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ABSTRACT
Bi2Se3 belongs to a class of topological insulators—materials characterized by a in-

triguing electronic band structure, with a characteristic conical band on the surface.

In this master thesis, the optical response of this material is explored in the infrared

spectral range and in a broad range of magnetic fields. We mainly focus on the

absorption of light due to free charge carriers having, when the magnetic field is

applied, a form of cyclotron resonance. We find that the experimentally observed

response is consistent with expectations for massive electrons in bulk rather than

massless particles on the surface.

KEYWORDS
bismuth selenide, Fourier transform infrared spectroscopy, topological insulator, cy-

clotron resonance

ABSTRAKT
Bi2Se3 se řad́ı do skupiny topologických izolátor̊u—materiál̊u charakteristických

svou pozoruhodnou pásovou strukturou, vyznačuj́ıćı se př́ıtomnost́ı Diracovských

povrchových stav̊u s lineárńı disperźı. V této práci se zabýváme optickou odezvou

tohoto materiálu v infračerveném spektru za př́ıtomnosti magnetických poĺı. V

takovém př́ıpadě prob́ıhá absorpce, jež má charakter cyklotronové rezonance, na

volných nosič́ıch náboje. Výsledky experiment̊u ukazuj́ı, že pozorovaná odezva

odpov́ıdá sṕı̌se modelu hmotných elektron̊u ve vnitřńıch stavech nežli modelu

nehmotných elektron̊u na povrchu.
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1 INTRODUCTION

In the last two decades, the condensed matter physics witnessed a surge of interest

in the perspective area of the topological field theory. Concepts built on its basis,

such as the quantum Hall effect, opened new areas in physics and through the

years of research pushed the effort to a new unusual applications. One of them

are the topological insulators—a novel class of materials with distinctive non-trivial

electronic band structure, allowing them to host linearly dispersed electronic states

on the surface, while at the same time being insulating in the bulk.

Among many different types of topological insulators, the very promising one is

the bismuth selenide (Bi2Se3) with its robust energy band gap. One of the draw-

backs, however, is its problematic intrinsic doping, resulting in high carrier concen-

tration of the bulk states. This effect is suppressed by fabricating a novel Bi2Se3

heterostructure, proposing better crystal quality and higher mobility of the sur-

face states. It is still, however, a subject of development and needs to be studied

extensively.

To this end, magneto-optical spectroscopy serves as an experimental method

capable of thorough electronic structure characterization, on par with angle-resolved

photo-emission spectroscopy or magneto-transport measurements. As a material

with characteristic Dirac-like dispersion of surface states, Bi2Se3 features specific

cyclotron resonance spectra. Using infrared spectroscopy in magnetic fields, we are

able to reveal the details of Landau level energy spectra and properly characterize

the system.

To give a basic insight into the peculiarities of the topological insulators, we

briefly introduce this field in Chapter 2, as well as introducing the Bi2Se3 heterostruc-

ture. In the Chapter 3, we describe a simple model on which the analysis of our

magneto-optical analysis of Bi2Se3 will be based, both in quasi-classical regime and

quantum regime. Chapter 4 deals with the experimental setup consisting of Fourier

transform infrared spectrometer and magnet installation. Finally, the experimental

data obtained from magneto-optical experiments are presented in Chapter 5.

The experimental work in this thesis was realized as a part of two ERASMUS+

Internships at Laboratoire National de Champs Magnétiques Intenses (LNCMI) in

Grenoble, France.
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2 TOPOLOGICAL INSULATORS

2.1 Introduction

The band structure theory, describing the electronic properties of crystals and other

periodic systems, belongs to most crucial concepts of current condensed-matter

physics. Following this theory, electrons in crystals are allowed to occupy only spe-

cific energy states organized into bands. Such an approach allows us to classify the

systems as insulators, semi-conductors or metals, depending on the position of their

Fermi energy, which corresponds to the highest energy occupied by electrons with

respect to forbidden states, called band gaps. So if the Fermi energy lies within an

energy band, the system then behaves as a metal. On the other hand if the Fermi

energy lies in the large energy band gap, no mobile states are available and the

system becomes insulating. In between lies the area of semiconductors, where the

energy band gap is sufficiently small to allow transitions to higher states [1].

This model has been very successful for decades and became the vital element

in the physics as many electrical, optical, and even some magnetics properties of

crystals can be explained in terms of the corresponding band structure. However, all

great achievements of band structure theory considered, it became rather insufficient

to describe for example inhomogeneous electronic systems or, more importantly, the

novel two-dimensional electronic phases [2].

When in 1980 Klaus von Klitzing discovered the existence of the quantum Hall

effect (QHE), which occurs when electrons confined to two dimensions are placed in

a strong magnetic field [3], the old paradigm of employing the band structure failed

as it was not able to define such state adequately. From the band structure point of

view, this system should be an insulator, as the Fermi energy lies in the gap between

Landau levels. However, conducting edge states were still found to occur in such

2D systems. This was the first example of a quantum state which is topologically

distinct from all states of matter known before.

Topology is a branch of mathematics that studies the properties of objects in-

variant under smooth deformations, a classic example being a doughnut transform-

ing into a coffee cup or sphere transforming into ellipsoid. Generally, topological

classification discards all small details and focuses on the fundamental distinction

of shapes. The different topological classes can be distinguished by one or more

indexes—so-called topological invariants. These numbers are discrete, and therefore

cannot be changed continuously simply by a smooth deformation. One can smoothly

transform sphere into the shape of red blood cell as their invariant is identical, but

there is no continuous transformation from a sphere to a torus, hence the invariant

is different [2].
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Interestingly, this topological concept can be applied to electronic systems with

a band gap, where the notion of smooth deformation can be defined. One can define

such deformation as a change in the Hamiltonian which does not close the gap.

Then, according to the general definition [4], one gapped state cannot be smoothly

deformed to another gapped state in a different topological class, unless a quantum

state transition occurs during which the system becomes gapless.

In case of the quantum Hall effect, the transition appears at the interface be-

tween 2D electron gas and vacuum. The former is characterized by a quantized

energy gap in the bulk separating Landau levels, whereas the latter is insulating

state with the energy gap corresponding to the creation of positron and electron.

As they belong to the different topological classes, the gap at the interface disap-

pears and 1D gapless surface states emerge instead. Each of these edge channels

exhibits a conductance quantized as Ne2/h that is characteristic for one-dimensional

transport. These conducting edge states are moreover chiral—they propagate in a

single direction, only depending of the edge orientation and the magnetic field ori-

entation. Furthermore, these states are insensitive to disorder because there are no

states available for backscattering [5].

The quantum Hall states belong to a topological class in which the so-called time-

reversal symmetry (TR) is explicitly broken [4,6,7] by presence of an external mag-

netic field. In the last decade, a new topological class of materials has been theoreti-

cally predicted and experimentally observed—quantum spin Hall insulators—which,

in contrast, are TR invariant and do not require an applied magnetic field [2,4,8,9].

In the following chapters we briefly elaborate on the development of these 2D topo-

logical insulators such as HgTe/CdTe quantum wells and after that we discuss the

attributes of 3D topological insulators as a next evolutionary step, with special

emphasis on bismuth selenide which was the studied in this work.

2.2 Two-dimensional topological insulators

The concept of quantum spin Hall (QSH) insulators or 2D topological insulators

was first introduced in 2005 by Kane and Mele [10] and by Bernevig and Zhang [11]

a year later when studying the effects of a spin-orbit coupling (SOC) in graphene.

For the quantum Hall effect to appear, one needs to employ a strong magnetic field.

In case of QSH however, the role of the magnetic field is played by this intrinsic

spin-orbit field.

Graphene, being a hexagonal lattice of light carbon atoms [12], shows rather weak

effects of SOC and it is therefore quite difficult to find an experimental evidence of

the QSH [13]. Clearly, a better place to look for a demonstration of SOC would be
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in materials made from heavy elements near the bottom part of the periodic table.

To this end, Bernevig, Hughes and Zhang had the idea to consider quantum well

structures of HgCdTe [11]. This prediction was soon crowned by success when König

indeed observed in 2007 quantum spin Hall state in CdTe/HgTe/CdTe quantum

wells [9].

