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Abstrakt

Tato prace je zaméfena na vypocty difuznich bariér kyslikovych vakanci v olovo-zirkonatu-
titanatu a jeho komponent pomoci teorie funkcionalu hustoty. Zjistili jsme, ze velikost
bariér je rtizna v olovo titanatu a olovo zirkonatu, coz je zptisobené rozdilnou lokaliza-
ci elektronti pochéazejicich ze vzniku kyslikovych vakanci. Difuzni bariéry byly nadale
urc¢eny pro smés s vysokym podilem titanu a porovnany s experimentalnimi vysledky.
Pfinos této prace spociva v objasnéni neobvykle nizkych difuznich koeficienti, které byly
experimentalné méreny na olovo-zirkonatu-titanatu. Zjistili jsme, Ze elektronové stavy
vyvolané pritomnosti kyslikovych vakanci vytvaii lokalni vazby mezi atomy olova, coz
zpusobuje, ze kyslikové vakance jsou nepohyblivé v disledku zvyseni aktivacni energie
difuzniho procesu.

Summary

This work is focused on Density Functional Theory (DFT) calculations of oxygen vacancy
diffusion barriers in mixed perovskite lead zirconate titanate and its pure counterparts.
We found out that barrier heights are different in lead titanate and lead zirconate caused
by the different localization of the excess electrons due to the oxygen vacancy formation.
Diffusion barriers were also determined for titanium-rich mixed phases and compared
to experimental values. This work contributes to clarify unusually low experimentally
measured diffusion coefficients in PZT. We found out that the induced vacancy states are
forming localized bonds to the lead atoms which causes the oxygen vacancies to become
immobile due to the increase of the activation energy of the diffusion process.

Klicova slova
olovo zirkonat, olovo titanat, olovo zirkonat titanat, kyslikové vakance, difuze, aktivacni
energie, teorie funkcionalu hustoty

Keywords
lead zirconate, lead titanate, lead zirconate titanate, oxygen vacancies, diffusion, activa-
tion energy, density functional theory

PLANER, J. Ab-initio vypocty elektronickych a strukturnich vlastnosti olovo-zirkondtu-
titandtu (PZT). Brno: Vysoké uceni technické v Brné, Faculty of Mechanical Engineering,
2017. 86 s. Vedouci diplomové prace: Ing. Miroslav Bartosik, Ph.D.
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1. Introduction

In 1880, Paul-Jacques Curie and his younger brother Pierre Curie discovered the piezo-
electric effect. It is a reversible process in certain materials in which an electric poten-
tial is generated when the material is subjected to the mechanical stress or vibration.
Nowadays this effect is being used even in everyday applications, like actuators, micro-
phones, pickups, piezoelectric motors and many others. Furthermore, some piezoelectric
materials evince an unusual property which is called ferroelectricity. This effect was
discovered in 1920 on a Rochelle salt by Joseph Valasek and it is similar to the ferromag-
netism. In certain materials there is a spontaneous permanent polarization which can be
reversed with an external electric field. This property is in a big interest of scientists, e.g.,
in order to make a tunable capacitors.

One of the materials evincing ferroelectricity and piezoelectricity is called Lead Zir-
conate Titanate (PZT). Nowadays, it is an intensively studied material which can be em-
ployed, for example, in the Non-Volatile Random-Access-Memories (NVRAM), sensors,
actuators and transducers applications. Properties of this material can be modulated
by doping — adding impurities to the material. This process is mainly known from the
semiconductor production of p-type and n-type dopants.

Even through a lot of experimental work has been done to investigate this material,
several aspects are still not well understood. Recent experiments show an unusually
low ionic conductivity of acceptor-doped PZT ceramics where the formation of oxygen
vacancies plays an important role and the aim of this work is to clarify these phenomena
which play an important role in applications.

This work supplements very recent experimental results with computer simulations
and sheds light on a diffusion process of oxygen vacancies in pure lead titanate, lead
zirconate and mixed compounds.

Chapter 2 is focused on the computational methods used in this thesis. They are
derived from quantum mechanics and offer a way how to approximately solve a many-body
problem with a reasonable computational power. Chapter 3 introduces methods which use
the periodic properties of crystals to effectively solve the quantum mechanical problem.
In the last methodological chapter 4, we describe methods for evaluating the energy
barriers of oxygen vacancy diffusion. These barriers are related to the measured ionic
conductivity in experiments. Chapter 5 introduces structural properties of lead zirconate
titanate, its applications, and how these properties can be tuned with different dopants.
Chapter 6 is focused on structural and electronic properties of the pure edge components
of PZT ceramics, related to oxygen vacancy diffusion. The calculated diffusion barriers
are discussed and serve to set up proper models for PZT alloys. In the last chapter 7 we
move to the titanium-rich PZT alloys and discuss the results obtained from calculations
of oxygen diffusion barriers.



2. COMPUTATIONAL METHODS

2. Computational methods

Since computers have become in recent years more and more powerful, computational
methods have been developed in order to study materials at an atomistic level. The first
group of these methods is based on the classical (Newtonian) mechanics where the atoms
are considered to be the fundamental objects, having specific mass and charge, which in-
teract with other atoms in the system. Nowadays it is possible to treat systems consisting
of millions of atoms using the molecular mechanics methods. Their disadvantage lies in
the use of the empirical force fields which are unable to describe the quantum effects, and
in the huge number of the required empirical parameters for the atomic systems.

The second group of the computational methods is based on quantum mechanics.
These methods are aimed at calculating the electronic structure from the many-body
Schrodinger equation of an atomic system. Unlike the classical methods, the basic ele-
ments of the quantum systems are atomic nuclei and electrons. Solving the atomic systems
with the help of the quantum mechanics is much more demanding so the largest systems
may contain a few thousands of atoms. The advantage of these methods is the fact that
we need much less empirical parameters. First-principles methods don’t even need any of
them and offer a useful way how to study the electronic properties of the systems, which
are essential for the purposes of this thesis. Unfortunately, it is not possible to solve
analytically more complex quantum systems than the hydrogen atom and several approx-
imations have to be introduced. This chapter gives a brief outline of used theoretical
concepts.

