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I 

 

ABSTRACT 

The high-throughputs sequence technologies produce a massive amount of data, that can 

reveal new genes, identify splice variants, and quantify gene expression genome-wide. 

However, the volume and the complexity of data from RNA-seq experiments necessitate a 

scalable, and mathematical analysis based on a robust statistical model. Therefore, it is 

challenging to design integrated workflow, that incorporates the various analysis procedures. 

Particularly, the comparative transcriptome analysis is complicated due to several sources of 

measurement variability and poses numerous statistical challenges. In this research, we 

performed an integrated transcriptional profiling pipeline, which generates novel reproducible 

codes to obtain biologically interpretable results. Starting with the annotation of RNA-seq data 

and quality assessment, we provided a set of codes to serve the quality assessment visualization 

needed for establishing the RNA-Seq data analysis experiment. Additionally, we performed 

comprehensive differential gene expression analysis, presenting descriptive methods to 

interpret the RNA-Seq data. For implementing alternative splicing and differential exons usage 

analysis, we improved the performance of the Bioconductor package DEXSeq by defining the 

open reading frame of the exonic regions, which are differentially used between biological 

conditions due to the alternative splicing of the transcripts. Furthermore, we present a new 

methodology to analyze the differentially expressed long non-coding RNA, by finding the 

functional correlation of the long non-coding RNA with neighboring differential expressed 

protein coding genes. Thus, we obtain a clearer view of the regulation mechanism, and give a 

hypothesis about the role of long non-coding RNA in gene expression regulation. 
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II 

 

ABSTRAKT  

Vysoce výkonné sekvenční technologie produkují obrovské množství dat, která mohou 

odhalit nové geny, identifikovat splice varianty a kvantifikovat genovou expresi v celém 

genomu. Objem a složitost dat z RNA-seq experimentů vyžadují škálovatelné metody 

matematické analýzy založené na robustníchstatistických modelech. Je náročné navrhnout 

integrované pracovní postupy, které zahrnují různé postupy analýzy. Konkrétně jsou to 

srovnávací testy transkriptů, které jsou komplikovány několika zdroji variability měření a 

představují řadu statistických problémů. V tomto výzkumu byla sestavena integrovaná 

transkripční profilová pipeline k produkci nových reprodukovatelných kódů pro získání 

biologicky interpretovovatelných výsledků. Počínaje anotací údajů RNA-seq a hodnocení 

kvality je navržen soubor kódů, který slouží pro vizualizaci hodnocení kvality, potřebné pro 

zajištění RNA-Seq experimentu s analýzou dat. Dále je provedena komplexní diferenciální 

analýza genových expresí, která poskytuje popisné metody pro testované RNA-Seq data. Pro 

implementaci analýzy alternativního sestřihu a diferenciálních exonů jsme zlepšili výkon 

DEXSeq definováním otevřeného čtecího rámce exonového regionu, který se používá 

alternativně. Dále je popsána nová metodologie pro analýzu diferenciálně exprimované dlouhé 

nekódující RNA nalezením funkční korelace této RNA se sousedícími diferenciálně 

exprimovanými geny kódujícími proteiny. Takto je získán jasnější pohled na regulační 

mechanismus a poskytnuta hypotéza o úloze dlouhé nekódující RNA v regulaci genové 

exprese. 
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INTRODUCTION TO RNA SEQUENCING 

RNA-seq can be identify as an assembly of experimental and computational methods to 

determine the identity and abundance of RNA sequences in biological samples. The 

experimental methods involve isolation of RNA from cell, tissue, or whole-animal samples, 

preparation of libraries that represent RNA species in the samples, actual chemical sequencing 

of the library, and subsequent bioinformatic data analysis. A critical distinction of RNA-seq 

from earlier methods, such as microarrays, is the incredibly high throughput of current RNA-

seq platforms, the sensitivity afforded by newer technologies, and the ability to discover novel 

transcripts, gene models, and small noncoding RNA species. 

RNA-seq methods are derived from generational changes in sequencing technology. First-

generation high-throughput sequencing typically refers to Sanger sequencing. With capillary 

electrophoresis being utilized to deal with nucleic acid fragment lengths, a standard run might 

employ 96 capillaries and generate a sequence length in range of 600 to 1000 bases yielding 

approximately 100,000 bases of sequence. Second-generation sequencing, also known as next-

generation sequencing (NGS), refers to methods using similar sequencing by synthesis 

chemistry of individual nucleotides, but performed in a massively parallel format, so that the 

number of sequencing reactions in a single run can be in millions. A typical NGS run could 

consist of 6000M sequencing reactions of 100 nucleotides yielding 600 billion bases of 

sequence information. Third-generation sequencing refers to methods that are also massively 

parallel and use sequence by synthesis chemistry but have as templates individual molecules 

of DNA or RNA. Third-generation sequencing platforms have fewer sequencing reactions per 

run, in the order of a few millions, but the length of sequence per reaction can be larger and 

can easily run into the 1500 nucleotide range [1]. 

Data obtained from an RNA-seq experiment can be substantially informative, ranging from 

the identification de novo protein coding transcripts in embryonic stem cells to characterization 

of gene regulation and alternative splicing.  Questions that can be answered using RNA-seq 

data include: What are the differences in the levels of gene expression in normal and cancer 

cells? What happens to the gene expression levels in cell lines missing a tumor suppressor 

gene? Which genes are up-regulated during the development of brain? How is gene splicing 

changed during oxidative stress? What novel miRNAs can we discover in a human embryonic 

stem-cell sample? 

New data derived from RNA-seq platforms showed a vast diversity for gene structure, 

identified novel unknown genes, and shed light on noncoding transcripts of both small and long 

lengths [2]. The following General scheme for RNA-seq experiments illustrates the workflow 

from tissue to data in the RNA-seq method. It is shown with alternatives for CLIP-seq, miRNA-

seq, and general RNA-seq.  The isolation is performed for RNAs and RNA- protein complexes, 

then a size selection is applied to separate the libraries construction. (Figure 0.1) 
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Figure 0.1: A typical workflow for RNA-seq. The beginning of the workflow shows wet-

laboratory steps, whereas the bottom shows the data handling and analysis steps. [3] 
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1. THE THEORETICAL REVIEW 

1.1. ISOLATION OF RNAs 

RNAs are typically isolated from freshly dissected or frozen cells or tissue samples using 

commercially available kits. High-throughput RNA isolation systems also exist that relies 

mainly on RNA attached to magnetic particles which facilitate their washing and isolation. It 

is also possible, although not ideal, to isolate RNA from formalin-fixed, paraffin-embedded 

tissues. To prevent degradation of RNA, samples can be immersed in RNA storage reagents 

such as RNAlater (Ambion), or processed partially and stored as a phenolic emulsion (Trizol). 

At this stage, RNA samples can also be enriched for size-specific classes such as small RNAs 

using column systems (miRVana; Ambion). Alternatively, samples can be isolated initially as 

total RNA and then size selected by polyacrylamide gel electrophoresis.[4] 

In almost all cases of total RNA isolation, genomic DNA will contaminate the sample. This 

is unavoidable, and even if the contamination is minor, the sensitivity and throughput of RNA-

seq will eventually capture these contaminants. Therefore, it is common practice that total 

RNA-isolated samples are treated with DNase, to digest contaminating DNA prior to library 

preparation. Most DNase kits provide reagents for inactivating DNase once the contaminating 

DNA has been removed. The amount of total RNA required for RNA-seq library preparation 

varies. Standard library protocols require 0.1–10 μg of total RNA, and high-sensitivity 

protocols can produce libraries from as little as 10pg of RNA. It is becoming common that 

RNA from single cells is isolated and specific kits for these applications are becoming 

available. [3] 

1.2. QUALITY CONTROL OF RNA 

It is required that RNAs are quality checked for degradation, purity, and quantity prior to 

library preparation. Nanodrop and similar devices measure the fluorescent absorbance of 

nucleic acid samples typically at 260 and 280nm. As the device measures absorbance of the 

sample, it is not able to distinguish between RNA and DNA, and therefore cannot indicate 

whether the RNA sample is contaminated with DNA. Moreover, degraded RNA will give 

similar readings as intact RNA, and therefore we cannot know about the quality of the sample. 

The 260/280 absorbance ratio will, however, provide some information about contamination 

by proteins.[5] 

Agilent Bioanalyzer is a microfluidics capillary electrophoresis-based system to measure 

nucleic acids. The Agilent Bioanalyzer offers advantages of sensitivity and accuracy for 

performing RNA separation, detection, and quantitation, coupled with a rapid, automated 

system. The electrophoresis being used for sizing nucleic acid samples. When size standards 

are run, the sizing and quantitation of RNAs in the sample provides critical information not 

only on the concentration, but also on the quality of nucleic acid. Degraded RNAs will appear 

as a smear at low-molecular weights, whereas intact total RNA will show sharp 28S and 18S 

peaks. The Bioanalyzer system contains a microchip that is loaded with size controls and space 

for up to 12 samples at a time. Samples are mixed with a polymer and a fluorescent dye, which 

are then loaded and measured through capillary electrophoretic movement. The integrated data 

analysis pipeline on the instrument will also render the electrophoretic data into a gel-like 

picture for users more accustomed to traditional gel electrophoresis. The RNA profile of each 

sample is automatically displayed as individual electropherograms. A comparison of the results 

from the gel electrophoresis to the Agilent 2100 Bioanalyzer digital gel (Figure 1.1a) and to 

the corresponding electropherograms (Figure 1.1 b).[6] 
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Figure 1.1: Agilent Bioanalyzer. (a) Agarose gel (1%, left) of total RNA (sample A), LMW “low-

molecular-weight” RNAs (samples 2 and 4) and HMW “high-molecular-weight” RNAs (samples 

1 and 3) compared to the digital gel (right) obtained with the Agilent 2100 Bioanalyzer (L, ladder; 

500 ng per sample for all RNAs). (b) Screen capture of Agilent 2100 Bioanalyzer 

electropherogramsof sample A (total RNA), sample 1 (HMW RNA) and sample 2 (LMW RNA). 

Peak labeled "a" (inset) was detected only in total and HMW RNA samples (A and 1) but not in 

LMW RNA–enriched sample (2).[6] 

1.3. LIBRARY PREPARATION 

Before to sequencing, the RNAs in a sample are converted into a cDNA library, representing 

all the RNA molecules in the sample. This step is performed because in practice, RNA 

molecules are not directly sequenced, instead DNAs are sequenced due to their better chemical 

stability, and are also more amenable to the sequencing chemistry and protocols of each 

sequencing platform. Therefore, the library preparation has two purposes, the first is to 

adequately represent the RNAs in the sample and secondly to convert RNA into DNA. Each 

RNA-sequencing platform (e.g., Illumina, Solid, Ion Torrent) has its own specific protocol. 

Third-party library preparation kits are also available and are being used successfully. It is also 

possible to create one's own kit using commonly available molecular biology components 

although this lacks the convenience, optimization, and support of commercial products.  

The major steps in library preparation involves the following[7]: 
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1. Obtain pure, intact, and quality-checked total RNA of approximately 1–10 μg. The exact 

amount needed depends on the application and platform. 

2. Purify mRNA from the total RNA. Typically, this is done by annealing total RNA to 

oligo-dT magnetic beads. Two rounds of purification may be performed to remove 

nonspecifically bound ribosomal and other RNAs from the oligo-dT. Then release or 

dissociate mRNAs from oligo-dT beads. 

3. Fragment purified mRNA by incubation with fragmentation reagent. This breaks the 

mRNA strands into multiple small fragments. 

4. Prime the fragmented mRNAs with random hexamer primers. 

5. Reverse-transcribe the fragmented mRNAs with Reverse Transcriptase, thus producing 

cDNAs. 

6. Synthesize the second/opposite strand of the cDNA and remove the RNA. The product 

will be double-stranded cDNA (ds cDNA). 

7. Purify the ds cDNA from free nucleotides, enzymes, buffers, and RNA. This can be done 

by binding the DNA with Solid-Phase Reversible Immobilization (SPRI) beads, for 

example. The advantage of using these paramagnetic beads is that once bound, the beads 

can be washed to purify the ds cDNA which remains on the beads. Once washed, the ds 

cDNA can be eluted from the beads for the next procedure. 

8. Perform end-repair on purified eluted ds cDNA. 

9. Purify the end-repaired ds cDNA. This can also be done on SPRI beads. 

10. Adenylate 3′ ends of eluted end-repaired ds cDNA. 

11. Ligate adaptors to the end-repaired ds cDNA. Adaptors will ligate to both ends of the ds 

cDNA. These adaptors can be indexed for each library reaction. In other words, each 

adaptor can have a six-nucleotide difference in the adaptor sequence. Using a different 

index for each library reaction allows for pooling libraries later for sequencing, yet still 

allowing for tracing the sequence back to the original library based on the adaptor 

sequence. 

12. Purify the adaptor ligated, end-repaired ds cDNA. Again, this can be done with SPRI 

beads. 

13. Enrich the library by polymerase chain reaction (PCR) amplification. Using sequences 

from the adaptor as primers, small numbers of cycles (12–16) are used to amplify the 

sequences already present. 

14. Purify the PCR-enriched, adaptor-ligated, end-repaired ds cDNA. This is now the library 

representing the original mRNAs in the sample. 

15. Validate and quality-control the library. This can be done in several ways by (1) 

selectively amplifying via PCR-specific genes that should be present in the library; (2) 

quantifying the yield of ds cDNA in the library; (3) visualizing the abundance and size 

distribution of the library by polyacrylamide gel electrophoresis, or capillary 

electrophoresis on an Agilent Bioanalyzer. 

16. Normalize and pool libraries. As the capacity to sequence in a single flow cell is 

enormous, it is possible to sequence many libraries (up to 24 libraries/flow cell lane is 

possible). Normalization acts to even out the amounts of ds cDNA in each library. For 

example, all libraries can be diluted to 10nM ds cDNA and then pooled at even volumes, 

so that each library is equally represented. 

17. Send normalized and pooled libraries to sequencing facility for cluster generation and 

sequencing protocol which is dependent on the specific platform (Illumina, Solid, 454, 

etc.).  

The Figure 1.2 shows an improved RNA-seq library preparation workflow that includes 

highly efficient rRNA removal (Ribo-Zero technology) followed by a rapid, ligation-free 
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cDNA synthesis procedure for preparing directional RNA-seq libraries (ScriptSeq v2 

technology). [8] 

 

Figure 1.2: Overview of the ScriptSeq v2 RNA-seq library preparation method.[8] 

1.4. RNA-SEQ PLATFORMS 

 ILLUMINA 

After libraries are made, ds cDNA is passed through a flow cell which will hybridize the 

individual molecules based on complementarity with adaptor sequences. Hybridized sequences 

held at both ends of the adaptor by the flow cell will be amplified as a bridge. These newly 

generated sequences will hybridize to the flow cell close by and after many cycles a region of 

the flow cell will contain many copies of the original ds cDNA. This entire process is known 

as cluster generation. After the clusters are generated, and one strand removed from the ds 

cDNA, reagents are passed through the flow cell to execute sequencing by synthesis. 

Sequencing by synthesis describes a reaction where in each synthesis round, the addition of a 

single nucleotide, which can be A, C, G, or T, as determined by a fluorescent signal, is imaged, 

so that the location and added nucleotide can be determined, stored, and analyzed. 

Reconstruction of the sequence of additions in a specific location on the flow cell, which 

corresponds to a generated ds cDNA cluster, gives the precise nucleotide sequence for an 

original piece of ds cDNA [9]. As it is illustrated in the Figure 1.3 [10]. 
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There are also two modes in which sequencing can be performed. If sequencing is performed 

at one end of the ds cDNA only, it is single read mode. If sequencing is performed from both 

ends, it is termed paired-end read mode. Illumina provides a wide range of instruments with 

different throughputs. The Hi-Seq 2500 instrument produces up to 6 billion paired-end reads 

in a single run. At PE100 (paired-end read with length 100 nucleotides), this represents 600Gb 

of data. This is massively more sequence data than is typically needed for a single study, so 

that, in practice, the libraries are indexed and several libraries are normalized and combined to 

be run on a single flow cell. It is normal practice to have as many as a hundred libraries run in 

total on a 16-lane flow cell. If this is too much sequencing capacity for a laboratory, Illumina 

also provides a smaller, yet more personal sequencer with lower throughput. The MiSeq system 

can produce 30M reads in PE250 mode representing 8.5Gb of data within a 2-day runtime. [11] 

 SOLID 

SOLID stands for sequencing by oligonucleotide ligation and detection and is a platform. The 

sequencing chemistry is via ligation rather than synthesis. In the SOLID platform, a library of 

DNA fragments (originally derived from RNA molecules) is attached to magnetic beads at one 

molecule per bead. The DNA on each bead is then amplified in an emulsion so that amplified 

products remain with the bead. The resulting amplified products are then covalently bound to 

a glass slide. Using several primers that hybridize to a universal primer, di-base probes with 

fluorescent labels are competitively ligated to the primer. If the bases in the first and second 

positions of the di-base probe are complementary to the sequence, then the ligation reaction 

will occur and the label will provide a signal. Primers are reset five times by a single nucleotide, 

so at the end of the cycle, at least four nucleotides would have been interrogated twice due to 

the dinucleotide probes and the fifth nucleotide at least once. The ligation steps continue until 

the sequence is ready.[12] 

The unique ligation chemistry allows for two checks of a nucleotide position and thus 

provides greater sequencing accuracy of up to 99.99%. While this may not be necessary for 

applications such as differential expression, it is critical for detecting single-nucleotide 

polymorphisms (SNPs). The newest instruments such as the 5500W do away with bead 

amplification and use flow chips in place of amplifying templates. The throughput can be up 

to 320Gb of data from two flow chips. As with other platforms, indexing/barcoding can be 

used to multiplex libraries so that hundreds of library samples can be run simultaneously on 

the instrument. Figure 1.4 illustrates Solid sequencing process. [13] 

 ROCHE 454 

This platform is also based on adaptor-ligated ds DNA library sequencing by synthesis 

chemistry. ds DNA is fixed onto beads and amplified in a water–oil emulsion. The beads are 

then placed into picotiter plates where sequencing reactions take place. The massive numbers 

of wells in picotiter plates provide the massively parallel layout needed for NGS. 

The detection method differs from other platforms in that the synthesis chemistry involves 

detection of an added nucleotide via a two-step reaction. The first step cleaves the triphosphate 

nucleotide, then releasing pyrophosphate. The second step converts pyrophosphate into 

adenosine triphosphate (ATP) via the enzyme ATP sulfurylase. The third step uses the newly 

synthesized ATP to catalyze the conversion of luciferin into oxyluciferin via the enzyme 

luciferase and this reaction generates a quantum of light that is captured from the picotiter plate 

by a charge-coupled camera. 
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Figure 1.3: The Illumina sequencing-by-synthesis approach.[10] 



 

9 

 

 

Figure 1.4: AB SOLiD sequencing. (a) AB SOLiD sequencing by ligation first anneals a universal 

sequencing primer then goes through subsequent ligation of the appropriate labeled 8mer, 

followed by detection at each cycle. (b) Two base encoding of the AB SOLiD data greatly 

facilitates the discrimination of base callingerrors from true polymorphisms or indel events. 

Figures related to the SOLiD(tm) System are reproduced with permission from Applied 

Biosystems.[13] 

Free nucleotides and unreacted ATP are degraded by a PYRase after each addition. These 

steps are repeated until a predetermined number of reactions have been reached. Recording the 

light generation and well location after each nucleotide addition allows for reconstruction of 

the identity of the nucleotide and the sequence for each well. The advantage of this sequencing 

chemistry is that it permits for longer reads when compared to other platforms. Read lengths 

of up to 1000 bases can be achieved on this platform. Roche provides the current GS FLX+ 

system as well as a smaller GS junior system. With up to 1 million reads per run, and an average 

of 700nt per read, 700Mb of sequence data can be achieved in less than 1 day of run time. 

(Figure 1.5) [10]. 

 ION TORRENT 

This newer platform utilizes the adaptor-ligated library followed by sequencing-by-synthesis 

chemistry of other platforms. However, it has a unique feature, instead of detecting fluorescent 

signals or photons, it detects changes in the pH of the solution in a well when a nucleotide is 
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added and protons are produced. These changes are miniscule; however, the Ion Torrent device 

utilizes technologies developed in the semiconductor industry to achieve detectors of sufficient 

sensitivity and scales that are useful for nucleic acid sequencing. One limitation that has been 

pointed out is that homo-polymers may be difficult to read as there is no way to stop the 

addition of only one nucleotide if the same nucleotide is next in the sequence. Ion Torrent 

produces overall fewer reads than the others in a single run. For example, 60–80M reads at 200 

bases per read are possible on the proton instrument in a run producing 10Gb of data. However, 

the run time is only 2–4h instead of 1–2 weeks on other platforms. The machine has a small 

footprint, can be powered down when not in use and easily brought back to use, and requires 

minimal maintenance. With the convenience, size, and speed, it has found sizable applications 

in microbe sequencing, environmental genomics, and clinical applications where time is 

critical. This platform is also very popular for amplicon sequencing and use of primer panels 

for amplicon sequencing developed by specific user communities. Its low-cost and small 

footprint have also made it attractive to laboratories wishing to have their own personal 

sequencer [14].Figure 1.6 illustrate Ion Semiconductor sequencing workflow. 

 PACIFIC BIOSCIENCES 

This is a platform representative of the third generation. The chemistry is still similar to 

second generation sequencing (SGS) as it is a sequencing-by-synthesis system; however, a 

major difference is that it requires only a single molecule, and reads the added nucleotides in 

real time. Single-molecule, real-time (SMRT) sequencing developed by Pacific BioSciences 

offers longer read lengths than the SGS technologies, making it well-suited for unsolved 

problems in genome, transcriptome, and epigenetics research, particularly assembly and 

determination of complex genomic regions, gene isoform detection, and methylation detection. 

[15] 

PacBio sequencing captures sequence information during the replication process of the target 

DNA molecule. The template, called a SMRTbell, is a closed, single-stranded circular DNA 

that is created by ligating hairpin adaptors to both ends of a target double-stranded DNA 

(dsDNA) molecule[16] (Figure 1.7). When a sample of SMRTbell is loaded to a chip called a 

SMRT cell, a SMRTbell diffuses into a sequencing unit called a zero-mode waveguide (ZMW) 

[17]. 

SMRT uses zero-mode waveguides (ZMWs) as the basis of their technology. ZMWs are 

space-restricted chambers that allow guidance of light energy and reagents in the smallest 

available volume for light detection. In each ZMW, a single polymerase is immobilized at the 

bottom, which can bind to either hairpin adaptor of the SMRTbell, so a single DNA molecule 

is sequenced in real time, then start the replication. (Figure 1.8A) [18].Four fluorescent labeled 

nucleotides, which generate distinct emission spectrums, are added to the SMRT cell and can 

be detected as a nucleotide chain is being synthesized (Figure 1.8B) [18]. 

The replication processes in all ZMWs of a SMRT cell are recorded by a ‘‘movie” of light 

pulses, and the pulses corresponding to each ZMW can be interpreted to be a sequence of bases 

(called a continuous long read, CLR). Because the SMRTbell forms a closed circle, after the 

polymerase replicates one strand of the target dsDNA, it can continue incorporating bases of 

the adapter and then the other strand. If the lifetime of the polymerase is long enough, both 

strands can be sequenced multiple times (called ‘‘passes”) in a single CLR. [20] 
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Figure 1.5: Roche/454 sequencer. The method used by the Roche/454 to amplify single-stranded 

DNA copies from a fragment library on agarose beads. [10] 
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Figure 1.6: Ion Torrent Sequencing Workflow[19] 

The latest platform, PacBio RS II, typically produces sequencing movies 0.5–4 h long, up to 

250Mb of sequence in a single run, so even throughput is not compromised. The advantage of 

speed is enormous. Average read lengths can be 5000nt. Improvements in the enzyme and 

synthesis chemistry can produce routine reads of up to 10,000nt and with longest reads up to 

30,000nt. The current version of the instrument called the PacBio RS II can thus produce up to 

250Mb of sequence in a single run. As a consequence of direct DNA sequencing of single 

molecules, it was noticed that nucleic acid modifications such as 5-methyl cytosine caused 

consistent and reproducible delays in the kinetics of the sequencing DNA polymerase. This has 

been exploited in the platform to provide sequencing of DNA modifications. Currently, 

detection of up to 25 base modifications is claimed to be possible on this platform. [21] 

 

Figure 1.7 Hairpin adaptors. (Green) are ligated to the end of a double stranded DNA molecule. 

(Yellow and purple), forming a closed circle. The polymerase (gray) is anchored to the bottom of 

a ZMW and incorporates bases into the read strand (orange). [15] 
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Figure 1.8: PacBio, sequencing via light pulses emission. (A):  A SMRTbell (gray) diffuses into 

a ZMW, and the adaptor binds to a polymerase immobilized at the bottom. (B) Each of the four 

nucleotides is labeled with a different fluorescent dye, so that they have distinct emission 

spectrums. As a nucleotide is held in the detection volume by the polymerase, a light pulse is 

produced that identifies the base. (1) A fluorescently-labeled nucleotide associates with the 

template in the active site of the polymerase. (2) The fluorescence output of the color 

corresponding to the incorporated base is elevated. (3) The dye-linker-pyrophosphate product is 

cleaved from the nucleotide and diffuses out of the ZMW, ending the fluorescence pulse. (4) The 

polymerase translocates to the next position. (5) The next nucleotide associates with the template 

in the active site of the polymerase, initiating the next fluorescence pulse, which corresponds to 

base A here. The figure is adapted from [18] with permission from The American Association for 

the Advancement of Science. 

 NANOPORE TECHNOLOGIES 

Despite the impressive gains in throughput and low per base cost of current sequencing, 

efforts continue to improve sequencing technologies. While current nanopore technologies are 

in development, they so far have had minimal impact on RNA-seq studies. However, their 

impact in the future may be greater. Nanopore sequencing is a third-generation single-molecule 

technique where a single enzyme is used to separate a DNA strand and guides it through a 

protein pore embedded in a membrane. Ions simultaneously pass through the pore to generate 

an electric current that is measured. The current is sensitive to specific nucleotides passing 

through the pore, thus A, C, G, or T disturb the current flow differently and produce a signal 

that is measured in the pore (Figure 1.9). The advantage of this system is its simplicity leading 

to small-platform device size (as USB stick-sized device), but the system is technically 

challenging due to the need to measure very small changes in current at single-molecule scale. 

The efforts to commercialize this technology are led by Oxford Nanopore, however Illumina 

also has nanopore sequencing under development. Oxford Nanopore technologies are slated to 

measure directly RNA, DNA, or protein as it passes through a manufactured pore. Although 

this technology is not widely available at a commercial level, it shows a lot of promise.[22] 
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Figure 1.9: Nanopore Technologies Sequencing workflow [23] 

1.5. RNA-SEQ APPLICATIONS 

The purposes behind RNA-seq are to identify the sequence, structure, and abundance of RNA 

molecules in a particular sample. Identifying the structure means the gene structure (i.e., 

location of promoter, intron–exon junctions, 5′ and 3′ untranslated regions (UTRs), and polyA 

site). Secondary structure provides the locations of complementary nucleotide that forming 

stem-loop, or hairpin RNA [24]. Tertiary structure provides the three-dimensional shape of the 

molecule. However, identifying abundance means, the numerical amounts of each particular 

sequence both as absolute and normalized values (Figure1.10). Sequence can be used to 

identify known protein-coding genes, novel genes, or long noncoding RNAs. Once sequence 

has been determined, folding into secondary structures can reveal the class of molecules such 

as tRNA or miRNA. Comparison of the abundance of reads for each RNA species can be made 

between samples derived from different developmental stages, body parts, or across closely 

related species. [2] 
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Figure1.10: A typical RNA-Seq experiment. Long RNAs are first converted into a library of 

cDNA fragments Sequencing adaptors are subsequently added to each cDNA fragment and a short 

sequence is obtained from each cDNA using high-throughput sequencing technology. The 

resulting sequence reads are aligned with the reference genome or transcriptome, and classified as 

three types: exonic reads, junction reads and poly(A) end-reads. These three types are used to 

generate a base-resolution expression profile for each gene. [2] 

In the following is presented the common applications of using RNA-seq data. 

 PROTEIN CODING GENE STRUCTURE 

Earlier transcriptomic methods such as microarray expression analysis, cloning and Sanger 

sequencing of cDNA libraries, and serial analysis of gene expression (SAGE), as well as 

computational prediction from genomic sequences, have already provides gene structures. 

These structure annotations have been archived in databases and provide an easily accessible 

source for comparing raw RNA-seq data with known protein coding genes. The first important 

step is to map the RNA-seq reads to known protein-coding genes.  

Furthermore, RNA-seq data analysis can be used for confirming exon–intron boundaries, as 

well as the existence of completely novel exons. Therefore, using RNA-seq can define what is 

called a gene model, which is a collection of exons and introns that make up a gene. Since 

RNA-seq is quantitative, it can also specify within a sample the alternative exons usage: for 

example, when a specific exon is used five times more often than another one. The 5′ 

transcription start site (TSS) can be identified precisely using RNA-seq data. Similarly, at the 

3′ end of the molecule, the 3′UTR can be identified as well, such that the site of polyadenylation 

can be observed in the RNA-seq reads. Alternative polyadenylation sites can also be observed 
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in the same way as alternative TSS as well as their respective abundances. As RNA-seq is 

massively parallel, sufficient reads will permit these gene structures and their alternatives to be 

mapped for presumably every protein-coding gene in a genome. Thus, RNA-seq can provide 

the 5′TSS, 5′UTR, exon–intron boundaries, 3′UTR, polyadenylation site, and alternative usage 

of any of these if applicable[25]. A simplified scheme of gene structure illustrated in Figure 

1.11. Figure 1.12 shows analysis protocol of gene annotation from RNA-seq data[26]. 

 

Figure 1.11 Schematic gene structure and simplified transcription, splicing and translation 

process[27] 

 NOVEL PROTEIN-CODING GENES 

Previously, the annotations of protein-coding genes relied on computational predictions based 

on genomic sequences. This was fine as long as genome data were available, the gene model 

elements fit common expected size and distance parameters, and there were transcriptomic data 

in the form of expressed sequence tag (EST) data sets or orthology data available to verify the 

predictions. However, it was easy to see that these criteria fit well only a very limited number 

of organisms under scientific investigation. Therefore, RNA-seq, with its high throughput, 

could verify many of the previous predictions, but also in cases where no prediction existed, it 

could identify novel protein-coding genes. It was especially useful in cases where no genome 

sequence was available, so a transcriptome of an organism could be built entirely from RNA-

seq data. A recent example of this application has been in the sequencing of the giant panda 

genome [28].  