For both HgTe and CdTe, the relevant bands near the Fermi level are close to the

Γ point of the Brillouin zone (k = 0). These bands are s-type and p-type, where, in

case of the CdTe, the band ordering is similar to GaAs—the s-type conductive band

has higher energy at the Γ point than p-type valence band, i.e., they are separated

by a large (∼1.5 eV) band gap [8]. HgTe, on the other hand exhibits stronger SOC

than CdTe due to presence of mercury atom which results in reverse order of bands

(see Fig. 2.1). The negative energy gap of −300 meV between the bands indicates

that the p-band, which usually forms the valence band, has higher energy at Γ point

than s-band [11].

length

(a) (b)

(c) (d)

dCdTe

HgTe

CdTe

w
id
th

s-electrons

p-electrons s-electrons

p-electrons

dcrit d

E

inversion

−π
a

0 +π
a

E

EF

Conduction band

Valence band

Fig. 2.1: Two-dimensional topological insulator in (a) HgCdTe quantum well. (b)

A schematic depiction of 2D QW states crossing as a function of the well thickness.

(c) Resulting edge state dispersion where the spin up and down electrons propagate

in opposite directions. (d) Such spinful system has four 1D basic channels, which

are spatially separated by QSH bar. The upper edge contains a forward mover with

spin up and backward mover with spin down, and conversely for the lower edge.

Adapted from [6].

Due to this band inversion, HgTe represents a different topological class than
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CdTe and therefore the gap disappears at the interface between them in a similar

way as in the case of the QHE. Moreover, growing the quantum well layer of HgTe

with different thickness allows fine tuning of the electronic structure. If the thickness

dQW of quantum well (QW) falls below a critical value dcrit = 6.3 nm, the bulk

character of HgTe disappears and the structure retains the normal non-inverted

CdTe-like properties [9]. By increasing the thickness, the bands in QW begin to

invert and at critical dcrit the bands cross. This way, one can carefully study the

transition from a trivial insulator to a topological insulator.

Although bearing a resemblance to QHE, the edge states of QSH insulator are

different in one fundamental aspect—the pair of linearly dispersed edge states of

a QSH insulator propagate in both directions, depending on their spin. Contrary

to the QHE, the QSH edge states exhibit so-called helicity, i.e., the states with

opposite spin counterpropagate at a given edge as seen in Fig. 2.1d. Thanks to

the 1D character of the spin-polarized edge states, they are also protected against

backscattering, particularly against backscattering on non-magnetic impurities [14].

Besides HgCdTe quantum wells, multiple other 2D materials and structures were

predicted and/or experimentally observed to exhibit QHS phase. For example bi-

layers of bismuth [15], or inverted InAs/GaSb semiconductor quantum wells [16], or

GaAs, where the role of SOC is played by the shear strain gradients imposed on the

crystal lattice [17].

2.3 Three-dimensional topological insulators

The next logical step, after the discovery of 2D topological insulators, was to ask if

this concept could be generalized to three dimensions. The “theoretical” answer was

given in 2007 when three theoretical groups lead by Kane, Moore and Roy theorized

the existence of 3D topological phase in Bi1−xSbx, strained α-Sn, strained HgTe,

Pb1−xSnxTe, and β-HgS compounds [18–20].

Similar to the their 2D counterparts, the band inversion transition at the Γ point

is also driven by spin-orbit coupling and there is also insulating gap in the bulk. The

dispersion relation of gapless edge states or surface states in this case now resembles

so-called Dirac cone, which also appears, for example, at the corners of the hexagonal

Brillouin zone of the graphene [12,13]. In case of graphene, however, the electronic

states form 2 Dirac cones (4 cones if we take into account spin of the electrons), but

there is only single Dirac cone in case of 3D topological insulators and it is not spin

degenerate [19].

First 3D topological insulator was experimentally discovered in 2008 at Prince-

ton Univeristy by Zahid Hasan and coworkers in semiconducting alloy Bi1−xSbx [21],
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where the unusual band structure was mapped using angle-resolved photoemission

spectroscopy (ARPES). Pure bismuth is a semimetal with a strong SOC and elec-

tronic band structure comprised the overlapping conduction and valence band as

visible on Fig. 2.2. The Ls and La bands disperse nearly linearly and can be de-

scribed in same manner as Dirac electrons with small or even zero mass. Increasing

the amount of antimony in the alloy slowly shifts band at T point to lower energies

and also closes the gap between Ls and La. At x ≈ 0.04, the gap is fully closed

and the true 3D massless point emerges. Higher values result in a reopening of the

energy band gap, but this time with the Ls and La bands inverted. For x > 0.07

the top valence band at T point drops below Ls and the alloy becomes an insula-

tor. ARPES spectra were obtained by Hasan et al. for alloy Bi0.91Sb0.09, where the

system is direct-gap insulator with inverted massive Dirac bulk bands. In this gap,

several surface states were observed (Fig. 2.2) and using spin-resolved ARPES it

was determined that these states are non-degenerate and indeed spin-polarized.

Fig. 2.2: Topological gapless states in Bi1−xSbx. Left: schematic variation of bulk

band energies as a function of antimony concentration x. Right: ARPES data on the

(111) surface of Bi0.9Sb0.1 which probes the occupied surface states as a function of

momentum on the line connecting Γ and M point in the surface Brillouin zone. Only

the surface states cross the Fermi energy five times. This and several other ARPES

measurements [21] establishes that Bi1−xSbx alloy is indeed topological insulator.

Picture adapted from [21].

Nevertheless, the existence of topological phase in Bi1−xSbx is all but robust. Due

to being an alloy with random substitutional disorder, its electronic structure is well

defined only within specific conditions. Alloys also tend to have impurity bands in-

side the bulk energy band gap, which could overlap with the surface states. To avoid

such problems, it is desirable to search for materials which are stoichiometric—the

ratio of different atoms in all molecules reflects the general formula of the compound.

These problems combined with bulk band gap of only 50 meV [4,21] sparked a search
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for simpler and more thermally stable systems.

In 2009 two concurrent groups—team of Haijun Zhang from Chinese Academy

of Sciences and team of YuQi Xia from Princeton University theoretically predicted

robust topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 [5, 22]. Soon after, the

ARPES spectra (see Fig. 2.3) confirmed existence of a single Dirac cone in the surface

states band structure in all of them [22–24] This second generation of 3D topological

insulators has in comparison to Bi1−xSbx much bigger band gap of ∼200 meV and

one may therefore expect to observe topological properties even at room tempera-

ture.

a b c

Fig. 2.3: (a) A schematic diagram of the bulk 3D Brillouin zone of Bi2Se3 and

the 2D Brillouin zone of the projected (111) surface. ARPES spectra of surface

electronic band dispersion on Bi2Se3 near Γ point along the (b) Γ–M and (c) Γ–K

momentum-space cuts. Picture adapted from [22].

Another advantage of the Bi-Se-Te family is the fact, that these are compounds

with rather high crystal quality and due to the layered nature it is possible to

exfoliate thin sheets down to single layers. Moreover, nanostructures can be prepared

using methods like molecular beam epitaxy. Owing to these specific qualities, Bi-

Se-Te family soon emerged as an attractive candidate for the study of topological

surface states.

In our case, we focused our research on infrared spectroscopy of bismuth selenide

(Bi2Se3) and thus this compound will be subject of the following chapter.
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2.4 Bismuth selenide

Bismuth selenide is certainly not a material that emerged only recently—it has been

long studied for its thermoelectric properties and used for example in thermoelec-

tric refrigeration [25, 26]. Due to its technological importance and the wealth of

experimental data, the picture of crystal lattice of Bi2Se3 is very well established.

Fig. 2.4: (a) Crystal structure of bismuth selenide with three primitive lattice vectors

denoted t1,2,3. A quintuple layer with Se1-Bi1-Se2-Bi1’-Se1’ is indicated in the red

square. (b) Top views along the z -direction. The triangle lattice in one quintuple

layer has three different positions, denoted as A, B and C. (c) Side view of the

quintuple layer structure. Image taken from [5].