2.1. The basic concepts

In 1929, Erwin Schrodinger published the equation, which is the fundamental object
for studying quantum mechanical systems!. This equation is the basic tool in quantum
mechanics because it determines the state of the system and its time evolution. The
time-dependent Schrodinger equation can be written in the following way.

1 oV T
H\I](rl,rQ,...’I']\“t) :Zh (r17r25t ,rN7 )

Equation 2.1 is classified as the partial differential equation, second order in the spatial
variables and first order in time.

H denotes the Hamiltonian operator describing the total energy of the system. We
often want to study time independent systems. To remove the time domain from the
equation, separation of variables can be used to rewrite the wave function in terms of the
stationary wave function and the time propagation.

(2.1)

U(ry,ry,...,ry,t) = Ug(ry,ro, ..., rx)e (2.2)

By substituting the wave function 2.2 to the equation 2.1, we receive time-independent
Schrodinger equation which is the starting point for the following introduction to the
computational methods.

Erwin Schrédinger won the Nobel Prize in Physics for a derivation of his equation in 1933.



2.1. THE BASIC CONCEPTS

In contrast to the classical mechanics where the state of the system is given by the set
of positions and momentums for each particle, the state of the quantum mechanical system
containing N particles is given by the wave function W(ry, ro, ..., ry,t) and all properties
of the system can be determined by solving the eigenvalue problem of the corresponding
operator acting on the wave function. The eigenvalues of an operator correspond to a
macroscopic observable. Because the quantum mechanical systems are simultaneously in
all possible configurations with certain probabilities, it is only possible to calculate the
expectation values of the system properties as the sum of the all eigenvalues weighted
with the corresponding probability. The expectation value O can be calculated from the
wave function and the operator according to the following equation (in Dirac’s bra-ket
and classical notation):

\P|O|\IJ / / I'1,I'2,...7I'N)OA\I/(I'1,I'2,‘..,I'N> dI‘l dI‘Q...dI‘N (23)

Atomic units

Quantum mechanical systems usually deal with the atomic particles, e.g., protons or
electrons and the basic properties of such particles are expressed with very small numbers,
sometimes exceeding all the prefixes in the standard SI system. The system of atomic units
provides more comprehensible numbers and also simplifies the form of used equations. The
atomic units for the length, charge, mass and energy is presented in the following way:

e atomic unit of charge is the charge of the proton, which is equal to 1.6022 x 107! C

e atomic unit of length is the Bohr radius and is calculated to be
= h?/mee* = 5.2918 x 10 "' m = 0.529 18 A.

e the mass of the electron, m, = 9,1059 - 10 3'kg represents one atomic unit of mass

e atomic unit of energy — 1 Hartree — is given by F, = €?/4meqag = 4.3598 x 10718 J =
27.2114 V.

In this work we use the atomic units to present the equations. The results will be
given for convenience in angstroms and electron volts.

Born-Oppenheimer approximation

Using atomic units, Schrodinger equation of the system containing N electrons and M
nuclei with charges Z,, can be written as

(e 1T (£2 555 5 ey

J#5' i=1 j=1

{T6+Tn+f/ +Vin +V, }\1/ —EVU (2.4)

The index 7 is related to electrons and j to nuclei in the system, m,, denotes mass of
the nuclei in the system and Z,, are their charges. The terms can be written in the form

4
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of operators acting on the wave function ¥ as the second part of the equation shows.
The first two operators T, and T, are related to the kinetic energy of the electrons and
nuclei. The rest of the terms describe the Coulomb interactions in the system. They
are successively related to the electron-electron repulsion, electron-nuclei attraction and
nuclei-nuclei repulsion. Unfortunately, the exact analytical solution of more complex
systems than the hydrogen atoms is unknown?. In practice, the reasonable models could
consist of many hundreds of atoms and therefore several approximations are needed.

The first, widely used approximation is based on the separation of the motion of the
nuclei from the motion of the electrons. The proton itself is 1836 times heavier than the
electron and from equation 2.4 it is clear that the expectation value of 7}, will be very
small. The Born-Oppenheimer approximation sets the masses of the nuclei m,, to infinity
so the nuclei are static. The electrons thus move in the static potential given by the fixed
positions of the nuclei. Performing this approximation, the electronic Hamiltonian has
the following form

. e 1 Z P oD 4T
He=—§;v3+§.<zzzr—+zz%> + Vee + Ven (2.5)

i=1 j=1 Y i=1 j#i

In other words, the fully interacting system is reduced to the decoupled subsystems
which are shown in the figure 2.1. In the first subsystem, electrons interact with themselves
and with fixed nuclei. The second subsystem describes the nuclei moving in the effective
field given by the electrons. Since the electronic and nuclear part of the Hamiltonian have
been decoupled, we can rewrite the wave function of the system g into the following
form.

Us(ri; Ry) = ve(ri, {R;})Un (Ry) (2.6)

1. is related to the electronic system where the coordinates of the nuclei are fixed,
¥y notes the wave function describing the nuclei moving in the effective field given by
the electrons. We often assume that the nuclei don’t move. In that case, the energy of
the system is equal to the energy of the electronic system augmented by the electrostatic
energy of the nuclei.

In practice, the Born-Oppenheimer approximation can be used to find the electronic
ground states and vibrational modes. In other cases, it is a starting point for the perturb-

ation theory describing other phenomena like electron-phonon interactions [1], polaron
formation, metal-insulator transitions, and the Bardeen—Cooper—Schrieffer theory of su-
perconductivity [2].

