N70 X–163.
N80 G00 Z60.
N90 A–90. (pootočení čtvrté osy o –90°)
N100 G00 X–171.
N120 X–155.
N130 G00 Z200.
N140 G80 (zrušení opakovacího cyklu)
N150 T2 M06
N160 G00 G90 G110 G40
N170 S1400 M03 F60.
N180 G00 X0. Y-50. A–90. M08
N190 G43 H02 Z13.5
N200 G01 G41 X–14. D02 (načtení průměrová korekce zleva)
N210 G01 Y50.
N220 G01 G40 X0. (zrušení průměrové korekce)
N230 G00 A–180.
N240 G01 G42 X–14 D02 (načtení průměrová korekce zprava)
N250 G01 Y–50.
N260 G01 G40 X0.
N270 G00 Z100.
N280 G00 G52 Y0.
N290 G80
N300 M30 (ukončení programu)
%

ZÁVĚR

Programování řídících systémů CNC strojů je v dnešní době velmi rozšířené a neustále se vyvíjí. S využitím CNC strojů je možné efektivně a snadno vyrábět tvarované nebo rozměrově složité součásti, které v minulosti vyžadovaly složité seřízení univerzálních nebo jednoúčelových strojů určených pouze pro jednu danou operaci. Problematickou programování těchto strojů se zabývají i samostatné firmy, a ty dodávají programový produkt (software) zákazníkům.

Téma práce je zaměřeno na vývoj řízení strojů od tvrdé automatizace až po CNC stroje a především na podrobnější rozbor systému Fanuc. Současná verze tohoto systému umožňuje tvorbu programů s možností využití všech metod programování, jako například pomocí podprogramů, makro podprogramů, parametrů atd. Univerzalnost a přehledné ovládání uvedeného systému především výrazně zkracuje dobu potřebnou na zhotovení programu a jeho ověření simulací a současně klade menší nároky na zručnost odborného pracovníka, která je u klasického způsobu obrábění často nezbytná.

Celkový cíl této práce je poskytnout odborné veřejnosti přehled výhodných vlastností systému Fanuc a možnosti jeho využití. Dva uvedené příklady reálného obrábění (včetně využití techniky podprogramů) toto dokladuji.
SEZNAM POUŽITÝCH ZDROJŮ

<table>
<thead>
<tr>
<th>Zkratka/Symbol</th>
<th>Jednotka</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNC</td>
<td>číslicové řízení pomocí počítače (computer numerical control)</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>číslicově řízený (numerical control)</td>
<td></td>
</tr>
<tr>
<td>CAD</td>
<td>počítačem podporovaný návrh (computer aided design)</td>
<td></td>
</tr>
<tr>
<td>CAM</td>
<td>počítačem podporovaná výroba (computer aided manufacturing)</td>
<td></td>
</tr>
<tr>
<td>WOP</td>
<td>dílensky orientované programování (workshop oriented programming)</td>
<td></td>
</tr>
<tr>
<td>CL data</td>
<td>obráběcí data (cutting location data)</td>
<td></td>
</tr>
<tr>
<td>2D</td>
<td>dvourozměrná (2-dimension)</td>
<td></td>
</tr>
<tr>
<td>3D</td>
<td>trojrozměrná (3-dimension)</td>
<td></td>
</tr>
<tr>
<td>Příloha 1</td>
<td>Technický výkres součásti DYSHALLARE OP-20 L=125</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Příloha 2</td>
<td>Výkres sestavy k součásti DYSHALLARE OP-20 L=125</td>
<td></td>
</tr>
</tbody>
</table>

SEZNAM PŘÍLOH

<table>
<thead>
<tr>
<th>Příloha 1</th>
<th>Technický výkres součásti DYSHALLARE OP-20 L=125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Příloha 2</td>
<td>Výkres sestavy k součásti DYSHALLARE OP-20 L=125</td>
</tr>
</tbody>
</table>
Příloha 1
Technický výkres součásti DYSHALLARE OP-20 L=125
Příloha 2
Výkres sestavy k součásti DYSHALLARE OP-20 L=125