As well as the rest of the Bi-Se-Te family, Bi2Se3 shares the same rhombohedral

crystal structure consisting of five atoms in one unit cell. As we can see from the

Fig. 2.4, Bi2Se3 has layered structure with a triangle lattice within one five-atom

layer. It has a trigonal axis (three-fold rotation symmetry), defined as the z axis,

a binary axis (two-fold rotation symmetry), defined as the x axis, and a bisectrix

axis (in the reflection plane), defined as the y axis. The material consists of five-

atom layers arranged along the z-direction, known as quintuple layers (QL). Each

quintuple layer consists of five atoms with two equivalent Se atoms (denoted as Se1

and Se1’ in Fig. 2.4c), two equivalent Bi atoms (denoted as Bi1 and Bi1’ in Fig. 2.4c)

and a third Se atom (denoted as Se2 in Fig. 2.4c). The coupling is strong between

two atomic layers within one quintuple layer but much weaker, predominantly of

the van der Waals type, between two quintuple layers [5].
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While the Bi2Se3 was proposed to be a nearly ideal example of a 3D topological

insulator thanks to its material qualities, as discussed in previous chapter, it also

could not avoid certain drawbacks, major one being the strong intrinsic n-type

doping [8, 27–29]. Such doping occurs due to naturally present Se vacancies that

act as electrical donors [30]. This results in the shift of the Fermi energy to higher

values and instead of conductance coming purely from surface states, the parasitic

bulk conductance dominates.

To effectively tune the Fermi energy close to the Dirac point of the surface states,

one can employ controllable extrinsic doping. Several experiments with variety

of doped elements were performed, for example copper [28, 31, 32], calcium [29,

33], antimony [30], that showed positive results. Nevertheless, such doping indeed

suppreses the bulk cunductivity, however, it also strongly reduces the electronic

quality of the material [30,34]. Considering that both high mobilities and low carrier

densities are essential to revealing quantum nature of any materials, a solution to

this problem lies rather elsewhere.

Another approach would be increasing the surface to volume ratio of the material

i.e. manufacturing thin films [35–37] using exfoliation or molecular beam epitaxy.

Although, such small dimensions cause another problem—the conducting channel

provides an intersurface conduction path, and this causes the top and bottom topo-

logical surface states to be coupled into a one single channel [28]. One has to take

into account also the pronounced surface defects which are also source of carriers.

It is natural to postulate that a chemically and structurally matched substrate

should simultaneously suppress both interfacial and bulk defects, which are respon-

sible for low mobilities and high carrier densities in TI films. At the moment, such

a single-crystal substrate does not exist with the current selections either increasing

bulk defects or creating interfacial defects [27, 35–37].

2.4.1 Bismuth selenide heterostructure

One of the proposed solutions to aforementioned issues is the heterostructure grown

using the molecular beam epitaxy (MBE) and consisting of Bi2Se3, In2Se3 and

(Bi0.5In0.5)Se3 designed and fabricated by the team of Seongshik Oh from the State

University of New Jersey [27].

All these three compounds share the same layered structure with covalently

bonded QLs, which are held together by the weak van der Waal’s (vdW) force [38,39].

Because of vdW bonding, Bi2Se3 can be grown on substrates with large lattice

mismatch because the film relaxes to its bulk lattice constant within the first QL.

This allows the defects formed at the interface to be isolated within the first layer
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and subsequent layers have substantially suppressed defects even when grown on

conventional substrates with large lattice mismatch such as Al2O3(0001) [40].

Additionally, when Bi2Se3 is grown on top of a substrate with a better lattice

match, such as Si(111) and InP(111), the interfacial defects are suppressed, but

transport measurements show that additional bulk defects are created, which are

likely due to the more reactive substrate surface [37]. In2Se3 and (Bi0.5In0.5)Se3 with

their layered structure minimize strong chemical bonding at the interface and with

the small lattice mismatch to Bi2Se3, serve as an ideal candidate to create a buffer

layer for Bi2Se3.

Fig. 2.5: Growth process of Bi2Se3 films on the 20 QL In2Se3 and 20 QL

(Bi0.5In0.5)Se3 buffer layer. Corresponding growth temperature T and sheet resis-

tance R are shown as well. Picture adapted from [27].

The fabrication method of such a heterostructure is schematically depicted in

Fig. 2.5. Unlike Bi2Se3, In2Se3 has at least three phases [41], and when deposited

directly onto the poorly lattice matched Al2O3 substrate it grows in a disordered

form. Therefore, to grow a high-quality single-phase In2Se3 layer requires an initial

seed layer of 3 QL Bi2Se3 that is deposited at 135 ◦C; this serves as a template for the

20 QL thick In2Se3 layer to be deposited at 300 ◦C. At this stage, the underlying 3

QL of Bi2Se3 remains conducting, which is undesirable as it creates extra conduction

channel. In order to make it electrically insulating, this entire layer is heated up to

600 ◦C where the Bi2Se3 seed layer diffuses through the In2Se3 and evaporates away,

which leaves behind the high quality, insulating In2Se3 layer directly on the Al2O3

substrate. On top of this, a 20 QL thick insulating layer of (Bi0.5In0.5)Se3 is then

deposited at 275 ◦C, which acts to suppress In diffusion into the Bi2Se3 layer [39].
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This entire structure forms the BIS-BL—a high quality virtual-substrate for Bi2Se3

to be deposited at 275 ◦C.

Transport measurements are the most sensitive probe to study the presence

of defects that supply carriers and cause defect induced scattering. Therefore, a

comparison of the defect density in Bi2Se3 grown on the BIS-BL to films grown on

Al2O3(0001) and Si(111) substrates, is made in Fig. 2.6ab where the sheet carrier

density and mobility were extracted from the low magnetic field Hall measurement

as a function of thickness. As shown in Fig. 2.6b, the highest mobility for Bi2Se3

grown on BIS-BL is about an order of magnitude larger than the mobility of films

grown on Al2O3(0001) and Si(111), and this directly shows that BIS-BL significantly

suppresses the net defect density [27].

Fig. 2.6: Comparison of (a) sheet carrier densities and (b) Hall mobilities of

Bi2Se3 films grown on BIS-BL, Al2O3(0001) and Si(111) for various film thick-

nesses. ARPES of Bi2Se3 grown on (c) BIS-BL and (d) Al2O3(0001). Picture taken

from [27].

Furthermore, Fig. 2.6cd also shows the ARPES spectra of a 30 QL thick Bi2Se3

films grown on BIS-BL (Fig. 2.6c) and a 50 QL thick Bi2Se3 grown on Al2O3

(Fig. 2.6d), both clearly showing the topological surface states bands, which con-

firms their non-trivial topology. Further, we can compare the position of the surface

Fermi energy (EF) of Bi2Se3 grown on both substrates. For the film grown on Al2O3,
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EF lies ∼0.33 eV above the Dirac point. At this level, the conduction band is clearly

occupied by two-dimensional electron gas (2DEG) states that form due to downward

band bending of bulk conduction band near the surface. In contrast, for the film

grown on BIS-BL EF is only ∼0.17 eV above the Dirac point, which implies that on

the surface only the topological surface states bands are occupied. The lower EF

observed in films grown on BIS-BL compared to films grown directly on Al2O3 is

consistent with the lower carrier density observed in transport measurements [27].

For the purposes of magneto-transmission spectra measurements, which are the

main objective of this thesis, the team of Seongshik Oh fabricated total of 4 samples

with 6 QL, 8 QL, 10 QL, and 16 QL, respectively, thick Bi2Se3 films. As the top

layer of the Bi2Se3 is sensitive to ambient contamination, the final step consisted

of adding a ∼50 nm of MoO3 as a protection in between the experiments. These

samples were characterized by low-field cyclotron resonance and Faraday rotation

measurements in the group of Peter Armitage at John Hopkins University and then

delivered to LNCMI for further optical studies at high magnetic fields.

The subject of following chapter will be the simple model describing optical

response in magnetic field for such type of topological insulator.
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3 MAGNETO-OPTICAL RESPONSE IN CON-

VENTIONAL AND DIRAC-TYPE SYSTEMS

Infrared spectroscopy in magnetic field is very convenient experimental method pro-

viding insight into electronic band structure in the framework of effective mass and

the related resonant absorption of light at the cyclotron frequency. Through the

years it became widely applied method, usually complementary to transport exper-

iments, for probing all sorts of electronic systems including graphene [42–44] which

features the characteristic Dirac behaviour of carriers.

As a material with linear Dirac-like dispersion of surface states, Bi2Se3 exposed to

high magnetic fields shall exhibit well defined transitions between Landau quantized

energy levels similarly as in the case of the graphene—yielding the linear in
√
B

response [45]. The following sections are devoted to the derivation and description

of a simple model of Landau quantized system and its magneto-optical response

for both free electron gas with parabolic dispersion and for free electrons in Dirac

system.