Unfortunately, solving the electronic Hamiltonian presented in the equation 2.5 is still
impossible for larger systems and therefore other approximations have to be introduced.
The electron-electron interaction is usually decoupled and the many-electron problem is
split to the one-electron systems where the interaction between the electrons is replaced

2For larger systems like the hydrogen molecule or helium atom, the Schrédinger equation turns into
the many-body problem, which is analytically insoluble. Nevertheless, the solution of the Schrodinger
equation for the hydrogen atom is extremely useful in solving the approximated systems



2.2. HARTREE-FOCK METHOD

BO approximation J/ \] K R
N N X

©
©

Ws(ri, Ry) = Ye(ri, {R;}) X Un(Ry)

Figure 2.1: Scheme of the Born-Oppenheimer approximation. Full-interacting system
with electron-electron, electron-nuclei and nuclei-nuclei interactions is split into two se-
parated systems. The first system consists of interacting electrons moving in the external
potential given by nuclei. In the second system we consider the nuclei moving in the
effective field given by electrons.

by an average potential, resulting into the independent-particles problem which is soluble.
The independent-particles Hamiltonian has always the following form:

i=1

where V(ri, {Rj}) is an effective potential in which the electron moves. This potential
is generally non-local operator which means that value of the potential at the certain
position r is also dependent on other positions r’. It results into the problem that the
value of the potential depends on the distribution of other electrons. In the following
sections, two different approaches how to create the independent-particle system with an
effective potential V (r;, {R;}) are going to be discussed.

2.2. Hartree-Fock method

Hartree-Fock method neglects all correlation effects of the interacting system except the
antisymmetry of the wave function. Nevertheless, this method provides accurate results
in many cases and is used mainly together with density functional theory (DFT).

To keep the antisymmetry, a many-body wave function is expressed as the Slater
determinant of one-electron spin-orbitals?.

Yi(x1)  Yo(x1) ... Yn(x1)
Uy

Vs(X1, %, ) = 1 (:XQ) 'QZ)Q(:XQ) @/JNEXQ) (2.8)

Pi(xn) Ya(xn) .. Un(xn)

3Spin of the electron proceeds from the Dirac’s equation which combines Schrédinger equation with
the special theory of relativity. Spin of the electron can be artificially added to the non-relativistic
Schrédinger equation with the help of spin-orbitals, which introduces a spin coordinate to the one-electron
wave function. If the spin-orbit coupling is neglected, spin-orbitals are orthogonal to each other.
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The result of the antisymmetric wave function is the Pauli’s exclusion principle which
states that two fermions can’t occur in the same state, described by the same quantum
numbers. The antisymmetry of the wave function is defined as

¢A(X1,X27---7Xi—1,xm T >XN) = —¢A(X1,X2,---,Xi7Xz‘—1, T ,XN)

We suppose that single particle wave functions 1;(x;) in equation 2.8 are orthonormal
and then the constant 1/v/N! normalizes the wave function of the system. Variables
x; contain both position and spin of the electrons. To solve the many-body problem
within the Hartree-Fock approximation, a variational principle can be used to derive the
Hartree-Fock equations. In principle, we are looking for the wave function which provides
the minimal total energy.

Eior = (5| Holtbs)

Using orthonormality of the spin-orbitals and Lagrange multiplier method to keep the
spin-orbitals orthonormal, we obtain the Hartree-Fock equations [3]:

M
_—V2wz (r;) Z f]wl (r;) + Z {/ WJ_ . |drj1/11(rl) _
j=1 " j#i /

(2.9)
T3, ;) /w ITJ o r] ﬂ/}j(ri)] = €i(r;)

The first term corresponds to the kinetic energy of the electron. The second term
describes the potential energy of the electron in an electrostatic field generated by nuclei.
The last two terms are connected with electron-electron interactions. The first of them is
called Coulomb and the second one Exchange operator. Equation 2.9 can be rewritten in
the form of a one-electron Schrédinger-like equation

Fi(r;) = €hi(r;) (2.10)

Where % is the Fock operator consisting of the operators mentioned above.
To express the one-electron wave functions, a finite basis set can be used

k
(ri) = Z Cij;(ri) (2.11)

and the optimal constants C;; needed to be determined. If we multiply the left and the
right side of the equation 2.10 by any of the basis function ¢; and integrate over the all
space and spin coordinates, we will receive one by one the linear equations for variables
C;. This system of the linear equations can be expressed in the matrix form:

FC = eSC, (2.12)

F is the Fock matrix, € notes the eigenvalue and S is the overlap matrix. This problem
can be efficiently solved with the help of computer and several packages designed for the
matrix diagonalization, e.g. LAPACK [4] (Linear Algebra PACKage).
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Hartree-Fock method gives in many cases reasonable results because of the exact form
of the exchange energy. The energy given by Hartree-Fock method is a bit higher than
exact energy because of the neglect of electron correlations. To describe the correlation
effects, methods beyond Hartree-Fock were developed. The most used are the Config-
uration Interaction method [5], the Coupled Cluster method [6] and methods based on
Perturbation Theory [7].

The Hartree-Fock method suffers from several disadvantages. E.g. this method be-
comes time demanding when it is used on larger systems, because the computational costs
of evaluating the wave function scales with N22723 [3]. The second disadvantage is the
complete neglect of the correlation effects of the full interacting system and it might lead
to large differences from experimental results.

2.3. Density functional theory

In the previous section we have seen that Hartree-Fock method tries to evaluate the
properties of the system (e.g. the total energy) using the wave function. However, in
real systems, the many-body wave function which belongs to the 3/N-dimensional Hilbert
space is a too complicated object and it is impossible to calculate the properties of the
system for a reasonable computational cost.

Density functional theory is based on the proof that any property of a fully-interacting
system can be described as a functional of the ground state density py which is only a
function of 3 space variables. It is therefore sufficient to deal with the density which is
a much simpler object than the wave function. In 1964, Pierre Hohenberg and Walter
Kohn published a paper in which they described this method as an exact theory for any
interacting system with an external time-independent potential V.., (r) [9]. This formu-
lation also includes the full interacting electronic systems within the Born-Oppenheimer
approximation discussed in section 2. However, the work doesn’t provide a way how
to construct these functionals and in fact, their exact forms except for the one-electron
systems are unknown and they need to be approximated.

Hohenberg-Kohn Theorems

The basis of DFT consists of two theorems published by Pierre Hohenberg and Walter
Kohn. The proofs of these theorems are surprisingly easy and it is possible to find them
e.g. in [2]. The theorems are valid for all many-body systems including the electrons
moving in the Coulomb potential given by fixed nuclei. The Hamiltonian of this system
can be expressed in the form of eq. 2.5 and the Coulomb interaction of the nuclei may be
added later.