 QUANTIFYING AND COMPARING GENE EXPRESSION 

Once the sequence and gene structure have been elucidated, it is logical that abundance values 

can be attributed to each gene as well as various features in their structures. As many studies 

would like to compare the abundance of RNA transcripts from healthy versus sick, nontreated 

versus treated, or time point 0 versus 1, it is logical that comparative studies are made. The 

range and types of comparative studies are virtually unlimited. In one of the earliest RNA-seq 

studies, transcripts from adult mouse brain, liver, and skeletal muscle were sequenced and 

compared [25]. 
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More than 40M single-end reads at 25nt were sequenced on an Illumina platform and the 

authors found novel TSSs, alternative exons, and alternative 3′UTRs. The study demonstrated 

the shallowness of previous annotations of gene structure and thus highlighted how the breadth 

and depth of annotations provided by RNA-seq technology could change our view of gene 

structure. These results thus paved the way for subsequent RNA-seq studies. Another RNA- 

 

Figure 1.12: Analysis protocol of gene annotation from RNA-seq data. (A) The mapping result 

for a sequence read is gene model dependent; (B) “two-stage” mapping protocol: at Stage #1, all 

RNA-Seq reads are mapped to a reference transcriptome; at Stage #2, the mapped reads at Stage 

#1 are re-mapped to the genome with and without the use of a gene model, respectively; (C) the 

protocol for classifying uniquely mapped sequence reads into four categories, i.e., “Identical”, 

“Alternative”, “Multiple” and “Unmapped” (or Fail).[26] 

seq study two years later, followed the expression of RNA transcripts from mouse skeletal 

muscle cells during differentiation after 60 h, 5 days, or 7 days [29]. The technology improved 

so that more than 430M paired-end reads at 75nt were used to identify greater than 3700 

previously unannotated transcripts. TSSs were also shown to change in more than 300 genes 

during differentiation. It is also possible to study RNA transcripts in whole animals. The total 

RNA from whole animals could be isolated and subjected to RNA-seq, in recent study Over 

30M reads from water- or ethanol-treated animals were obtained [30]. Ethanol exposure could 

be seen to increase RNA transcripts of detoxification enzyme genes and decrease transcripts 

involved in endoplasmic reticulum stress. 
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 EXPRESSION QUANTITATIVE TRAIT LOCI (EQTL) 

RNA-seq studies have become so pervasive that they have been used to study quantitative 

traits, especially in the context of genome variation One of the most prominent directions One 

of the most prominent directions One of the most prominent directions has been the extensive 

set of studies on expression quantitative trait loci (eQTLs), namely, the discovery of genetic 

variants that explain variation in gene expression. Such studies have offered promise not just 

for the characterization of functional sequence variation but also for the understanding of basic 

processes of gene regulation and interpretation of genome-wide association studies. An eQTL 

is a locus that explains a fraction of the genetic variance of a gene expression phenotype [31]. 

Traditionally, quantitative traits loci studies in the form of genome-wide association studies 

have linked SNPs with a quantitative trait such as height, weight, cholesterol level, or risk to 

obtain type II diabetes. eQTL provides gene expression changes that can be correlated with 

known SNPs [32]. The basis for this correlation can be a local action, called cis-eQTL, for 

example, where an SNP is located on an enhancer region and changes the expression, or a distal 

action, called trans-eQTL, for example, where an SNP changes the structure of a transcription 

factor that no longer works on its target gene. Thus, gene expression levels, as determined by 

RNA-seq, can provide a link with phenotype through its correlation with SNPs. An extension 

of this idea has been to correlate also gene-splicing sites and usage with SNPs. This approach, 

termed eQTL, suggests splicing as playing a significant role in regulating overall gene 

expression [33]. In addition to human disease research, this approach has been applied in 

traditional fields such as plant breeding where quantitative traits are important. 

 SINGLE-CELL RNA-SEQ 

RNA-seq is a variation of RNA-seq where the source of total RNA for sequencing comes 

from a single cell. Typically, total RNA is not isolated, but rather cells are individually 

harvested from their source and reverse-transcribed. Methodology for library preparation is 

similar to RNA-seq: RNA is reverse-transcribed to cDNA, adaptors are ligated, barcodes for 

each cell are added, and ds cDNA amplified. Due to the low complexity of RNA species, single 

isolated cells or individual libraries are sometimes pooled prior to sequencing. In one example 

of this approach, a single mouse blastomere was collected and RNA-sequenced from its 

contents. The authors found 5000 genes expressed and >1700 novel alternative splice junctions, 

indicating both the robustness of the approach as well as the complexity of splicing in a single 

cell [34]. In another example of the approach, single cells from the nematode C. elegans at an 

early multicell developmental stage were isolated and libraries prepared from total RNAs. New 

transcription of genes could be monitored at each individual stage of development via profiling 

the transcripts of individual cells [35]. 

 FUSION GENES 

As read numbers and lengths increased, and paired-end sequencing became available, the 

ability to identify rare, but potentially important transcripts increased. Such is the case with 

fusion genes, which are transcripts generated from the fusion of two previously separate gene 

structures. Fusion partners can contribute 5′UTRs, coding regions, and 3′polyadenylation 

signals. Conditions for this event to occur happen during genomic rearrangement found in 

cancer tissues and cells. Cytogenetic derangements such as genomic amplifications, 

translocations, and deletions can bring together two independent gene structures. For example, 

24 novel and three known fusion genes were detected in three breast cancer cell lines using 

paired-end sequencing of libraries sized 100 or 200nt in length [36]. One of these fusion 

genes, VAPB-IKZF3, was found to be functional in cell growth assays[37]. Recent RNA-seq 
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studies have found fusion genes to be present in normal tissue, suggesting that fusion gene 

events might have normal biological function as well[38]. 

 GENE VARIATIONS 

As the amount of RNA-seq data accumulates, it is possible to mine the data for gene variation. 

Mostly bioinformatic approaches by downloading publicly available data have been used to 

scan SNPs in transcriptomic data [39]. In this study, 89% of SNPs derived from RNA-seq data 

at a coverage of 10× were found to be true variants. SNP detection can also be obtained directly 

from original RNA-seq data. A group performed RNA-seq on muscle from Longissimus 

thoraci (Limousine cattle) muscle mRNAs [40]. They were able to identify >8000 high-quality 

SNPs from >30M paired-end reads. A subset of these SNPs was used to genotype nine major 

cattle breeds used in France, demonstrating the utility of this approach. 

One recent application of NGS has been to identify variations in the protein coding gene 

sequences from genomic DNA samples. Termed “exome-sequencing or exome-capture,” this 

approach is technically not RNA-seq since it relies on sequencing fragmented genomic DNA 

that has been enriched for exons via hybridization to exonic sequences. This has been motivated 

by human disease studies, where variations, typically SNPs, need to be identified from a large 

cohort of individuals. As exons are overwhelmingly located in protein-coding genes, this has 

the advantage of finding variations that have direct effects on protein structure. It is one of the 

most popular applications of NGS and many commercially available kits have been developed 

for this purpose. [41] 

 LONG NONCODING RNAS 

Another application of RNA-seq has been to find transcripts that are present, but do not code 

genes. Long noncoding RNAs (lncRNAs) were known before RNA-seq technologies were 

available. However, the extent of their existence and pervasiveness was not fully appreciated 

until RNA-seq methods were able to uncover the many different species of lncRNAs in living 

cells. lncRNAs are generally described as transcripts that fall outside of known noncoding 

RNAs such as tRNAs, ribosomal RNAs, and small RNAs, do not overlap a protein-coding 

exon, and are >200nt in length [42]. lncRNAs can control transcription as enhancers (eRNA) 

epigenetically by binding and altering the function of histone proteins, as competitors to RNA-

processing machinery [competitive endogenous RNA (ceRNA)], or as noise generated 

randomly. It can now be appreciated that lncRNAs may play a role in disease such as 

Alzheimer's disease [43]. 

 SMALL NONCODING RNAS (MIRNA-SEQ) 

RNA-seq can be used to identify the sequence, structure, function, and abundance of small 

noncoding RNAs. The most well-known example of these being miRNAs (miRNA-seq), but 

other small noncoding RNAs such as small nucleolar RNAs (snRNA), microRNA offset RNAs 

(moRNAs), and endogenous silencing RNAs (endo-siRNAs) can also be studied using 

miRNA-seq approaches. The methods used for miRNA-seq are similar to RNA-seq. The 

starting materials can be total RNA or size-selected/fractionated small RNAs. Most of the 

common sequencing platforms will sequence small RNAs once converted into ds cDNAs, such 

that much of the difference in the experimental protocols occur before sequencing. Figure 1.13 

shows how the non-coding exon can form the transcriptional landscape of the genome [44]. 

There are many applications for characterizing these molecules not only in the studies of basic 

biochemistry, physiology, genetics, and evolutionary biology, but also in medicine as a 

diagnostic tool for cancer or in aging processes. A recent study of the nematode Panagrellus 

redivivus has presented the identification of >200 novel miRNAs and their precursor hairpin 
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sequences while also providing gene structure models, annotation of the protein-coding genes, 

and the genomic sequences in a single publication [45]. 

 AMPLIFICATION PRODUCT SEQUENCING (AMPLI-SEQ) 

It is sometimes the case that whole transcriptomes do not need to be sequenced, but only a 

small number of genes. While one can always obtain a subset of genes of interest from a whole 

transcriptome sequence analysis, the effort, time, and resources required may be more than 

necessary. By using a panel of PCR primers consisting of 10–200 pairs, one can perform 

reverse transcription-PCR (RT-PCR) and instead of cloning each individual product and 

isolating plasmid DNA for Sanger sequencing, one can sequence the pool of PCR products to 

obtain the sequence. This has practical applications where the number of samples to be 

interrogated is large, and the number of genes is small [46]. 

 

Figure 1.13: The complexity of the transcriptional landscape in mammals. White boxes represent 

non-coding exonic sequences and dark blue boxes protein-coding exonic sequences. Green 

diamonds represent snRNAs and orange triangles represent miRNAs. Indicated are (A) antisense 

transcripts with overlapping exons, (B) nested transcripts on both strands, (C) antisense transcripts 

with interlacing exons and (D) retained introns.[44] 

1.6. OSTEOBLAST CELLS DIFFERENTIATION 

Skeletal component cells including osteoblasts, chondrocytes, adipocytes, myoblasts, tendon 

cells, and fibroblasts, are derived from mesenchymal stem cells [47]. while Osteoclast is a 

hematopoietic cell derived from CFU-GM (colony forming unit- granulocyte, monocyte) and 

branches from the monocyte-macrophage lineage early during the differentiation process [48].  

Bone is constructed through 3 processes: osteogenesis, modeling, and remodeling. It is 

constantly being remodeled in a dynamic process where osteoblasts are responsible for bone 

formation (or ossification), and osteoclasts for its resorption. Osteoblast and osteoclast work in 

tight cooperation, and together constituting a “bone multicellular unit”[49]. Fine tuning of this 

system is crucial for the development of bones, for repairing fractures, and for the correct 

maintenance of the skeleton throughout life. The Figure 1.14 shows the relationship between 

osteoclasts, osteoblasts, and growth factors[50]. 

Bone resorption is the process by which osteoclasts decompose the bone tissue for 

maintenance, repair, and remodeling. The Osteoclast carve out the shape to fit the physical 

environment (modeling) and adjust it to the demands of the body growth and the changing 

circumstances (remodeling). It disassembles and digests the composite of hydrated protein and 

mineral at a molecular level by secreting acid and a collagenase. This process also helps 

regulate the level of blood calcium, and release the minerals, resulting in a transfer of calcium 

from bone tissue to the blood [51]. 

Osteoblasts have also a role in the regulation of bone resorption through Receptor Activator 

of Nuclear-factor Kb Ligand (RANKL), that links to its receptor RANK on the surface of pre-

osteoclast cells, inducing their differentiation and fusion. Furthermore, osteoblasts secrete a 

https://en.wikipedia.org/wiki/Hematopoietic_stem_cell#Colony-forming_units
https://en.wikipedia.org/wiki/Granulocyte
https://en.wikipedia.org/wiki/Monocyte
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soluble decoy receptor (osteo-protegerin, OPG) that blocks RANK/RANKL interaction by 

binding to RANKL and, thus, prevents osteoclast differentiation and activation. Therefore, the 

balance between RANKL and OPG determines the formation and activity of osteoclasts. 

Another factor can influence bone mass is leptin, a hormone produced by adipocytes that have 

a dual effect. It can act through the central nervous system and reduce osteoblasts activity, or 

can have an osteogenic effect by binding directly to its receptors on the surface of osteoblast 

cells[52].Figure 1.16 depicts a schematic osteoclast differentiation and regulation process [54]. 

 

 

Figure 1.14: Osteogenesis, modeling, and remodeling. Schematic diagram of the relationship 

between osteoclasts, osteoblasts, and growth factors.[50] 

Ossification is a regulated process for generating new bone material, performed by 

specialized cells called osteoblasts, that synthetize the bone extracellular matrix (osteogenesis). 

Osteoblasts are bone-building cells of mesenchymal origin; they differentiate from 

mesenchymal progenitors, either directly or via an osteo-chondro-progenitor. The direct 

pathway is typical for intramembranous ossification of the skull and clavicles, while the latter 

is an indication of endochondral ossification of the axial skeleton and limbs. The pathways 

merge at the level of pre-osteoblasts. Osteoblasts can also differentiate into osteocytes, which 

are stellate cells populating narrow interconnecting passages within the bone matrix [52].In the 

Figure 1.15 representation of biogenesis of osteoblasts.[53]. 

Osteoblasts are present throughout life; however, their highest activity is during embryonic 

skeletal formation and growth. In an adult organism, osteoblasts are activated when there is 

need to regenerate a defect or when the bone matrix has been depleted[55]. Dysregulation of 

this process may cause inadequate or excessive mineralization of bones or ectopic calcification, 

all of which have grave consequences for human health [53].A therapeutic boost to the 

osteoblast activity could potentially prolong millions of human lives. Attempts have been made 

to transplant autologous stem cells to bone defects [56]. 

Bone formation requires differentiated and active osteoblasts to synthesize the extracellular 

matrix that will support the mineralizing process, However Osteoblasts do not produce bone 

material immediately from the moment they are mature, it takes about 4 months until the 

synthesis of bone matrix by the cell is detected[57]. 

The osteoblasts that have encircled themselves with the bone matrix, eventually differentiate 

into osteocytes, which are interconnected stellar cells that regulate the turnover of bone 

material. Osteoblasts that remain on the surface of bone covering by the periosteum, have two 
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destinies, either to become inert bone-lining cells, or undergo apoptosis. When the mature 

osteoblast population grows thin (either as a result if a natural turnover or a regenerative 

process demanding massive recruitment), new osteoblasts are differentiated from 

mesenchymal progenitor cells; however, their resource is limited [58].  

 

 

Figure 1.15 : A flowchart of the biogenesis of osteoblasts. Mesenchymal stem cells can 

differentiate to 4 lineages (top left) by expressing corresponding transcriptional regulators: 

PPARg for adipogenic, MyoD for myogenic, Runx2 for osteoblastic, and Sox9 for chondrocytic 

lineages. In intramembranous ossification (osteogenesis in the scull and clavicles), pre-osteoblasts 

are generated directly by mesenchymal stem cells, while in endochondral (osteogenesis of the 

axial skeleton and the limbs) a common osteo-chondro-progenitor gives rise to both cell types. 

Hypertrophic chondrocytes in a paracrine manner (gray arrow) regulate transformation of 

perichondral cells into pre-osteoblasts, or might itself transform into one. The process of 

maturation of pre-osteoblasts is shown in the enlargement on the right[53]. 
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Figure 1.16: Regulation of osteoclast formation and differentiation. [54] 

Osteoblasts secrete and mineralize the bone matrix. The mineralized extracellular matrix is 

mainly composed of type I collagen and smaller but significant amounts of osteocalcin (OC), 

matrix gla protein, osteopontin (OPN), bone sialoprotein (BSP), BMPs, TGF-β, and the 

inorganic mineral hydroxyl apatite. [52] 

Osteoblast differentiation can be characterized in three stages[53]: 

a) Cell proliferation 

b) Matrix maturation 

c) Matrix mineralization 

In Stage 1 the cells continue to proliferate and express fibronectin, collagen, TGFb receptor 

1, and osteopontin. In Stage 2 they exit the cell cycle and start differentiating, while maturating 

the extracellular matrix with Alp and collagen. In Stage 3 matrix mineralization occurs when 

the organic scaffold is enriched with osteocalcin, which promotes deposition of mineral 

substance. Osteocalcin is in fact the second most abundant protein in bone after collagen [59]. 

At this stage the osteoblast assumes its characteristic cuboidal shape [58]. 

1.7. ALTERNATIVE SPILCING 

Genetic information of an organism is stored in the genes, this information is transcribed from 

DNA into a messenger RNA (mRNA) template by a process called transcription. However, in 

eukaryotes, before the mRNA can be translated into proteins, non-coding portions of the 

sequence, called introns, must be removed and protein-coding parts, called exons, joined by 

RNA splicing to produce a mature mRNA. Recent estimates indicate that the expression of 

nearly 95% of human multi-exon genes involves alternative splicing.[60] 

Alternative splicing of precursor mRNA is an essential mechanism for gene regulation and 

for generating proteomic diversity, it produces different protein products that function in 

diverse cellular processes, including cell growth, differentiation, and organism development. 

Furthermore, it has a largely hidden function in quantitative gene control, by targeting RNAs 

for nonsense-mediated decay. In the Figure 1.18 illustrate the general concept of alternative 

splicing. 
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Regulation of alternative splicing is a complicated process in which numerous interacting 

components are involved. Additional molecular features, such as chromatin structure, RNA 

structure and alternative transcription initiation or alternative transcription termination, 

collaborate with these basic components to generate the protein diversity due to alternative 

splicing. 

Splicing is carried out by the spliceosome, a massive structure in which five small nuclear 

ribonucleoprotein particles (snRNPs) (U1, U2, U4, U5 and U6), that are associated with a large 

number of auxiliary proteins cooperate to accurately recognize the splice sites and catalyze the 

steps of the splicing reaction. The auxiliary elements known as Exon Splicing Enhancers 

(ESEs), and Intron Splicing Enhancers (ISEs), in addition to Exon Splicing Silencers (ESSs), 

and Intron Splicing Silencers (ISSs)[61]. These auxiliary elements are involved in defining both 

constitutive and alternative exons. 

The splicing process occurs in cellular machines called spliceosomes, in which the snRNPs 

are found along with additional proteins. The primary variety of spliceosome is one of the most 

plentiful structures in the cell. 

Spliceosome assembly can be abbreviated with the following steps[62]: 

1- The positions and sequences of the consensus cis-acting elements help to define the splice 

sites on Pre-mRNA. The splice donor site(SDS) includes an almost invariant sequence 

GU at the 5' end of the intron. 

A branch point site is located anywhere from 18 to 40 nucleotides upstream from the 3' 

end of the intron which contains A (A typical sequence of the branch point is YNYYRAY, 

where Y indicates a pyrimidine, N denotes any nucleotide, R denotes any purine, and A 

denotes adenine).  

The splice acceptor site (SAS) at the 3' end of the intron terminates the intron with an 

almost invariant AG sequence. Upstream (5'-ward) from the AG there is a region high in 

pyrimidines (C and U), called polypyrimidine tract. 

 

Figure 1.17 Splicing sites and cis-acting elements 

2- Slicing begins with the recognition of the 5′ splice site by the snRNP U1 and the binding 

of splicing factor 1 (SF1) to the branch point. The U2 auxiliary factor (U2AF), a dimer 

of 65 and 35 kDa subunits binds to the polypyrimidine tract, and 3′ terminal of AG 

respectively. and SR proteins (SRp) bind to ESEs and contact U2AF, U1 snRNP and the 

branch point. This assembly is ATP independent and results in the formation of the E 

complex. 
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Figure 1.18 Genetic scheme of general concept of RNA alternative splicing [63]. 

 

 

Figure 1.19: E complex, binding snRNP U1, U2AF and SF1 

3- Replacing of SF1 by the snRNPU2at the branch point. This is A complex which is ATP 

dependent. Formation of the A complex is usually the key step in determining the ends of 

the intron to be spliced out, and defining the ends of the exon to be retained. 

 

Figure 1.20: A complex, replace SF1 with snRNP U2 
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4- Complex B (pre-catalytic spliceosome): The U5, U4/U6 snRNP trimer binds, completing 

the spliceosome assembly, and the U5 snRNP binds exons at the 5' site, with U6 binding 

to U2. 

 

 

Figure 1.21: B complex, U4,U5,U6 snRNPs binding 

 

5- Complex C (catalytic spliceosome): The 5′ end of the intron that attached to snRNP U1 

is cleaved. The cut end then attaches to the conserved branch point region downstream 

through pairing of Guanine (from the splice site 5′ end) and Adenine (on the branch point) 

nucleotides, to form a looped structure known as a lariat. The bonding of the guanine and 

adenine bases takes place via a chemical reaction known as transesterification, in which 

a hydroxyl (OH) group on a carbon atom of the adenine "attacks" the bond of the guanine 

nucleotide at the splice site. the snRNPs U2 and U4/U6 appear to contribute to positioning 

of the 5′ end and the branch point in proximity. 

 

Figure 1.22:  Forming lariat by A-G bonding 

6- The U1 and U4 snRNPs are released and U5 and U6 snRNPs shift positions. U2 keeps 

connected to the lariat formed by A-G pairing 
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Figure 1.23:  U1 and U4 snRNPs are released and U5 and U6 snRNPs shift positions 

7- This step occurs by transesterification; in this case, an OH group at the 3′ end of 

the exon attacks the phosphodiester bond at the 3′ splice site. The adjoining exons are 

covalently bound, and the resulting lariat is released with U2, U5, and U6 bound to it. 

 

Figure 1.24 Splicing process final result 

In addition to consensus sequences at their splice sites, eukaryotic genes with long introns 

also contain exonic splicing enhancers (ESEs). These sequences, which help position the 

splicing apparatus, are found in the exons of genes and bind proteins that help recruit splicing 

machinery to the correct site. Most splicing occurs between exons on a single RNA transcript, 

but occasionally trans-splicing occurs, in which exons on different pre-mRNAs are ligated 

together. 

Five basic modes of alternative splicing are generally recognized.[60] 

• Exons skipping: Discrete exons that can be independently included or excluded from the 

mRNA. This is the most common mode in mammalian pre-mRNAs.[64] 

• Mutually exclusive exons: One of two exons is retained in mRNAs after splicing, but not 

both. 

• Alternative donor site: An alternative 5' splice junction (donor site) is used, changing the 

3' boundary of the upstream exon. 

• Alternative acceptor site: An alternative 3' splice junction (acceptor site) is used, changing 

the 5' boundary of the downstream exon. 

• Intron retention: A sequence may be spliced out as an intron or simply retained. This is 

distinguished from exon skipping because the retained sequence is not flanked by introns. 

If the retained intron is in the coding region, the intron must encode amino acids in frame 
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with the neighboring exons, or a stop codon or a shift in the reading frame will cause the 

protein to be non-functional. This is the rarest mode in mammals.[64] 

In addition to these primary modes of alternative splicing, there are two other main 

mechanisms by which different mRNAs may be generated from the same gene; multiple 

promoters and multiple polyadenylation sites. Use of multiple promoters is properly described 

as a transcriptional regulation mechanism rather than alternative splicing; by starting 

transcription at different points, transcripts with different 5'-most exons can be generated. At 

the other end, multiple polyadenylation sites provide different 3' end points for the transcript. 

Both of these mechanisms are found in combination with alternative splicing and provide 

additional variety in mRNAs derived from a gene [60][62].  

The following Figure 1.25 illustrates the basic alternative splicing events, whereas a number 

of auxiliary elements can influence alternative splicing. These are categorized by their location 

and activity as exon splicing enhancers and silencers (ESEs and ESSs) and intron splicing 

enhancers and silencers (ISEs and ISSs). Enhancers can activate adjacent splice sites or 

antagonize silencers, whereas silencers can repress splice sites or enhancers. Exon inclusion or 

skipping is determined by relative concentrations of the cognate RNA-binding activator and 

repressor proteins. Elementary alternative splicing events [62] 

1.8. QUALITY CONTROL AND PREPROCESSING 

High throughput sequencers can generate tens of millions of sequences in each run. Before 

analyzing this RNA-seq data and using it for transcriptome study to draw biological 

conclusions, quality control must be performed to ensure that RNA-seq data are of high quality 

and suitable for subsequent analyses without biases. Quality problems typically originate either 

in the sequencing itself or in the preceding library preparation. They include low-confidence 

bases, sequence-specific bias, 3′/5′ positional bias, polymerase chain reaction (PCR) artifacts, 

untrimmed adapters, and sequence contamination. These problems can seriously affect 

mapping to reference, assembly, and expression estimates. Many of those defects can be 

corrected for by filtering, trimming, error correction, or bias correction. While some cannot be 

corrected for, but they must be taken into consideration when interpreting results.  

During my research I dedicated considerable time for quality control of FASTQ files[65]. 

Either by using the available Quality Control (QC) tools as FastQC[66], RSeQC[67] and 

Trimmomatic [68]. Or by coding a number of tools using HTSeq library in Python [69], to 

check the eligibility of RNAseq data, as described in the following. 

 FASTQ FORMAT: 

 FASTQ has emerged as a common file format for sharing sequencing read data combining 

both the sequence and an associated per base quality score. It provides an additional extension 

to the FASTA format, it is the ability to store a numeric quality score associated with each 

nucleotide in a sequence. However, it is lacking the clear formal definition. Furthermore, there 

are three incompatible variants of FASTQ format; original Sanger standard, the Solexa, and 

Illumina variants. Over time, the FASTA format has developed by consensus; however, in the 

absence of an obvious standard. For example, some parsers will fail to handle the very long ‘>’ 

title lines or very long sequences without line wrapping. There is also no standardization for 

record identifier [65].  

To introduce the three FASTQ variants, first I need to define PHRED, as a software reads 

DNA sequencing trace files, calls bases and assigns a quality value to each base called[70][71]. 

While the PHRED quality score of a base call, defined in terms of the estimated probability of 

error: 

https://en.wikipedia.org/wiki/Reading_frame
https://en.wikipedia.org/wiki/Promoter_%28biology%29
https://en.wikipedia.org/wiki/Polyadenylation
https://en.wikipedia.org/wiki/Transcriptional_regulation
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𝑄𝑃𝐻𝑅𝐸𝐷 = −10 × log10(𝑃𝑒)            (1) 

This means for example, if the probability of the error in calling a base is 0.01, so the PHRED 

score is 20.  

 

 
Figure 1.25 Elementary alternative splicing events and regulatory elements.[62] 

According to the Open Bioinformatics Foundation (OBF, http://www.open-bio .org), FASTQ 

has three variants; the original or standard FASTQ format, as the Sanger variant, using the 

format name ‘fastq-sanger’, Solexa FASTQ format ‘fastq-solexa’ and Illumina 1.3+ FASTQ 

format ‘fastq-illumina’ (Table 1).  

In Sanger FASTQ format, in order that the file be human readable and easily edited, storing 

the PHRED scores was in ASCII printable characters 32–126 (decimal), and since ASCII 32 is 

the space character, Sanger FASTQ files use ASCII 33–126 to encode PHRED qualities from 

0 to 93 (i.e. PHRED scores with an ASCII offset of 33). [72] 

In Solexa FASTQ format, Solexa also produced other files with quality scores for all four 

bases, although the FASTQ format only records a single quality score per letter. Furthermore, 

in order to represent low-quality information more comprehensively, an alternative logarithmic 

mapping was used [73]. But rather they introduced their own incompatible (and 

indistinguishable) version of the FASTQ format [65]. Solexa quality scores are defined as: 
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𝑄Solexa =  −10 × log10 (
𝑃𝑒

1−𝑃𝑒
)            (2) 

Although Illumina initially continued to use the Solexa FASTQ variant, from Genome 

Analyzer Pipeline version 1.3 onwards, PHRED quality scores rather than Solexa scores were 

used [74]. The Illumina 1.3+ FASTQ variant encodes PHRED scores with an ASCII offset of 

64, and so can hold PHRED scores from 0 to 62 (ASCII 64–126), although currently raw 

Illumina data quality scores are only expected in the range 0–40. (Table 1.1) 

FASTQ variant ASCII Characters  Quality Score 

Range Offset Type Range 

Sanger standard 
‘fastq-sanger’ 

33 - 126 33 
 

PHRED 0 to 93 

Solexa/early Illumina 
‘fastq-solexa’ 

59 - 126 64 
 

Solexa -5 to 62 

Illumina 1.3+  
‘fastq-illumina’ 

64 - 126 64 
 

PHRED 
0 to 

62 

Table 1.1 FASTQ variants between different sequencing platforms 

 TRIMMING LOW QUALITY READS: 

The raw data of the next generation sequencing usually suffered, beside the attached adapters 

which must be removed, from low quality sequencing bases along the reads, that can easily 

result in suboptimal downstream analyses. Nevertheless, it is considerable to precisely identify 

such sequences, including partial adapter sequences, while leaving valid sequence data pristine 

[75]. Trimmomatic is the optimal choice designed to work on NGS data for identification of 

adapter sequences and quality filtering. It  is able to process paired-end samples and optimized 

for Illumina NGS data [76]. 