3.1 Landau quantization in conventional systems

Despite our interest in surface Dirac electrons in Bi2Se3, let us first derive the basic

spectrum of Landau levels (LL) of conventional non-Dirac 2D electron gas in a mag-

netic field as it will be crucial for magneto-transmission spectra analysis presented

later on.

We assume the magnetic field ~B = (0, 0, B) in z-direction and use the Landau

gauge ~A = (0, Bx, 0). Applying Peierls substitution ~p → ~p = (~p − e ~A), the free

electron Hamiltonian reads:

Ĥ =
~p 2

2m
−→ Ĥ =

(~p− e ~A)2

2m
. (3.1)

The Schrödinger equation Ĥψ(~r) = Eψ(~r) now becomes

1

2m

[(
−i~ ∂

∂x

)2

+

(
−i~ ∂

∂y
− eBx

)2
]
ψ(~r) = Eψ(~r). (3.2)

As one of the terms of ~A depends on x, we assume the ansatz in the form of

ψ(~r) = ϕ(x)eikyy. (3.3)

Substituting this in (3.2) yields
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[
− ~2

2m

(
d2

dx2

)
+

1

2m
(~ky − eBx)2

]
ϕ(x) = Eϕ(x), (3.4)

which may be[
− ~2

2m

(
d2

dx2

)
+

1

2
m

(
eB

m

)2(~ky
eB
− x
)2
]
ϕ(x) = Eϕ(x). (3.5)

This equation obviously resembles the one describing the one-dimensional harmonic

quantum oscillator[
− ~2

2m

(
d2

dx2

)
+

1

2
mω2

c (x− x0)2
]
ϕ(x) = Eϕ(x), (3.6)

centred at x0 = ~ky/eB, where ωc = eB/m is the cyclotron frequency. The energy

spectrum of such system is then expressed as

En =

(
n+

1

2

)
~ωc = (2n+ 1)B

e~
2m

, (3.7)

where the optical transitions between the Landau levels are governed by selection

rules for different light polarizations:

(A) n→ n+ 1 for σ− polarization (right circular)

(B) n→ n− 1 for σ+ polarization (left circular).

Due to these rules, all transitions are restricted only to the adjacent energy

levels. The plot of the Landau energy spectrum—so called Landau fan—is depicted

in the Fig. 3.1, where we can also see the characteristic linear scaling of cyclotron

resonance with growing B.
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Fig. 3.1: Left: The plot of the Landau level spectrum for a gas of free electrons with

a parabolic dispersion. The E0
F is Fermi energy of the system at zero magnetic field.

Right: Energy levels at four different magnetic fields. The intraband excitations, so-

called cyclotron resonance (CR), are possible only between adjacent levels. Adjacent

levels are separated by the cyclotron energy ~ωc, where ωc stands for classically

defined cyclotron frequency ωc = eB/m. The red levels are completely filled with

electrons whereas the grey levels are empty.

3.2 Landau levels in Dirac system

For characterization of the linearly dispersed surface states of Bi2Se3 in magnetic

field we shall employ the basic Hamiltonian for massless Dirac electrons as it is

sufficient enough to describe such a system in the similar way as in the graphene [46,

47]. For the sake of simplicity we also omit the Zeeman spin splitting in the model.

We assume the same field vector potential ~A = (0, Bx, 0) as in previous case,

generating the same magnetic field ~B = (0, 0, B).

Ĥ = vF[pxσx + (py − eBx)σy] = vF

(
0 px − ipy + ieBx

px + ipy − ieBx 0

)
(3.8)

This time we solve the ĤΨ = EΨ, where Ψ is now two-component spinor and σx, σy

are Pauli matrices. One way how to find eigenvectors and corresponding eigenvalues

is to solve the ”squared” Schrödinger equation Ĥ2Ψ = E2Ψ.1

Ĥ 2Ψ = v2F[pxσx + (py − eBx)σy][pxσx + (py − eBx)σy]Ψ = (3.9)

= v2F[p2xI2 + (py − eBx)2I2 − ~eBσz]Ψ = E2Ψ (3.10)

1Note that an eigenstate Ψ of Ĥ is an eigenstate of Ĥ 2, but not vice versa. In general,

eigenvectors of Ĥ2 with eigenvalue E2 do span the eigensubspaces of Ĥ corresponding to ±E.

17



Here we used anticommutation relation {σi, σj} = 2δi,jI2 (where I2 is 2× 2 identity

matrix) and also commutation relation [x, px] = i~. Now we make the ansatz again

Ψ(~r) = ϕ(x)eikyy and obtain[
p2x + e2B2

(
~ky
eB
− x
)2
]
I2ϕ(x) =

(
E2

v2F
I2 + ~eBσz

)
ϕ(x). (3.11)

This is the equation of shifted quantum harmonic oscillator, this time, however, with

the spectrum of eigenvalues reading

En = sgn(n)vF
√

2~eB|n| n = 0,±1,±2, ... (3.12)

In contrast to the previously discussed case of massive particles with the Landau

level spectrum scaling linearly with B, here we get the spectrum proportional to
√
B

(see Fig.3.2). Such a dependence usually serves as a hallmark of massless particles.
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Fig. 3.2: Characteristic
√
B dependence of Landau levels in the vicinity of Dirac

point for a few low-index levels.

3.2.1 Magneto-optical response in Dirac system

To derive a simple model of magneto-optical response, we shall approximate the sys-

tem as a 2DEG located between vacuum and dispersionless polar medium (Al2O3),

which is described by refractive index n. The magneto-transmission of such a system

can then be expressed as [48]:

T±(ω,B) =
16n2

|α±|2 − |β±|2
, where

α± = (n+ 1)[n+ 1 + σ±(ω,B)]

β± = (n− 1)[n− 1− σ±(ω,B)],
(3.13)
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where σ±(ω,B) = σxx(ω,B)+iσxy(ω,B) is the dynamical conductivity. The (–) and

(+) signs denote right- and left-handed circular polarization. In the limit of weak

absorption and normalised by the transmission of a substrate without the 2DEG,

(3.13) may be further simplified to

T±(ω,B) ≈ 1− (n2 + 3)

2(n2 + 1)

Re[σ±(ω,B)]

ε0c
, (3.14)

where ε0 is vacuum permittivity and c is the speed of light. As obtaining the

exact form for dynamical conductivity of Bi2Se3 in magnetic field might be rather

complicated procedure, we use the well-known result of the linear-response theory,

so-called Kubo-Greenwood formula [45,48]:

σ±(ω,B) =
2e2

ω

|eB|
h

∑
m,n

(fn − fm)

Em − En − (~ω + iγ)
〈n|v̂±|m〉〈m|v̂∗±|n〉 (3.15)

Re[σ±(ω,B)] =
2e2

ω

|eB|
h

∑
m,n

(fn − fm)

(Em − En − ~ω)2 + γ2
|〈n|v̂±|m〉|2. (3.16)

Here Em, En are energies of the m,n Landau levels, and 0 < fm, fn < 1 represent

the occupancies of said levels described by Fermi-Dirac distributions. The factor γ

here denotes phenomenological line broadening and v̂± = 1/
√

2(v̂x±iv̂y) are velocity

operators.

To proceed further, we calculate the matrix elements in (3.16) which are govern-

ing the optical transition rules of the system. The wavefunctions corresponding to

the Landau levels can be expressed as

Φn =
1√
2

(
sgn(n)h|n|−1

h|n|

)
(3.17)

where the functions hn(x, y) are defined as

hn(x, y) =
(a†)n√
n!
h0(x, y) (3.18)

The lowering and raising operators are given by

â =

(√
~

2eB

)
(π̂x − iπ̂y) â† =

(√
~

2eB

)
(π̂x + iπ̂y). (3.19)

Here π̂x = −i∂/∂x + e/~Ax and π̂y = −i∂/∂y + e/~Ay. We can now rewrite the

Hamiltonian for Dirac particles in magnetic field to
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Ĥ0 = vF
√

2e~B

(
0 â

â† 0

)
= E1

(
0 â

â† 0

)
, (3.20)

where the E1 denotes the energy of first Landau level. Using Hamiltonian in this

form, we can then define the velocity operators as commutators

v̂x =
1

i~
[x, Ĥ] = vF

(
0 1

1 0

)
, v̂y =

1

i~
[y, Ĥ] = vF

(
0 −i
i 0

)
(3.21)

Now after we defined the velocity operators, one can calculate the matrix elements

in (3.16) formula to

〈n|v̂+|m〉〈m|v̂∗+|n〉 = v2Fh
2
|n|−1h

2
|m| =

v2F
2
δ|n|−1,|m| (3.22)

〈n|v̂−|m〉〈m|v̂∗−|n〉 = v2Fh
2
|n|h

2
|m|−1 =

v2F
2
δ|n|,|m|−1 (3.23)

The optical selection rules then allow inter-LL transitions from Ln → Lm for

|m| = |n| − 1 for (+) light polarization and |m| = |n| + 1 for (–) light polariza-

tion (see Fig. 3.3). In general, there are three different groups of possible transitions

(i ≥ 1):

(A) Interband resonances L−i → Li+1 and L−i−1 → Li at energy E1(
√
|i|+ 1+

√
|i|)

(B) Intraband resonances Li → Li+1 and L−i−1 → L−i at energy E1(
√
|i|+ 1−

√
|i|)

(C) Mixed resonance L−1 → L0 and L0 → L1 at energy E1 involving the 0th LL.