Hohenberg-Kohn theorem 1: For any system of interacting particles in an external
potential Vi (r), the potential Vi (r) is determined uniquely, except for a constant, by
the ground state particle density po(r).

The ground state electron density p(r) thus determines the whole Hamiltonian of the
system. If the Hamiltonian is determined, it means that also the wave function of the
ground state and all excited states are determined together with all other properties of
the system.
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Hohenberg-Kohn theorem 2: The ground state energy can be obtained variation-
ally: the density that minimizes the total energy which is given by a universal functional
Elp] is the exact ground state density p.

In other words, it is possible to determine the exact ground state density only with the
help of the functional E[p| by minimizing the total energy. Unfortunately, excited states
must be found in a different way. The first statement is restricted to the non-degenerate
ground states and its proof is trivial. The second statement can be proven by reductio ad
absurdum.

V() <= polr)

\ l
Ui({r}) = Wo({r})

Figure 2.2: Visualisation of the Hohenberg-Kohn theorem. Vi (r) determines in the
Schrodinger equation all eigenstates W;({r}). The eigenstate resulting in the lowest energy
of the system is called ground state ¥y({r}). The ground state wave function yields the
ground state electron density po(r) and Hohenberg-Kohn theorem proves that there is
one-to-one relation between this density and the external potential Ve (r).

It means that external potential V,,;, non-degenerate ground state |¥y) and electron
density p(r) are determined uniquely by each other as it is shown in the figure 2.2. It was
mentioned that all ground state properties and ground state energy are defined by the
electron density. Unfortunately, Hohenberg-Kohn theorems don’t provide any way how
to obtain the explicit form of the functional E [p]. The way how to map the interact-
ing particles problem onto a suitable effective non-interacting system is described in the
following section.

2.3.1. Kohn-Sham scheme

As figure 2.3 shows, Kohn-Sham scheme [10] makes a relation between the full-interacting
many-body system with an external potential V. and a non-interacting system of elec-
trons moving in an effective potential V.g. HK theorems prove that the ground state en-
ergy of N interacting particles in the potential V,,; can be described by the same ground
state density of an auxiliary system of N non-interacting particles. The Hamiltonian of
the auxiliary system consists of the operator of the kinetic energy T and an effective local
potential V g acting on an electron. Even when the exact form of the effective potential
is unknown, we can build its approximated form. This is the cardinal advantage of the
auxiliary system and the whole point of the Kohn-Sham scheme, because the original
full-interacting electronic system is intractable with respect to the DFT. In the following
text we describe how the effective potential is constructed.
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/‘,\

KS scheme mapping

|

Figure 2.3: Kohn-Sham scheme. Full-interacting electronic system is mapped onto an
auxiliary non-interacting system with an effective potential V.g, which yields the same
ground state density py as the original system. According to the Hohenberg-Kohn theor-
ems, these systems are equivalent.

A functional of the total energy of the full-interacting system can be in principle
rewritten into the following form

Elp] =Tlp] + Ulp] + Vp] (2.13)

The functional of total energy is split into the three functionals describing the different
interactions which contribute to the total energy. The first term, T'[p] is related to the
kinetic energy of the electrons. Electron-electron interaction is described with the func-
tional Ulp]. Interactions with the nuclei are included in the last functional, V'[p]. The
explicit forms of T'[p] and U|p] are unknown.

Let’s consider an auxiliary, non-interacting system. In that case, we can calculate the
kinetic term as well as the potential energy of the electrons using the Hartree or Hartree-
Fock approximation. Functional of the kinetic energy in the interacting system, T'[p] can
be replaced by a functional of an auxiliary system T, [p].

Tlp] = Tulp] + Te[p] (2.14)

T.[p] denotes the kinetic correlation functional which is defined as the difference between
the kinetic energy of the full-interacting and auxiliary system. T,[p] can be expressed
with the help of single-particle orbitals ¢; as

Ll =5 [ Ereiwviom (2.15)

where the electronic density p is calculated from the orbitals ¢;.

=3 [ Erooe) (2.16)

In similar way we can also express the functional Ulp]. It is possible to calculate the
Hartree term of the potential energy and summarize the missing contributions in the
exchange-correlation functional U,.[p]. This correction term suppresses the self-interaction

10
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error! and includes the correlation energy describing the electron-electron interaction in
the original system.

Ulp] = Unlp] + Use[p] (2.17)

In summary, the functional of the total energy can be expressed with the help of the
three terms from the auxiliary system. The last term contains the corrections between
the full-interacting and auxiliary system.

Elp] = Tulp] + Unlp] + Vo] + Ezclp] (2.18)

The term E,.[p] is called exchange-correlation functional and includes the self-interaction
energy and correlation energy from the kinetic and potential terms. This functional is
defined in the way to include all the effects arising from many-body problem. In summary,
the exchange-correlation functional is equal to

Epolp] = (T) = Tulp) + (U) — Unlp] (2.19)

Kohn-Sham equations

According to the second Hohenberg-Kohn theorem, we can find the ground state density
variationally. The problem of finding the proper density which results in the ground state
energy can be viewed as the problem of minimization of the total energy with respect to
density p. Our aim is to find the formula for an effective potential V.g of an auxiliary
system. For the interacting system we can write

_ 0Blp] _ 6Tulp] | 0Uulpl | OVl | 0Euclp)

0 op op op op op

(2.20)

For the auxiliary, non-interacting system with the same electron density, the total energy
is equal to

Emmznm+/&m®umm (2.21)

and we receive a similar result as for the interacting system

0 Baualp] _ 0Tnp]
dp op

One can see that the electron density can be determined from the auziliary system with
the external potential

0= V(1) (2.22)

_ 0Uglp] | Vip] | 0E:[p]
- p + op * op

Veat (1) (2.23)

“Hartree term is calculated as the coulomb energy from the electron density.

UH — }/dSTd?)r/p(r)p(r)

2 v — 1’|

We don’t know the contribution of the individual electrons to the total electron density and therefore
electrons interact with themselves in this expression.