The trimming procedures that Trimmomatics performed classified in the following list:   

1.8.2.1 Removing technical sequences:  

Identifying adapter or other contaminant sequences within a dataset is inherently a tradeoff 

between sensitivity (ensuring all contaminant sequences are removed) and specificity (leaving 

all non-contaminant sequence data intact). This issue is even more critical when only a small 

part of the contaminant sequence is included within the read. To detect technical sequences 

within the reads, Trimmomatic adopts two approaches for this purpose. 

The first, referred to as ‘simple mode’, the advantage of this mode, that is working for all 

technical sequences, including adapters and polymerase chain reaction (PCR) primers. It 

performs by finding an approximate match between the read and the user supplied technical 

sequence, which can be passed to the tool as Fasta file. Such sequences can be detected in any 

location or orientation within the reads but requires a substantial minimum overlap between 

the read and technical sequence to prevent false-positive findings. However, short partial 

adapter sequences, which attached at the ends of reads, are unable to meet this overlap 

requirement and therefore are not detectable. In simple mode, each read is scanned from the 5′ 

end to the 3′ end to determine if any of the user-provided adapters are present. The standard 

‘seed and extend’ approach is used to find initial matches between the technical sequences and 

the reads [77]. Based on this seed match, a local alignment is performed. If the alignment score 

exceeds the match threshold, the aligned region plus the remainder after the alignment are 

removed.  [76] 
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Figure 1.26 illustrates the alignments tested for each technical sequence. In panel (A) In the 

beginning of the read, a partial overlap occurs of the 3′ end of the technical sequence with the 

5′ end, so the rest of the read is trimmed. Even though with a complete overlap at the 5′ end 

(B) scenarios, the entire read is clipped as well. If the contaminant is found within the read (C), 

the bases from the 5′ end of the read to the beginning of the alignment are retained. The testing 

process continues until only a partial alignment on the 3′ end of the read remains (D). 

The second mode, called as ‘palindrome mode’, is specifically optimized for the detection of 

‘adapter read-through’. However, it can only be used with paired-end data. When ‘read-

through’ occurs, both reads in a pair will consist of an equal number of valid bases, followed 

by contaminating sequence from the ‘opposite’ adapters. Furthermore, the valid sequence 

within the two reads will be reverse complements. By combining these three symptoms, 

Palindrome mode algorithm can identify adapter read-through with high sensitivity and 

specificity.  

How the algorithm works? The adapter sequences are prepended to their respective reads, and 

then the combined read-with-adapter sequences from the pair are aligned against each other. A 

high-scoring alignment indicates that the first parts of each read are reverse complements, 

while the remaining parts of the reads match the respective adapters. The alignment is 

implemented using a ‘seed and extend’ approach, similar to that in simple mode. Global 

alignment scoring is used to ensure an end-to-end match across the entire overlap.  

The alignments in palindrome algorithm is illustrated in Figure 1.27 The process starts by 

align the forward and reverse reads against each other, so if the adapter of the reverse read 

aligned to 5′ end of the forward read, and vice versa as shown in panel (A). 

 

Figure 1.26: Simple mode in Trimmomatic. The alignment process begins with a partial overlap 

at the 5′ end of the read (A), increasing to a full-length 5′ overlap (B), followed by full overlaps 

at all positions (C) and finishes with a partial overlap at the 3′ end of the read (D).[76] 

This interpreted that the read pair contains uninformative sequence which could be caused by 

the direct ligation of the adapters, therefore the both reads will be dropped. In (B) the adopters 

align within the reads, so the sequence portion before the adopter is accepted and the fragment 

that aligns to the adopter and on is dropped. Even when only a small fragment of the adapter is 

overlapping, as shown in (C). 



 

32 

 

1.8.2.2 Quality filtering: 

Trimmomatic offers two main quality filtering alternatives; sliding window and maximum 

information. The Sliding Window uses a relatively standard approach. This works by scanning 

from the 5′ end of the read, and removes the 3′ end of the read when the average quality of a 

group of bases drops below a specified threshold. This prevents a single weak base causing the 

removal of subsequent high-quality data, while still ensuring that a consecutive series of poor-

quality bases will trigger trimming. 

During trimming we need to take in the consideration to find the balance in the retaining read 

length. It is clear that short reads are almost worthless because they occur multiple times within 

the target sequence and thus they give only ambiguous information. However, beyond a certain 

read length, retaining additional bases is less beneficial. Therefore, the smaller potential benefit 

of retaining additional bases must be balanced against the increasing risk of retaining errors, 

which could cause the existing read value to be lost.  

As such, it is worthwhile for the trimming process to become increasingly strict as it 

progresses through the read, rather than to apply a fixed quality threshold. The ‘Maximum 

Information’ quality filtering implements this adaptive approach. It uses a combination of three 

factors to determine how much of each read should be retained. [76] 

 

 

Figure 1.27: Palindrome mode in Trimmomatic. The alignment process begins with the adapters 

completely overlapping the reads (A) testing for immediate ‘read-through’, then proceeds by 

checking for later overlap (B), including partial adapter read-through (C), finishing when the 

overlap indicates no read-through into the adapters (D) [76] 

The first factor models the ‘length threshold’ concept, whereby a read must be of at least a 

minimal length to be useful for the downstream application. On the other hand, most long reads 

can be mapped to few locations in the target sequence. So, if they cannot be uniquely mapped, 

because of the repetitive regions, it is unlikely that a small number of additional bases will 

resolve this. For reads between these extremes, the marginal benefit of a small number of 

additional bases is considerable, as these extra bases may make the difference between an 

ambiguous and an informative read. A logistic curve was chosen to implement this scoring 

behavior, as it gives a relatively flat score for extreme values, while providing a steep transition 



 

33 

 

around the user-specified threshold point. The following equation gives a length threshold 

score: 

𝑆𝑐𝑜𝑟𝑒𝐿𝑇(𝑙) =
1

(1 + 𝑒𝑡−𝑙)
 

Whereas: t is a target length, and l is the putative length after trimming. 

The second factor models ‘coverage’, it provides a linear score based on retained sequence 

length:  

𝑆𝑐𝑜𝑟𝑒𝑐𝑜𝑣(𝑙) = 𝑙 

The third factor models the ‘error rate’, it uses the error probabilities from the read quality 

scores to determine the accumulated likelihood of errors over the read. To calculate this score, 

we simply take the product of the probabilities that each base is correct, giving: 

𝑆𝑐𝑜𝑟𝑒𝐸𝑟𝑟 = ∏ 𝑃𝑐𝑜𝑟𝑟[𝑖]

𝑙

𝑖=𝑙

 

The correctness probabilities Pcorr of each base are calculated from the sequence quality 

scores. The error score typically begins as a high score at the start of the read, depending on 

the read quality, typically drops rapidly at some point during the read. 

The Maximum Information algorithm determines the combined score of the three factors for 

each possible trimming position, and the best combined score determines how much of the read 

to trim. A strictness parameter s can be set between 0 and 1, controls the balance between the 

‘coverage’ factor (for s = 0) and the ‘error rate’ factor (for s =1). This gives the following 

formula: 

𝑆𝑐𝑜𝑟𝑒(𝑙) =
1

(1 + 𝑒𝑡−𝑙)
 . 𝑙(1−𝑠). (∏ 𝑃𝑐𝑜𝑟𝑟[𝑖]

𝑙

𝑖=𝑙

)

𝑠

 

Figure 1.28 illustrates how the three factors are combined into a single score. The peak score 

is then used to determine the point where the read is trimmed 

 

Figure 1.28: Maximum Information mode. It combines length threshold, coverage, and error rate 

scores to determine the optimal trimming point [76] 
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1.9. SEQUENCE ALIGNMENT 

The purpose of sequence alignment is to figure out where the sequences are similar and how 

high the similarity is. Aligning or “mapping” reads to a reference genome or transcriptome 

allows us to estimate where the read originated from. Mapping reads to genome provides 

genomic location information, which can be used for discovering new genes and transcripts, 

and for quantifying expression. If a reference genome is not available, or if our target is to 

quantify only known transcripts, reads can be mapped to a transcriptome instead. 

Aligning reads to a reference genome is a challenging task for many reasons; reads are 

relatively short and there are millions of them, while genomes can be large and contain 

ambiguous sequence regions or indistinct such as repetitive regions and pseudogenes, this can 

impact the mapping to these areas. Furthermore, aligners have to cope with mismatches and 

indels (insertions-deletions) caused by genomic variation and sequencing errors. Eventually, 

many organisms have introns in their genes, so RNA-seq reads align to genome non-

contiguously. Placing spliced reads across introns and determining exon–intron boundaries 

correctly is difficult, because sequence signals at splice sites are limited and introns can be 

thousands of bases long. 

Alignment information are stored in sequence alignment/map (SAM) format. They are 

generated from different types of aligners, as contiguous aligners or spliced aligners as I 

describe later on. 

 SEQUENCE ALIGNMENT/MAP (SAM) FORMAT 

The Sequence Alignment/Map (SAM) format is a common alignment format that supports all 

sequence types and aligners creates a well-defined interface between alignment and 

downstream analyses, including variants detection, genotype prediction and gnome assembly. 

It supports single- and paired-end reads and combining reads of different types, including color 

space reads from AB-SOLiD. It is designed to tabulate alignment sets of 1011 or more base 

pairs, which is typical for the deep sequencing of an individual human genome[78]. 

It is a generic alignment format for storing read alignments against reference sequences, 

supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. 

It is a TAB-delimited text format consisting of a header section, and an alignment section. The 

header must be prior to the alignments. Header lines start with ‘@’, while alignment lines do 

not.  

Each header line has record type code of two letters follow character ‘@’. The fields in the 

header line is TAB-delimited, each data field follows a format ‘TAG:VALUE’ where TAG is 

a two-letter string that defines the content and the format of VALUE. Detailed definitions of 

record types and tags in SAM header line is provided in “Sequence Alignment/Map Format 

Specification” manual file[79], available in Sam-Tools[78] github. While each alignment line 

has 11 mandatory fields for essential alignment information such as mapping position, and 

variable number of optional fields for aligner specific information. 

SAM format is human understandable, and easy to check for errors. However, SAM is a slow 

to parse especially for full eukaryote genome alignment. Therefore, it was required to have a 

binary representation of SAM to improve the performance for intensive data processing. It is 

called BAM (Binary Alignment/Map) format. it is used in most production pipelines and keeps 

exactly the same information as SAM. BAM is compressed by the BGZF library, a generic 

library developed to achieve fast random access in a compressed file[78]. 
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 VARIOUS ALIGNMENT TYPES 

SAM can store various types of sequence alignment, classified in the following 

categories.[80] 

1. Linear alignment. An alignment of a read to a single reference sequence that may include 

insertions, deletions, skips and clipping, but may not include direction changes (i.e. one 

portion of the alignment on forward strand and another portion of alignment on reverse 

strand). A linear alignment can be represented in a single SAM record 

2. Clipped alignment: In Smith-Waterman alignment[81], a sequence may not be aligned 

from the first residue to the last one. Subsequences at the ends may be clipped off. It is 

flagged in SAM with ʻSʼ to define Soft clipped alignment. Here is an example.  

3. Spliced alignment: When RNA-Seq reads align to genome reference, they span over 

introns and sometimes exons according to the splicing event.  To distinguish in the 

alignment splicing from deletions in exons, SAM flag this alignment by ʻNʼ to represent 

long skip on the reference sequence.  

4. Multiple alignment: Read alignment could be ambiguous. One query sequence may be 

aligned to multiple places on the reference genome due to repeats for example. In this case, 

there will be multiple read alignments for the same read. In SAM, one of these alignments 

is considered primary, while all the other alignments have the secondary alignment flag. 

5. Padded alignment. Alignment with inserted sequences fully aligned is called padded 

alignment. Padded alignment is always produced by de novo assemblers and is important 

for an alignment viewer to display the alignment properly. To store padded alignment, 

SAM introduced operation ʻPʼ which can be considered as a silent deletion from padded 

reference sequence.  

6. Alignments in color space. Color alignments are stored as normal nucleotide alignments 

with additional tags describing the raw color sequences, qualities and color-specific 

properties. 

 ALIGNMENT PROGRAMS 

Tens of alignment programs have been developed, offering various approaches to overcome 

alignment challenges. Fonseca et al. [81] provide a comprehensive survey of aligners and 

update the listing on the web [82]. Typically, aligners apply some heuristics and use different 

indexing schemes to speed up the process. Many tools can consider base quality values when 

scoring mismatches and they can also make use of the expected distance and relative 

orientation of paired-end reads. 

Aligners report the confidence in the mapping location as mapping quality (𝑄 = −10 log10 𝑃, 

where P is the probability that the read originated elsewhere). Mapping quality can depend on 

several things, but the most important one is uniqueness. Some aligners are able to distribute 

multimapping reads proportionally to the coverage between the equally matching locations. 

Spliced aligners specific for RNA-seq reads use different approaches for aligning spliced reads. 

This can include performing an initial alignment to discover exon junctions, which then guide 

the final alignment. If genomic annotation is available, aligners can use it for placing spliced 

reads. Spliced aligners differ in their alignment yield, splice-detection performance, base-wise 

accuracy, tolerance for mismatches, and indel detection, as shown by the systematic evaluation 

performed by Engström et al. [82]. The main consideration when choosing an aligner for RNA-

seq studies is whether spliced alignments are needed or not. If the organism does not have 

introns or if microRNAs were sequenced, it is fine to use contiguous aligners like Bowtie [83] 
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or BWA [84], which were originally developed for DNA. These aligners can also be used if 

reads are mapped to a transcriptome rather than a genome. However, if RNA-seq reads are 

mapped to genomes which contain introns, a spliced aligner like TopHat [85], STAR [86], or 

GSNAP [86] is necessary. 

In our research, we needed spliced aligner as TopHat for alternative splicing analysis and 

defining spliced junctions.  

1.9.3.1 TopHat aligner: 

TopHat is an optimal fast junction aligner for RNA-Seq reads to mammalian-sized genomes, 

in order to identify exon-exon splice junctions. It is built on the ultra-high-throughput short 

read mapping program Bowtie, which is an ultrafast, memory-efficient alignment program for 

aligning short DNA sequence reads to large genomes. Bowtie extends previous Burrows-

Wheeler techniques with a novel quality-aware backtracking algorithm that permits 

mismatches [87]. 

TopHat has the ability to detect splice junctions without a reference annotation of known 

junctions. By mapping RNA-Seq reads to the genome firstly, TopHat identifies potential exons, 

due to the fact that many RNA-Seq reads will contiguously align to the genome. Therefore, a 

database of possible splice junctions will be built, using this initial alignment information, then 

TopHat maps the reads against these junctions to confirm them. It has the ability to identify 

novel splice sites with direct mapping to known transcripts. Many exons are shorter than reads 

produced by short reads sequencing machines. Therefore, they might be missed in the initial 

mapping.  TopHat solves this problem mainly by splitting all input reads into smaller segments 

which are then mapped independently. The segment alignments are put back together in a final 

step of the program to produce the end-to-end read alignments. 

TopHat generates its database of possible splice junctions based on two sources of evidence. 

The first and strongest source of evidence for a splice junction is when two segments from the 

same read, with minimum length 45bp, are mapped to the same genomic sequence, but at a 

specific distance, or when an internal fragment fails to map directly to the genome, this scenario 

suggesting that such reads are spanning multiple exons. The second source is pairings of 

"coverage islands", which are distinct regions of piled up reads in the initial mapping. 

Neighboring islands are often spliced together in the transcriptome, so TopHat looks for ways 

to join these with an intron. [88] 

Another issue can arise during assembly, that the genes transcribed at low levels will be 

sequenced at low coverage, hence the exons in these genes may have gaps. To solve of this 

issue TopHat has a parameter that controls when two distinct but nearby exons should be 

merged into a single exon. This parameter defines the length of the longest allowable coverage 

gap in a single island. Due to the fact that, introns in mammalian are rare be shorter than 70 bp 

[89], any value less than 70 bp for this parameter is reasonable. However, TopHat chose 

conservative value of this default gap of 6 bp. 

The second phase of TopHat alignment procedures is to remap the initially unmapped reads 

(IUM). To map reads to splice junctions, TopHat first enumerates all approved donor and 

acceptor sites within the island sequences. Next, it considers all pairs of these sites that could 

form canonical (GT–AG) introns between neighboring islands. Each possible intron is checked 

against the IUM reads for reads that span the splice junction. By default, TopHat only examines 

potential introns longer than 70 bp and shorter than 20 000 bp, but these default minimum and 

maximum intron lengths can be adjusted by the user. These values describe the vast majority 

of known eukaryotic introns. For example, more than 93% of mouse introns in the UCSC 

known gene set are within this range. To avoid reporting false positives, TopHat excludes 

http://bowtie-bio.sourceforge.net/
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donor–acceptor pairs that fall entirely within a single island. However, to detect junctions 

without sacrificing performance and specificity, the algorithm enumerates introns within 

islands, only if they are deeply sequenced. During the island extraction on the first phase of the 

pipeline, the algorithm computes the following statistic for each island spanning coordinates i 

to j in the map [88]: 

𝐷𝑖𝑗 =  
∑ 𝑑𝑚

𝑗
𝑚=𝑖

𝑗 − 𝑖
 ∙

1

∑ 𝑑𝑚
𝑛
𝑚=0

 

where dm is the depth of coverage at coordinate m in the Bowtie map, and n is the length of 

the reference genome. the single-island junctions tend to fall within islands have high D. Thus, 

TopHat looks for junctions contained in islands withD≥300, this parameter can be changed by 

the user too. A high D -value will prevent TopHat from looking for junctions within single 

islands, which will improve running time. A low D -value will force TopHat to look within 

many islands, slowing the pipeline, but potentially finding more junctions. 

using a seed-and-extend strategy, Tophat remap the IUM reads to each splice junction, in 

order to find reads that span junctions. The pipeline indexes the IUM reads using a lookup table 

to speed up and simplified searching for a spliced alignment over many reads.  

As illustrated in Figure 1.29, TopHat finds any reads that span splice junctions by at least k 

bases on each side (k=5 bp by default). For each read, the table contains (𝑠 − 2𝑘 + 1) entries 

corresponding to possible positions where a splice may fall within a read, where s is the length 

of the high-quality region on the 5′ end (default = 28 bp). For longer reads may be useful to 

increase s to improve sensitivity. Lowering s will improve running time, but may reduce 

sensitivity. Increasing k will improve running time, but may limit TopHat to finding junctions 

only in highly expressed genes.  

Afterward TopHat takes each possible splice junction and makes a 2k-mer ‘seed’ for it by 

chain the k bases downstream of the acceptor to the k bases upstream of the donor. The IUM 

read index is then queried with this 2k-mer to find all reads which contain the seed. This exact 

2k-mer match is extended to find all reads that span the splice junction. To extend the exact 

match for the seed region, TopHat aligns the portions of the read to the left and right of the 

seed with the left island and right island, respectively. 

1.10. GENE EXPRESSION ANALYSIS 

Once reads have been mapped to a reference genome, their mapping locations can be 

identified by genomic annotation. This enables us to quantitate gene expression by counting 

reads per genes, transcripts and exons. Quantitation of gene expression is an integral part of 

most RNA-Seq studies. In principle, calculating the count of mapped reads provides a direct 

way to estimate transcript abundance, it has been found that read count is approximately 

linearly related to the abundance of the target transcript[25], but in practice several 

complications need to be taken into account. Eukaryotic genes typically produce several 

transcript isoforms via alternative splicing and promoter usage. However, quantitation at 

transcript level is not easy with short reads, because transcript isoforms often have common or 

overlapping exons. Furthermore, the coverage along transcripts is not uniform because of 

mappability issues and biases introduced in library preparation. Because of these 

complications, expression is often estimated at the gene level or the exon level instead. 

However, gene level counts are not optimal for differential expression analysis for those genes 

which undergo isoform switching, because the number of counts depends on transcript length. 

This challenge can be overcome by applying the appropriate reads count normalization in 

addition to an effective statistical model for significant variability estimation, where A number 
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of model-based methods have been developed that attempt to deconvolve the expression levels 

of individual transcripts for each gene from RNA-seq data, essentially by leveraging 

information from reads unambiguously assigned to regions where isoforms differ as RSEM 

[90], and  cuffdiff from cufflinks package [91]. 

Differential expression analysis of RNA-seq data differs from microarray. In RNA-Seq the 

observed data are in the form of discrete counts generated from a sampling process, while 

microarray measurements are continuous measurements of a fluorescence signal. 

 

Figure 1.29: TopHat seed-and-extend strategy. The seed and extend alignment used to match reads 

to possible splice sites. For each possible splice site, a seed is formed by combining a small amount 

of sequence upstream of the donor and downstream of the acceptor. This seed, shown in dark gray, 

is used to query the index of IUM (Initially UnMapped) reads. Any read containing the seed is 

checked for a complete alignment to the exons on either side of the possible splice. In the light 

gray portion of the alignment, TopHat allows a user-specified number of mismatches. Because 

reads typically contain low-quality base calls on their 3′ ends, TopHat only examines the first 28 

bp on the 5′ end of each read by default.[88] 

 ASSIGNING SEQUENCE READS TO GENOMIC FEATURES 

The essential information required for downstream analysis is the number of reads mapping 

to each genomic feature, depending on the next-gen application, the genomic features might be 

exons, genes, promotor regions, gene bodies or other genomic intervals [92]. This reads 

summarization process is performed following the reads alignment in term to give an adequate 

biological interpretation. There are several tools to serve this task. However, those Read count 

programs need to accommodate both DNA and RNA sequencing as well as single and paired-

end reads. The reads or paired-end fragments to be counted may incorporate insertions, 

deletions, or fusions relative to the reference genome, and these complications should be 

accounted for when comparing the location of each read or fragment to each possible target 

genomic feature.  

Counting RNA-Seq reads is somewhat more complex because of the need to accommodate 

exon splicing. One way is to count reads overlapping each annotated exon, an approach that 

can be used to test for alternative splicing between experimental conditions[93]. Another 

common approach is to summarize counts at the gene level, by counting all reads that overlap 

any exon for each gene[94], Gene annotation from RefSeq or Ensembl is often used for this 

purpose. In RNA-Seq, reads count at the gene level provide an overall summary of the 

expression level of the gene but do not distinguish between transcripts that have been expressed 

from the same gene. Reads can generally be assigned to genes with good confidence, but 
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estimating the expression levels of individual isoforms is intrinsically more difficult because 

different isoforms of the gene typically have a high proportion of genomic overlap. Many 

statistical analysis methods have been developed to detect differential expression or differential 

binding on the basis of read counts ([95], [96],[97]).Recent comparisons have concluded that 

the read count methods perform relatively well for the purposes of gene-level differential 

expression ([98], [99]) or detection of splice variation [93]. 

A few software for read count tools are currently available. The software packages 

GenomicRanges and IRanges [100] , developed by the core team of the Bioconductor 

project[101], include functions for counting reads that overlap genomic features. The 

countOverlaps function of IRanges is designed for counting reads overlapping exons or other 

simple genomic regions, whereas the summarizeOverlaps function of GenomicRanges is 

designed for counting reads at the gene level. Another tool is the HTSeq-count script distributed 

with the HT-Seq Python framework for processing RNA-seq or DNA-seq data [102]. Both of 

these software tools are popular and well tested, but they use extensively programming 

computer languages as R or Python, so they are not optimal for efficiency and speed. 

BED-Tools is a popular tool for finding overlaps between genomic features that can be used 

to count overlaps between reads and features[103]. It is fully implemented in the compiled 

language C++, making it faster than the aforementioned tools. However, it is not specifically 

designed for RNA-seq data, so can count reads for exons or interval features only, similar to 

countOverlaps. 

Although several read count tools are available, I used in my research featureCounts tool [94], 

it is highly optimized read count program, can be used to quantify reads generated from either 

RNA or DNA sequencing technologies in terms of any type of genomic feature. It implements 

chromosome hashing, feature blocking and other strategies to assign reads to features with high 

efficiency. It supports multithreading (using multi-processors in parallel), which provides 

further speed improvements on large data problems. It is available either as a Unix command 

or as a function in the R package Rsubread [104]. In either case, all the core functionality is 

written in the C programming language. The R function is a wrapper for the compiled C code 

that provides the convenience of the R programming environment without sacrificing any of 

the efficiency of the C implementation. 

featureCounts function in Rsubread has 13 categories of arguments[105], the main arguments 

I needed to set for reads summarizing in our research, as the following: 

1- files: Input files containing read mapping results. The files are in BAM format.  

2- annot.ext: is a character string giving name of gene annotation file. The annotation is 

in GTF format downloaded from Ensembl (GRCm38 release 86). 

3- isGTFAnnotationFile: is a logical indicating whether the annotation provided via the 

annot.ext argument is in GTF format. FALSE by default. Since a GTF annotation file 

is used, it is TRUE. 

4- GTF.featureType: is a character string giving the feature type used to select rows in 

the GTF annotation which will be used for read summarization. "exon" by default. 

This argument is only applicable when isGTFAnnotationFile is TRUE. I kept the 

default. 

5- GTF.attrType: is a character string giving the attribute type in the GTF annotation 

which will be used to group features (eg. exons) into meta-features (eg. genes). It is 

set to “gene_name”. 

6- IsPairedEnd: is a logical indicating if paired-end reads are used. In our data is TRUE. 
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The output of featureCounts is a list of the following components, they are accessed by ‘$’ 

after the featureCounts object then the name of the component (their letters in lowercase):  

1- counts:  a data matrix containing read counts for each feature or meta-feature. It is a 

matrix the rows are the features (in our research genes names), and the columns are 

the libraries or biological conditions (osteoblast differentiation time points). 

2- annotation: a data frame with six columns including GeneID, Chr, Start, End and 

Length. Since read summarization was performed at meta-feature level, each row in 

the data frame is a meta-feature (gene) and columns in the data frame give the 

annotation information for the features included in each meta feature except the 

Length column (in our annotation matrix the GeneID column is the genes names, 

because we set GTF.attrType to “gene_name”). The Length column gives the total 

length of genomic regions covered by features included in that meta-feature. 

3- targets: a character vector giving sample information. 

4- stat: a data frame giving numbers of unassigned reads and the reasons why they are 

not assigned (e.g. ambiguity, multi-mapping, secondary alignment, mapping quality, 

fragment length, chimera, read duplicate, non-junction and so on), in addition to the 

number of successfully assigned reads for each library 

 TECHNICAL VERSUS BIOLOGICAL REPLICATES 

The word replicate means that we get more than one measurement of the quantity of interest. 

Replication is considered one of the three cornerstones of proper experimental design outlined 

by Fisher (1935)[106]: randomization, replication, and blocking. An excellent explanation of 

these concepts in the context of RNA sequencing can be found in a paper by Auer and Doerge 

[107], which is a highly recommended to read before planning an experiment. The purpose of 

replication is to be able to estimate the variability between and among groups, which is 

important for hypothesis testing. 

Technical replication is used to estimate the variability of the measurement technique, as 

RNA sequencing techniques. While biological replication is used to find out the variability 

within a biological group. Changes in gene expression between two groups can only be called 

significant if the difference between the groups is large compared to the variability within the 

group, while taking the sample size into consideration.  

There can be different types of technical replicates, for example, sequencing the same library 

in two different lanes of a sequencer or different library preparations performed on the same 

sample of extracted RNA. Typically, the RNA extraction would be the same in technological 

replicates, but different in biological replicates. 

There are also borderline cases where it is hard to call replicates “biological” even if they are 

taken from sources that could be considered different, for instance, different cultures of the 

same genetically homogeneous cell line. In these cases, the important thing is to think about 

what questions a given differential expression comparison would answer? 

The number of replicates depends on the specifics of the experiment. The biological 

homogeneity of the different samples, the purpose of the experiment and the desired level of 

statistical power, among other things, will affect the number of replicates needed. Many 

sequencing core facilities require or suggest using at least three or four replicates per group to 

be compared. With three replicates, there is the risk that at least one sample might fail in library 

preparation or sequencing, so we would end up with only two replicates in one of the groups, 

whereas two is too few. Particularly for complex diseases, very large numbers of replicates 

(perhaps hundreds or thousands) may be needed to observe differential expression between 



 

41 

 

cases and controls, to avoid considerable variation between individuals, especially human 

blood or tissue samples. For cell lines or samples from distinct tissues, only a few replicates 

may be needed. 

 GENERAL CONCEPTS OF STATISTICAL DISTRIBUTIONS 

IN RNA-SEQ DATA 

Expression levels of the same gene across different cells have been shown to follow a log-

normal distribution as measured by quantitative PCR[108]. To figure out the variation in 

biological functions and features among various tissues or biological conditions, we need to 

statistically analyze the significant variance of the quantitative abundance of a specific genetic 

feature (gene, transcript or exon). 

For RNA-seq, the read count that assign to a transcript is linearly related to its abundance 

(with good approximation) [25].The read count can be approximated by Poisson distribution, 

if we accept the assumption that sequenced reads are independently sampled from the 

sequencing library or the population, and we have fixed fractions of genes. 

However, we would expect slightly different counts even for the same library in an idealized 

circumstance, where it was sequenced twice under the same conditions. This inevitable noise 

which arises from the sampling process is called shot noise, and often the variability between 

technical replicates in RNA-seq can be described quite well by this type of Poisson noise. In 

some researches, Poisson distribution has been used to test for differential 

expression[109][110]. However, the assumption that the reads are Poisson-distributed, is quite 

restrictive, because it predicts smaller variations than what can be found in the data. Therefore, 

this statistical model does not control type-I error (the probability of false 

discoveries).[111][112] 

To come over this over-dispersion problem, when samples are taken from biologically distinct 

sources, such as different individuals, the variability between them has often been modeled by 

a negative binomial distribution or gamma-Poisson distribution. This distribution can be 

described as an over-dispersed Poisson distribution; a version of that distribution but with 

higher variance. While a Poisson distribution has the same variance as its mean μ, the negative 

binomial distribution's variance can be written as 

𝜎2 =  𝜇 + (1
𝑟⁄ ). 𝜇2 

The parameter r is a positive integer; therefore, the variance will always be larger than the 

mean. 