These transitions are very different compared to those in conventional 2DEG, as they

are no more limited only to adjacent levels. In practise, the intraband transitions are

usually referred to as cyclotron resonance absorption, and they are found in spectra

at lower energies as compared to the interband transitions.

If we take into account non-polarized light, the transitions are simply those

between states n,m such that |m| = |n| ± 1. Using non-polarized light, as in our

experiment, it is not possible to distinguish between transitions where the indices

n and m have different signs, i.e. for example transitions L−1 → L0 and L0 → L−1

or transitions L−1 → L2 and L−2 → L1. For this case the relation (3.15) can be

rewritten as

T (ω,B) =
1

2
[T+(ω,B) + T−(ω,B)] ≈ 1− (n2 + 3)

2(n2 + 1)

Re[σxx(ω,B)]

ε0c
(3.24)

20



0 2 4 6 8 10

Magnetic field (T)

−150

−100

−50

0

50

100

150

E
n
er

gy
(m

eV
)

L−3

L−2

L−1

L0

L1

L2

L3

EF

– + – + –

Fig. 3.3: The fan diagram showing Landau level spectrum of a Dirac electrons

and few selected electric-dipole-active transitions with corresponding polarizations

at 10 T. Adapted from [45].

In the quantum limit of high magnetic fields, i.e. where all electrons are occupying

only the L0 level, and for line broadening small compared to the energy of transition,

the transmission for a single transition can be further approximated to

T (B) =
(n2 + 3)

2(n2 + 1)

e2

2ε0~c
E1 =

(n2 + 3)

2(n2 + 1)

e2

2ε0~c
vF
√

2e~B (3.25)

This linear in
√
B transmission dependence is generally important feature of

magneto-optical spectra as it is the key evidence of Dirac system. Furthermore, as

the Fermi velocity vF is the only free parameter, one can easily calculate its value

from the
√
Bn slope of the transmission spectra.

3.2.2 Quasi-classical approach to cyclotron resonance

Applying magnetic field of only a few Tesla on the Dirac system described above

will result in not fully resolved spectrum of Landau levels (see Fig. 3.4) as the

intraband transitions near Fermi energy are packed quite tightly together, thus

indistinguishable. Limiting ourselves only to this low-field regime, it is possible

to describe the cyclotron resonance using simple quasi-classical formalism [49].

First lets expand the relation for energy of intraband transitions to

~ωc = vF
√

2e~B(
√
n+ 1−

√
n) ·
√
n+ 1 +

√
n√

n+ 1 +
√
n
. (3.26)
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Fig. 3.4: The Landau level spectrum fan diagram with highlited approximative re-

gion, where the quasi-classical characterization of the system still holds.

In the low-field limit, the intraband transitions around EF are generally realized at

levels with large indices n. Following this, we can approximate
√
n+ 1 ≈

√
n and

rewrite the equation above to

~ωc = vF
√

2e~B · 1

2
√
n
. (3.27)

We then substitute
√
n from the relation for EF = vF

√
2e~Bn giving us

~ωc = vF
√

2e~B · 1

2
· vF
√

2e~B
EF

=
e~B

(EF/v2F)
, (3.28)

where EF/v
2
F is defined as a energy dependent cyclotron mass m. Such relation

EF = mv2F is equivalent to the very well known Einstein relation between mass

and energy, reflecting the relativistic character of electronic states in massless Dirac

system. As we can see, the cyclotron resonance in the low-field limit depends linearly

on B in the similar way like the 2DEG with parabolic dispersion.

Moving on the optical response in quasi-classical regime, we employ the same

mechanism as in the formula (3.13). Here, however, the dynamical conductivity for

(+) and (–) polarization is given by

σ±(ω,B) = σ0
iγ

ω ± ωc + iγ
, (3.29)

where σ0 is zero-field DC conductivity, γ again represents the line broadening and

ωc = eB/m. For simplicity, here we assume no field dependency of both γ and σ0,

as they are later used as fitting parameters.
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To get relative transmission lines in case of using non-polarized light, we average

the transmission for both polarizations and divide by transmission in zero magnetic

field

Trel(ω,B) =
T+(ω,B) + T−(ω,B)

2T (ω, 0)
. (3.30)

Clearly linear relative transmission spectra at field up to 10 T are illustrated in

Fig. 3.5, where we modelled the quasi-classical optical response. When fitting the

data using this model, one has to realize that due to line broadening, the dip in

the relative transmission spectra is not exactly in the same position as the actual

cyclotron resonance mode (although the margin of this error is quite small, see left

part of Fig. 3.5).
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Fig. 3.5: Left: Plot of the modelled component terms from (3.30) in the magnetic

field 5 T demonstrates individual contributions to the final relative transmission.

The common limit is derived from transmission of dielectric slab without any con-

ducting layer, i.e. σ±(ω,B) = 0. The slab is represented by Al2O3 substrate with

n = 1.76 Right: Modelled relative transmission spectra at fields from 0 T to 10 T

with indicated broad linear in B cyclotron resonance. The spectra are shifted by

0.01 for clarity.
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4 INSTRUMENTATION FOR INFRARED SPEC-

TROSCOPY IN MAGNETIC FIELD

Studying the optical response of electronic systems in magnetic fields requires rel-

atively specific experimental apparatus. Since a number of magneto-optical ex-

periments requires (due to specific system properties or simply due to insufficient

electronic quality) the application of magnetic fields reaching several tesla or more,

it is essential to build powerful installations capable of delivering such high mag-

netic fields, where we can operate the infrared spectroscopic technique. One such

facility meeting these requirements is the IR laboratory at Laboratoire National de

Champs Magnétiques Intenses (LNCMI) in Grenoble capable of realizing experi-

ments in magnetic fields as high as 35 T.

The following chapter explains the basic principles of the FTIR spectroscopy and

also provides the description of the magnetic devices used at LNCMI.

4.1 Fourier transform infrared spectroscope

One of the instruments of the experimental setup is the IR spectroscope Bruker

Optics - IFS 66v/S which is able to perform measurements in the full IR range, that

is from far-infrared ∼20 cm−1 almost up to ultraviolet (UV) ∼40 000 cm−1 depending

on the installed extensions [50]. To get an insight of the inner workings of such

spectroscope, we will now describe the three essential components.

4.1.1 Source of IR light

As the infrared portion of the electromagnetic spectrum is usually divided into three

regions; the near-infrared (NIR), mid-infrared (MIR) and far-infrared (FIR), so are

also the types of IR sources. Starting first with MIR, the ideal source of continuous

mid-infrared radiation is a high-temperature black-body. The spectral radiance from

a blackbody source as a function of wavenumber ν and temperature T , is given by

the Planck equation

U(ν, T ) =
2hν3

c2
1

ehν/kT − 1
, (4.1)

which is plotted for a different temperatures in Fig. 4.1. At first glance, one can

say that the maximum of emission follows the Wien law and one has to chose right

temperature for a given spectral region. This is not always the case, however. For

example, the temperature of a tungsten filament in a standard incandescent light
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bulb is close to 3000 K, but tungsten filaments are sealed in a glass bulb so that

they can be operated under a high vacuum.
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Fig. 4.1: Plot of the Planck law for black body for a selected temperatures.