11
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So the Schrodinger equation for non-interacting electrons has the form [3]

r— op

1 o1 Moz S Eyelp]
5V [+ e i) =eoi(r)  (224)

where p is an electron density, r and r’ note the position vectors, R; are positions of nuclei
with charges Z;. ¢;(r) denote one-electron functions and ¢; are corresponding eigenvalues.
We have just derived so called Kohn-Sham equations which yield the correct ground state
density for the interacting system. The total energy of the system is not just sum of the
eigenvalues ¢;, but the formula can be derived from the equation 2.18. These equations
are solved using the self-consistent loop shown in the figure 2.4, because the electron
density is dependent on the one-electron orbitals which are being calculated. The first
step is the initial guess of the electron density to construct the Schréodinger-like equation.
In the next steps, Kohn-Sham equations are solved and new electron density from the
Kohn-Sham orbitals is created. This procedure is repeated until a convergence criterion
is reached.

2.3.2. Exchange-correlation functionals

It was mentioned that we do not know the exact form of the exchange-correlation func-
tional and some approximations are needed. It turns out that it is possible to approximate
E..[p] with a local or semi-local functional with remarkably accurate results.

The general strategy for the evaluation of the exchange-correlation functional is to split
it into the exchange and correlation term as it is shown in the eq. 2.25. The origin of the
exchange and correlation effect is different so it is reasonable to handle them separately.

Eyelp] = Eilpl + Eelp] (2.25)

There is a certain freedom in defining both terms of the exchange-correlation functional
and many ways have been developed how to describe this term. It is possible to divide
them into local®, semi-local®, hybrid” and others®. In the following text we will briefly
describe how are these functionals constructed.

Local Density Approximation (LDA)

The most simple approximation which still provides reasonable results for many systems is
called Local Density Approximation (LDA). The exchange and correlation parts are calcu-
lated from the homogeneous electron gas model. We can define the exchange-correlation
energy density e..(p(r)) which is a local function with respect to the electron density. The
exchange-correlation energy is then calculated as an integral over the whole space with
€xc(p(r)) taken at each point of the space assumed to be the same as in a homogeneous

5The exchange-correlation energy depends only on the electron density at specific point of the space

6The exchange-correlation energy depends on the electron density and its gradient at the certain point
of the space

"The exchange term is calculated within the Hartree-Fock method, correlation energy is usually mixed
from more correlation parts of other functionals

8There are also other ways how to define the exchange-correlation functional, but it is not connected
with this work

12
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Initial guess
py(T)

i

Assemble the Hamiltonian
b= _1y2 a3+ / 1 M Z; SEzc[p]
=—3Vit/ rp(r)‘r_r,l +i§1 R T op

l

Solve KS equations

Hei(rs) = eii(rs)

l

Calculate new density

pulr) = 3 61(x)95 (r)

No Converged? Yes
AE < AESTOP l

Calculate properties

Energies, forces, stress tensors, ...

Figure 2.4: Scheme of the self-consistent DF'T cycle.

electron gas with the same density. The exchange part is known for the homogeneous
electron gas and can be evaluated according to this formula [11].

3¢2 (3\"/?
EMPA[p] = - <;> / d*rp*/3 (2.26)

The correlation part E. can be calculated using parametrized expressions taken from
Quantum Monte Carlo calculations.

The Local Density Approximation works well for the systems where the exchange-
correlation effects are short-ranged (e.g. nearly free-electron metal). If the density goes
continuously to zero in the system (like in a one-atom system), LDA usually fails, mainly
because of the large self-interaction errors in the exchange functional.

The systems where LDA doesn’t work sufficiently are a motivation to improve the
functionals with taking into account how is the electron density changing in the close
surrounding.

13
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Generalized gradient approximation (GGA)

The Local Density Approximation fails in the systems with rapidly changing electron
density like molecules. To improve the description of these systems, the gradient of the
electron density is taken into account to compute the exchange-correlation energy. These
functionals are called semi-local because the gradient includes the information of the
infinitesimal area around the point in the space where the exchange-correlation energy is
calculated. Exchange correlation functional can thus be formally written in the following
form.

Epe = Eqelp, Vo (2.27)

Generalized Gradient Approximation provides an improvement of the properties like ion-
ization energies of the atoms, electron affinities, atomization energies, lattice parameters
or surface energies [12]. On the other hand, in some cases GGA doesn’t provide better
results. For example, phonon frequencies are usually calculated more accurately with
LDA [13]. The electronic properties of the materials like the band gap are also described
insufficiently [14] and other approaches are needed to use in order to receive more accur-
ate results. The functional used in this thesis which belongs to the GGA class is called
PBE [15], named by the authors Perdew, Burke, Ernzerhof. In 2008, a modification of
the PBE functional was invented. PBESol describes the equilibrium properties like lattice
parameters, bond lengths better than PBE, but it is usually worse for the properties like
atomization energies [10].

Hybrid functionals

It was mentioned that the the exchange-correlation functionals suppress the self-interaction
error. The hybrid functionals combine the orbital dependent Hartree-Fock method where
the exchange energy is calculated exactly, with a certain DF'T functional which describes
the correlation energy. The exact exchange energy can be expressed in the terms of the
orbitals which is equal to

BHF _ _% > / / e )ty () ()l (2.28)

|r; — rj|

Even when the exchange operator is non-local, it can be implemented to the Kohn-Sham
equations with using the optimized effective potential method [17]. Since the hybrid
functional calculates the exchange energy from the Hartree-Fock method, the calculations
are 10—100x more expensive than regular DFT calculations. This is caused by evaluating
two-electron integrals in equation 2.28.

Hybrid functionals can provide more accurate results for insulators because of the
exact treatment of the exchange energy. For example, the BBLYP hybrid functional [18]
which is widely used in the chemistry community defines the exchange-correlation energy
as

EBSLYP _ (1= g0) EESPA 4 qoBHF 4 a,AEPS 1 0, EYP + (1— a) V"N (2.29)

In periodic systems, the long-range exchange interaction cancels with the correlation
effects so the non-local functional is needed to treat only for the short-range part of

14
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the exchange interaction. This idea is used within the HSE functional [19], where the
screened Coulomb potential is applied only to the exchange interaction in order to screen
the long-range part of the Hartree-Fock exchange. The HSE functional has the form

EﬁSE — aEfF’SR(w) + (1 _ CL)EfBE’SR(w) + EfBE’LR(w) + EfBE (230)

The biggest advantage of the hybrid functionals is the improvement in the fields where
the local or semi-local functionals fail. For example, there is a great progress in evaluation
of the material properties such as band gap values, phonon spectra or the excitation
energies.