There are many methods for differential expression analysis of RNA-seq data. DESeq [95] 

and edgeR [113] use the negative binomial distribution as the basis of their modeling of RNA-

seq counts. However, RNA-seq count data also show some characteristics like zero inflation (a 

large proportion of values with zero counts) which makes it harder to fit a negative binomial 

distribution.  Whereas edgeR moderates the dispersion estimate for each gene toward a 

common estimate across all genes, using a weighted conditional likelihood. While DESeq 

method detects and corrects dispersion 

estimates that are too low through modeling of the dependence of the dispersion on the 

average expression strength over all samples. BBSeq method [114] models the dispersion on 

the mean, it reduces the influence of outliers by estimating the mean absolute deviation of 

dispersion. DSS [115] uses a Bayesian approach to provide an estimation of the dispersion for 

individual genes. baySeq [116] and ShrinkBayes [117] estimate priors for a Bayesian model 

over all genes, and then provide posterior probabilities or false discovery rates (FDRs) for 

differential expression. 
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2. AIMS OF THE DOCTORAL THESIS 

In recent years several pipelines were founded for high throughputs sequence data analysis, 

many tools are available for quality control of RNA-Seq data, reads mapping, comparative 

analysis of gene expression and alternative exons usage, and for finding de novo long non-

coding RNA. However, most of the analysis fail to deal the integrity, large datasets, and to 

produce descriptive results, that biologists can interpret without addition effort.  

The main aim of this doctoral work is to introduce an integrated RNA-Seq data analysis 

pipeline, that produces illustrated outputs, especially in the transcriptomic characterization 

experiment. This type of experiment is based on an expanded investigation of a comparative 

gene expression between different biological conditions, where we have a numerous amount 

of outputs needed to be examined to get the significant and informative results. Based on those 

outputs, we can build hypothesis describes the gene regulation stands behind that biological 

mechanism. The main aims we achieved in this doctoral thesis can be listed as follows: 

1- Introducing several codes for RNA-Seq data quality control, which provide tables of 

summarized reads statistics in samples, and give the mean of Phred quality scores across 

all the bases in a sample. In addition to plotting the mean quality of each base in all 

samples, we established a method to check the coverage uniformity. Especially when 

polyadenylated RNA library is used, there is usually concern that the coverage might vary 

across the gene’s features. 

2- Establishing a comprehensive framework for differential gene expression analysis, that 

produces descriptive outputs and facilitates the biological interpretation of the 

experiment.  

3- Presenting an analyzing approach for multiple conditions experiment, we called it 

“ON/OFF genes”, which can define the silent genes in a particular condition of the 

comparative analysis. This approach can highlight the functional roles, that genes can 

play in different conditions, and give a wider view of the genetical reasons behind the 

distinction between biological conditions. 

4- Improving the performance Improving the performance of Bioconductor package 

DEXSeq [93]for differential exons usage, by specifying if the differentially used exonic 

part is within the ORF. This procedure will help to figure out if the differential used exons 

are involved in the alternative pathways, or distinctive functions of a gene’s transcripts. 

5- Suggesting a new approach to analyze differential expressed long non-coding RNA, by 

finding the functional correlation of lncRNA with neighboring differential expressed 

protein coding genes within the TAD (Topological associated Domain), to obtain an 

illustrated view concerning the regulation mechanism in a dataset. 
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3. RNA-SEQ DATA ANALYSIS WORKFLOW 

3.1. OSTEOBLAST DIFFERENTIATION EXPERIMENT 

The RNA-Seq data which our research based on, are from differentiated osteoblast cells. 

Although osteoblast differentiation was well characterized, a detailed transcriptional analysis 

of osteoblast differentiation based on RNA sequencing (RNA-seq) analyses is still missing. 

Therefore, we used RNA-seq to obtain a high-resolution transcriptome data set of murine 

osteoblast differentiation in vitro. The cells were harvested at four distinct time points: within 

proliferation, during maturation, terminal differentiation, and at the onset of mineralization.   

Primary calvaria osteoblasts (pCOBs) were harvested from newborn C57BL/6 wild-type mice 

(P0-P4) as described in the project publication [118]. Cells were seeded on 6-well plates in 

Alpha-Mem (Lonza, Basel, Switzerland) containing 10 % fetal calf serum (FCS; Gibco, Life 

Technologies, Carlsbad, California, USA) as well as Pen/Strep (100U/mL, Lonza) and 2 mM 

ultra-glutamine (Lonza).  

At confluence, we defined it as day 0, cells were harvested and on the other plates medium 

was supplemented with 50 µM L-ascorbate-2-phosphate and 10 mM beta-glycerophosphate to 

promote osteoblast differentiation. Cells were washed with PBS before lysis in RNAPure  

(PeqLab) at day 0 (i.e. confluent cultures without stimulation), day 3, day 6, and day 12. Total 

RNA was isolated using phenol/chloroform extraction. RNA integrity was confirmed using the 

Agilent 2100 bioanalyzer with Agilent RNA 6000 Nano Kit according to the manufacturer's 

instructions. This procedure was repeated three times to obtain biological replicates. 

As a consequence, we got 12 samples, 3 for each differentiation time point:  

1- Day 0: The confluency of cells in the culture plate, before promoting the differentiation. 

2- Day 3: Harvesting cells on the third day after the differentiation starts. 

3- Day 6: Harvesting on the sixth day after the differentiation promoted. 

4- Day 12: On the twelfth day of differentiation. 

3.2. QUALITY CONTROL AND REPROCESSING METHODS 

The first procedure needed to be implemented after we have the RNA-Seq data as FASTQ 

files, is checking the quality of the raw read sequencing. Once reads have been aligned to a 

reference genome, additional quality metrics can be investigated based on the location. These 

include coverage uniformity along transcripts, saturation of sequencing depth, ribosomal RNA 

content, and read distribution between exons, introns, and intergenic regions. Finally, once 

aligned reads have been counted per genes, sample relations and batch effects can be visualized 

with heatmaps and PCA plots. 

 FASTQC 

FastQC [66] is available as a standalone interactive Java application with a graphical user 

interface (GUI), and it can be run as well in a command line as non-interactive mode, where it 

would be suitable for integrating into a larger analysis pipeline for the systematic processing 

of large numbers of files. The input files can be FASTQ or SAM/BAM files. In addition to list 

the number of reads and their quality encoding, FastQC reports and visualizes information on 

base quality and content, read length, and k-mer content, also on the presence of ambiguous 

bases, over-represented sequences, and duplicates. 
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As we described in a previous chapter about the osteoblast dataset, we have 4 osteoblast 

differentiation time points with 3 replicates of each biological condition. They are12 samples 

of forward and reverse reads, so 24 FASTQ in total. 

Using the Bash Script, we coded a function to input the samples of original raw reads to 

FastQC to check the read qualities. This function can serve large experiment to pass samples 

to FastQC and get outputs by one command. User does not to care about how to input a set of 

samples, neither getting the outputs. As described in the Code-box 3.1. 

FastQC generates QC report contains 12 analysis modules as follows: 

1. Basic Statistics module: it summarizes statistical information about the sequencing reads, 

such as: 

• Filename: The original filename of the analyzed file. 

• File type: That means whether the file contains actual base calls or color-space data 

which had to be converted to base calls. 

• Encoding type as which ASCII encoding of quality values was found in this file. 

• Total Sequences: A count of the total number of sequences processed. 

• Filtered Sequences: the count of Sequences flagged as poor quality. 

• Sequence Length: Provides the length of the shortest and longest sequence in the set. If 

all sequences are the same length only one value is reported. 

• %GC: The overall %GC of all bases in all sequences 

2. Per Base Sequence Quality module: This module generates a plot, shows an overview of 

the range of quality values across all bases at each position in the FastQ file. This module 

produces errors if the lower quartile for any base is less than 5 or if the median for any 

base is less than 20. In our data, there are 3 samples with this low-quality issue, Day0 

Replicate2 forward strand, and Day3 Replicate3 forward strand, and Day12 Replicate1 

forward strand. Later I described how to overcome this quality deficiency in the samples. 

In the Figure 3.1 an example of per base sequence quality plot of raw reads sample. 

3. Per Sequence Quality Scores module: it allows to see if a subset of the sequences have 

universally low quality values. However, these should represent only a small percentage 

of the total sequences. As shown in Figure 3.2. 

4. Per Base Sequence Content module: it plots out the proportion of each base position in 

the sequencing reads for each of the four DNA bases has been called. In a random library 

would be expected little to no difference between the different bases of a sequence run, 

so the lines in this plot should run parallel with each other. It's worth noting that some 

types of library will always produce biased sequence composition, normally at the start 

of the read. Libraries produced by priming using random hexamers (almost all RNA-Seq 

libraries) and those which were fragmented using transposases inherit an intrinsic bias at 

the start positions od reads. This bias does not concern an absolute sequence, but instead 

provides enrichment of a number of different K-mers at the 5' end of the reads. Whilst 

this is a true technical bias, it isn't something which can be corrected by trimming and in 

most cases, doesn't seem to adversely affect the downstream analysis. All or samples 

showed this bias, as it is shown in Figure 3.3. 

5. Per Sequence GC Content module: it measures the GC content distribution across the 

whole length of each sequence in a file and compares it to a modelled normal distribution 

of GC content. An unusually shaped distribution could indicate a contaminated library or 

some other kinds of biased subset. A normal distribution which is shifted indicates some 

systematic bias which is independent of base position. 
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6. Per Base N Content module: If a sequencer is unable to make a base call with sufficient 

confidence then it will normally substitute an N rather than a conventional base call. This 

module plots out the percentage of base calls at each position for which an N was called. 

Code-Box 3.1: FastQC insert function 

 

7. Sequence Length Distribution module: Some high throughput sequencers generate 

sequence fragments of uniform length as in our raw RNA-Seq data the length of the reads 

is 101. Even within uniform length library, our pipeline trims sequences to remove 

Illumina clips and poor-quality base calls from the end and across the reads, so the length 

distribution of the reads after trimming is not uniform. The module generates a graph 

showing the distribution of fragment sizes. For variable length FASTQ files this will 

show the relative amounts of each different size of sequence fragment. The Figure 3.4 

compares the distribution of sequence length before and after trimming. 

#!/bin/bash 

## This script encodes a function to insert data to FastQC  

## It puts the output into a new directory called FASTQC_OUTPUT 

## Author Layal Abo Khayal 19.03.2015 

fastqc_insert(){ 

# First argument is the path to the raw FASTQ files 

pathRNA $1 

#Second argument is the path where the FastQC program 
FASTQC$2 
# Third argument is the path to where we write the output data 
out_path$3 
# Fourth argument is to define the name of the folder, this is useful 

to save the data before and after trimming in two different folders 

QC$4 
# Create the directory. We will write FASTQC output to a subdirectory 

called QC 

if[ ! -d$out_path];then 

 echo"Making directory $out_path" 

 mkdir$out_path 

fi 

if[!-d$out_path/$QC ];then 

 echo"Making directory $out_path/$QC" 

 mkdir$out_path/$QC 

fi 

for Dir in $(find$pathRNA -mindepth 1 -maxdepth 1 -type d ); 

do 

i=$(basename $Dir);## is the name of the experiment, e.g., 666004 

echo "Calling FASTQC on $Dir for experiment $i" 

## Call FASTQC for forward and reverse strands 

$FASTQC ${Dir}/${i}_1.fq.gz -o$out_path/$QC/ 

$FASTQC ${Dir}/${i}_2.fq.gz -o $out_path/$QC/ 

done 

} 

# call function, example 

pathRNA=/home/server/RNAseqData 

FASTQC=/home/user/FastQC_v0.11.5 /fastqc 

out_path=/home/user/OSTEO/FASTQC_OUTPUT 

QC="QC_raw" 

fastqc_insert$pathRNA $FASTQC $out_path $QC 
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8. Duplicate Sequences module:  In a diverse library most sequences will occur only once 

in the final set. A low level of duplication may indicate a very high level of coverage of 

the target sequence, but a high level of duplication is more likely to indicate some kind 

of enrichment bias (PCR over amplification). This module counts the degree of 

duplication for every sequence in a library and creates a plot showing the relative number 

of sequences with different degrees of duplication. 

9. Overrepresented Sequences module: A normal high-throughput library contains a diverse 

set of sequences. Finding that a single sequence is very overrepresented in the set, either 

means that it is highly biologically significant, or indicates that the library is 

contaminated, or not as diverse as it is expected. This module lists all of the sequence 

which make up more than 0.1% of the total. For each overrepresented sequence, the 

program will look for matches in a database of common contaminants and will report the 

best hit it finds. Hits must be at least 20bp in length and have no more than 1 mismatch. 

However, it doesn't certainly give the source of the contamination, but indicates the right 

direction. It's also worth pointing out that many adapter sequences are very similar to 

each other so a reported hit isn't technically correct, but gives information about the type 

of this duplicated sequence. 

 

Figure 3.1: Per base sequence quality plot of raw reads in sample (Day3 replicate1 reverse strand) 
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Figure 3.2: Quality scores distribution of raw reads in sample (Day0 replicate1forward strand) 

 

Figure 3.3:  Per Base Sequence Content, the bias in the start positions of reads 
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Figure 3.4: Distribution of sequence length, comparing raw reads length and distribution after 

trimming 

10. Adapter Content module:  The Kmer Content module will do a generic analysis of all the 

Kmers in the library to find those which do not have even coverage through the length of 

reads. This can find a number of different sources of bias in the library which can include 

the presence of read-through adapter sequences building up on the end of the sequences. 

One obvious class of sequences which might be wanted to analyze are adapter sequences. 

It is useful to know if the library contains a significant amount of adapter in order to be 

able to assess whether we need to adapter trim or not. This module therefore does a 

specific search for a set of separately defined Kmers and gives a view of the total 

proportion of the library which contain these Kmers. The plot itself shows a cumulative 

percentage count of the proportion of your library which has seen each of the adapter 

sequences at each position. Once a sequence has been seen in a read it is counted as being 

present right through to the end of the read so the percentages you see will only increase 

as the read length goes on. 

11. Kmer Content module: The analysis of overrepresented sequences will point an increase 

in any precisely duplicated sequences. However, this analysis suffers from few problems 

which might fail: 

• If we have very long sequences with poor quality, then random sequencing errors 

will dramatically reduce the counts for exactly duplicated sequences. 

• If we have a partial sequence which is appearing at a variety of places within our 

sequence, then this won't be seen either by the per base content plot or the duplicate 

sequence analysis. 

There may be biological reasons why certain Kmers are enriched or depleted overall, but 

these biases should affect all positions within a sequence equally. This module therefore 

measures the number of each 7-mer at each position in the library and then uses a 

binomial test to look for significant deviations from an even coverage at all positions. 

Any Kmers with positionally biased enrichment are reported. The top 6 most biased Kmer 

are additionally plotted to show their distribution. All our samples failed in this test, 

because any individually overrepresented sequences, even if not present at a high enough 

threshold, will cause the Kmers from those sequences to be highly enriched in this 

module. These will normally appear as sharp spikes of enrichment at a single point in the 
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sequence, rather than a progressive or broad enrichment. Libraries which derive from 

random primers will nearly always show Kmer bias at the start of the library due to an 

incomplete sampling of the possible random primers. 

12. Per Tile Sequence Quality module: This graph is available only if we use an Illumina 

library (which is the case of our data) that retains its original sequence identifiers. 

Encoded in these is the flow-cell tile from which each read came. The graph shows the 

quality scores from each tile across all the bases to see if there was a loss in quality 

associated with only one part of the flow-cell. The plot illustrates the deviation from the 

average quality for each tile. The colours are on a cold to hot scale, with cold colours 

being positions where the quality was at or above the average for that base in the run, and 

hotter colours indicate that a tile had worse qualities than other tiles for that base. 

As we mentioned before there are three samples showed bad quality in some position of 

the reads. In the Figure 3.5, we can see which tiles failed to give the average quality of 

the sequenced reads. I think it was temporary problem caused by bubbles going through 

the flow-cell. I do not suppose it was permanent such as stains on the flow-cell or 

fragments inside the flow-cell lane, because we have in general, raw data with good 

quality. 

 

Figure 3.5: Quality per tile in good quality reads, and low-quality reads 

 IMPLEMENTATION OF READS TRIMMING 

For the pair-end read, Trimmomatic requires as inputs both the reverse and forward reads and 

returns 4 outputs, 2 for the 'paired' output where both reads survived the processing, and 2 for 

corresponding 'unpaired' output where a read survived, but the partner read did not, as the 

Figure 3.6 illustrates. In the end, we used the paired reads. 
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Figure 3.6: Flow of reads in Trimmomatic Paired End mode [68] 

Trimming process must be performed in an order of steps then the optional procedures can 

be added in the end of the command. It is recommended in most cases that adapter clipping is 

done as early as possible, since correctly identifying adapters using partial matches is more 

difficult. 

The syntax of calling Trimmomatic for pair-end reads, is as the following:[68] 

 

The main arguments passed to Trimmomatic in the command-line are as the following: 

1. -threads: indicates the number of threads to use, here I used -threads 10. 

2. -phred33 or -phred64 : specifies the base quality encoding. If no quality encoding is specified, 

it will be determined automatically  

3. -trimlog: followed by the path of a trimlog file creates a log of all read trimmings, indicating 

the following details:  

• The read name. 

• The surviving sequence length. 

• The location of the first surviving base 

• The amount trimmed from the start. 

• The location of the last surviving base in the original read. 

• The amount trimmed from the end. 

4. Input/ Output files: Paired-end mode requires 2 input files (for forward and reverse reads), 

they can be zipped fastq files. and 4 output files (for forward paired, forward unpaired, 

reverse paired and reverse unpaired reads). They can be used either by explicitly naming 

the 2 input files, or by naming the forward file using the -basein flag, where the reverse file 

can be determined automatically. 

5. ILLUMINACLIP: This step is used to find and remove Illumina adapters.Here is the syntax 

of this argument: 

java -jar <path to trimmomatic.jar> PE [-threads <threads>] [-phred33 | -phred64] 

[-trimlog <logFile>] [-basein <inputBase> | <input 1><input 2>] [-baseout 

<outputBase> | <paired output 1><unpaired output 1><paired output 

2><unpaired output 2>]<step 1> ... 
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Description of ILLUMINACLIP arguments:  

• fastaWithAdaptersEtc: specifies the path to a fasta file containing all the adapters, 

PCR sequences etc. “TruSeq3-PE.fa” is the adapters file I used usually in the pipeline. 

• Seed Mismatches: specifies the maximum mismatch count which will still allow a full 

match to be performed. I chose strict value of 2 mismatched bases maximum. 

• Palindrome Clip Threshold: specifies the threshold of the full alignment score for 

plaindromic matches, how accurate the match between the two 'adapter ligated' reads 

must be for PE palindrome read alignment. I chose a score of 30 (about 50 bases). The 

alignment region can be 50 bases, therefore the scoring threshold can be in the range 

of 30, because each matching base increases the alignment score by 0.6, while each 

mismatch reduces the alignment score by Q/10.). 

• Simple Clip Threshold: specifies how accurate the match between any adapter 

sequence must be against a read. I chose a score of 12, (about 20 bases). 

• minAdapterLength: In addition to the alignment score, palindrome mode can verify 

that a minimum length of adapter has been detected. If unspecified, this defaults to 8 

bases, for historical reasons. However, since palindrome mode has a very low false 

positive rate, this can be safely reduced, even down to 1, to allow shorter adapter 

fragments to be removed.  

• keepBothReads: After read-though has been detected by palindrome mode, and the 

adapter sequence removed, the reverse read contains the same sequence information 

as the forward read, although in reverse complement. For this reason, the default 

behavior is to entirely drop the reverse read. By specifying „true‟ for this parameter, 

the reverse read will also be retained, which may be useful e.g. if the downstream 

tools cannot handle a combination of paired and unpaired reads. 

6. SLIDINGWINDOW:  

Perform a sliding window trimming, cutting once the average quality within the window 

falls below a threshold. By considering multiple bases, a single poor quality base will not 

cause the removal of high quality data later in the read 

 

• windowSize: specifies the number of bases to average across.  

• requiredQuality: specifies the average quality required. 

7. MAXINFO: 

Performs an adaptive quality trim, balancing the benefits of retaining longer reads against 

the costs of retaining bases with errors. 

 

• targetLength: This specifies the read length which is likely to allow the location of 

the read within the target sequence to be determined. I chose 50 bases. 

• strictness: This value, which should be set between 0 and 1, specifies the balance 

between preserving as much read length as possible vs. removal of incorrect bases. 

A low value of this parameter (<0.2) favors longer reads, while a high value (>0.8) 

favors read correctness.  

ILLUMINACLIP:<fastaWithAdaptersEtc>:<seed 

mismatches>:<palindrome clip threshold>:<simple clip 

threshold>:<minAdapterLength>:<keepBothReads> 

SLIDINGWINDOW:<windowSize>:<requiredQuality> 

 

MAXINFO:<targetLength>:<strictness> 
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8. LEADING:  

Removes low quality bases from the beginning. As long as a base has a value below this 

threshold the base is removed and the next base will be investigated.  

quality: Specifies the minimum quality required to keep a base. 

 

9. TRAILING: 

Remove low quality bases from the end. As long as a base has a value below this threshold 

the base is removed. This approach can be used removing the special Illumina “low quality 

segment” regions, however it is recommended Sliding Window or MaxInfo instead. 

 

10. MINLEN: 

Removes reads that fall below the specified minimal length. If required, it should normally 

be after all other processing steps. Reads removed by this step will be counted and included 

in the „dropped reads‟ count presented in the trimmomatic summary.  

length: Specifies the minimum length of reads to be kept.  

 

To perform the trimming on a set of samples and keep the paired samples, we coded two 

functions in Bash script for this purpose. One to insert the samples to Trimmomatic (Code-box 

3.2), and the second to keep merely the paired samples, which is used for mapping to the 

reference (Code-box 3.3). Reading through the codes in the Cod-boxes explain the simple 

concept used to get a function with one line to input a set of samples. Despite the simplicity of 

our functions, they provide useful service for users with low or no knowledge with shell 

command-line, which is necessary to run this part of RNA-seq pipeline.  

 PYTHON _ HTSEQ 

HTSeq is a Python library. It offers parsers for many common data formats in High-

Throughput Sequencing (HTS) projects, as well as classes to represent data, such as genomic 

coordinates, sequences, sequencing reads, alignments, gene model information and variant 

calls. It also provides data structures that allow for querying via genomic coordinates. [69] 

Python as a scriptural language is useful to abstract information from output reports as text 

files. we wrote two scripts for this purpose; the first one to get the basic statistic of Fastq files 

as the length of reads, sequenced reads number, and %GC. The second script to get the mean 

reads quality in each sample from FastQC report.  Using HTSeq library we coded a script to 

plot the mean quality of the reads across the position. For checking coverage uniformity across 

the gene body in Poly-A libraries, we proposed a method based on HTSeq to get the coverage 

distribution in different gene features. 

  

LEADING: <quality> 

TRAILING:<quality> 

MINLEN:<length> 
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Code-box 3.2: Bash Script. Trimmomatic insert function 

 

3.2.3.1 BasicStatistic Funnction: 

Each FactQC output has in additional to html report, a plain text file called 'fastqc_data.txt'. 

In Osteoblast data set we have four differentiation time points (conditions) with three biological 

replicates for each condition, and each sample has two fastq files for forward and reverse reads, 

this means 24 FastQC reports in total. To extract the required information, we coded a useful 

function to read the data from such group of files. This function reads lines in a specific module 

(Basic Statistics module) in fastqc.data report, and then extract the required information about 

the reads, as sequence length, total sequenced numbers, encoding type, Sequences flagged as 

poor quality, and present of GC in the sequence. (Code-box 3.4)  

  

#!/bin/bash 

## This script encodes a function to input data to Trimmomatic  

## Author Layal Abo Khayal 21.03.2015 

trimo_insert (){ 

# First argument is the path to the raw RNA-seq files 

pathRNA $1 

#Second argument is the path where the Trimmomatic program 

TRIMMO$2 

# Third argument is the path to where we write the output data 

pathTrimRNAout$3 

 
if[ ! -d$pathTrimRNAout];then 

 echo"Making directory $pathTrimRNAout " 

 mkdir$pathTrimRNAout 

fi 

for Dir in $(find$pathRNA -mindepth 1 -maxdepth 1 -type d ); 

do 

i=$(basename $Dir);## is the name of the experiment, e.g., 666004 

echo "Calling Trimmomatic on $Dir for experiment $i" 

## Make a separate directory for each output sample 

mkdir $pathTrimRNAout/${i} 

## call trimmimatic 

java -jar ${TRIMMo}/trimmomatic-0.36.jar PE-threads10-phred33-

trimlog$pathTrimRNAout/${i}.log $pathRNA/${i}/${i}_1.fq.gz 

$pathRNA/${i}/${i}_2.fq.gz$pathTrimRNAout/${i}/${i}_1_paired_output.fq.gz  

$pathTrimRNAout/${i}/${i}_1_unpaired_output.fq.gz  

$pathTrimRNAout/${i}/${i}_2_paired_output.fq.gz  

$pathTrimRNAout/${i}/${i}_2_unpaired_output.fq.gz  

ILLUMINACLIP:${TRIMMO}/adapters/TruSeq3-PE.fa:2:30:10:4:true LEADING:5 

MAXINFO:50:0.5 SLIDINGWINDOW:4:15 MINLEN:50 

done 

} 

# call function, example 

pathRNA=/home/server/RNAseqData 

TRIMO=/home/layal/Trimmomatic-0.36 

out_path=/home/user/OSTEO/RNA_afterTrimming 

 

trimo_insert $pathRNA $TRIMO $out_path 
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Code-box 3.3 Bash Script, Function.to keep paired samples from Trimmomatic outputs 

 

3.2.3.2 Mean Quality Function: 

The function calculates the mean sequencing quality across all the bases in a sample. In 

FastQC report, there is module called “Per sequence quality scores”, which gives how many 

reads have a specific quality value (from 2 to 40). For example:  

Quality Count 

2  1 290 108 

3 314 493 

37 14 853 205 

40 160 

We coded two functions for this task, the main mean quality function “QualityScore”, to 

calculate the mean quality of all bases in a fastq (Code-box 3.5). And “MQ_Av_Dataset” 

function, to get the mean quality of all bases in fastq files in a dataset, then calculate the average 

of mean quality of forward and reverse reads, eventually write the output as plaintext file 

(Code-box 3.6). 

#!/bin/bash 

## This script encodes a function to move the unpaired samples from the output of 

Trimmomatic of to separate directory for further analysis and rename 

"*_paired_output.fq " as "*.fq" 

## Author Layal Abo Khayal 21.03.2015 

 

trim_pair(){ 

# First argument is the path to the output files of trimmomatic 

pathTrimRNAout $1 

# Second argument is the path to the directory where the unpaired samples will 

be moved 

pathunpairedRNA $2 

 

if[ ! -d${pathunpairedRNA}];then 

mkdir${pathunpairedRNA} 

fi 

 

forDir in$(find$pathTrimRNAout-mindepth 1-maxdepth1-type d ); 

do 

i=$(basename $Dir); ## is the name of the experiment, e.g., 666004 

echo"moving unpaired RNA from $Dir for experiment $i to $pathunpairedRNA " 

mkdir$pathunpairedRNA/${i} 

find$pathTrimRNAout/${i} -type f -name "*_unpaired_output.fq.gz"-exec mv 

{}$pathunpairedRNA/${i} \; 

echo"rename (_paired_output.fq.gz) files for easier uses as this (*_1.fq.gz)"  

find$pathTrimRNAout/${i}-type f -name "*1_paired_output.fq.gz"-exec mv 

{}$pathTrimRNAout/${i}/"${i}_1.fq.gz" \; 

find$pathTrimRNAout/${i}-type f -name "*2_paired_output.fq.gz"-exec mv 

{}$pathTrimRNAout/${i}/"${i}_2.fq.gz" \; 

done 

} 

# call function, example 

pathTrimRNAout =/home/user/OSTEO/RNA_afterTrimming 

pathunpairedRNA =/home/user/OSTEO/unpairedRNA 

 

trim_pair $pathTrimRNAout $pathunpairedRNA 
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3.2.3.3 Plotting Phred Quality Along Reads Positions: 

Using the FastqReader function from Python_HTSeq package, generates objects of class 

FastqReader from the Fastq files. In this object each read in Fastq is a SequenceWithQualities 

object, and has three feature slots:  

• Name-feature returns the name of the read (read.name) 

• Seq-feature returns the sequence of the read (read.seq) 

• Qual-feature returns the quality of each base in the read as an array of values 

(read.qual) 

The function “read_qual” iterates over reads in FastqReader object and calculates the mean 

quality of all reads in each position coordinate, as described in the comments (after # symbol, 

or between ''' ''') in the (Code box 3.7). To accomplish this task, I coded another function 

“pass_data_MQ” to apply read_qual through a dataset (Code box 3.8). All the codes are 

reproducible and helpful to deal with quality control of fastq files. 

Code-box 3.4. Python Script. Reads basic statistics function 

 

__author__ = 'layal' 

import os 

import subprocess 

import re 

import sys 

import socket 

import zipfile 

'''A function to get reads length and total sequenced reads from FastQC report'''  

def BasicStatistic ( path ): 

#read the zip file in QC which contains fastqc_data.txt 

fp = zipfile.ZipFile(path, 'r') 

    inModule= False 

print ("Analysing file ", path) 

for name in fp.namelist(): # iterate through all file names  

if name.find('fastqc_data.txt')>=0: 

 ## split file into lines fp: 

for line in fp.read(name).split("\n"):  

if (line.startswith('#')): 

continue 

             if (line.startswith(">>Basic Statistics")): 

                inModule=True 

continue 

             if (line.startswith(">>END_MODULE")): 

                inModule=False 

if (inModule): 

if (line.startswith('Total Sequences')): 

                   Arr1 = line.rstrip().split('\t') 

                   numberOfReads = Arr1[1] 

if (line.startswith('Sequence length')): 

                   Arr = line.rstrip().split('\t') 

                   length = Arr[1] 

return (numberOfReads, length) 

'''A function to analyze a set of Fastqc output files and extract the basic 

statistics of a fastq file''' 

def AnalyzeDataset (path , outputname): 

print ("Path" , path) 

    F = open(outputname, 'w') 

    F.write(' \n The length and number of read before trimming\n\n') 

... 
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Code-box 3.5 Python Script. “QualityScore” function is to calculate the mean quality of all 

bases in a fastq file. 