The most common mid-infrared source used in FT-IR spectrometers is a resis-

tively heated silicon carbide rod, commercially known as a GlobarTM. The typical

temperature at which a Globar is operated is ∼1300 K. In the past, Globars were

always water-cooled to avoid overheating the electrical contacts, but some ceramic

sources are now available that can be run without the need for a source of cooling

water; however, these are generally operated at a lower temperature.

Considering the NIR sources, it can be inferred from Fig. 4.1 that they should be

run at significantly higher temperatures than mid-infrared sources. Since glass and

quartz are transparent across the entire NIR region, this goal can be met through

the use of a simple and inexpensive tungsten-filament light bulb or quartz-tungsten-

halogen (QTH) lamp. Provided that these sources are run at less than their specified

operating voltage, they are also very long lived [51].

The spectral radiance in Fig. 4.1 also tells us that the spectral radiance of black-

body sources is always very low below 200 cm−1 and the problem of measuring

far-infrared spectra is also related to the fact that the emissivity i.e. thermal ra-

diation efficiency of Globar is much less than unity in the far infrared. Since the

sensitivity of any measurement of a MIR or FIR spectrum is directly proportional

to the spectral radiance of the source, it is apparent that far-infrared sources should

be as hot as possible. It is therefore customary to use a high-pressure mercury lamp
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for measurements between ∼50 cm−1 and the onset of the microwave region of the

spectrum. The reason why mercury lamps have proved to be so successful for far-

infrared spectrometry is because emission from the plasma reinforces the emission

from the hot quartz envelope of the lamp. However, the mercury lamp has signifi-

cant flicker noise, so even if the energy is better, the signal-to-noise ratio may not

always be.

Last but not least, the ultimate FIR source providing high brightness, high flux

(very good signal-to-noise ratio) and small divergence of the beam is the synchrotron.

Such qualities however come at price—synchrotrons are usually very large and com-

plex installations which is then reflected on the general availability of such sources

for experiments.

4.1.2 Detectors

Quantum detectors

In general the IR detectors can be divided into two classes—quantum detectors and

thermal detectors. Quantum detectors operate on the basic principle of excitation of

electrons to different electronic state by incoming light. One way is a photoemission,

where electrons are given enough energy to escape from the surface and flow through

a vacuum to produce an electrical current. Phototubes and photomultipliers fall

into this category. Because high energies are required to release electrons from a

photoemissive surface, this effect can only be used in the ultraviolet, visible, and

NIR (up to the wavelengths of 1 µm) regions.

Semiconductor detectors, where the radiation is generally absorbed on a p-n

junction, are often used in the mid- and near-infrared range. Quantum detectors

that operate in this manner include, for instance, PbS, PbSe, and InSb [52]. Other

quantum detectors include II–VI combinations of semimetals and semiconductors,

that is, mixtures of metals and semiconductors from groups II and VI of the periodic

table. One such detector is also already discussed mercury cadmium telluride (MCT,

Hg1−xCdxTe), where the ratio of the blend leads to the bandpass of the detector (3 -

30µm) [52]. MCT detectors are by far the most commonly used photo-detectors for

mid-infrared spectrometry. Semiconductor detectors in general exhibit both perfect

signal-to-noise performance and a very fast response.

However, the very low energy of the photons that must be sensed by MIR pho-

todetectors has the consequence that electrons can be excited by random thermal

fluctuation of the solid, which gives rise to noise in the output. Noise is also gener-

ated by leakage of current through the detector from the photoconductive or photo-

voltaic circuit used to bias the detector. Thus, cryogenic cooling is usually used to

reduce these sources of noise, which adds to complexity of the experimental setup.
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Thermal detectors

The second group—thermal detectors—works on the principle that the absorbed

incident radiation changes the temperature of the material, and the resulting change

in some physical properties is used to generate electrical output. Their output

may be in the form of an electromotive force (e.g., thermocouples), a change in

the resistance of a conductor (e.g., bolometers) or semiconductor (e.g., thermistor

bolometers), or the movement of a diaphragm caused by the expansion of a gas (e.g.,

pneumatic detectors). All of the above types of thermal detectors have been used

for mid-infrared measurements. They all have drawbacks for FTIR spectroscopy,

since each has a response time of several milliseconds.

Although several cryogenically cooled detectors have low response times, the

only mid-infrared detectors that have an appropriate combination of high speed,

reasonably good sensitivity, low cost, good linearity, and operation at or near room

temperature are the pyroelectric bolometers. In these devices, the key component

responsible for registering the heat difference is ferroelectric material that exhibits a

large spontaneous electrical polarization at temperatures below their Curie point. If

the temperature of these materials is changed, the degree of polarization is changed,

and this can be registered as an electrical signal if electrodes are placed on the sides

of thin slab of material to form a capacitor.

Window (KBr, 
Si, Diamond, ...)

Fig. 4.2: Simplified schematics of DTGS pyroelectric bolometer. By changing the

Rb by light, applied (constant) voltage on Rb and R is redistributed and the voltage

variation on Rb or R (depends on which we follow electrically) is registered as a

signal.

For such devices, the most commonly used material is deuterated triglycine sul-

fate (DTGS) [51]. It is important to mount the DTGS so that the thermal resistance
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between the slab and its environment is sufficiently large. This is usually achieved

by suspension of DTGS on thin copper wires in evacuated cavity as seen in Fig. 4.2.

In previous section was hinted that the intensity of FIR radiation emitted by most

sources is rather low. Therefore spectra in this range measured using pyroelectric

bolometer have often high noise-to-signal ratio. Solution to this problem are liquid

helium cooled bolometers.

4.1.3 Michelson interferometer

Although there exists a number of different interferometer designs, most of them

are based on the two-beam type introduced by Albert A. Michelson at the end of

19th century. The Michelson interferometer is a device that can divide a beam of

radiation into two paths and then combine the two beams after a path difference

has been introduced (see Fig. 4.3). The difference between the two branches of the

interferometer then results in the interference of recombined beams, altering the

intensity of outcoming light.

Fixed mirror

Detector

Moving mirror

Beamsplitter

Source

Fig. 4.3: Schematic layout of Michelson interferometer. It consists of two mutually

perpendicular plane mirrors, one of which can move along an axis that is perpen-

dicular to its plane.

To understand the processes that occur in a Michelson interferometer better, let

us first consider an idealized situation where a source of monochromatic radiation

produces an infinitely narrow, perfectly collimated beam. Instead in terms of radia-

tion wavelength λ0, we shall work with its wavenumber ν̃0 = 1/λ0 (in cm−1) so then

we can then denote the radiation intensity, or interference record, I at detector as

follows

I(∆) = 0.5I(ν̃0)[1 + cos(2πν̃0∆)]. (4.2)
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Here the ∆ is the path difference or retardation of the beams and I(ν̃0) is the inten-

sity of the source. One can see that the intensity I(∆) is composed of constant DC

part 0.5I(ν̃0) and modulated AC part 0.5I(ν̃0) cos(2πν̃0∆). Only the AC component

is important in spectrometric measurements, and it is this modulated component

that is generally referred to as the interferogram

I(∆) =
1

2
I(ν̃0) cos(2πν̃0∆) (4.3)

In practice, several factors affect the magnitude of the signal measured at the

detector. First, it is practically impossible to find a beamsplitter that has the ideal

characteristics of 50% reflection and 50% transmission [51]. The nonideality of

the beamsplitter must be allowed in (4.3) by multiplying I(ν̃0) by a wavenumber-

dependent factor of less than unity that represents the relative beamsplitter effi-

ciency. Another issue rises from the fact, that most of the infrared detectors do not

exhibit uniform response at all wavenumbers. In addition, the response of many

signal amplifiers is also strongly dependent on the modulation frequency. So, to

take in account all these effects, the (4.3) can be rewritten to

I(∆) =
1

2
B(ν̃0)H(ν̃0) I(ν̃0) cos(2πν̃0∆) = A(ν̃0) cos(2πν̃0∆), (4.4)

where B(ν̃0) represents the beam beamsplitter efficiency, and H(ν̃0) is efficiency

coming from detector and amplifier response. Of all factors in the equation above,

only I(ν̃0) varies from one measurement to the next for a given system configuration,

while all the other factors remain constant. For clarity, we can combine all factors

into one factor A(ν̃0).

So far, we considered only the monochromatic source of light. When radiation of

more than one wavelength is emitted by the source, the measured interferogram may

be view as a sum (integral) of the interferograms that correspond to each wavelength.