15



3. Quantum mechanics in a periodic
system

The previous chapter introduced the Density Functional Theory and the functionals
which can be used in the Kohn-Sham scheme to calculate the electronic and structural
properties of the materials from first principles. Nevertheless, a computational cost of
DFT calculations doesn’t allow to work with systems containing more than a few thou-
sands of atoms. In this chapter we will describe the way how to convert a real solid crystal
(usually consisting of ~ 10** atoms) to the much simpler system using the periodicity of
the crystal. Mathematically, it is possible to solve the Schrodinger equation in a unit cell
with proper boundary conditions instead of solving the problem for a chunk of material
directly.

Crystals are considered to be perfectly translationally symmetric materials ordered
in a periodic lattice. This lattice can be defined in real space by three basis vectors ay,
as, ag as it is shown in figure 3.1. The positions in a lattice R are defined by a linear
combination of the basis vectors

3
i=1

where the coeflicients ¢; are scalars.

as
R O

as
© -

Figure 3.1: Scheme of the unit cell of a crystal. Vectors a;, as, az represent lattice vectors,
the position of atoms R in the unit cell can be obtained by the linear combination of the
lattice vectors ai, as, as.

We have defined the unit cell in the real space as the smallest translationally invariant
volume but it can be equally described in the reciprocal space, which is, as we will see,
more suitable to build the whole mathematical formalism and to introduce reasonable
approximations.

16



3. QUANTUM MECHANICS IN A PERIODIC SYSTEM

Any function which is periodic in a unit cell (f(r +T) = f(r)) can be expanded into
the plane waves representation using the Fourier transform. The wave vectors Q used for
the Fourier transform must fulfill the condition!

T -Q=2mn (3.2)

Where T is the primitive lattice translational vector and n denotes an integer. Similarly
in the reciprocal space, we can define the reciprocal basis set from which we can construct
any suitable wave vector Q in the following way

3

Q=) db; (3.3)

i=1

For this purpose, the basis vectors b; must fulfill the condition
bi caj = 271'5@' (34)

Which can be provided by this explicit expression for the vectors b;.

air X q

bi = 27T€ikl (35)

aj - as X ag
Where €;,; is a tensor which is equal to +1 for even ikl permutations and -1 for odd
permutations.

Now we can define the first Brillouin zone as the volume of the reciprocal space con-
sisting of the points which are closer to the origin than to any other reciprocal lattice
point. It means that we can decompose any reciprocal vector q into the vector k located
in the first Brillouin zone and a vector Q of the primitive reciprocal lattice.

a=k+Q (3.6)

It is possible to express the positions of the atoms and the Coulomb potential given
by the cores in the reciprocal space. The only missing component which is needed to
transform the Schrodinger from the real space to the reciprocal space, is the wave function.
This is done with help of Bloch’s theorem which uses the periodicity of a solid crystal to
reduce the number of electrons in the whole crystal to the number of electrons in the unit
cell.

IThe wave vectors needed for the Fourier expansion must have the same periodicity as the expanded

function. It means that
e TQ =1

which results in the condition
T-Q=2mn

17



3.1. BLOCH’S THEOREM
3.1. Bloch’s theorem

Since the Hamiltonian in a periodic potential is invariant with respect to all lattice trans-
lations, the eigenvalues of the Hamiltonian can be chosen to be eigenvalues of the trans-
lational operators 7T,, as well, defined as

Too(r) = (r + Ty) (3.7)

It can be proven that the eigenstates of the translational operators are equal to e’ T» and
the equation 3.7 turns into

Top(r) = ™ Ty(r) (3.8)

which is known as the Bloch’s theorem. The eigenstates of the Hamiltonian with a chosen
wave vector k — ¢ (r) can be expressed as

P(r) = ™ u(r) (3.9)
where '@ is a plane wave and wuy(r) is a periodic function satisfying the condition
uk(r + T) = ug(r) (3.10)

A scheme of the Bloch wave is visible in figure 3.2. The periodic function wy is
modulated by the plane wave with proper boundary conditions. Using Bloch’s theorem
it is possible to solve the Schrédinger equation for the crystal considering only one unit
cell for each wave vector k and periodic boundary conditions arising from equation 3.9.
In principle, we can choose between reciprocal and real space. As we can see, reciprocal
space takes into account symmetry of the crystal and in these cases it is the most used
way to calculate the electronic properties.

ug (1) Vi (r) etk

Figure 3.2: A scheme of the Bloch wave 1y (r) which consists of the periodic function
uy (r) modulated by the plane wave ¢’** with the proper periodicity. Only the real parts
of the functions are visible.

It turns out that all possible eigenstates defined by the wave vector k are included in
the first Brillouin zone. This is very important for evaluating the physical properties like
density of states, total energies, etc. because it is possible to build an approximation to
calculate only the certain amount of the eigenstates and estimate the desired property

18



3. QUANTUM MECHANICS IN A PERIODIC SYSTEM

as the average value per unit cell. Any physical property can be calculated using the
following formula

_ 1 1
e = o / fi(k)dk (3.11)

Where (17 is the volume of the first Brillouin zone and N}, denotes number of evaluated
wave vectors. The right side of the equation 3.11 takes into account an infinite number
wave vectors and the variable can be considered as continuous in the Fourier space.

3.2. Band structure methods

Using Bloch’s theorem and the Fourier transform of the potential V', the Schrodinger
equation can be written in the reciprocal space for each vector k in the first Brillouin
zone

1
[g(k + K)2 - €:| Ck+K + Z VK—K’Ck+K’ =0 (312)
K/

in the equation 3.12, the wave vectors k + K and k’ + K’ are decoupled and we can
therefore solve the eigenvalue problem for each wave vector k from the first Brillouin zone
separately. The eigenvalues € form a discrete spectrum for all reciprocal vectors k. The
energy values are dependent on the level of the band and also on the wave vector k. The
eigenvalues can be thus labeled with respect to the wave vector k and the energy level n.