 

  

... 

for dirPath, dirNames, fileList in os.walk(path): 

for index, item in enumerate(fileList): 

#print("item :", item) 

if item.endswith("zip"): 

print("item :", item) 

                dpath= dirPath + '/' + item 

print ("PATH ::::", dpath) 

                pos = dpath.rfind('/') 

                sample = dpath[pos+1:pos+6] 

print ("Analyzing directory: " , sample) 

                numReads, leng = BasicStatistic(dpath) 

print ('number of reads = ', numReads ,'\n reads length = ', leng) 

                F.write('Sample : '+ str(sample) + '\t\t Reads number : ' 

                        + str(numReads) +'\t\t Reads length :' + str(leng)+ '\n' ) 

enumerate 

__author__ = 'layal' 

 

import os 

import subprocess 

import re 

import socket 

import zipfile 

 

def QualityScore( path ): 

# The FastQC reports are store in a zip file for each sample 

archive = zipfile.ZipFile(path, 'r') 

    total_base=0 

sumqual=0 

meanqual=0 

inModule= False 

for name in archive.namelist(): # iterate through all file names in Zip archive 

#  one of the files is 'fastqc_data.txt' 

if name.find('fastqc_data.txt')>=0: 

for line in archive.read(name).split("\n"): ## split file into lines 

if (line.startswith('#')): 

continue 

                if (line.startswith(">>Per sequence quality scores")): 

                    inModule=True 

continue 

                if (line.startswith(">>END_MODULE")): 

                    inModule=False 

continue 

                if (inModule): 

                    ar = line.rstrip().split('\t') 

                    phred = int(ar[0]) 

                    num = float(ar[1]) 

sumqual+=phred*num 

                    total_base+=num 

                    meanqual=sumqual/total_base 

return (meanqual) 
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Code-box 3.6. Python Script. “MQ_Av_Dataset” function  

 

 

  

__author__ = 'layal' 

 

'''A function to analyze a set of Fastqc output files and extract the mean quality 

using QualityScore function, then calculate the average of mean bases qualities, 

then write the outputs as plain text file  

 

def MQ_Av_Dataset (path , outputname, Av_mean_output): 

meanqual_samples = {} 

print (path) 

    F = open(outputname, 'w') 

    F.write(outputname[0:-3] +'\n\n') 

    H = open(Av_mean_output, 'w') 

    H.write(Av_mean_output[0:-3]+'\n\n') 

for dirPath, dirNames, fileList in os.walk(path): 

for index, item in enumerate(fileList): 

if item.endswith("zip"):   # pick out the Zip archives from FastQC 

dpath= dirPath + '/' + item 

                pos = dpath.rfind('/') 

                sample = dpath[pos+1:pos+6] 

print ("Analyzing directory: " , sample) 

# calling QualityScore function to get mean quality of all bases in a sample 

                mqual = QualityScore(dpath) 

print ('mean quality = ' , mqual) 

if sample in meanqual_samples: 

                    meanqual_samples[sample] += mqual 

else: meanqual_samples[sample] = mqual 

# file contains all the mean quality of all samples 

F.write('Sample: '+ str(item) + '\t\t\t mean quality: ' 

+ str(round(mqual,3))+'\n' ) 

enumerate 

# to calculate the average mean quality forward and reverse RNAseq 

for key, value in meanqual_samples.iteritems(): 

        meanqual_samples[key] = value / 2 

print (key, meanqual_samples[key]) 

        H.write('Sample: '+ str(key) + '\t\t\t mean quality: ' 

+str(round(meanqual_samples[key],3))+'\n' ) 
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Code-box 3.7. Python Script. “read_qual”function to get average quality in each base  

 

  

__author__ = 'layal' 

import HTSeq 

import itertools 

import numpy as np 

import matplotlib 

import matplotlib.pyplot as plt 

import socket 

#The purpose of this script is to generate plots of the reads mean quality. Using 

the HTSeq python library. 

 

''' 

First, we set the paths to RNA-Seq data: 

The raw fastq files and the files after trimming  

'''  

# Path to the raw FASTQ files. Exp: 

pathraw="/media/layal/OSTEO/RNAseq_raw/" 

# Path to Fastq fules after trimming.Exp: 

pathAfterTrim= "/media/layal/OSTEO/RNA_afterTrimming/" 

 

''' 

Second, write the functions: 

read_qual for calculate the mean quality. 

plotfigure to set the legend parameters. 

 

fq is FastqRead object produced after handling a FASTQ file to HTSeq.FastqReader 

The function reurns (x,y) 

x is a range of base position such as [1,2,3,...,n], where n is the length of the 

sequence. 

y is the average per-position quality (positions same as x) 

read.qual is a range of int such as : 

    [34 34 34 37 37 37 37 37 38 39 39 39 39 41 41 40 41 40 41 41 41 41 41 41 41 

     40 40 41 41 41 41 40 40 41 41 41 41 41 40 40 40 41 41 40 41 38 40 38 38 39 

     37 38 40 40 41 41 41 34 37 39 40 41 41 41 41 40 41 41 40 41 41 38 38 39 39 

    39 39 37 37 37 35 37 33 35 36 34 35 35 35 35 35 35 35 36 36 36 36 35 35 35 35] 

 

''' 

def reads_qual (fq): 

    readlen = 101 

qualsum= np.zeros(readlen, np.int) 

    nreads= np.zeros(readlen, np.int) 

for read in fq: 

if len(read)<len(qualsum): 

           qualsum[:len(read)] += read.qual 

           nreads[:len(read)] += 1 

else: 

#A range of sum quality in each position [331 335 329 366 370 370 366 368 389 388 

386 ...] 

qualsum += read.qual  

            nreads += 1 

print("number of reads :", nreads) 

print("quality sum  :", qualsum) 

# The quality average [34 34 34 37 37 37 37 37 38 39 39 39 39 41 41 ...] 

y=qualsum/np.float_(nreads)  

print "average of quality in one file  :", y 

    x = range(1,len(qualsum)+1,1) 

return(x,y) 

... 
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Code-box 3.8. Python Script. “pass_data_MQ” to apply read_qual through a dataset, plot the 

mean quality of bases across the reads positions 

 

  

... 

def pass_data_MQ(path): 

    Fx=0 

i=0 

for dirPath, dirNames, fileList in os.walk(path): 

print('dirPath: ' , dirPath) 

print(' fileList:' , fileList) 

for index, samp in enumerate(fileList): 

if(samp.endswith("_1.fq.gz")): 

#forward reads sample 

Sample_F = dirPath + '/' +samp 

print " pass a forward sample to FastqReader" + samp 

                fq_F = HTSeq.FastqReader(Sample_F) 

                (Fx,Fy) = reads_qual(fq_F) 

if(samp.endswith("_2.fq.gz")): 

#Reverse reads sample 

Sample_R = dirPath + '/' +samp 

print " pass a reverse sample to FastqReader" + samp 

                fq_R = HTSeq.FastqReader(Sample_R) 

                (Rx,Ry) = reads_qual(fq_R) 

enumerate 

if(Fx==0): 

continue 

xr=Fx 

        yr= (Fy +Ry)/float(2) 

        i=i+1 

plt.figure(1) 

         # plot the mean quality of each sample 

        plt.plot(xr ,yr ,color = colours[i],linestyle='solid',label= 

lebels[i],linewidth=2.0)  

plt.legend(loc='upper center', bbox_to_anchor=(0.56, 1.01),ncol=4, fancybox=True, 

shadow=True,fontsize=14 ) 

# function to set parameters of the figure  

def plotfigure( ftitle): 

    plt.axis([0.0, 101, 20, 44]) 

#ax = plt.gca() 

    #ax.set_autoscale_on(False) 

plt.rc("font", size=16 , family ='serif') 

    plt.title(ftitle, fontsize=26 , family ='serif') 

    plt.ylabel('Phred score' ,fontsize=20 , family ='serif') 

    plt.xlabel('Position in read' ,fontsize=20 , family ='serif') 

 

lebels = ['Day0_1' , 'Day0_2' , 'Day0_3' ,'Day3_1' ,'Day3_2' , 'Day3_3' ,'Day6_1' 

,'Day6_2','Day6_3' ,'Day12_1' , 'Day12_2' , 'Day12_3'] 

colours = [ (0,0,0) , (0,1,0), (0 ,0, 1), (0,1,1 ) , (1,0,0), (1,0,1), (0.5,0,0.5), 

(0.5,0.5,0), (0.7,0,0.7), (0,0.4,0), (0.7,0.3,0), (0.9,0.6,0)] 

# -RAW RNA-Seq reads 

fig1 = plt.figure(1, figsize=(8,8), dpi=120) 

plotfigure( 'Mean Read Quality of Raw Data') 

pass_data_MQ(pathraw) 

fig1.savefig( 'RawQuality' +'.png') 

fig1.savefig( 'RawQuality'+'.pdf') 

# After TRIMMING RNASeq 

fig2 = plt.figure(2, figsize=(8,8), dpi=120) 

plotfigure('Mean Read Quality of QC_processed Data') 

pass_data_MQ(pathAfterTrim) 

fig2.savefig( 'afterQC_quality' +'.png') 

fig2.savefig( 'afterQC_quality'+'.pdf') 
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We generated 70 million reads with good high-quality scores as Figure 3.7 illustrates the 

mean quality of raw reads. However, after we implied quality control enhancement techniques, 

we got a very good quality score along the positions in the reads, as it is shown in the Figure 

3.8, after trimming the mean quality of the bases at the end of the reads improved to be over 

28 scores, and across the middle of the reads, looks more linear with Phred scores between 33-

38. 

 

Figure 3.7: Mean Phred Quality Scores of Raw RNA-Seq Reads. The plot shows the mean Phred 

quality at each base position for all reads of the indicated sample. There are three replicate samples 

of each biological condition. 
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Figure 3.8: Mean Phred Quality Scores of RNA-Seq Reads after QC. The plot shows the mean 

Phred quality at each base position for all reads after trimming the Illumina clips and the low 

qualities. 

3.2.3.4 Coverage Uniformity: 

There is a concern that the coverage might vary across features of the RNA, since the used 

libraries are based on polyadenylated RNA. To provide an estimation of coverage across the 

genes feature, we separated the exons to 5' UTR exons, 3' UTR exon and the exons in the 

translated regions in between, as illustrated in the Python script "Separate Exons according to 

the translation regions” (Code-box 3.9). Hence, we got 3 annotation GTF files of first (5' UTR), 

last (3' UTR) and middle exons in the genes. Then we coded a function to calculate the coverage 

of the reads using HTSeq library. Accomplishing this task was in the following steps: 

1. Create GTF objects of the first exons, last exons and the middle exons from the gtf files 

generated in the previous step, by using GFF_Reader method from HTSeq library. (Code-

box 3.11) 

2. Create alignment objects from BAM files, the outputs of TopHat Aligner, by using 

BAM_Reader method from HTSeq library. The BAM_Reader object yields for each 

alignment line in the BAM file an object of class BAM_Alignment. Every alignment 

object has a slot read, that contains a SequenceWithQualities object as described 

previously. (The read object has three features: read.name, reads.seq and read.qual). 
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Furthermore, every alignment object aln has a slot iv (for “interval”) that shows the 

positions on the genome where the read was aligned to (if it was aligned). This feature 

slot of the alignment object holds information of the start and end coordinates on the 

genome of that align object, the chromosome name, and the strand where that alignment 

located. (Code-box 3.10) 

 

3. Creating a GenomicArray data structure to store and retrieve information associated with 

a genomic position or genomic interval. The key of the GenomicArray is an genomic 

interval, which we retrieve from "align.iv" of each alignment object and simply iterate 

through all the reads and add the value 1 at the interval when each read was aligned. 

4. To calculate the mean coverage of each aligned read, we passed the GenomicArray "ga" 

of the interval of each exon in the aligned read "iv" to list method, so we got a coverage 

values vector, then we calculated the mean of this vector. 

5. Eventually we plotted the coverage density of 5' UTR, 3' UTR and exons within coding 

regions. As shown in Figure 3.9.  

Code-box 3.9. Python Script. Separate Exons according to the translation regions to gtf files

 

>> aln.iv  

[GenomicInterval object 'IV', [246048,246084), 

strand '+']  

>> aln.iv.chrom  

'IV' 

>> aln.iv.start 

246048 

>> aln.iv.end  

246084 

>> aln.iv.strand  

'+ 

__author__ = 'layal' 

import HTSeq 

import itertools 

import numpy as np 

import os 

# here we create new empty files and assign them to file object 

F = open('path/first_exons_GRCm38.gtf', 'w') 

L = open('path/last_exons_GRCm38.gtf', 'w') 

M = open('path/middle_exons_GRCm38.gtf', 'w') 

 

''' 

Extract a gene id from a GTF line. 

The assumption is that the 9th [8] field has a string like this: 

gene_id "ENSMUSG00000102693"; gene_version "1"; gene_name "4933401J01Rik"; 

gene_source "havana"; gene_biotype "TEC"; havana_gene "OTTMUSG00000049935"; 

havana_gene_version "1"; 

gene_id "ENSMUSG00000064842"; gene_version "1"; gene_name "Gm26206"; gene_source 

"ensembl"; gene_biotype "snRNA"; 

the first element [0] in the line split by ';' is the id 

the second element [1] in the id part split by " " is the id 

In this example, we would return the String 

"ENSMUSG00000102693","ENSMUSG00000064842" 

''' 

… 
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... 

def get_geneID(line): 

 

    Ar = line.split('\t') 

    id = Ar[8].split(';')[0] 

    gene_id = id.split('"')[1] 

return (gene_id) 

 

plus_strand = dict() 

reverse_strand = dict() 

 
## The following iteration puts the exon definition lines into the plus_strand and 

minus_strand dictionaries 

''' 

the lines in GTF file look like this, in the third field is written the type of 

feature, either gene, transcript, exon ….: 

1  havana gene   3073253    3074322    .  +  .  gene_id "ENSMUSG00000102693"; 

gene_version "1"; gene_name "4933401J01Rik"; gene_source "havana"; gene_biotype 

"TEC"; havana_gene "OTTMUSG00000049935"; havana_gene_version "1"; 

1 ensembl_havana  exon 3214482 3216968 . - .

 gene_id "ENSMUSG00000051951"; gene_version "5"; transcript_id 

"ENSMUST00000070533"; … 

''' 

with open(path) as gtf: 

 for line in gtf: 

 if line.startswith("#!"): 

 continue 

 else: 

   arr = line.split('\t') 

 if arr[2] =='exon': 

    arr_exon = line.split('\t') 

 if arr_exon[6]== '+': 

    gene_idP = get_geneID(line) 

 if gene_idP in plus_strand: 

    plus_strand[gene_idP].append(line) 

 else: 

    plus_strand[gene_idP] = [line] 

 elif arr_exon[6]== '-': 

      gene_idR = get_geneID(line) 

 if gene_idR in reverse_strand: 

    reverse_strand[gene_idR].append(line) 

 else: 

    reverse_strand[gene_idR]= [line] 

 

## Now write the corresponding data into the three output files separate the exons 

for key in plus_strand: 

    ar = plus_strand[key] 

    ln = len(ar) 

F.write(ar[0]) 

    L.write(ar[ln-1]) 

for i in range(1, ln-2): 

        M.write(ar[i]) 

for key in reverse_strand: 

    ar1 = reverse_strand[key] 

    ln = len(ar1) 

    F.write(ar1[ln-1]) 

    L.write(ar1[0]) 

for i in range(1, ln-2): 

        M.write(ar1[i]) 
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Code-box 3.10. Python Script function to calculate the coverage of the exons for one BAM 

file: 

 

Code-box 3.11. Python Script. Get the coverage uniformity of Osteoblast dataset 

 

_author__ = 'layal' 

import os 

import numpy as np 

import HTSeq 

 

''' This function calculate the coverage of exon feature from an alignment Bam 

file''' 

def calculateCoverageOfOneBamFile(gtf_file, Alignment, filename_cv): 

    C = open(filename_cv, 'w') 

 

# I create a GennomicArray data structure to store and retrieve information 

associated with a genomic position or genomic interval. 

# I instruct the GenomicArray to add chromosome vectors as needed, by specifying 

"auto". 

# the stranded is false, because the direction is not relevant  

# typecode='i' because we are saving integers in the genomic Array. 

 

print "Asign Genomic array" 

cvg= HTSeq.GenomicArray("auto" , stranded=False, typecode = 'i') 

#I count the coverage by adding one to the interval of the read which is aligned, 

cvg is a GenomicArray object 

print "looping over the aligned object to set values in the Genomic array" 

for align in Alignment: 

if align.aligned: 

       cvg[align.iv] +=1 

# now we have the interval of the aligned read assigned by adding 1 each time, 

# gtf file is an class object from GFF_Reader 

 

 MeanCoverage = [] 

 print "looping through the features in each gtf file" 

for feature in gtf_file: 

if feature.type == "exon": 

       mv = np.mean(list(cvg[ feature.iv ])) 

       C.write(feature.name + "\t" + format(str(mv) + "\n")) 

       MeanCoverage.append(mv) 

return(MeanCoverage) 

 

__author__ = 'layal' 

#this script calcules the coverage for the 12 samples by using the function of 

calculatecoverge 

import HTSeq 

import os 

from calculateCoverage import calculateCoverageOfOneBamFile 

 

#Set paths where is your data live 

root= '/path/OSTEO/Align_Tophat_GRCm38/' 

# the gtf files of separated exons according to the translation regions 

gtf_files = '/path/OSTEO/coverage/gtf_file' 

#the output coverage of samples from this script 

outCov_path=  '/path/OSTEO/coverage/coverage_output/' 

# create a directory for the outputs 

if not os.path.exists(outCov_path): 

    os.makedirs(outCov_path) 

#alignment samples 

BAMname =[66604 , 66605 , 66606, 66607, 66608, 66609, 66610, 66611, 66613, 66614, 

66615, 66616] 

… 
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From the density distribution of the base mean which is the sequencing depth of each exon in 

Osteoblast dataset (Figure 3.9), we found that both 3′ UTR exons and the intervening coding 

sequences have a similar distribution of base mean values compared to 5′ UTR sequences. 

Although this slight change in the distribution across features, the level of coverage was similar 

for each, suggesting that the libraries capture transcriptional complexity across different 

elements of genes. 

3.3. READS MAPPING USING TOPHAT ALIGNER: 

TopHat2 improved the performance of TopHat by mapping reads against the known 

transcriptome, this improves the overall sensitivity and accuracy of the mapping. as illustrates 

in pipeline schemes (Figure 3.10) [85]. The mapping procedure of TopHat2 consists of three 

major parts, optional transcriptome alignment (step 1), genome alignment (step 2), and spliced 

alignment (steps 3–6). Paired-end reads are aligned individually first, and then combined to 

paired-end alignments by taking into account the fragment length and orientation. 

1. If annotation information is available, TopHat2 aligns reads to the transcriptome first. It 

extracts transcript sequences from the Bowtie2 genome index using a GTF/GFF file. 

Bowtie2 is then used for indexing this virtual transcriptome and aligning reads to it.  

2. The reads that did not fully align to the transcriptome are aligned to the genome with 

Bowtie2. At this stage, the reads which mappable contiguously to one exon will be mapped, 

while multiexon spliced reads will not. 

3. The unmapped reads are split into short segments (25 bp by default) and mapped to the 

genome again. If TopHat2 finds reads where the left and the right segment map within a 

user-defined maximum intron size, it maps the whole read to that genomic region, to find 

potential splice sites containing known splice signals (GT-AG, GC-AG, or AT-AC). 

TopHat2 also looks for indels and fusion break points at this step. 

4. Genomic sequences bound the potential splice sites are joined and indexed, and unmapped 

read segments are aligned to this junction flanking index with Bowtie2. 

... 

filesNameBase =['first_exon_cov_' , 'middle_exon_cov_', 'last_exon_cov_'] 

 

print "Read the gtf of the first exon" 

gtf_file_firstExons = HTSeq.GFF_Reader(gtf_files+'first_exons_GRCm38.gtf') 

 

print "Read the gtf of the last exon" 

gtf_file_lastExons = HTSeq.GFF_Reader(gtf_files+'last_exons_GRCm38.gtf') 

 

print "Read the gtf of the middle exon" 

gtf_file_middleExons = HTSeq.GFF_Reader(gtf_files+'middle_exons_GRCm38.gtf') 

#vector of all the gtf object 

gtfFiles= [gtf_file_firstExons, gtf_file_middleExons, gtf_file_lastExons] 

 

# looping across the samples 

for k, j in zip(gtfFiles , filesNameBase) : 

for i in BAMname: 

        filename_cv =outCov_path + j +'%d.txt' %(i) 

print "creat alignment  object : "+'%d'%(i) 

        Alignment = HTSeq.BAM_Reader(root+ str(i) + '/accepted_hits.bam') 

print "calculate the coverage from the annotation of " + j[:10] +  

" of the aligned sample :" +'%d'%(i) 

        meanCov = calculateCoverageOfOneBamFile(k ,Alignment ,filename_cv) 

        cov = open(outCov_path+'meanCov_'+j[:5]+str(i), 'w') 

        cov.write(str(meanCov)+'\n') 
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Figure 3.9: Coverage density for RNA-seq reads features. The plot shows three coverage density 

distribution of the base mean in the first exons (5' UTR exons), middle exons (within translation 

regions) and the last exons (3' UTR exons). The base mean is shown on the x-axis on a log10 scale 

for each of these features. 

5. Segment alignments from steps 3 and 4 are stitched together to form whole read alignments. 

6. Reads that extended a few bases into an intron in step 2 are realigned to exons using the 

new splice site information. 

7. In order to decide which alignments to report for multimapping reads, TopHat2 recalculates 

their alignment score taking into account how many reads support the splice junctions, 

indels, etc. 

To perform alignment by TopHat 2, first we need to prepare the reference genome index. 

Bowtie2 reference genome indexes are available for many organisms at the Bowtie2 website 

[119] and the Illumina iGenomes website [120]. However, it is better to build the reference 

index to be sure that genome index/FASTA files are from the same provider as GTF files and 

the same version. It is easy to build the index using bowtie2-build command. 
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When calling bowtie2-build command, we need to take into account the following notes: call 

the option -f to indicate that the reference is FASTA file with “.fa” extension (or .mfa , .fna), 

and the fasta file must be unzipped. The Code-box 3.12 shows the command to build reference 

index. 

Code-box 3.12 Building genome reference index 

 

TopHat2 accepts both FASTQ and FASTA files as input. Read files can be compressed (.gz), 

but tarballs (.tgz or .tar.gz) need to be opened to separate files. TopHat2 can also combine 

single-end reads in a paired-end alignment if needed [121]. Our Osteoblast samples are paired-

end reads, so we used TopHat syntax of paired-end reads as stated in Code-box 3.13. 

we used the default syntax of TopHat, but I added few options assuming their necessity in 

our experiment. 

• -p 30to used 30 server-processors simultaneously to speed up the process.  

• -G to provide GTF/GFF genes model annotation file to TopHat to build the 

transcriptome index.  

• --b2-sensitive it is a Bowtie option to perform the alignment more accurate and 

sensitive but slower. 

• --keep-fasta-orderto sort alignments in the same order in the genome fasta file. 

TopHat produces several result files [121]:  

• accepted_hits.bam contains the alignmentsin BAM format. The alignments are sorted 

according to chromosomal coordinates.  

• junctions.bed contains the discovered exon junctions in BED format [122]. A junction 

consists of two blocks, where each block is as long as the longest overhang of any read 

spanning the junction. The score is the number of alignments spanning the junction. 

• insertions.bed contains the discovered insertions, -chromLeftrefers to the last genomic 

base before the insertion. 

• deletions.bed contains the discovered deletions -chromLeft refers to the first genomic 

base of the deletion. 

• align_summary.txt reports the alignment rate and how many reads and pairs had 

multiple alignments. For example, the following summary is produced to osteoblast 

Day0 replicate1 sample: 

#!/bin/bash 

# build the index of GRCm38 from Ensembl, the fasta file must be unzipped 

# option -f The reference input files are FASTA files (having extension.fa) 

# unzip the genome reference 

gunzip -k Mus_musculus.GRCm38.dna.toplevel.fa.gz. 

#Run Bowtie2-build command 

bowtie2-build -f /home/layal/OSTEO/Bowtie2_index/Mus_musculus.GRCm38.fa 

/home/layal/OSTEO/Bowtie2_index/Mus_musculus.GRCm38 
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Figure 3.10 TopHat2 pipeline [85] 
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In the following is the bash script code for calling TopHat2 on a dataset without concerning 

about inserting the correct name of each single sample. 

Code-box 3.13 TopHat inserting function 

 

Left reads: 

          Input     :  59034966 

           Mapped   :  58038832 (98.3% of input) 

            of these:   2109266 ( 3.6%) have multiple alignments (39454 have >20) 

Right reads: 

          Input     :  59034966 

Mapped   :  57881402 (98.0% of input) 

of these:   2100416 ( 3.6%) have multiple alignments (39342 have >20) 

 
98.2% overall read mapping rate. 
 

Aligned pairs:  57151426 

     of these:   2059667 ( 3.6%) have multiple alignments 

                  725517 ( 1.3%) are discordant alignments 

95.6% concordant pair alignment rate. 

!/bin/bash 

# The purpose of this script is to run TopHat2 on a dataset 

# Input: the trimmed RNAseq files  

# Input: the annotation file  

# Input: bowtie2 index files  

# Output: Mapped reads  

tophat_insert (){ 

 

# First argument is the path to the trimmed RNA-seq files 

RNAseq_data$1 

#Second argument is the path to the gene-annotation file 

geneAnnot$2 

# Third argument is the path to bowtie2 index files  

genomeIndex$3 

# fourth argument is the path to TopHat output 

tophat_out$4 

# the path to TopHat tool, it should be the last stable version 

TOPHAT=/path/tophat2 

if[ ! -d${tophat_out}];then 

mkdir${tophat_out} 

fi 

#Map the reads for each sample to the reference genome: 

for Dir in $(find$RNAseq_data -mindepth 1 -maxdepth 1 -type d ); 

do 

i=$(basename $Dir); ## is the name of the experiment, e.g., 666004 

    echo "Calling tophat on $Dir for experiment $i" 

    mkdir $tophat_out/${i} 

${TOPHAT}-p 30 -G $geneAnnot --b2-sensitive --keep-fasta-order -o 

$tophat_out/${i}$genomeIndex $RNAseq_data/${i}/${i}_1.fq.gz 

$RNAseq_data/${i}/${i}_2.fq.gz 

done 

} 
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3.4. DIFFERENTIAL GENE EXPRESSION ANALYSIS 

 METHOD 

The fundamental process in RNA-Seq data analysis and transcriptome characterization, is to 

define a set of genes that have significant expression variance between conditions in an 

experiment. AS we described briefly in the section “General concepts of statistical distributions 

in RNA-Seq data”, there are various algorithms for differential gene expression analysis. 

The comparative analysis of transcriptomic data in our research based on DESeq2 method 

[123], that takes a count matrix as an initial input. The count matrix composed of n rows; one 

row for each gene I, and m columns; one column for each sample j. The matrix elements Kij 

indicate the number of sequencing reads that have been unambiguously mapped to a gene in a 

sample. As described in the section “Assigning sequence reads to genomic features”.  

The read count Kij for gene i in sample j is modeled with a generalized linear model (GLM) 

[124] of the negative binomial family with a logarithmic link. Read counts Kij follow a negative 

binomial distribution (a gamma-Poisson distribution) with mean μij, the variance 𝜎𝑖𝑗
2 , and 

dispersion αi. 

𝐾𝑖𝑗 ~ 𝑁𝐵(mean =  𝜇𝑖𝑗dispersion =  𝛼𝑖) [123] 

The mean parameter µij is the expectation value of the observed counts for gene i in sample j, 

it is the product of a quantity qij, proportional to the concentration of cDNA fragments from 

the gene in the sample, and a normalization factor sij: 

𝜇𝑖𝑗 =  𝑠𝑖𝑗 . 𝑞𝑖𝑗 

The GLM fit returns coefficients indicating the overall expression strength of the gene and 

the log2 fold change between the conditions. DESeq2 uses GLMs with a logarithmic link: 

log2 𝑞𝑖𝑗 =  ∑ 𝑥𝑗𝑟 . 𝛽𝑖𝑟

𝑟

 

Where 𝑥𝑗𝑟 are design matrix elements, and 𝛽𝑖𝑟 coefficients. 

Using linear models provides the flexibility to analyze more complex experimental designs, 

to serve the genomic studies. 

To estimate the size factors, that are used for count normalization, we take the median of the 

ratios of observed counts. As the following equation shows. normalization constants sij may 

differ from gene to gene. 

... 