If we now consider a source with continuous spectrum of radiated light, the (4.4)

can be expressed as

I(∆) =

∫ ∞
−∞

A(ν̃) cos(2πν̃∆) dν̃, (4.5)

which is the form of cosine Fourier transform. To express the A(ν̃), we shall employ

the inverse cosine Fourier transform

A(ν̃) =

∫ ∞
−∞

I(∆) cos(2πν̃∆) d∆, (4.6)

which will provide us with a frequency spectra of the interferogram (see Fig. 4.4).
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The mathematical apparatus of Fourier transform (FT) stands at the very core

of this spectroscopic technique, hence the name Fourier transform infrared spec-

troscopy. Today, most of the crude computation is done by less time-consuming

algorithms including the most widely used Fast Fourier transform.
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Fig. 4.4: Applying Fourier transform on typical interferogram (left) retrieved from

Michelson interferometer allows one can to calculate the wavenumber spectra (right).

To obtain very precise results from the FT, it is important to ensure very smooth

movement of a scanning mirror without any tilting. For this reason, the technical

solution of the mirror in the Michelson interferometer can be realized, for example,

using an electromagnetic drive and an air bearing.

4.2 Magnetic field installation

As mentioned earlier, the magneto-optical experiments were performed both at low

magnetic field provided by superconducting coil and at high magnetic field provided

by one of the several water-cooled resistive magnets at the facility. We will now

discuss the difference in their designs and field strength.

4.2.1 Superconductive coil

The preliminary transmission spectra were first measured in helium cooled supercon-

ducting coil, which is nominally operated at 4.2 K at atmospheric pressure. At these

conditions, the maximum magnetic field is 11 T. The field can be further enhanced

to 13 T when the helium bath is pumped down to temperature below 2.2 K.

The bore of the magnet, indicating the diameter of the hole in the middle of a

solenoid, is important parameter for experiment design as it significantly limits the

dimensions of probe and therefore sample holder or potentially also LED and wiring
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compartment. Usually the stronger the field, the smaller the bore diameter as the

goal is better field focus (the magnet we used has the bore of 50 mm).

A

B

F

D

H

G

FTIR
Spectrometer

C

E

K

I

Superconducting magnet

J

Fig. 4.5: Simplified schematics of magneto-optical experiment setup consisting of

FTIR spectrometer and superconducting magnet. Individual parts are described in

the text below.

To get better idea of setup layout see Fig. 4.5. The light beam from spectrometer

is reflected by a custom golden-plated mirror (A) into the probe waveguide through

polyethylene window (B). Up to this point, the light-path (including spectroscope)

is evacuated, and the probe itself is sealed and filled with heat exchange gas (He

at ∼30 mBar), ensuring gradual cooling of the probe. The top of the probe also

contains signal port (C), where the output is the registered signal from the external

bolometer under sample-holder (H). The bolometer is electrically polarized by the

voltage from the DC source (D) and the signal from the bolometer is amplified (E)

and sent to spectrometer signal input port (K). The cryostat (I) is usually filled with

helium through the hole on top (F) using capillary transfer from Dewar bottle. The
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evaporated helium is collected from the (J) port and sent to liquefier. This port is

also used when the cryostat is being pumped out to reach lower temperatures (down

to 1.6 K).

4.2.2 Resistive magnet

Performing experiments in more powerful resistive magnet yields quite different

requirements for operating experimental setup. The magnet is capable of outputting

stationary magnetic field of 35 T. The required DC electric power is supplied by

four AC/DC power converters, each about 6 MW. These converters, based on SCR

Rectifier Bridges (thyristors), provide up to 16 kA at 400 V with a current stability

of about 10 ppm. They can also be connected in parallel on a single magnet for

providing up to 64 kA [53].

A

B

B

B

B

C D

E

Fig. 4.6: Schematics of resistive magnet M9 at LNCMI Grenoble. The cryostat is

inserted from the top of the construction (A) with the probe in the 34mm bore (D)

of the coil (C). The cooling water is pumped through the inlets of the outer shell

(B), whereas the the electric wiring is led through lower inlet (E).

Such high values of electric current necessarily create a large quantities of heat

in the magnet coils. So the magnet is cooled down by a closed loop of deionised and

deoxygenated water. For a magnet at peak 24 MW power, the typical water flow

rate is about 300 l · s−1 with water temperature difference about 15 ◦C. A secondary

circuit extracts the heat from the closed loop using a mechanical heat exchanger

and the water from the neighbour river. Nevertheless, such a high water flow causes

vibration of the platform which can influence the signal-to-noise ratio of experiments.
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The probe itself is cooled in helium cryostat with liquid nitrogen jacket, which is

inserted into the top of the magnet (see Fig. 4.6).

Another problem to consider is the connection between probe in magnet and

spectrometer. As the field is significantly strong in a radius of a few meters from

the magnet, all sensitive instruments have to be outside of the ”danger zone” as well

as all tools and parts from ferrous metals, otherwise they could be pulled towards

the magnet and could potentially rupture the cryostat. The solution to this is using

a 2 meters long waveguide connecting the probe with a spectroscope allowing safe

measurements from distance.

Apart from different magnet type, different probe design and longer waveguide,

the experimental setup is identical to the one in the low fields.
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5 EXPERIMENTS AND RESULTS

As stated in section 2.4.1, we obtained, in total, four samples of Bi2Se3 heterostruc-

ture. All samples were characterized using low-field magneto-transmission tech-

nique. These experiments allowed us to choose the most promising sample for mea-

surements in high magnetic field, using resistive coils at LNCMI. As the procedure of

the probe preparation is more or less same for both fields, it will be briefly disclosed

first.

All measurements were performed in the Faraday configuration—incident light

was propagating in parallel to the applied magnetic field and the magnetic field

was always oriented perpendicular to the sample. The samples (dimensions of all

them were 10× 10 mm2) were glued to the sample holder over one of the two holes

(see Fig. 5.1). The second hole serves as a source of reference spectra, which allows

us to correct for the field-induced response of the bolometer (located inside the

magnet, and therefore, strongly influenced by the magnetic field). Depending on

the transmission signal strength from samples, the diameter of the holes can be

replaced. The sample holder is then attached to the tip of the waveguide, which

is also holding the rod for rotating the holder from “sample position” to “reference

position”.

To bolometer

Waveguide

Sample
Reference
hole

Sample
holder

Fig. 5.1: Left: Schematic drawing of the sample holder in a probe for transmission

measurement in Faraday configuration, where the light is guided from spectrometer

through the sample to the bolometer. Right: detail of the sample holder with sample

itself and hole for reference measurement.

Next, the bolometer is attached under the holder and signal wires (which are
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fastened to the waveguide) are connected. The waveguide with attached sample

holder and bolometer is then inserted into long metallic tube, hermetically sealed,

evacuated and then filled with the helium gas with the pressure of ∼30 mbar. This

probe is then inserted into the magnet slowly enough to reduce the risk of damaging

the bolometer and sample by rapid cooling. After the probe is fully inserted, the

waveguide between polyethylene window (chosen due to high transparency in the

spectral range of interest) and spectrometer evacuated, and bolometer is cooled to

liquid helium temperature, it is possible to start with spectra measurements.

5.1 Low-field magneto-transmission spectra

The following figures illustrate the relative magneto-transmission spectra at fields up

to 11 T. In this range, the system can be described using the formalism introduced

in section 3.2.2, implying the linear in B dependence of cyclotron resonance.

Indeed, the single-mode cyclotron resonance absorption mode, clearly visible in

transmission spectra of all four samples, evolves linearly with B (see heatmaps in

Fig. 5.2B – 5.5B). For the 6QL sample, the overall signal becomes relatively weak

and the slope cannot be read-out with a reasonable precision, but still, the linear in

B dependency may be guessed from the heat map.

In the model, we assumed that the cyclotron mass m, line broadening coefficient

γ, and DC conductivity σ0 are all independent of the applied magnetic field and can

be used as fitting parameters. To simply fit the data with the model, the spectra first

needed to be cut to relevant region of the cyclotron resonance energies 5 – 60 meV

(see Fig.5.2A,B – 5.5A,B). The values extracted from the model are in Tab. 5.1

below.