€ = €k (3.13)

To solve the Schrodinger equation (3.12), it is necessary to define a proper basis set
for the uk(r) of the Bloch wave shown in equation 3.9. The most simple case is nearly free
electron model in which the electrons are expressed in the form of plane waves, moving in
a smooth potential. This approximation works well in the case of homogeneous electron
gas or valence electrons in metals.

The tight-binding model works with the electrons which are tightly-bound to the nuclei
and feel the spherically-symmetric Coulomb potential. The one-electron wave functions
are expressed in terms of the atomic orbitals located around the nuclei. This approach
is closely related to the Linear Combination of Atomic Orbitals (LCAO) method used in
quantum chemistry. The tight-binding model was successfully, e.g. used to explain the
band structure of the graphene.

However, it is clear that many systems wouldn’t be sufficiently described neither within
the nearly free electron approximation nor tight-binding model. These methods fail be-
cause the coulomb potential is strong in the vicinity of the cores, but smooth in the
interstitial region. In theory, it is possible to express the periodic function of the Bloch
wave in the plane wave basis set, but it turns out that the wave function rapidly oscillates
only in the core region close to the nuclei and therefore a huge number of the plane waves
would be necessary which would make the calculations time-demanding. For this reason,
several more effective methods were developed which are more suitable to use in these
cases.
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3.2.1. Augmented plane wave method (APW)

The first approach that leads to a reduction of the number of plane waves considers the
fact that a wave function of an electron strongly oscillates in the vicinity of cores, whereas
in the region between the atoms, there are almost no oscillations. So in the augmented
plane wave method [20], the wave function near the cores is expressed in terms of atomic-
like functions, i.e.

l
XibK = Y Cimlk + K) A Ru(r)Y;1,(6,6) (3.14)

I m=-I

where Y (0, ¢) are spherical harmonics and R;(r) notes the solutions of the radial Schré-
dinger equation with a certain energy F. The expansion coefficients A;,, are found in the
way to match the Bloch wave, e/8*¥)T gutside the core region. It is important to note that
the radial functions R;(r) are energy-dependent and therefore the Hamiltonian will be also
energy-dependent. It means that the equations are non-linear in energy and they have to
be solved using the iterative schemes. However, this approach is very time-demanding.

ei(k+K)~r

Core region Interstitial region

Figure 3.3: Scheme of the APW method. The wave function in the core region is expressed
in terms of spherical harmonics, in the interstitial region where the potential is smooth,
the basis functions are plane waves.

In order to avoid energy-dependence of the radial functions, the linearized augmented
plane wave method (LAPW) was developed. The main idea is to use a set of pivot energies
and employ their corresponding solutions of radial Schrodinger equation together with the
energy derivatives.

3.2.2. Pseudopotentials

In section 3.2.1 we have seen that the Coulomb potential of nuclei gives rise to rapid
oscillations of the wave function in the core region. In the pseudopotential methods, the
real Coulomb potential is replaced with the weaker potential in the core region which
matches the same potential in the interstitial region. As the consequence, the pseudopo-
tential methods don’t describe the core region right, but many properties of the systems
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3. QUANTUM MECHANICS IN A PERIODIC SYSTEM

like bonding, electrical conductivity or the ionization energy depend only on the valence
electrons which are located outside the core region and are therefore described correctly
by the pseudopotential.

There are several requirements for the pseudopotential. First of all, the pseudo-wave
function outside the core region must be the same as the wave function in the full-potential.
The change of the potential results in the phase shift of the wave function. Therefore the
pseudopotential must cause the phase shift equal to 2n - 7 of the pseudo-wave function
to obtain the same wave function in the interstitial region. This requirement also implies
that there are more ways how to construct the pseudopotential. Figure 3.4 shows how

<V

Figure 3.4: The principle of pseudopotentials. The pseudopotential Vjseudo is constructed
in the way that the full-wave function ¥ and the pseudo-wave function ¥ 4o are equal
beyond the radius r.. Image taken from [21].

does the pseudopotentials work. The nodes of the full-wave function in the core region are
removed while the wave function in the interstitial region remains unchanged. It means
that the lower basis set of the plane waves is needed to describe the pseudo-wave function.
The other requirement — transferability guarantees that the pseudopotential constructed
in one system (usually an atom) can sufficiently well describe the properties of the valence
electrons in other systems like atoms, molecules, bulks or surfaces.
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Norm-conserving pseudopotentials [22] were developed in order to keep the right charge
distribution in the core region for the pseudo-wave function ¢(r) and full-wave function
¢(r) is therefore satisfied this condition

in / () (r)rdr = 4n / 6 ()6 (r)rdr (3.15)

The second class of pseudopotentials were introduced by D. Vanderbilt in 1990 [23].
It offers a way how to even more decrease the number of the plane-waves that are needed
to describe well the valence electrons. In this method, the norm-conserving condition is
relaxed in order to make the pseudo-function as smooth as possible and augmentation
charges are added to counterbalance the wrong charge distribution. These pseudopoten-
tials are called ultrasoft because the pseudo-wave function is calculated with the lowest
possible cut-off energy.

The disadvantage of the pseudopotential methods is that the wave function of the
non-valence electrons is lost, which might influence certain calculated properties. An-
other drawback of this method is that the transferability of the pseudopotentials is not
guaranteed and the results might be unreliable.

3.2.3. Projector augmented wave method (PAW)

In 1994, Peter Blschl published the projector augmented wave method (PAW) [24], which
provides a way how to calculate the all-electron wave function with a great computational
efficiency, similar to the pseudopotential methods. The PAW method uses projectors to
transform the strongly oscillating wave function in the core region to the smoother wave
function, which can be expressed with a smaller basis set.

The PAW method seeks the linear operator 7 which transforms the smooth pseudo-
wave function |¥) into the all-electron wave function |¥).