 

# example for calling the tophat_insert function on osteoblast dataset 

 

BASE=/home/layal/OSTEO 

geneAnnot=$BASE/GeneAnnotation/Mus_musculus.GRCm38.86.gtf 

genomeIndex=$BASE/Bowtie2_index/Mus_musculus.GRCm38 

tophat_out=$BASE/Align_Tophat_GRCm38 

RNAseq_data=$BASE/RNA_afterTrimming 

 

tophat_insert$RNAseq_data $geneAnnot $genomeIndex $tophat_out 

 



 

71 

 

𝑠𝑖𝑗 =  median
𝑖

𝐾𝑖𝑗

(∏ 𝐾𝑖𝑗
𝑚
𝑗=1 )

1/𝑚
 

Usually in RNA-Seq experiment the sample sizes tend to be quite small (in most case 2 or 3 

replicates for each condition), this cause highly variable dispersion estimates for each gene, 

which is considered as noisy estimates “shot noise”, and would compromise the accuracy of 

differential expression testing. The variability between replicates, is modeled by the dispersion 

parameter αi, which describes the variance of counts by: 

Var 𝐾𝑖𝑗 =  𝜇𝑖𝑗 +  𝛼𝑖𝜇𝑖𝑗
2  

The dispersion parameter αi follows a log-normal prior distribution that t s centered around a 

trend which depends on the gene’s mean normalized read count: 

𝜇̅𝑖 =  
1

𝑚
∑

𝐾𝑖𝑗

𝑠𝑖𝑗
𝑗

 

The Estimation of dispersions performed by DESeq2 in three steps, which implemented based 

on empirical Bayes approach. First each gene is treated separately to get gene-wise dispersion 

estimates by using maximum likelihood (MLE) of the read count of each individual gene. Next 

determine the trend parameter of the dispersion distribution of these estimates; to allow for 

dependence on average expression strength. The last step is to get the final dispersion 

estimation by combining the likelihood with the trended prior to get maximum a posteriori 

(MAP) values as final dispersion estimates. Details for the dispersion estimation can be found 

in DESeq2 paper and supplements [123]. DESeq2 estimates the width of the prior distribution 

from the data, and therefore automatically controls the amount of shrinkage based on the 

observed properties of the data. The shrinkage procedure helps avoid potential false positives, 

which can result from underestimates of dispersion, or because some genes may show much 

higher variability than others for biological or technical reasons.  

To get the logarithm fold change LFC of each gene between conditions, DESeq2 employs an 

empirical Bayes procedure too; first it performs ordinary GLM fits to obtain maximum-

likelihood estimates (MLEs) for the LFCs and then fit a zero-centered normal distribution to 

the observed distribution of MLEs over all genes. This distribution is used as a prior on LFCs 

in a second round of GLM fits, and the MAP estimates are kept as final estimates of LFC. 

Furthermore, a standard error for each estimate is reported, which is derived from the 

posterior’s curvature at its maximum. These shrunken LFCs and their standard errors are used 

in the Wald tests for differential expression significance testing. 

The Wald test allows testing of individual coefficients, or contrasts of coefficients, without 

the need to fit a reduced model as with the likelihood ratio test. The Wald test P values from 

the subset of genes that pass an independent filtering step are adjusted for multiple testing using 

the procedure of Benjamini and Hochberg [125] as default. However, in our research we used 

Bonniforoni correction[126][127], because we have big number of significant differential 

expressed genes, as I describe in results. 

 RESULTS: 

3.4.2.1 DESeqDataSet Object Design 

After we got the count matrix (its rows correspond to genes and the columns to samples) 

using featureCounts function from Rsubread package as I described previously in the section 

“Error! Reference source not found.”, we create DESeq-DataSet object, using D
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ESeqDataSetFromMatrix function, by providing the count matrix, and sample information 

table which is the experiment design.  

For osteoblast, we designed the experiment with one conditions level (time points). The row 

names are the columns name of count matrix (the samples), the columns are the conditions, 

here we have one condition level with four variables (Day_Zero, Day_Three, Day_Six, 

Day_Twelve). The sample information table looks like the following 

Samples Condition 

Day_0_R1  Day_Zero 

Day_0_R2 Day_Zero 

Day_0_R3 Day_Zero 

Day_3_R1 Day_Three 

Day_3_R2 Day_Three 

Day_3_R3 Day_Three 

Day_6_R1 Day_Six 

Day_6_R2 Day_Six 

Day_6_R3 Day_Six 

Day_12_R1 Day_Twelve 

Day_12_R2 Day_Twelve 

Day_12_R3 Day_Twelve 

Table 3.1: Table of osteoblast experimental samples 

DESeqDataSetFromMatrix syntax is as the following: 

 

3.4.2.2 Performing Differential expression analysis: 

As described in methods we need first to estimate the size factors normalization, then estimate 

the count dispersion, and final step performing the negative binomial GLM fitting and Wald 

test statistics. 

 

To test the gene expression differences between the group conditions we have 6 comparisons. 

• Day_12 vs Day_6. 

• Day_12 vs Day_3. 

• Day_12 vs Day_0. 

• Day_6 vs Day_3 

• Day_6 vs Day_0 

dds <- DESeqDataSetFromMatrix(countData = “count matrix”, 

colData = “sample info table”, 

design = ~ condition) 

dds <- estimateSizeFactors(dds) 

dds <- estimateDispersions(dds) 

dds <- nbinomWaldTest(dds) 
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• Day_3 vs Day_0 

To figure out the number of comparisons between experiment conditions, we got to the 

conclusion that for n conditions, the number of comparisons is given by taking the Combination 

of number of conditions n and 𝑛 − 2: 

∁𝑛−2 
𝑛 =  (

𝑛

𝑛 − 2
) =

𝑛!

2! ∙  (𝑛 − 2)!
 

The function “results” from DESeq Bioconductor package gives the results of these 

comparisons including log2 fold changes of expression values, p-values and adjusted p-values 

which calculated based on the used statistical test. To determine the comparison between two 

conditions we define the contrast argument, that is an experimental design containing a factor 

with three levels, the design attribute and the both conditions we need to find log2 fold change 

of gene expression between them.  

We use Bonferroni correction for the p-value of Wald test, where we use the estimated 

standard error of a log2 fold change to test if it is equal to zero. For the FDR cutoff, we set the 

argument alpha in results function to initial value of 0.01.  This independent filtering based on 

the mean of normalized counts for each gene, optimizing the number of genes which will have 

an adjusted p value below a given FDR cutoff. 

Furthermore, we activate count outliers detecting mood argument cooks-Cutoff in results 

function that allows us to determine extreme counts in individual samples that are apparently 

unrelated to the experimental or study design, and which are considered outliers.  A diagnostic 

test for outliers called Cook’s distance, which is a measure of how much a single sample is 

influencing the fitted coefficients for a gene, and a large value of Cook’s distance is intended 

to indicate an outlier count. We wrote the results function syntax as the following to get the 

desirable results table (example Day_12 vs Day_0) 

 

The common used cutoff of the adjusted p_value is (0.01), and fold change of 4, so the log2 

fold change (LFC) is 2. Applying these cutoffs, we got the following number of significant 

differentially expressed genes in 6 comparisons: 

Comparisons 
Significance 

p_value < 0.01 

Differentially 

expressed FC >4, 
|LFC| > log2(4) 

Upregulated 

LFC >2 

Downregulated 

LFC < -2 

Day_12 vs Day_0 10058 2299 1231 1068 

Day_6 vs Day_0 10026 2834 1702 1132 

Day_3 vs Day_0 9695 2378 1466 912 

Day_12 vs Day_3 5551 655 233 422 

Day_12 vs Day_6 5427 626 214 412 

Day_6 vs Day_3 1788 155 92 63 

Table 3.2: Number of differential expressed genes with adj. p_value <0.01 and |LFC| > 2. 

resTwelve_Zero <- results(ddseq, 

                          contrast=c("condition", "DayTwelve", "DayZero"), 

                          pAdjustMethod = "bonferroni", 

alpha = 0.01, 

                          cooksCutoff = TRUE, 

independentFiltering = TRUE) 
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Using default threshold of 0.01 for adjusted p-value by Bonferroni correction, we got 12932 

genes significantly differentially expressed at least in one of the comparisons out of 29148 

genes analyzed. We got (4012) genes as a union of genes that significantly expressed at least 

in one of the comparisons, with adjusted p-value less than 0.01 and absolute logarithm fold 

change greater than 2. From the BioMart data mining tool in Ensembl, we could define the DE 

protein coding genes, and the noncoding ones, writing a code in R to define the bio type of 

each gene in DGE data set. In the following table (Table 3.3) is the statistics of protein coding 

genes, non-coding and lnc_RNA: 

 

 All genes Protein coding Non-coding Linc-RNA 

All genes in 

DESeq 
29148 17948 11200 2008 

Significant 
Adj.P <0.01 

12932 11773 1159 287 

DE genes union 

Adj.P <0.01 & LFC >2 
4012 3308 704 184 

Table 3.3: Union of DE genes; upregulated and downregulated, protein coding and noncoding. 

Although we used stricter p-value cutoff commonly used by researchers (alpha = 0.001), we 

still got huge number of significantly differentially expressed genes as it is illustrated in Table 

3.4 and MA-plot Figure 3.11.  

The MA-plot is originally used to visualize DNA microarray gene expression data, however, 

it is also used to visualize high-throughput sequencing analysis. It plots the distribution of 

differences between normalized counts taken in two samples. M refers to log ratio (log2 Fold 

change) and A refers to mean average scales (mean of normalized counts).  

 

Comparisons 
Significance 

p_value < 0.001 

Upregulated 

LFC >2 

Downregulated 

LFC < -2 

Day_12 vs Day_0 9609 1170 1130 

Day_6 vs Day_0 9555 1628 1077 

Day_3 vs Day_0 9201 1399 869 

Day_12 vs Day_3 5069 219 393 

Day_12 vs Day_6 4922 197 387 

Day_6 vs Day_3 1506 90 59 

Table 3.4: Number of DGE with adj. p_value <0.001 and |LFC| > 2 

https://en.wikipedia.org/wiki/DNA_microarray
https://en.wikipedia.org/wiki/Arithmetic_mean
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Figure 3.11 MA-plot of 6 comparisons between osteoblast differentiation time points. Red points 

indicate the genes if the adjusted p-value less than 0.001 

In DESeq2, MA-plot of log2 fold change shows how the shrinkage of fold changes works for 

genes with low counts. Whereas in High Throughput Sequencing (HTS) data, there is huge 

variance of LFC estimates for genes with low read count. This means, weakly expressed genes 

seem to show much stronger differences between the compared conditions than strongly 

expressed genes. This heteroskedasticity (variance of LFCs depending on mean count) 

complicates downstream analysis and data interpretation, DESeq2 overcomes this issue by 

shrinking LFC estimates toward zero [123], as it is described previously in the methods. In the 

Figure 3.12 MA-plots show the difference of LFC shrinkage, in osteoblast comparison day_12 

vs day_0, with cutoffs; adj.p-value < 0.01 and |LFC|>2. 

3.4.2.3 Setting Thresholds: 

Using the common used cutoffs of adjusted p-value and LFC, gives us huge number of genes 

not suitable for further Gene Ontology enrichment analysis or clusters visualization. Therefore, 

to choose the appropriate thresholds for our data, we use volcano plot. Usually we cut when 

the volcano arms start to open as the following Figure 3.13 illustrates. 

In the panel (A) the cutoff of the adjusted p-value is 0.01, we can see most of the volcano 

dots are blue, which are the significant DE genes that have adjusted p-value less than 0.01, the 

small black line in the base of the volcano is the non-significant. In (B) we added the cutoff for 

the fold change of 4:  abs(log2FC)> log2(4). We chose the cutoff adjusted p-value 10-50 

according to the volcano plot, as it is illustrated in (C). In (D) applying both cutoffs on the 
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genes set of |𝐿𝐹𝐶| > log2 5 and −log10 𝑎𝑑𝑗𝑃 < 50. The following graph in Figure 3.14 of 

volcano plots of the six comparisons, proves that choosing the cutoffs was adequate decision 

for all the samples 

By using cutoff of adjusted p-value less than 10^-50 and absolute value of logarithm fold 

change |LFC| greater than log2 5, we got 1441 genes including 1386 protein coding, 55 non-

coding and 19 lincRNA (Table 3.5). 

3.4.2.4 Count data transformation:  

For samples similarity analysis and visualization as clustering, it is important to use 

homoscedastic data (all random variables in the sequence have the same finite variance). 

Heteroscedasticity in RNA-Seq data causes a problem, when the original count scale is used in 

clustering or ordination algorithm, the result will be dominated by highly expressed, highly 

variable genes; if logarithm-transformed data are used, undue weight will be given to weakly 

expressed genes, which show exaggerated LFCs.  

 

 

Figure 3.12 LFC shrinkage in day_12 vs day_0, adj.p-value < 0.01 and |LFC| >2 

adjP< 10^-50 

|LFC|> log2(5) 
All genes Protein coding Non-coding lincRNA 

DE genes union 1441 1386 55 19 

Table 3.5 Significant differential expressed genes subsets with cutoff adjP< 10^-50 

The purpose behind data transformation is to remove the dependence of the variance on the 

mean, particularly the high variance of the logarithm of count data when the mean is low. It 

produces transformed data on the log2 scale which has been normalized with respect to library 

size. In order to transform the data to remove the experiment-wide trend. The aim of this 
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transformation is not that all the genes have exactly the same variance after transformation. 

However, after the transformations, the genes with the same mean do not have exactly the same 

standard deviations, but that the experiment-wide trend has flattened (Figure 3.15). It is those 

genes with row variance above the trend which will allow us to cluster samples into interesting 

groups. 

One method for counts transformation is a regularized logarithm transformation (rlog), that 

is used by DESeq2. It behaves similarly to a log2 transformation for gene with high counts, 

while shrinking together the values for different samples for genes with low counts, it 

 

Figure 3.13 Example of volcano plots of DGE in day3 vs day 0, illustrates making the decision of 

choosing adjusted p-value cutoff = 10^-50. 

incorporates a prior on the sample differences. This method considers the variance of each 

gene, computed across samples, these variances are stabilized – i.e., approximately the same, 

or homoscedastic – after the rlog transformation. It thus facilitates multivariate visualization 

and ordinations such as clustering or principal component analysis that tend to work best when 

the variables have similar dynamic range.  
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Figure 3.14 Volcano plots of the differential gene expression in osteoblast differentiation days. 

The regularized log transformation, transforms the original count data to the log2 scale by 

fitting a model with a term for each sample and a prior distribution on the coefficients which 

is estimated from the data. This is the same kind of shrinkage of log fold changes used by the 

negative binomial Wald Test. The resulting transformed data is given as the following 

equation: 

log2(𝑞𝑖𝑗) =  𝛽𝑖0 + 𝛽𝑖𝑗 

where 𝑞𝑖𝑗is a parameter proportional to the expected true concentration of fragmentsfor gene 

i and sample j (see method section), 𝛽𝑖0is an intercept which does notundergo shrinkage, and 

𝛽𝑖𝑗is the sample-specific effect which is shrunk toward zerobased on the dispersion-mean trend 

over the entire dataset. The trend typically captures high dispersions for low counts, and 

therefore these genes exhibit higher shrinkage from the rlog. Without priors, the design matrix 

would lead to anon-unique solution, however the addition of a prior on non-intercept betas 

allows for a unique solution to be found. 

The variance stabilizing transformation is another method for data transformation, it 

calculates the global dispersion trend on a subset of the genes, However, in datasets with large 

variation in sequencing depth, it was observed undesirable artifacts in its performance, see 

DESeq2 article [123]. 
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Figure 3.15 Comparisons of data transformation methods 

3.4.2.5 Principal Component Analysis: 

Principal component analysis (PCA) is a statistical procedure that can be used for exploratory 

data analysis. PCA uses linear combinations of the original data (gene expression values) to 

define a new set of unrelated variables (principal components). These new variables are 

orthogonal to each other, avoiding redundant information. PCA was invented in 1901 by Karl 

Pearson[128]. 

Thus, PCA can be used to reduce the dimensions of a data set, allowing the description of 

data sets and their variance with a reduced number of variables. It is often sufficient to look at 

the first two components, as these describe the largest variability. 

PCA plot is useful for visualizing the overall effect of experimental covariates and batch 

effects (technical sources of variation), it is used to get an impression on the similarity of RNA-

sequencing samples. The variance in RNA-Seq data usually grows with the expression mean, 

using PCA on the transformed data matrix by regularized logarithm transformation will often 

lead to principal components that are dominated by the variance of a few highly expressed 

genes, and avoid the high random noise of low count data 

The following graph in Figure 3.16 is the PCA plot of osteoblast data set that has 12 samples 

for 4 biological conditions. The replicates in each condition show similarity in the variances 

which proves that the experimental samples did not suffer from an abnormality in variance 

between biological replicated. 

3.4.2.6 Sample to sample distance: 

We computed the Euclidean distance between the samples, using the regularized logarithm 

transformed data count. From the distance matrix, we created dendrogram of the samples as 

Figure 3.17 illustrates, the count data in day_0 of osteoblast differentiation has greater variance 

to the other days, while day_3 and day_6 are closer, this means the genes in both time points 

have similar expression patterns. 

A heatmap of the distance matrix gives an overview over similarities and dissimilarities 

between samples, so we used the Euclidean distance of rlog transformed data likewise to create 

a distance heatmap as the Figure 3.18.  

 

 

 

 

 

                

                 

 

 

 

 

 

                

               

 

 

 

 

 

                

                    

    

 
 

https://en.wikipedia.org/wiki/Karl_Pearson
https://en.wikipedia.org/wiki/Karl_Pearson
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Figure 3.16 PCA of osteoblast dataset. The replicates in each condition show similarity in the 

variances 

 

Figure 3.17 Hierarchical clustering dendrogram of osteoblast dataset  
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3.4.2.7 On / off genes subset analysis 

The overall distribution of the fold change differences between the conditions was almost 

symmetric (Figure 3.19).  

However, we found groups of genes with on/off expression as in Table 3.6. We research each 

gene of them and defined a group of genes which have significant biological role in 

osteoblast differentiation and ossification. In addition, we got the union of those genes (237 

genes) and define their expression patterns in 4 time points (see the appendix I) 

 

Figure 3.18 Heatmap of samples distance 

 

Figure 3.19 The distribution of overall fold change differences across all the comparisons  
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Comparison 

X vs  Y 

On gene expression 

on in  X& off in Y 

Off gene expression 

off in X& on in Y 

Day 12 vs Day 0 81 19 

Day 12 vs Day 3 12 11 

Day 12 vs Day 6 15 5 

Day 6 vs Day 0 97 33 

Day 6 vs Day 3 1 3 

Day 3 vs Day 0 90 27 

Table 3.6 ON/OFF genes in osteoblast dataset 

We define if a gene is silent during an osteoblast differentiation time point, by applying the 

following algorithm on the comparisons respectively. For example, the comparison of DGE 

between Day_3 of osteoblast differentiation against Day_0: 

First, we take the normalized counts of significant differentially expressed genes in Day3 vs 

Day_0 with adjusted p-value less than 0.01 and FC greater than 4. 

 

Then we calculate the mean of the normalized count of the replicates in each condition. 

 

After we got the mean of the normalized count, we check whether DE genes are off in Day_0, 

if at least in two replicates the normalized count is 0, and the mean of normalized count in 3 

replicates is less than 1.5. We apply the same conditional statements on Day_3 to get the silent 

genes. 

pd = 0.01 

lfc = log2(4) 

res3_0 <- as.data.frame(resThree_Zero) 

# the significant DGE in Day_3 vs Day_0, adjp < 0.01 , |LFC|>2 

Diff3_0 <- res3_0 [which(res3_0$padj<pd& abs(res3_0$log2FoldChange)>lfc),] 

# all the normalized count in DESeq object 

NormSF_Counts <- counts(ddseq, normalized=TRUE) 

#normalized count of significant DGE in Day_3 vs Day_0 

NC3_0 <- as.data.frame( NormSF_Counts[which(rownames(NormSF_Counts) 

%in% rownames(Diff3_0)), ]) 

NC3_0$Mean0 <-rowMeans(cbind(NC3_0$Day0_R1,NC3_0$Day0_R2,NC3_0$Day0_R3)) 

NC3_0$Mean3 <-rowMeans(cbind(NC3_0$Day3_R1,NC3_0$Day3_R2,NC3_0$Day3_R3)) 

NC3_0$Mean6 <-rowMeans(cbind(NC3_0$Day6_R1,NC3_0$Day6_R2,NC3_0$Day6_R3)) 

NC3_0$Mean12 <-rowMeans(cbind(NC3_0$Day12_R1,NC3_0$Day12_R2,NC3_0$Day12_R3)) 
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Why did we repeat this procedure for every comparison separately? Because we need to avoid 

annotating a gene as turned off during a differentiation time point, while it is not significant 

differentially expressed between those conditions, therefore we take merely the differentially 

expressed genes that achieve the threshold criteria in each individual comparison. 

3.5. GENE ONTOLOGY ANALYSIS ENRICHMENT 

 METHOD 

For clustering the differential expressed genes, we plot a heatmap that creates a similarity 

matrix of the values and groups the genes with similar pattern together, then highlights them 

in different colors. We got the normalized count of the DE genes we desire to cluster, from 

DESeqDataSet object(dds) by applying the following statement: 

 

Then we calculate the count mean of the replicates in each condition, we create new mean 

count matrix with all the genes names. 

 

The fundamental step to generate clusters heatmap, is to scale the normalized count with mean 

centering as the following: 

𝑥𝑛𝑒𝑤 =  
𝑥 − 𝜇

𝜎
 

Where x is the value of normalized counts, μ is the mean of the rows, σ is the standard 

deviation, however the mean of the new row values is 0 and the standard deviation is 1. We 

need to transpose the matrix to cluster the genes as the following: 

On3off0 <-  NC3_0[which( 

            (NC3_0$Day0_R1 ==0 & NC3_0$Day0_R2 == 0 & NC3_0$Mean0 < 1.5) | 

            (NC3_0$Day0_R1 ==0 & NC3_0$Day0_R3 == 0 & NC3_0$Mean0 < 1.5) | 

          (NC3_0$Day0_R2 ==0 & NC3_0$Day0_R3 == 0 & NC3_0$Mean0 < 1.5) ), ] 

On0off3 <-  NC3_0[which( 

            (NC3_0$Day3_R1 ==0 & NC3_0$Day3_R2 == 0 & NC3_0$Mean3 < 1.5) | 

            (NC3_0$Day3_R1 ==0 & NC3_0$Day3_R3 == 0 & NC3_0$Mean3 < 1.5) | 

        (NC3_0$Day3_R2 ==0 & NC3_0$Day3_R3 == 0 & NC3_0$Mean3 < 1.5) ), ] 

DSC <- as.data.frame(counts(dds, normalized = TRUE)[genesCluster,]) 

DSCM <- data.frame(row.names = rownames(DSC)) 

DSCM$Day0_Mean <- rowMeans(cbind(DSC$DayZero_R1, DSC$DayZero_R2, 

                            DSC$DayZero_R3), na.rm=TRUE) 

DSCM$Day3_Mean <- rowMeans(cbind(DSC$DayThree_R1 , DSC$DayThree_R2, 

                           DSC$DayThree_R3) , na.rm = TRUE) 

DSCM$Day6_Mean <- rowMeans(cbind(DSC$DaySix_R1 , DSC$DaySix_R2, 

                           DSC$DaySix_R3) , na.rm = TRUE) 

DSCM$Day12_Mean <- rowMeans(cbind(DSC$DayTwelve_R1, DSC$DayTwelve_R2, 

                            DSC$DayTwelve_R3) , na.rm = TRUE) 



 

84 

 

 

The heatmap function in R calculate the Euclidean distances and calculate the variance to 

cluster the genes and reorder the values according to its dendrogram.  We could identify 9 

clusters of the genes by visual inspection, whereas the genes were plotted in the heatmap 

according to their expression patterns see Figure 3.20. 

Then we uploaded the differentially expressed genes clusters to Ontologizer [129], using the 

model-based gene set analysis method “MGSA”[130] we got the top annotation-enriched GO 

terms of the differential gene expression group. Then we applied parent-child intersection 

approach [131]on the clusters, to get the enriched GO terms of each cluster. For correcting the 

p-value we used Benjamini Hochberg correction. 

 RESULTS 

For biological evaluation of the function of the protein coding genes, we performed gene 

ontology enrichment analysis. There are 1386 protein coding genes, differentially expressed 

with more stringent cutoff values (absolute fold change of fivefold or greater and adjusted P-

value < 10-50). These genes were plotted within a heatmap to identify clusters of genes 

according to their expression pattern. In total, nine clusters were identified by visual inspection, 

as illustrated in protein coding genes clusters heatmap (Figure 3.20). Cluster A comprises a 

total of 303 genes that display high expression at day 0 and low expression levels at later time 

points. 301 of them are annotated to a GO term. 38/301 genes have “nucleic acid binding 

transcription factor activity”. Several genes are involved in “response to ER stress” including 

Atf3, Atf4 and Ddit3. This cluster also contains Bmpr1b which is well known to be involved in 

osteoblast differentiation.  

Genes in Cluster B display a very similar expression pattern in comparison to cluster A. In 

this cluster we also identified a large number of genes involved in “transcription from RNA 

polymerase II promoter” and “transcription factor activity, protein binding” including Actn4 

which is involved in regulation of transcription as well as substrate adhesion-dependent cell 

spreading. Almost 10 percent of these genes are coding for proteins localized in the 

extracellular matrix, and nine of them are structural constituents of collagen trimers. About 18 

percent of these genes are involved in “movement of cell or subcellular component”.  

Genes that show increasing expression levels of time reaching highest expression at day 12 

are localized in cluster C. 23/103 genes within this cluster are annotated to terms such as 

“ossification”, “biomineral tissue development”, and “skeletal system development” including 

well known genes such as Bglap, Bglap2, Dmp1, Ibsp, Mef2c, Mepe, Ostn, Phex, Spp1, Vdr. 

Of note, Grem1 is also located within this cluster which is a known BMP antagonist, and its 

increasing expression is associated with decrease in proliferation and migration of cells. 

Another 24/103 of the genes in Cluster C, are annotated to “immune system process”.  

Cluster D contains genes that have very low expression levels at day 0 but higher expression 

levels at the later time points. Although GO analysis did not reveal statistical significance, more 

than 10 percent of these genes are annotated to “oxidoreductase activity”. Significance was 

obtained for a subset of these genes annotated to “respiratory chain” and “oxidoreductase 

complex”. Interestingly, Tnfsf11 (aka RANKL) is located within this cluster as well as Mmp13 

and Arrb1. The latter has been described to protect against ER stress and its expression is kind 

of inverse to the genes in cluster A where several genes are annotated to response to ER stress.  

DSCM_scale <- apply(DSCM, 1, scale) 

myclusters <-t(DSCM_scale) 

colnames(myclusters) <- colnames(DSCM) 
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There are 22 genes in cluster E which show highest expression levels at day 3. They are all 

annotated to the rather unspecific GO term “single-organism process”. However, this cluster 

contains Col9a3 and Ucma. Both genes are involved in chondrogenic differentiation, and Ucma 

has been speculated to be involved in negative regulation of osteoblast differentiation.  

Cluster F contains five genes. These genes display moderate expression levels from day 0 on 

with peak expression at day 6 and very low expression levels at day 12. Gene products of the 

four genes Fbn2, Hmcn1, Mal2, and Serpini1 are localized within the extracellular matrix. The 

fifth gene, Lrrc75b has been reported to be a negative regulator of myogenic differentiation 

[132].  

Genes in cluster G display low expression levels at day 0 and peak expression at day 3. About 

one third of these genes are involved in lipid metabolic processes and 19/101 genes are 

annotated to have oxidoreductase activity. Several of these genes such as Cyp51, 

Dhcr7, Dhcr24, Fdps, Hmgcs1, Idi1, Msmo1, Mvd, Nsdhl, Pmvk, Sc5d, Sqle, and Tm7sf2 

encode enzymes of the cholesterol biosynthetic pathway, and several of the genes in this cluster 

play a known role in bone development as shown by knockout phenotypes. For example, 

developing Cyp51 knockout embryos exhibit shortened and bowed limbs and synostosis of 

femur and tibia, Cyp7b1 knockout animals have decreased bone mineral density and decreased 

trabecular number and thickness, mutations in DHCR24 cause severe developmental anomalies 

including short limbs, and Elovl6 plays a role during growth plate development.  

In cluster H, we observed an incremental increase of expression levels with a peak at day 6 

and moderate expression at day 12. Products of 22/116 genes are localized within the 

extracellular matrix and several of the genes in this cluster are annotated to “biomineral tissue 

development”, “collagen binding”, and “Collagen trimer”. Cst3 encoding Cystatin C has been 

suggested to promote osteoblast differentiation via BMP signaling. Although not annotated to 

“collagen binding”, epiphycan encoded by Epyc is a regulator fibrillo-genesis by interacting 

with collagen fibrils and other ECM proteins. This cluster also contains Srfp2, a negative 

regulator of Wnt-signaling, Meox2 which is involved in limb morphogenesis and the genes 

osteoglycin (Ogn) and osteomodulin (Omd). Osteoglycin-deficient mice have collagen fibril 

abnormalities, and raising osteomodulin expression levels have been reported to mediate the 

switch from osteoblast proliferation to differentiation.  

Cluster I is the largest cluster containing 373 protein-coding genes annotated to a GO term. 

Expression levels are comparably high at day 3 and day 6, but low at day 0 and day 12. About 

one third of these genes (125/373) are annotated to “cell cycle” including cyclins, cell division 

cycle (associated) genes, cyclin dependent kinases and -kinase inhibitors, centromer proteins, 

E2F transcription factors, and numerous genes encoding kinesin-like proteins. Genes in this 

cluster with known roles in bone biology include Birc5 which is a Comp target gene, Clu which 

is a marker of zonal articular chondrocytes, Dkk2, Fam111a where mutations cause Gracile 

Bone Dysplasia (OMIM 602361), Gdf10, Gdf11, Id2, Itm2a, Kazald1 aka Bono1, Lgas9, 

Mmp9, Nell1, Postn, Ptn, Sfrp1, and S100a11 which accelerates chondrocyte hypertrophy.   

Our analysis approved the genes that are known to be associated with osteoblast 

differentiation and play role in bone forming and mineralization, those genes have been studied 

inclusively, as I described in the gene ontology analysis. While we found other new candidates 

known with their function in cell proliferation and differentiation, in addition to ions and 

minerals binding, we could build our theory about their roles in osteoblast differentiation and 

ossification based on their expression pattern (our paper). Our On/Off method highlight few 

group of gene that are silent or turned off during an osteoblast differentiation time point while 

it is on in others (See appendix II). 
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To confirm the biological validity of our data, we analyzed differential expression of selected 

marker genes that are well known to be differentially expressed during osteoblast 

differentiation. 