Tab. 5.1: Deduced values of m, γ, and σ0 obtained from quasi-classical model of

relative transmission. The effective mass is compared to the mass obtained by

Wu et al. from Faraday rotation experiments [54].

sample γ (meV) σ0 (10−3 · Ω−1) m (me) mFaraday (me)

6QL 15.5 ± 2.1 0.16 ± 0.02 0.056 ± 0.009 0.045 ± 0.009

8QL 7.7 ± 1.7 0.26 ± 0.03 0.058 ± 0.008 0.061 ± 0.007

10QL 6.9 ± 1.3 0.35 ± 0.03 0.076 ± 0.007 0.068 ± 0.005

16QL 6.4 ± 1.6 0.60 ± 0.03 0.08 ± 0.01 0.077 ± 0.005
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Fig. 5.2: Relative transmission of 16QL Bi2Se3 (A) represented also as a heatmap

(B). The quasi-classical fit (lines) of the cyclotron resonance (marked by arrows) is

depicted in (C) (the spectra are shifted by 0.04 for clarity).
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Fig. 5.3: Relative transmission of 10QL Bi2Se3 (A) represented also as a heatmap

(B). The quasi-classical fit (lines) of the cyclotron resonance (marked by arrows) is

depicted in (C) (the spectra are shifted by 0.04 for clarity).

38



R
el
at
iv
e
tr
an

sm
is
si
on

T
B
=T

0

B (T)

E
(m

eV
)

R
el
at
iv
e
tr
an

sm
is
si
on

T
B
=T

0

Relative transmission TB=T0(A) (B)

(C)

E (meV)

E (meV)

0 10 20 30 40 50 60
0.90

0.95

1.00

1.05

1.10

5 10 15 20 25 30 35 40
0.95

1.00

1.05

1.10

1.15

1.20

1.25

0 2 4 6 8 10
0

6

12

18

24

30

36

0.972

0.976

0.980

0.984

0.988

0.992

0.996

1.000

Bi2Se3{8QL
T = 4.2 K

Cyclotron
resonance

S
u
b
st
ra
te

ab
so
rp
ti
on

CR
10 T

8 T

6 T

4 T

2 T

0 T

Fig. 5.4: Relative transmission of 16QL Bi2Se3 (A) represented also as a heatmap
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depicted in (C) (the spectra are shifted by 0.04 for clarity).
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(B). The quasi-classical fit (lines) of the cyclotron resonance (marked by arrows) is

depicted in (C) (the spectra are shifted by 0.01 for clarity).
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As we can see from the CR spectra, the signal strength scales with the thick-

ness of the Bi2Se3 layer. This spectral or Drude weight, approximately describing

the strength of the CR absorption in the quasi-classical limit [55], is defined as

D = 2e2EF/4~2. This formula has been deduced for graphene, with a twice higher

degeneracy, but remains qualitatively valid also for other 2D gases of massless par-

ticles (such as on surfaces of topological insulators).

Thus, the thicker layers, with typically high carrier concentrations [27], give rise

to bigger Drude weigth. On the other hand, higher concentration of charge carriers

also require higher magnetic fields to achieve the corresponding quantum limit, with

only the lowest Landau level occupied with electrons. This trade-off between the

necessary strength of the magnetic field and the transmission signal, lead us to

choose the 10QL sample for high-field experiments, in which the quantum limit is

expected to be achieved around 30 T [54].
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5.2 High-field magneto-transmission spectra

To fit the 10QL sample into the probe compatible with the 34mm-diameter bore

of the high-field magnet, its size had to be reduced down to smaller dimensions.

Nevertheless, we assume that the sample was homogeneous and it does not matter

what part of the sample was cut.

The figure 5.6 shows relative magneto-transmission spectra in the fields up to

30 T. To our surprise, no indication of classical-to-quantum transition has been ob-

served in the response. The cyclotron resonance remained single mode and retained

nearly perfect linear in B dependence. This is in contrast with expectations for a

Dirac-type system reaching its quantum limit, which is characterized by linear in√
B dependence of cyclotron resonance as described in 3.2.1.
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Fig. 5.6: Left: relative transmission spectra of 10QL Bi2Se3 with unexpected linear

in B dependence of cyclotron resonance (marked by arrows). Right: heatmap plot

of relative transmission in low fields and positions of CR in high fields.

This unexpected and very simple behaviour in high magnetic fields is not in line

with findings of other experimental techniques, such as Faraday rotation [54] and

magneto-transport [27]. At present, we do not see any straightforward explanation,

which would provide us with a united picture comprising results of all performed

experiments. As for the high-field infrared magneto-optics, the observed response

may be described in terms of an ordinary gas of massive particles.

42



5.3 Magneto-transport measurement

Transport measurements in the van der Pauw configuration were realized as a sup-

plementary method to determine approximate carrier concentration. Two of the

smaller pieces of 10QL Bi2Se3 were attached to transport sample holder and four

silver wires were glued to the corners of the sample using silver paste. Whole set

was inserted into the probe and evacuated in the same manner as in the optical

experiments. The measurements were performed also at LNCMI in the liquid he-

lium cooled magnet at fields up to 16 T at temperatures at 1.4 K with the help of

Dr. Benjamin Piot, responsible for magneto-transport experiments at LNCMI.
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Fig. 5.7: (A) one of the configuration for measuring the resistivity of a sample. (B)

one of the configurations for measuring the Hall coefficient. (C) the picture of the

sample with the silver wires soldered to the pins. (D) data from Hall measurements

(blue) and linear fit (black).

Let us now briefly review the standard van der Pauw method allowing us to ex-

plore transport properties of samples with approximately rectangular shapes. First

we needed to obtain sheet resistance of the samples, using van der Pauw formula

exp(−πR34/Rs) + exp(−πR41/Rs) = 1, (5.1)
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where R34 is resistance between the points 3 and 4, R41 is resistance between the

points 4 and 1 and Rs is the sheet resistance. From the Drude model the conductivity

reads

σ = 1/ρ = 1/Rs = neµ, (5.2)

and Hall coefficient RH = B/ne for 2D materials. Hall coefficient can be extracted

from the linear slope of the the field dependent transverse resistivity.

Obtained values for carrier densities are 5.23× 1016 cm−2 and 4.7× 1016 cm−2,

which is much higher (4 orders of magnitude) than values obtained by Seongshik

Oh et. al [27]. The reason is not exactly clear, however, as it could be the degradation

of sample or incorrect contacting of the sample.
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6 SUMMARY

Fabrication of samples with a sufficient quality, i.e., insulating in bulk but with

well-defined Dirac-type surface states, is one of the major issues in the whole field

of topological insulators. In particular, this issue is relevant for Bi2Se3, which is

probably the most representative 3D topological insulator. Achieving this goal, the

physics of topological matter could progress towards fascinating and still fairly exotic

subjects such as hybrid structures between topological insulators and superconduc-

tors [4], detecting the Majorana fermions [6] or images of magnetic monopoles [56].

In this work, we examined the electronic states of Bi2Se3 heterostructure—one

of the proposed solutions to the high intrinsic doping—by using the tools of infrared

magneto-spectroscopy. We performed several experiments in quasi-classical regime

(up to 11 T) for each of the four samples with different thickness (6, 8, 10, 16 QL) of

Bi2Se3 layer. The observed magneto-optical response was in a good agreement with

the simplified quasi-classical model for cyclotron resonance absorption. Therefore

all relevant parameters (electron cyclotron mass, DC conductivity, line broadening

and Drude optical weight) could have been extracted for each sample.

The intricate nature of such electronic system became apparent, when we per-

formed the measurements in high magnetic fields (up to 30 T). On the selected sam-

ple, the cyclotron resonance response has been explored in magnetic fields, expected

to be high enough to drive the system into quantum regime (with well-resolved Lan-

dau levels) and even into the corresponding quantum limit (with only the lowest

level occupied). Instead of multi-mode
√
B-scaled cyclotron resonance absorption,

typical of Dirac-type particles in the quantum regime, a conventional single-mode

linear in B cyclotron resonance response has been observed.

At present, the interpretation of our observation is not straightforward. Our

data are not in agreement with results and resulting expectations coming from

other experimental techniques, namely low-field Faraday rotation [54] and high-field

magneto-transport [27], which are consistent with Dirac-type character of studied

charge carriers. In our case, the data may be explained using a model implying

conventional massive particles.

Nevertheless, bismuth selenide and related heterostructures still belong to the

perspective materials, utilizing the robust electron structure. So far, however, some

the complications resulting from imperfect building blocks are yet to be overcome.
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