As shown in Figure 3.21, Bmp2 which is a marker gene for osteogenic induction displayed 

highest expression levels at day 0. Runx2 which encodes one of the key transcription factors 

of bone formation is highly expressed with slight downregulation over time. Col1a1 shows 

peak expression at day 6. One of the marker genes for osteoblast matrix remodeling Mmp13 is 

highly expressed at day 3 and day 12 with an intermittent drop at day 6. Marker genes for 

osteoblast differentiation such as Bglap2 showed rising expression levels over time starting at 

day 3, and Sost which is a marker for the onset of mineralization is basically turned off until 

day 6, but expressed at day 12.  In contrast, Pparg, a marker gene for adipogenic differentiation 

displayed decreasing expression and Lep which is expressed by differentiated fat cells shows 

constantly low expression (Figure 3.22). The chondrogenic marker genes Comp and Col9a1 

are downregulated over time. Finally, marker genes for myogenic differentiation such as Myod 

and mature muscle cells such as Ckm displayed marginal expression levels. Taken together, 

expression of marker genes confirmed osteogenic differentiation. 
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Figure 3.20 Heatmap of genes cluster with their expression patterns and significant GO terms 
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Figure 3.21 Expression pattern of few gene markers well known to be differentially expressed 

during osteoblast differentiation. 
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Figure 3.22 Expression of genes known to be downregulated in osteoblast cells 
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3.6. DIFFERENTIAL EXONS USAGE 

Alternative transcription start-sites lead to differences in the beginning of mRNA, whereas 

alternative splicing causes some of the exons to be skipped and not translated at all. RNA-seq 

offers exciting possibilities for studying the expression and regulation of isoforms on the whole 

genome level.  

Most of the current RNA-seq methods produce short reads which do not cover full transcripts. 

Instead, transcripts need to be assembled from sequenced fragments. The assembly and the 

subsequent abundance estimation can be challenging, because isoforms typically have common 

or overlapping exons. Furthermore, the coverage along transcripts is not uniform because of 

biases introduced in sequencing and library preparation. In order to avoid uncertainties in the 

assembly, one approach for studying alternative isoform regulation of it is to look at differences 

in the usage of individual exons. RNA-seq reads can also be mapped to exons so that the 

differences in exon-specific counts can be compared between certain conditions, groups, or 

treatments. 

 METHODS 

We used a statistical method to test for differential exon usage in RNA-seq data, by applying 

Bioconductor package DEXSeq [133], which uses generalized linear models, taking into the 

account the biological variability and looks for differences across conditions of the relative 

usage of each exon. Using HTSeq library in python, we generated a reference annotation genes 

model (flattened GFF file) contains one entry for each exon or exonic part, which is cut from 

the exon if the exon’s boundary differs between transcripts. Then we got the count of reads that 

overlap with each of the exon counting bins defined in the flattened GFF file in each sample. 

The DEXSeq function normalizes these counts by the library size factor sj, which accounts for 

the depth that sample j was sequenced. The number of the reads Nijk overlapping counting bin 

(exonic part) k of gene i in sample j, follows the negative binomial (NB) distribution and 

modeled by GLMs, where the dispersion parameter is estimated by, firstly performing an IRLS 

(iteratively reweighted least square) fits for each gene, then, insert these fitted values in the log 

likelihood function with Smyth’s Cox-Reid [134][135] term and find its maximum using 

Brent’s line search. So, the gene expression variability is absorbed by the model parameters, 

while the model increase the power of the test for differential exon usage.  

 RESULTS 

We used DEXseq method to test for differential exon usage in comparative RNA-Seq 

experiments. We mean by differential exon usage (DEU), changes in the relative usage of 

exons caused by the experimental condition. The relative usage of an exon is defined as: 

number of transcripts from the gene that contain this exon

number of all transcripts from the gene
 

We test the differential exon usage in each comparison, applying merely the DEXSeq method 

with thresholds; adjusted p-value less than 0.01 and FC greater than 4, we got the following 

number of entries, which are exons or exonic part differentially used between the conditions, 

many of those exons belong to more than one transcript, and some of them overlapped with 

few genes. The results presented in Table 3.7 
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Comparisons Adjusted p-value < 0.01 adjp < 0.01 & |logFC| > 2 

Day12 vs Day0 17229 291 

Day12 vs Day3 3216 71 

Day12 vs Day6 2917 35 

Day3 vs Day0 17283 293 

Day6 vs Day0 18408 373 

Day6 vs Day3 480 8 

Table 3.7 Differential Exon Usage (DEU) in osteoblast comparisons; adjp <0.01, |logFC|>2 

The results from DEXSeq are not adequate for further alternative splicing analysis. Therefore, 

the genes name and gene type associated with the entries must be provided, using Biomart data 

mining tool from Ensemble, I built the function code in R (Code-box 3. 14). 

It has been found in previous studies that almost 73% of human genes are alternatively spliced 

[136]. To figure out the featured biological role that a gene can play when alternative transcripts 

expressed in different conditions, we need to determine if the exonic part that differentially 

used between those conditions is protein-coding or within the open reading frame ORF. To 

achieve this task, first I coded a function to provide the bio-type of transcripts that include the 

differential used exon, as it is illustrated in Code-box 3.15. The output of this function provides 

us with a data matrix includes the DEU, logFC, adjP-value, Gene name, Gene type, Transcript 

type, Genomic start and end of the exon part, Genomic width, and genomic strand. 

This data matrix is the basis of ExonORF function that define if the exonic part is within 

ORF. I coded ExonORF Code-box 3.16 function in the following steps: 

1- Get the table exons features from BioMart in Ensemble, of all transcripts that 

differentially used in all comparisons. The exon feature table wouldh look like this: 

Exon.Chr.Star

t 

Exon.Chr.En

d 
En.Transcript.ID 

G.coding.star

t 

G.coding.en

d 

Stran

d 

15356 15422 
ENSMUST0000008242

3 
NA NA -1 

14145 15288 
ENSMUST0000008242

1 
14145 15288 +1 

The exons that are non-coding the Genomic.coding.start and Genomic.coding.end not available, 

while some exons are partially within ORF so they have either Genomic coding start or end. 

2- Check the exonic bin is within the range of a defined exon in Ensemble. 𝑆𝐸  , 𝐸𝐸 are the start and 

end of an exon, and 𝑆𝐵, 𝐸𝐵 are the start and end of an exon part. 

3- Check if this exon part is within the ORF. 𝑆𝑐  , 𝐸𝑐 are the start and end of coding frame. 

𝑆𝐵, 𝐸𝐵 ∈  [𝑆𝐸 , 𝐸𝐸]  ∩ 𝑆𝐵, 𝐸𝐵 ∈  [𝑆𝑐 , 𝐸𝑐] 
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Code-box 3.14 function to add the type and name of genes in DEXSeq data matrix 

 

  

biomart <- read.table(paste(inDirG,"BioMart_GRCm38R86.txt",sep="/"), sep = "\t", 

header = TRUE) 

library(hash) 

gene_name_hash <- hash(keys= biomart$Ensembl.Gene.ID, 

values= biomart$Associated.Gene.Name) 

biotype_hash <- hash(keys= biomart$Ensembl.Gene.ID, 

values= biomart$Gene.type) 

DxGeneType <- function(DEU){ 

DEUx <- DEU 

for (i in 1:length(DEUx$groupID)) 

{ 

  if (grepl("\\+",DEUx$groupID[i])) 

  { 

    z<- unlist(strsplit(DEUx$groupID[i], "\\+")) 

    x<- vector(mode = "character") 

    y<- vector(mode = "character") 

    for(k in 1:length(z)) 

    { 

      if (is.null(gene_name_hash[[ z[k] ]])){ 

        x[k]<- "Not Available" 

        y[k] <- "NA" 

      } 

      else{ 

        x[k] <- as.character(gene_name_hash[[ z[k] ]]) 

        y[k] <-as.character(biotype_hash[[ z[k] ]]) 

      } 

    } 

    DEUx$gene_name[i] <- paste(x ,sep = " + ", collapse = "+") 

    DEUx$gene_t[i] <- paste(y ,sep = " + ", collapse = "+") 

  } 

  else 

  { 

    if (is.null(gene_name_hash[[ DEU$groupID[i] ]])){ 

      DEUx$gene_name[i] <- "Not Available" 

DEUx$gene_t[i] <- "NA" 

} 

    else{ 

      DEUx$gene_name[i] <- as.character(gene_name_hash[[ DEUx$groupID[i] ]]) 

      DEUx$gene_t[i] <- as.character(biotype_hash[[ DEUx$groupID[i] ]]) 

    } 

 } 

} 

} 
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Code-box 3.15 function to define bio-type of transcripts 

 

  

trans_biomart <- read.table(paste(inDirG,"transcriptsBiotype.txt",sep="/"), sep = 

"\t", header = TRUE) 

 

transName_hash <- hash(keys= trans_biomart$Ensembl.Transcript.ID, values= 

trans_biomart$Associated.Transcript.Name) 

transBiotype_hash <- hash(keys= trans_biomart$Ensembl.Transcript.ID, values= 

trans_biomart$Transcript.type) 

 

trans_ProCod <- function(DX, TX){ 

  t <- as.character(DX$transcripts) 

for (i in 1:length(t)) 

  { 

if (grepl("c",t[i])) 

    { 

      c <-gsub( 'c','', (gsub("[[:punct:]]",'', t[i]))) 

      z<- unlist(strsplit(c, " ")) 

      x<- vector(mode = "character") 

      y<- vector(mode = "character") 

for(k in 1:length(z)) 

      { 

        if (is.null(transName_hash[[ z[k] ]])){ 

          x[k]<- "Not Available" 

          y[k] <- "NA" 

        } 

else{ 

          x[k] <-as.character(transName_hash[[ z[k] ]]) 

          y[k] <- as.character(transBiotype_hash[[ z[k] ]]) 

        } 

} 

      DX$transName[i] <- paste(x ,sep = "  +  ", collapse = "+") 

      DX$transBiotype[i] <-  paste(y ,sep = "  +  ", collapse = "+") 

      TX <- append(TX, z) 

    } 

else{ 

      TX <- append(TX, t[i]) 

      if (is.null(transName_hash[[ t[i] ]])){ 

        DX$transName[i] <- "Not Available" 

        DX$transBiotype[i] <- "NA" 

      } 

else{ 

        DX$transName[i] <- as.character(transName_hash[[ t[i] ]]) 

        DX$transBiotype[i] <- as.character(transBiotype_hash[[ t[i] ]]) 

      } 

    } 

  } 

 

  DXPro <- DX[ which(grepl("protein_coding", DX$transBiotype)) 

                     ,c(1,23,24,22,25,26,2,3,7,8,9,10,12,13,14,15)] 

  resPro = list(DX = DXPro, Trans= TX) 

  return(resPro) 

} 
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Code-box 3.16 function to define the coding exon (within ORF) 

 

  

ExonsCor <-  read.table(paste(inDirG,"exonsCor.txt",sep="/"), sep = "\t", 

header = TRUE) 
 

Trans <- Reduce(union, list(Trans12_0,Trans12_3,Trans12_6, 

Trans3_0,Trans6_0,Trans6_3)) 
 

exonCor <- ExonsCor[which(ExonsCor$Ensembl.Transcript.ID %in% Trans),] 
 

CodStart_hash <- hash(keys= exonCor$Exon.Chr.Start..bp. , 

values=exonCor$Genomic.coding.start) 

CodEnd_hash <- hash(keys= exonCor$Exon.Chr.End..bp., 

values=exonCor$Genomic.coding.end) 
 

ExonORF <- function(DX, trans){ 

  BMexon <- ExonsCor[which(ExonsCor$Ensembl.Transcript.ID %in% trans),] 

 

for(j in 1:nrow(DX)){ 

    Sb <- DX$genomicData.start[j] 

    Eb <- DX$genomicData.end[j] 

for(i in 1:nrow(BMexon)){ 

      S <- BMexon$Exon.Chr.Start..bp.[i] 

      E <- BMexon$Exon.Chr.End..bp.[i] 

      Sc <- BMexon$Genomic.coding.start[i] 

      Ec <- BMexon$Genomic.coding.end[i] 

 

if(Sb>=S && Eb<=E){ 

        cat("\n start of bin Sb and the end is inside S,E ") 

if(!is.na(Sc) && !is.na(Ec)){ 

          cat("\n start coding is integer ") 

if(Sb>=Sc && Eb<=Ec){ 

            cat("\n  exonic bin is coding  ") 

            DX$ExonType[j] <- "coding_Exon" 

          } 

else{ 

            DX$ExonType[j] <- "out_ORF" 

          } 

        } 

else{ 

          DX$ExonType[j] <- "NOT_Coding" 

        } 

      } 

    } 

  } 

 

return(DX) 

} 
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Table 3.8 Table 3.8 number of the differential used coding exon (within ORF) in Osteoblast 

datasetshows the number of differential used exons in each comparison, that are within the 

coding frame. 

Comparisons Exons within ORF 

adjp < 0.01 & |logFC| > 2 

Day12 vs Day0 32 

Day12 vs Day3 13 

Day12 vs Day6 7 

Day3 vs Day0 35 

Day6 vs Day0 50 

Day6 vs Day3 0 

Table 3.8 number of the differential used coding exon (within ORF) in Osteoblast dataset 

3.7. LONG NON-CODING RNA IDENTIFICATION 

 METHOD 

We innovated an algorithm to predict the potential functions of lncRNA genes which are 

differentially expressed, by their correlation with protein coding genes. The algorithm is based 

on two concepts (Figure 3.23); the first concept is the spatial interaction of the lncRNA and the 

protein coding genes or what is called topologically associating domain (TAD)[137]. And the 

second concept is the co-expression correlation which was used in previous study for lncRNA 

functions characterization[138]. Then define the enriched functional terms among the protein 

coding genes that are significantly correlated with lncRNAs using a gene ontology tool. 

Since the lncRNA expressed in lower level, so we used more tolerant cutoffs to get the 

significant differential expression, whereas the adjusted p_value less than 0.01 and the binary 

logarithm of fold change between the conditions is greater than 1.5 (adj.Pvalue ≤ 0.01 , FC ≥ 

1.5). The algorithm workflow is concise in the following steps: 

1- Mapping the reads and the default differential gene expression pipeline using DESeq2. 

2- Creating a DGE data matrix for protein-coding genes and another data matrix for lncRNA. 

3- For computing the correlation, we generate two matrices for lncRNA and protein-coding 

genes, contain normalized counts (expression values) among the different Osteoblast 

differentiation time point. 

4- Getting the TAD annotation for mouse genome mm10. 

5- Selecting the protein coding gene and lncRNA pairs based on two criteria; firstly, the 

protein-coding gene and the lncRNA must be within the same topological associated 

domain. Secondly, the absolute correlation value must be greater than 0.9, and the p_value 

of the correlation test less than 0.01. 
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6- Most of the lncRNA correlated to more than protein-coding genes. lncRNA have positive 

correlation with protein coding genes, when they have similar expression pattern, and 

negative correlation when their expression patterns are contradicted. 

 RESULTS 

Applying this algorithm on osteoblast data, we got throughputs needed to be biologically 

verified, which was not possible due to flaws in wet-lab organization, however, according to 

the logical methodology we used, based on published literature [137][138], the algorithm is 

applicable and need RNA-seq data to confirm it. 

As statistical overview of results I got from osteoblast data; there were 10760 protein coding 

genes differentially expressed with thresholds (adj.Pvalue ≤ 0.01 , FC ≥ 1.5) and within the 

Topological Associated Domains (TAD) , 299 of those protein coding genes are correlated 

with 126 lncRNA. However, we have 285 differentially expressed lncRNA with the same 

cutoffs, 158 of them were not correlated (Table 3.9 number of differential expressed and 

correlated Pro.Cod genes and lncRNA) 

 DGE  

adjp < 0.01 & FC 

>1.5 

Within TADs Correlated Not correlated 

Protein coding 10775 10760 299 10461 

lncRNA 285 284 126 158 

Table 3.9 number of differential expressed and correlated Pro.Cod genes and lncRNA 

The distinct result in our analysis, that our algorithm can define when the lncRNA is 

positively correlated with the protein coding gene, this guide us to the hypothesis that the 

lncRNA enhancing the expression of the protein coding gene, in other words, it plays positive 

regulation role to that Pro.Cod gene. While the lncRNA negatively correlated with the protein 

coding gene, it plays suppressor role. (Appendix II) 

Some of the lncRNA correlated with more than one Pro.Cod gene, therefore we have chosen 

the maximum correlated Pro.Cod gene (positively and negatively). However, for the analysis, 

we needed to study the full set of Pro.Cod genes that are correlated with one lncRNA. 

Moreover, many of lncRNA correlated positively with some Pro.Cod genes and negatively 

with others. We found few biological meaningful examples of such lncRNA behavior served 

our research on osteoblast differentiation (See our submitted paper). 

 All pairs Maximum correlated 

Positive correlation 217 91 

Negative correlation 131 66 

Table 3.10 positive and negative correlated Pro.Cod and lncRNA pairs 
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Figure 3.23 lncRNA correlation algorithm  
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4. DISCUSSION 

Despite the availability of the web-based platform for RNA-Seq data analysis as Galaxy 

[139], our pipeline analysis in this doctoral research still carries  novel and auxiliary 

approaches,  which provide integrity, and improve the performance of the existing tools. It 

provides a solution to input a set of samples into a tool, by means of a single function command. 

Furthermore, our pipeline provides informative results, allowing straightforward interpretation 

by the biologists. To discuss the novelty and the benefits of our research, I will   go through 

the pipeline’s procedures one by one as follows: 

1- We coded three functions (fastqc_insert, trimo_insert, tophat_insert) to input a set of 

samples to FastQC, Trimmomatic and TopHat tools respectively.  Despite the simplicity 

of the codes, they serve a good purpose by facilitating the   input of samples, where the 

user simply needs to apply accessible paths, where the input data is stored, and where the 

outputs of the tools are needed to be stored. The user doesn’t need to have any skills in 

bash script or shell command-line to run those tools. These inserting functions can be 

useful cores when we design an integrated web-platform for RNA-Seq data analysis, 

since we as the operators don’t need huge data-storage to analyze the data or worry about 

server maintenance, and on the other hand the users don’t need to upload their big fastq 

files elsewhere and spend hours and interrupt their network connection. 

2- The quality control tool FastQC returns two sets of files for each sample (one for the 

forward reads and the other for reverse reads), this means for a small experiment, it will 

produce a range of 20 output sets. Retrieving quality information from the FastQC files 

will be a burden to go through the plain text files for each sample. Therefore, we coded 

two functions; “BasicStatistic” to retrieve the length of reads and the number of reads, 

before and after trimming. And “QualityScore” to calculate the mean quality of all bases 

in a fastq file. Furthermore, we coded “read_qual” function to get average quality in each 

base along reads positions, and to plot the mean quality of bases across the reads 

positions. 

3- The coverage uniformity of the gene features is one of the concerns when using libraries 

based on polyadenylated RNA. Although there are tools to plot graphs and heatmap 

represent the coverage along the gene body as RSeQC[140], our method to check the 

coverage uniformity gives a detailed vision of the coverage distribution along the gene’s 

features, by plotting the density of mean of base coverage after separating the first exons 

in 5′UTR, the last exon in 3′URT, and the middle exons. 

4- In the differential gene expression pipeline, we defined the significant differential 

expressed genes using the statistical model of DESeq [123]. However, we improved the 

default pipeline, the purpose being to obtain informative outputs from the differential 

gene expression matrix. We proposed a procedure to set the suitable cutoffs of the P-

value and logarithm fold change as described in the “Setting Thresholds:” section. Apart 

from this, we defined the biotype of each significant differentially expressed gene, so we 

could do the gene enrichment for the protein-coding genes and separate the long non-

coding RNA for our further analysis. Furthermore, based on the differential gene 

expression matrix, we proposed the analyzing procedure for the multiple conditions 

experiment, we called it “ON/OFF genes”. This procedure suggests defining the genes 

that are completely silent during a biological condition while it is expressed in the others. 

Using this analysis, we can get a set of genes that are uniquely regulated between 

biological conditions. 
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5- For alternative splicing analysis, we improved the performance of the differential exon 

usage tool DEXSeq[133], by defining whether the differential used exon (or part of the 

exon) is a coding exon within the ORF. Followed by the comparison of the domains of 

the transcripts that contain the differentially expressed exon, to determine the functions 

or the products that are affected by the alternative splicing of the gene.  

6- long non-coding RNA (lncRNA) species have been identified whose loci locate both 

within and between protein coding genes. While lncRNAs remain the most enigmatic 

ncRNA species in terms of function, there is now much effort centered on their functional 

characterization and their molecular mechanisms in different cell types[141]. However, 

our method is concentrated on finding the potential interaction between the lncRNA and 

the protein-coding genes, by finding the expression correlation between the lncRNA and 

protein coding genes that are within the same Topological Associated Domain (TAD). 

Although we interduce our method as a novel approach, it is based on existing and 

approved researches. TAD is a  known genome architecture, it is a self-interacting 

genomic region, meaning that DNA sequences within a TAD physically interact with 

each other more frequently than with sequences outside the TAD [137]. And defining the 

gene ontology terms of lncRNA by finding the expression correlation with protein-coding 

genes [138]. However, LncRNA2Function tool defines the co-expression without taking 

in consideration the topological associated domains. Furthermore, this database is 

available for GO terms in human genome, where our method can be applicable to any 

RNA-seq experiment. 
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APPENDIX I : ON-OFF GENES 

Gene Day 0 Day3 Day6 Day12 Note 

LRRC66 OFF OFF ON ON bone resorption and osteoclastic acid secretion 

IL20RA OFF ON OFF ON 
regulation of bone resorption and in skeleton 

phenotype 

LCN2 ON ON OFF ON 
anti-osteoclastogenic, suppressing the 

proliferation and differentiation of osteoclast 

MEPE OFF ON ON ON 
expressed by osteocytes, within mineralized 

bone 

IFNE ON OFF OFF OFF 
cell proliferation and activation of the immune 

system 

HRK ON OFF OFF OFF encode apoptosis regulatory proteins 

Hmx3 ON OFF OFF OFF cell differentiation 

FA2H ON OFF OFF OFF cell proliferation, lipid modification 

CHRND ON OFF OFF OFF inhibits osteoclastogenesis 

NEURL3 ON OFF OFF OFF 
zinc ion binding, upregulated in first 24 hours 

of osteoblast differentiation 

Dll4 ON OFF OFF OFF 
Skull defect, Finger syndactyly, Abnormality of 

the metacarpal bones 

GBP4 ON OFF OFF OFF 

differentially expressed in osteoclasts from 

patients of Autosomal dominant osteopetrosis 

type II 

Cntnap3 ON OFF OFF OFF 
related to BMP signaling and chondrogenic 

differentiation 

CACNA1I ON OFF OFF OFF control the rapid entry of Ca(2+) 

Gpr132 ON OFF Low Low 

Runx2 directly regulates a unique set of cell 

cycle genes Gpr132,Runx2 is expressed in both 

chondrocytes and osteoblasts 

DCC ON OFF Low Low 
involved in the pathogenesis of skeletal 

diseases including osteoporosis and arthritis 

MCTP1 ON OFF Low Low calcium-dependent phospholipid binding 

ADORA2A ON Low Low OFF 

Adenosine regulates bone metabolism, 

differentiation of mesenchymal stem cell to 

osteoblasts and adipocytes 

PPP1R1B ON Low Low OFF Midbrain dopaminergic neurons 

ECEL1 ON OFF OFF ON 
important role for these enzymes in bone 

metabolism and osteoblasts 

DTHD1 ON OFF OFF ON mediates apoptosis in human osteoblast 

RASAL1 ON OFF OFF Low 
ossifying fibromas compared with fibrous 

dysplasia 

PIK3AP1 ON OFF OFF Low 

in the protection of macrophages from 

apoptosis induced by endoplasmic reticulum 

stress 

Rbm24 ON OFF OFF Low regulates myogenic differentiation 

KCNK3 ON ON OFF OFF 
control the resting membrane potential in many 

cell types 

LRRC4 ON ON OFF OFF overexpress in brain and glioblastoma cells 

NRG3 ON OFF ON OFF regulation of cell growth 
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Gene Day 0 Day3 Day6 Day12 Note 

Ifi205 OFF ON ON ON 
plays a role in adipogenic differentiation of 

mouse adipose-derived stem cells 

ArhGAP15 OFF ON ON ON 
controls neutrophil mobilization from the bone 

marrow 

BMP15 OFF ON ON ON expressed in oocytes , osteoblastic cell  

KLHL4 OFF ON ON ON GO : actin binding 

FRMPD4 OFF ON ON ON regulates dendritic spine morphogenesis 

Il12a OFF ON ON ON 
In AIA, PRL treatment lowered osteoclast 

density 

Hist2h3c2 OFF ON ON ON encodes a replication-dependent histone 

Gjb5  OFF ON ON ON suppressed cell migration and invasion 

Ppbp OFF ON ON ON platelet basic protein 

FABP7 OFF ON ON ON 

FABP7 and FABP5 are differentially expressed 

in oligodendrocytel cells and regulate their 

proliferation and/or differentiation. 

NR1H4 (FXR) OFF ON ON ON 
new role for FXR in the modulation of 

osteoblast/adipocyte balance 

GALNT15 OFF ON ON ON metal ion binding. 

PTPN20 OFF ON ON ON protein tyrosine phosphatase 

ATP12A OFF ON ON ON Oxidative phosphorylation 

MMP27 OFF ON ON ON 
calcium ion binding , zinc ion binding, collagen 

catabolic process 

Slfn2 OFF ON ON ON 
involved in hematopoietic and immune 

processes 

MYH13  OFF ON ON ON 
actin binding, calmodulin binding , muscle 

myosin complex 

Ccl11 OFF ON ON ON 
it plays an important role in cartilage 

degradation in osteoarthritis 

Sprr3 OFF ON ON ON keratinocyte differentiation, keratinization 

CCDC27 OFF ON ON ON 
is a positional candidate genes for low bone 

mineral density 

Lingo2 OFF ON ON ON 
ssociated with essential tremor and Parkinson 

disease. 

ADCYAP1R1 OFF ON ON ON 

(pituitary),regulation of calcium ion , cell 

death, inositol phosphate biosynthetic process, 

cell differentiation 

Tinag OFF ON ON ON 
GO immune response, cell adhesion, 

polysaccharide binding. 

Il13ra2 OFF ON ON ON differentiation and activation of osteoblasts 
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APPENDIX II: lnc_RNA CORRELATION 

LincRNA Protein_cod Correlation Pvalue TAD_id 

Gm37233 Dst -0.96121575 6.47508E-07 chr1_33663155_34463155 

Pantr1 Mrps9 -0.934765657 8.33333E-06 chr1_40823155_43103155 

Gm29157 1500015O10Rik 0.973851527 9.21426E-08 chr1_43103155_43743155 

Gm28818 Atic -0.962644304 5.38024E-07 chr1_71553426_72233426 

Gm28818 Mreg -0.903268137 5.65931E-05 chr1_71553426_72233426 

2810414N06Rik Fam129a -0.957655318 9.98494E-07 chr1_151432870_152352870 

Gm16701 Fam78b 0.910379006 3.91111E-05 chr1_166389869_167349869 

Gm17275 Lin9 -0.92915666 1.24671E-05 chr1_180229869_180829869 

Gm17275 Acbd3 0.935325129 7.98969E-06 chr1_180229869_180829869 

Gm17275 H3f3a -0.909034732 4.2036E-05 chr1_180229869_180829869 

Gm34342 Marc2 0.941843912 4.74963E-06 chr1_183503931_184816121 

Gm29233 Thbs1 0.937151432 6.94519E-06 chr2_117494264_119014264 

Gm29233 Bub1b 0.93289764 9.56619E-06 chr2_117494264_119014264 

Gm29233 Knstrn 0.929139794 1.24816E-05 chr2_117494264_119014264 

Gm26899 Rpap1 0.973021857 1.07568E-07 chr2_119654264_121494264 

Gm26899 Tyro3 0.945248932 3.53317E-06 chr2_119654264_121494264 

Gm26899 Pla2g4b 0.933644451 9.05714E-06 chr2_119654264_121494264 

Gm26899 Vps39 0.904408504 5.34403E-05 chr2_119654264_121494264 

Gm26899 Ganc -0.914667635 3.08341E-05 chr2_119654264_121494264 

Gm26899 Zfp106 0.957993781 9.59771E-07 chr2_119654264_121494264 

Gm26899 Snap23 -0.922628823 1.9156E-05 chr2_119654264_121494264 

Gm26899 Stard9 0.904999012 5.18628E-05 chr2_119654264_121494264 

Gm26899 Cdan1 0.954733039 1.3871E-06 chr2_119654264_121494264 

Gm26899 Zscan29 0.92185492 2.01066E-05 chr2_119654264_121494264 

Gm26899 Ppip5k1 0.936840642 7.11484E-06 chr2_119654264_121494264 

Gm14230 Mybl1 0.909835188 4.02744E-05 chr1_9569919_10129919 

A530013C23Rik Mybl1 -0.935632771 7.80557E-06 chr1_9569919_10129919 

Gm26617 Apoo -0.965734257 3.51225E-07 chrX_94194661_95964661 

Gm26617 Zxdb 0.995181022 2.03018E-11 chrX_94194661_95964661 

Gm26617 Spin4 -0.930210904 1.15875E-05 chrX_94194661_95964661 

Gm26617 Zc4h2 -0.915596799 2.92382E-05 chrX_94194661_95964661 

Gm17308 Pex2 0.919235405 2.36037E-05 chr3_3000000_6320000 

Gm30074 Naa15 -0.9226284 1.91565E-05 chr3_51196078_52236078 

4921539H07Rik Pfn2 0.948249014 2.67924E-06 chr3_57436078_58476078 

Gm37933 Fhdc1 -0.921859835 2.01005E-05 chr3_84316078_86156078 

Gm37933 Glt28d2 0.929057701 1.25523E-05 chr3_84316078_86156078 

Gm4349 Pip5k1a 0.929325602 1.23227E-05 chr3_95036078_96476077 

Gm4349 Vps72 0.901813801 6.0824E-05 chr3_95036078_96476077 

Gm4349 Lysmd1 0.94840478 2.63986E-06 chr3_95036078_96476077 

Gm4349 Prune 0.975938189 6.10092E-08 chr3_95036078_96476077 

Gm4349 Setdb1 0.97830312 3.65146E-08 chr3_95036078_96476077 

Gm4349 Arnt 0.983191581 1.02726E-08 chr3_95036078_96476077 

Gm4349 Golph3l -0.923014206 1.8696E-05 chr3_95036078_96476077 

Gm4349 Ensa -0.937362648 6.83173E-06 chr3_95036078_96476077 

Gm4349 Rprd2 0.933944969 8.85844E-06 chr3_95036078_96476077 

Gm4349 Mrps21 -0.956477972 1.14296E-06 chr3_95036078_96476077 

Gm4349 Aph1a 0.948278129 2.67184E-06 chr3_95036078_96476077 

Gm4349 Anp32e -0.918741938 2.4313E-05 chr3_95036078_96476077 

Gm4349 Plekho1 0.907273173 4.61264E-05 chr3_95036078_96476077 

Gm4349 Vps45 -0.959306968 8.20665E-07 chr3_95036078_96476077 

Gm4349 Otud7b 0.958770403 8.7542E-07 chr3_95036078_96476077 

Gm26530 S1pr1 -0.960656863 6.94869E-07 chr3_115657082_116897082 

Gm26530 Agl 0.975138339 7.17497E-08 chr3_115657082_116897082 

A730020M07Rik Cnn3 0.966003039 3.37818E-07 chr3_121217082_121777082 

A730020M07Rik Slc44a3 0.961632267 6.13911E-07 chr3_121217082_121777082 

Gm43254 Tet2 -0.958088602 9.4914E-07 chr3_132697036_134657036 

Gm17501 Ddah1 0.958183172 9.3863E-07 chr3_145377036_145937036 

AI427809 Abca1 -0.964130354 4.40295E-07 chr4_53027128_53667128 

Gm12415 Cntln 0.964055756 4.44837E-07 chr4_83594096_85114096 

Gm26516 Cops5 -0.904920465 5.20705E-05 chr1_9569919_10129919 

Gm17300 Sgk3 0.952978854 1.67253E-06 chr1_9569919_10129919 

Gm20707 Sgk3 0.955251851 1.31056E-06 chr1_9569919_10129919 

Gm13067 Spsb1 0.981633816 1.5959E-08 chr4_149745891_150145891 

Gm13067 Gpr157 0.973488209 9.8664E-08 chr4_149745891_150145891 

Gm26840 Tmem88b 0.902132401 5.98765E-05 chr4_154865891_156256011 

Gm26840 Ccnl2 -0.954903402 1.36158E-06 chr4_154865891_156256011 

6030443J06Rik Orc5 0.954698571 1.3923E-06 chr5_21774182_23694182 
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1700096K18Rik Mybl1 -0.903865942 5.49226E-05 chr1_9569919_10129919 

1700096K18Rik Sgk3 0.920777201 2.1492E-05 chr1_9569919_10129919 

Gm4961 Hadhb 0.919282796 2.35365E-05 chr5_29553460_31057627 

Gm4961 Slc5a6 -0.925452486 1.59837E-05 chr5_29553460_31057627 

C130083M11Rik Sod3 0.923907619 1.76631E-05 chr5_52088761_52848761 

Gm3716 Pgm1 0.944681835 3.71639E-06 chr5_63888761_65328761 

Gm3716 Tlr1 0.914815061 3.05764E-05 chr5_63888761_65328761 

Gm3716 Fam114a1 0.952108913 1.83037E-06 chr5_63888761_65328761 

Gm3716 Wdr19 0.914626248 3.09067E-05 chr5_63888761_65328761 

1700010H22Rik Bmp3 0.962115618 5.76674E-07 chr5_98330981_99170981 

D930016D06Rik BC005561 0.957958665 9.63733E-07 chr5_103930981_105370981 

Miat Mybl1 -0.944081859 3.91835E-06 chr1_9569919_10129919 

1110006O24Rik Wsb2 -0.91275864 3.43278E-05 chr5_115629991_117469991 

4933404O12Rik Hspb1 0.953922996 1.51365E-06 chr5_135884130_136924130 

Gm8066 Cops5 -0.950978012 2.05299E-06 chr1_9569919_10129919 

B230303O12Rik Cpsf4 0.993750417 7.4298E-11 chr5_145159131_146668424 

B230303O12Rik Atp5j2 -0.962284187 5.64119E-07 chr5_145159131_146668424 

B230303O12Rik Zkscan5 -0.954158588 1.47593E-06 chr5_145159131_146668424 

B230303O12Rik Zscan25 0.983053594 1.06987E-08 chr5_145159131_146668424 

B230303O12Rik 1700001J03Rik 0.954528908 1.41816E-06 chr5_145159131_146668424 

B230303O12Rik Cdk8 0.986019393 4.10898E-09 chr5_145159131_146668424 

Gm43625 Cpsf4 0.971895766 1.31722E-07 chr5_145159131_146668424 

Gm43625 Atp5j2 -0.923649987 1.79562E-05 chr5_145159131_146668424 

Gm43625 Zkscan5 -0.927757663 1.37147E-05 chr5_145159131_146668424 

Gm43625 Zscan25 0.950158002 2.22743E-06 chr5_145159131_146668424 

Gm43625 1700001J03Rik 0.949664589 2.33793E-06 chr5_145159131_146668424 

Gm43625 Cdk8 0.971287935 1.46445E-07 chr5_145159131_146668424 

8430423G03Rik Medag 0.901486566 6.18093E-05 chr5_148308424_149597425 

5930430L01Rik Slc7a1 -0.950991184 2.05028E-06 chr5_148308424_149597425 

5930430L01Rik Ubl3 -0.94718285 2.96146E-06 chr5_148308424_149597425 

5930430L01Rik Wdr95 -0.900549182 6.47014E-05 chr5_148308424_149597425 

Gm15408 Katnal1 -0.925966405 1.54539E-05 chr5_148308424_149597425 

Gm15408 Medag 0.935364435 7.96598E-06 chr5_148308424_149597425 

Gm15408 Wdr95 -0.927132534 1.43031E-05 chr5_148308424_149597425 

Gm42788 Ubl3 -0.906094425 4.90337E-05 chr5_148308424_149597425 

Gm42788 Hmgb1 0.930978272 1.09788E-05 chr5_148308424_149597425 

Gm20186 Lsm8 0.909491761 4.10229E-05 chr6_18050000_18850000 

2310069B03Rik Mrpl19 0.972474928 1.18813E-07 chr6_81930006_83010006 

Gm42810 Itfg2 -0.939556573 5.73766E-06 chr6_127449982_128489982 

9330102E08Rik Foxm1 -0.980254192 2.28707E-08 chr6_127449982_128489982 

Gm10010 Foxm1 -0.9291718 1.24541E-05 chr6_127449982_128489982 

Gm44275 Pbp2 0.963921157 4.53125E-07 chr6_134969982_136411479 

Gm44275 Emp1 0.919697025 2.29551E-05 chr6_134969982_136411479 

Gm15706 Rassf8 -0.925088657 1.63674E-05 chr6_145011480_146531478 

Gm15706 Itpr2 -0.945841634 3.34941E-06 chr6_145011480_146531478 

Gm26890 Snrpd2 -0.928946126 1.26489E-05 chr7_19134651_20094651 

Gm26890 Opa3 0.96855959 2.29508E-07 chr7_19134651_20094651 

Gm26890 Vasp 0.963977997 4.4961E-07 chr7_19134651_20094651 

Gm26890 Ppp1r13l 0.908666472 4.28666E-05 chr7_19134651_20094651 

Gm26890 Ercc2 0.90189554 6.05798E-05 chr7_19134651_20094651 

Gm26890 Mark4 0.928905924 1.26838E-05 chr7_19134651_20094651 

Gm26890 Clasrp 0.906672477 4.75905E-05 chr7_19134651_20094651 

Gm26890 Nectin2 0.905368412 5.08948E-05 chr7_19134651_20094651 

Gm26762 Pdcd2l 0.937149571 6.94619E-06 chr7_34134981_34774981 

Gm26762 Kctd15 0.957772814 9.84913E-07 chr7_34134981_34774981 

Gm37494 AI987944 0.965820987 3.46854E-07 chr7_39424630_42624630 

Gm37494 Zfp976 0.982285431 1.33364E-08 chr7_39424630_42624630 

RP23-54G8.4 Ndn 0.908836386 4.24818E-05 chr7_59895114_62455114 

RP23-478L20.2 Tnrc6a 0.944444393 3.79531E-06 chr7_122976486_123496486 

RP23-478L20.2 Arhgap17 0.96958667 1.94728E-07 chr7_122976486_123496486 

RP23-478L20.2 Lcmt1 -0.943275571 4.20333E-06 chr7_122976486_123496486 

H19 Tnnt3 0.975464663 6.71998E-08 chr7_142294095_142734095 

Gm26860 Sec63 0.98707892 2.77568E-09 chr10_42280194_43560194 

Gm26860 Bend3 0.992770085 1.53701E-10 chr10_42280194_43560194 

Gm26789 Sirt1 0.946196721 3.243E-06 chr10_63137252_63417252 

Gm26789 Dnajc12 -0.968758947 2.22398E-07 chr10_63137252_63417252 

Rmst Nedd1 -0.9174445 2.62584E-05 chr10_91217255_93017255 

Cep83os Ndufa12 0.929282996 1.2359E-05 chr10_93817255_94977366 

Gm26853 Cops5 -0.944868689 3.65521E-06 chr1_9569919_10129919 

Gm26768 Cops5 -0.928613976 1.29399E-05 chr1_9569919_10129919 
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RP23-93F3.3 Ppp1r3b 0.949937219 2.27635E-06 chr8_34856946_35496946 

Gm26584 Slc7a2 0.941492275 4.89203E-06 chr8_40514646_41434646 

Gm26584 Pcm1 0.917652301 2.59388E-05 chr8_40514646_41434646 

2010320M18Rik Ifi30 0.92978478 1.19369E-05 chr8_70676101_72592747 

2010320M18Rik Mast3 -0.956250684 1.17266E-06 chr8_70676101_72592747 

2010320M18Rik Slc5a5 -0.90610962 4.89954E-05 chr8_70676101_72592747 

2010320M18Rik Myo9b -0.952516581 1.755E-06 chr8_70676101_72592747 

2010320M18Rik Babam1 0.918200043 2.51112E-05 chr8_70676101_72592747 

2010320M18Rik Pgls 0.960530376 7.05959E-07 chr8_70676101_72592747 

2010320M18Rik Zfp709 0.957843075 9.76863E-07 chr8_70676101_72592747 

2010320M18Rik Zfp882 0.935048065 8.15844E-06 chr8_70676101_72592747 

2010320M18Rik Zfp961 0.922822685 1.89235E-05 chr8_70676101_72592747 

2010320M18Rik Fam32a 0.976995592 4.88182E-08 chr8_70676101_72592747 

2010320M18Rik Eps15l1 -0.900931776 6.35084E-05 chr8_70676101_72592747 

2010320M18Rik Med26 -0.90569578 5.00489E-05 chr8_70676101_72592747 

RP23-399J5.1 Mast3 0.937364544 6.83072E-06 chr8_70676101_72592747 

RP23-399J5.1 Gtpbp3 0.941518491 4.8813E-06 chr8_70676101_72592747 

RP23-399J5.1 Slc27a1 0.907693107 4.51241E-05 chr8_70676101_72592747 

RP23-399J5.1 Pgls -0.916390221 2.79277E-05 chr8_70676101_72592747 

RP23-399J5.1 Fam129c 0.950957179 2.05728E-06 chr8_70676101_72592747 

RP23-399J5.1 Zfp882 -0.959090773 8.4239E-07 chr8_70676101_72592747 

RP23-399J5.1 Zfp961 -0.948683702 2.57049E-06 chr8_70676101_72592747 

RP23-399J5.1 Fam32a -0.927823938 1.36535E-05 chr8_70676101_72592747 

RP23-399J5.1 Cherp 0.953888699 1.5192E-06 chr8_70676101_72592747 

RP23-399J5.1 Med26 0.964225017 4.34585E-07 chr8_70676101_72592747 

Gm26532 Adgrl1 -0.914498854 3.11312E-05 chr8_83636101_84636101 

Gm26532 Cacna1a -0.939837018 5.60847E-06 chr8_83636101_84636101 

A330074K22Rik Gins2 0.950069034 2.24704E-06 chr8_119396100_120636100 

RP23-115O21.3 Fanca 0.983697618 8.82407E-09 chr8_121836100_123556100 

Gm26772 Zmiz1 0.939628916 5.70411E-06 chr14_24980514_25860514 

Gm26772 Ppif 0.924672352 1.68152E-05 chr14_24980514_25860514 

Gm10101 Wdhd1 0.937652791 6.67827E-06 chr14_46820325_47260325 

Gm26782 Tep1 -0.926331163 1.50864E-05 chr14_50820325_51860325 

Gm26782 Osgep 0.961231213 6.46236E-07 chr14_50820325_51860325 

Gm26782 Rnase4 0.922692691 1.90791E-05 chr14_50820325_51860325 

Gm26782 Ang 0.949729482 2.32315E-06 chr14_50820325_51860325 

Gm16617 Arhgef40 0.917244496 2.65689E-05 chr14_51860325_53700325 

Gm16617 Zfp219 0.964255192 4.32778E-07 chr14_51860325_53700325 

Gm16617 Chd8 0.977885734 4.01364E-08 chr14_51860325_53700325 

Gm16973 Ipo4 0.950478906 2.15782E-06 chr14_55621163_57101163 

Gm16973 Nedd8 -0.966306363 3.2318E-07 chr14_55621163_57101163 

Gm16973 Nop9 0.969089336 2.11002E-07 chr14_55621163_57101163 

Gm16973 Adcy4 0.94261881 4.44738E-06 chr14_55621163_57101163 

Gm16973 Ripk3 -0.941450837 4.90903E-06 chr14_55621163_57101163 

Gm16973 Khnyn 0.972001889 1.29277E-07 chr14_55621163_57101163 

Gm16973 Parp4 0.970009241 1.817E-07 chr14_55621163_57101163 

4930480K23Rik Bin3 0.926047232 1.53719E-05 chr14_69560193_70160193 

C030014I23Rik Kmt2a -0.935571895 7.84174E-06 chr9_44431917_45151917 

B930082K07Rik Sgk3 0.942978523 4.31236E-06 chr1_9569919_10129919 

B930082K07Rik Cops5 0.917475281 2.62109E-05 chr1_9569919_10129919 

Gm17477 Cops5 -0.916432569 2.78591E-05 chr1_9569919_10129919 

9430037G07Rik Snx14 0.923672846 1.79301E-05 chr9_87425165_88905162 

4833445I07Rik Sgk3 0.909503206 4.09978E-05 chr1_9569919_10129919 

Gm26797 Entpd3 0.913939464 3.2132E-05 chr9_120130882_124161429 

Gm26563 Cops5 -0.916349979 2.7993E-05 chr1_9569919_10129919 

2010300F17Rik Kat7 -0.938809473 6.09336E-06 chr11_94618686_97618686 

2010300F17Rik Spop 0.935206769 8.06144E-06 chr11_94618686_97618686 

2010300F17Rik B4galnt2 -0.960508654 7.07878E-07 chr11_94618686_97618686 

2010300F17Rik Copz2 0.946862165 3.0508E-06 chr11_94618686_97618686 

2810433D01Rik Gpatch8 -0.961120497 6.55393E-07 chr11_102458686_103098686 

2810433D01Rik Gm11627 0.950237325 2.21006E-06 chr11_102458686_103098686 

2810433D01Rik Gjc1 -0.937903692 6.54777E-06 chr11_102458686_103098686 

2810433D01Rik Plcd3 -0.902953179 5.74891E-05 chr11_102458686_103098686 

Snhg20 St6galnac2 -0.91346794 3.29951E-05 chr11_116618686_117818686 

Snhg20 Tk1 -0.923023487 1.8685E-05 chr11_116618686_117818686 

Gpr137b-ps Ero1lb 0.968095358 2.46766E-07 chr13_12467733_13427733 

Gm26514 Slc35b3 -0.946384396 3.18785E-06 chr13_37988131_40784631 

5033403F01Rik Bloc1s5 0.908798052 4.25683E-05 chr13_37988131_40784631 

5033430I15Rik Atxn1 0.956177268 1.18239E-06 chr13_45544631_46664631 

5033430I15Rik Rbm24 0.905778096 4.98379E-05 chr13_45544631_46664631 
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6720427I07Rik Phf2 -0.954510352 1.42102E-06 chr13_48504631_49744631 

6720427I07Rik Fam120a -0.938896391 6.05111E-06 chr13_48504631_49744631 

6720427I07Rik Wnk2 -0.956611979 1.12573E-06 chr13_48504631_49744631 

6720427I07Rik Fgd3 -0.91502641 3.021E-05 chr13_48504631_49744631 

6720427I07Rik Bicd2 -0.950784618 2.09312E-06 chr13_48504631_49744631 

Fam120aos Phf2 -0.9853245 5.23074E-09 chr13_48504631_49744631 

Fam120aos Fam120a -0.968113313 2.4608E-07 chr13_48504631_49744631 

Fam120aos Wnk2 -0.973029616 1.07415E-07 chr13_48504631_49744631 

Fam120aos Card19 -0.943312748 4.18984E-06 chr13_48504631_49744631 

Fam120aos Fgd3 -0.949082866 2.47374E-06 chr13_48504631_49744631 

Fam120aos Bicd2 -0.992028603 2.50117E-10 chr13_48504631_49744631 

Fam120aos Iars -0.951758978 1.8971E-06 chr13_48504631_49744631 

Gm26651 Sema4d -0.959817395 7.71136E-07 chr13_51664631_52224631 

Gm26819 Ice1 0.991658688 3.13599E-10 chr13_69661122_70621122 

2310015A10Rik Zfyve26 -0.944799355 3.67782E-06 chr12_79179013_80139013 

Gm28933 Ptpn21 0.995882881 9.25199E-12 chr12_98641790_100121790 

Gm28933 Eml5 0.98816687 1.79128E-09 chr12_98641790_100121790 

Gm28933 Foxn3 0.998034811 2.30065E-13 chr12_98641790_100121790 

4930478K11Rik Hhipl1 0.985317193 5.24371E-09 chr12_108281790_108521790 

Meg3 Evl 0.900965816 6.34031E-05 chr12_108521790_110401790 

Meg3 Dio3 -0.920626386 2.16918E-05 chr12_108521790_110401790 

Gm10425 Rcor1 -0.910213199 3.94629E-05 chr12_110881790_113241789 

Gm10425 Cdc42bpb -0.900132954 6.60191E-05 chr12_110881790_113241789 

Gm10425 Gpr132 -0.906303832 4.8507E-05 chr12_110881790_113241789 

Gm10425 Mta1 -0.906930372 4.69575E-05 chr12_110881790_113241789 

2810029C07Rik Rcor1 -0.975386335 6.82703E-08 chr12_110881790_113241789 

2810029C07Rik Cdc42bpb -0.959584294 7.93451E-07 chr12_110881790_113241789 

2810029C07Rik Eif5 -0.960920997 6.72155E-07 chr12_110881790_113241789 

2810029C07Rik Mark3 -0.974430365 8.24659E-08 chr12_110881790_113241789 

2810029C07Rik Zfyve21 0.945440897 3.4728E-06 chr12_110881790_113241789 

2810029C07Rik Ppp1r13b -0.977765641 4.12298E-08 chr12_110881790_113241789 

2810029C07Rik 2010107E04Rik 0.948632584 2.58309E-06 chr12_110881790_113241789 

2810029C07Rik Zbtb42 -0.971101096 1.51225E-07 chr12_110881790_113241789 

2810029C07Rik Cep170b -0.963761857 4.63092E-07 chr12_110881790_113241789 

2810029C07Rik Ahnak2 -0.974885167 7.54459E-08 chr12_110881790_113241789 

2810029C07Rik BC022687 -0.902952474 5.74911E-05 chr12_110881790_113241789 

2810029C07Rik Gpr132 -0.969375535 2.0151E-07 chr12_110881790_113241789 

2810029C07Rik Pacs2 -0.970703652 1.61806E-07 chr12_110881790_113241789 

2810029C07Rik Mta1 -0.96305805 5.09238E-07 chr12_110881790_113241789 

Gm17638 Myh9 0.914125464 3.17964E-05 chr15_77449570_77969570 

Gm16576 Pick1 0.966567071 3.11005E-07 chr15_79209570_80089570 

Gm16576 Maff 0.977164025 4.70703E-08 chr15_79209570_80089570 

Gm16576 Csnk1e 0.993092357 1.22432E-10 chr15_79209570_80089570 

Gm16576 Kcnj4 0.987713595 2.16003E-09 chr15_79209570_80089570 

Gm16576 Kdelr3 -0.975703827 6.40135E-08 chr15_79209570_80089570 

Gm16576 Ddx17 0.970914367 1.56125E-07 chr15_79209570_80089570 

Gm16576 Josd1 0.994830874 2.88132E-11 chr15_79209570_80089570 

Gm16576 Gtpbp1 0.947721164 2.81617E-06 chr15_79209570_80089570 

Gm16576 Sun2 0.990537172 5.88157E-10 chr15_79209570_80089570 

Gm16576 Cbx7 0.904021175 5.44952E-05 chr15_79209570_80089570 

Gm26518 Zfp740 0.970300053 1.73145E-07 chr15_102089569_102689569 

Gm26518 Rarg 0.90593587 4.94355E-05 chr15_102089569_102689569 

Gm26518 Mfsd5 0.938058238 6.4684E-06 chr15_102089569_102689569 

Gm26518 Sp1 0.97662301 5.28685E-08 chr15_102089569_102689569 

Gm26518 Tarbp2 0.918826512 2.41903E-05 chr15_102089569_102689569 

Gm26518 Atf7 0.981167692 1.80754E-08 chr15_102089569_102689569 

Gm16861 Ubald1 0.93479082 8.31763E-06 chr16_4680000_5239907 

Gm16861 Ubn1 0.928989583 1.26112E-05 chr16_4680000_5239907 

Gm16861 Nagpa 0.947023098 3.0057E-06 chr16_4680000_5239907 

Gm4262 Litaf 0.932046887 1.01734E-05 chr16_10559907_13079907 

2610020C07Rik Txndc11 0.918436842 2.47599E-05 chr16_10559907_13079907 

2610020C07Rik Cpped1 -0.914889538 3.04469E-05 chr16_10559907_13079907 

1300002E11Rik Igf2bp2 -0.920238189 2.22126E-05 chr16_21479927_22239927 

Gm26838 Sec22a -0.969064891 2.11828E-07 chr16_35079914_35839914 

3300005D01Rik Serac1 -0.91716226 2.66974E-05 chr17_5400000_6440852 

Gm26873 Lnpep 0.927237065 1.42034E-05 chr17_17263036_17663036 

9330136K24Rik Zfp677 0.951206028 2.00646E-06 chr17_21183036_21623033 

9330136K24Rik Zfp51 0.935434409 7.9239E-06 chr17_21183036_21623033 

9330136K24Rik Zfp53 0.940722353 5.21564E-06 chr17_21183036_21623033 

Gm16386 Zfp947 0.916167093 2.82915E-05 chr17_22063033_23743033 
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Gm16386 Zfp944 0.903459968 5.60528E-05 chr17_22063033_23743033 

Gm16386 Zfp758 0.91974591 2.28872E-05 chr17_22063033_23743033 

Gm16386 Zfp946 0.931084198 1.08967E-05 chr17_22063033_23743033 

9530082P21Rik Sgk3 -0.905698442 5.00421E-05 chr1_9569919_10129919 

9530082P21Rik Cops5 -0.912812153 3.42258E-05 chr1_9569919_10129919 

Gm26724 Ip6k3 0.98310084 1.05513E-08 chr17_27143055_27543055 

Gm26724 Lemd2 0.988347823 1.65895E-09 chr17_27143055_27543055 

Gm26785 Xpo5 0.977064992 4.80918E-08 chr17_46183051_46743051 

Gm26785 Yipf3 0.971050308 1.52546E-07 chr17_46183051_46743051 

Gm26785 Tjap1 0.972385213 1.20744E-07 chr17_46183051_46743051 

Gm26785 Zfp318 0.978245012 3.70026E-08 chr17_46183051_46743051 

Gm26785 Srf 0.989449594 1.01145E-09 chr17_46183051_46743051 

Gm26785 Ptk7 0.989211906 1.13018E-09 chr17_46183051_46743051 

Gm26785 Klc4 0.967517568 2.69672E-07 chr17_46183051_46743051 

Gm26785 Cnpy3 0.940389785 5.36056E-06 chr17_46183051_46743051 

Gm26749 Spast 0.964456577 4.20866E-07 chr17_74320660_75560660 

Gm26749 Slc30a6 -0.915993913 2.85764E-05 chr17_74320660_75560660 

Gm26749 Birc6 0.944699478 3.71058E-06 chr17_74320660_75560660 

4833418N02Rik Pigf 0.941634929 4.83386E-06 chr17_86480660_87280660 

4833418N02Rik Mcfd2 0.921722646 2.02727E-05 chr17_86480660_87280660 

Gm26682 Zeb1 0.903455641 5.60649E-05 chr18_4200002_6600002 

2010110K18Rik Kif20a 0.974238058 8.55863E-08 chr18_33800346_34800346 

2010110K18Rik Cdc25c 0.983283095 9.99749E-09 chr18_33800346_34800346 

2010110K18Rik Gm3550 0.922375936 1.94626E-05 chr18_33800346_34800346 

3222401L13Rik Pcdhb11 0.944376644 3.81806E-06 chr18_37280346_37960346 

3222401L13Rik Pcdhb14 0.949512612 2.37283E-06 chr18_37280346_37960346 

3222401L13Rik Pcdhb19 0.966332963 3.2192E-07 chr18_37280346_37960346 

3222401L13Rik Pcdhb21 0.936964258 7.04697E-06 chr18_37280346_37960346 

3222401L13Rik Pcdhb22 0.924988599 1.64742E-05 chr18_37280346_37960346 

3222401L13Rik Pcdhga1 -0.943300898 4.19414E-06 chr18_37280346_37960346 

3222401L13Rik Pcdhga2 -0.907294964 4.6074E-05 chr18_37280346_37960346 

3222401L13Rik Pcdhga3 -0.911816304 3.61634E-05 chr18_37280346_37960346 

3222401L13Rik Pcdhga5 -0.901597893 6.14727E-05 chr18_37280346_37960346 

3222401L13Rik Pcdhgb4 -0.960852723 6.77968E-07 chr18_37280346_37960346 

3222401L13Rik Pcdhga8 -0.967304253 2.78543E-07 chr18_37280346_37960346 

3222401L13Rik Pcdhgb5 -0.945972359 3.30991E-06 chr18_37280346_37960346 

3222401L13Rik Pcdhgb6 -0.903598188 5.56659E-05 chr18_37280346_37960346 

3222401L13Rik Pcdhga11 -0.907167075 4.63824E-05 chr18_37280346_37960346 

3222401L13Rik Pcdhgc3 -0.924403856 1.71092E-05 chr18_37280346_37960346 

3222401L13Rik Diaph1 -0.912489623 3.48441E-05 chr18_37280346_37960346 

3222401L13Rik Fchsd1 -0.955259051 1.30952E-06 chr18_37280346_37960346 

Carmn Cd74 0.986289628 3.72861E-09 chr18_60800346_61720346 

Carmn Tcof1 0.991615103 3.21855E-10 chr18_60800346_61720346 

Carmn Pdgfrb 0.936256189 7.44275E-06 chr18_60800346_61720346 

Carmn Hmgxb3 0.991474799 3.49617E-10 chr18_60800346_61720346 

Carmn Ppargc1b 0.987335139 2.51225E-09 chr18_60800346_61720346 

Malat1 Cfl1 -0.919103819 2.37913E-05 chr19_5480000_6400000 

Malat1 Kat5 0.943619041 4.07999E-06 chr19_5480000_6400000 

Malat1 Rela 0.950146153 2.23004E-06 chr19_5480000_6400000 

Malat1 Pcnx3 0.925440519 1.59962E-05 chr19_5480000_6400000 

Malat1 Ehbp1l1 0.937137173 6.9529E-06 chr19_5480000_6400000 

Malat1 Ltbp3 0.931298694 1.07322E-05 chr19_5480000_6400000 

Malat1 Scyl1 0.940404144 5.35424E-06 chr19_5480000_6400000 

Malat1 Dpf2 0.909921304 4.00884E-05 chr19_5480000_6400000 

Malat1 Syvn1 0.9519198 1.8662E-06 chr19_5480000_6400000 

Malat1 Vps51 0.90300446 5.73425E-05 chr19_5480000_6400000 

Malat1 Sf1 0.944839342 3.66477E-06 chr19_5480000_6400000 

Neat1 Cfl1 -0.971428829 1.42921E-07 chr19_5480000_6400000 

Neat1 Kat5 0.95174895 1.89904E-06 chr19_5480000_6400000 

Neat1 Rela 0.933558678 9.11449E-06 chr19_5480000_6400000 

Neat1 Pcnx3 0.931258493 1.07629E-05 chr19_5480000_6400000 

Neat1 Ehbp1l1 0.935750603 7.73594E-06 chr19_5480000_6400000 

Neat1 Frmd8 0.938660348 6.16641E-06 chr19_5480000_6400000 

Neat1 Dpf2 0.922935322 1.87894E-05 chr19_5480000_6400000 

Neat1 Syvn1 0.935728534 7.74895E-06 chr19_5480000_6400000 

Neat1 Vps51 0.900787926 6.39549E-05 chr19_5480000_6400000 

Neat1 Zfpl1 -0.914733727 3.07183E-05 chr19_5480000_6400000 

Neat1 Sf1 0.907111996 4.65157E-05 chr19_5480000_6400000 

Gm26792 Nfkb2 0.941433956 4.91597E-06 chr19_46045510_46525510 

Gm26792 Cuedc2 -0.910880023 3.80629E-05 chr19_46045510_46525510 
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Gm26792 Trim8 0.930973727 1.09823E-05 chr19_46045510_46525510 
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