) =T |T) (3.16)

Since |¥) is smooth enough in the interstitial region, the transformation is only needed
in the core region where the wave function oscillates strongly. The operator is written in
this form

T=1+> Ta (3.17)
R

where R is a position of an atom and 7i modifies the wave function only in the core
region while it remains the wave function unchanged in the interstitial region. We require
that the both all-electron wave function and pseudo-wave function can be expanded to
the basis sets

) =D e of) (3.18)

LEDIETY (319)
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where c? notes the expansion coefficients for the basis sets ¢ or gzgf
Because |¢F) = T |¢R), both basis sets have identical expansion coefficients.

Since we require the operator T to be linear, it is possible to find the projector functions
(pF| which determine the expansion coefficients c’*.

) (3.20)

Equation 3.19 implies that the projector functions (pf| must satisfy the completeness
relation for all core regions

D16 i =1 (3.21)

which implies that the projector functions are orthonormal to the basis set of the pseudo-
wave function inside the core region. It means that

(PR1OR) = iy (3.22)

Using equation 3.21, the operator 7} can be rewritten:

Tn = EZ [6F) (7] = ZE 16F) (0Ff| = Y _(165) — 161) (b1 (3.23)

1

Since the pseudo-wave function and the all-electron wave function are equal outside the
core region, the operator 7 can be written in the following way

T = 1+ZZ(I¢?> — o) (ol (3.24)

There is also certain freedom how to define the projector functions (they must only satisfy
equation 3.21) like in the case of the pseudopotentials. One of the possibilities how to
define the projector functions giving the smooth pseudo-wave functions is to use the
smooth Kohn-Sham potential v, [25]:

i) = (—%VQ + v, — a) o (3.25)

The PAW method offers to calculate the observable properties of the all-electron sys-
tem with the smoother pseudo-wave functions which are more convenient to calculate.
Furthermore, the all-electron wave function is not lost and can be calculated from the
pseudo-wave function using the projector functions. PAW also provides the way how to
calculate the observables using the linear operator 7. Any observable operator O acting

on the all-electron wave function |¥) can be transformed to the operator O using the
pseudo-wave function |¥):

O =T0T (3.26)

More details about the PAW method and the expressions for the individual operators can

be found in [25,26].
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3.3. VIENNA AB INITIO SIMULATION PACKAGE
3.3. Vienna ab initio simulation package

Vienna Ab initio Simulation Package [27] (VASP) is a complex computer program de-
veloped by the research group of Georg Kresse from the University of Vienna. VASP uses
various ways how to find the solution of the many-body Schrédinger equation, including
Hartree-Fock approximation, Density Functional Theory (DFT) or the hybrid function-
als. Many-electron methods like Green’s function methods and perturbation theory is
implemented as well [28].

VASP uses plane wave basis set to treat the valence electrons within the Vander-
bilt’s ultrasoft pseudopotentials or PAW method which allow an efficient reduction of
the basis set. Optimization of the structural properties is implemented with the help
of calculating forces and stress tensors. The electronic ground-state is calculated using
the self-consistency cycle for which the efficient methods of matrix diagonalization (e.g.
RMM-DISS [29] or blocked Davidson scheme [30]) are implemented.

3.3.1. VASP input and output files

VASP uses several files for the setup and the output of the calculations. This section
gives a brief introduction to the input and output files which are used in VASP.

Input files

e INCAR file specifies what kind of calculation is made, which methods are used
and also includes the corresponding parameters. These parameters can be for ex-
ample related to the electronic or ionic relaxation settings, density of states (DOS)
calculations or magnetic properties of the system.

e The POTCAR file contains the parameters of the pseudopotential and the exchange-
correlation potential used in the Kohn-Sham equations. Since these parameters are
transferable, there is a database of the pre-calculated POTCAR files for all common
atoms from the periodic table of elements. If the calculated system contains more
types of atoms, the POTCAR file consists of merged POTCARs of the individual
atoms. We can also find the basic properties inside this file describing the atom,
e.g. atomic configuration or number of valence electrons.

e Geometry of the system — unit cell, atom types and the atom positions — is spe-
cified in the POSCAR file. We can choose between the direct notation of the atom
positions which is defined as the linear combination of the vectors defining the unit
cell, and the cartesian notation, which defines the coordinates for each atom, inde-
pendently on the unit cell.

e The last file which must be defined at the beginning of every calculation is called
KPOINTS file. This file specifies how is the first Brillouin zone sampled, using the
k-point grid. There are several ways how to define the k-point grid. It is possible
to either enter all k-points manually, to define the strings of k-points necessary for
the band structure calculations, or automatically generated k-point meshes [31].
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3. QUANTUM MECHANICS IN A PERIODIC SYSTEM

There might be other input files which are necessary to run the specific method.
For example ICONST or PENALTYPOT files are needed to be specified for the
meta-dynamics calculations.

Output files

The most important output file which contains the whole procedure of the cal-
culation is called OUTCAR. The file contains the results of electronic and ionic
relaxations, band energies, Fermi energy, k-point occupations, stress tensors, forces
acting on ions and many other properties.

The CONTCAR file contains the final structure after the calculation is finished. It
is always provided in the direct coordinates.

The calculated total charge density is stored in the CHGCAR. This file also con-
tains the lattice vectors and the positions of atoms so it can be easily visualized.
Furthermore, CHGCAR file can be used as the input file so the calculation starts
from the predefined charge density.

Information about the wave function can be found in the WAVECAR file. For the
ionic relaxations, this file is generated only for the last step. As in the case of the
CHGCAR file, WAVECAR can be also used to restart the calculation from the
defined wave functions.

Density of states (DOS) and the integrated DOS are specified in the DOSCAR file.
It is also possible to calculate the projected density of states (PDOS) within the
PAW method and the partial occupancies which are stored in this file as well.

In the case of the ionic relaxation, XDATCAR file contains the structures of all ionic
steps. This file is useful to visualize the relaxation processes or molecular dynamics
simulations.
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4. Methods for finding minimum
energy paths

This chapter briefly introduces methods used to find the diffusion barriers of an oxygen
vacancy in the perovskite structures which is one of the aims of this diploma thesis.
Density functional theory can be used to estimate the energy of the system with the fixed
positions of nuclei. We can therefore consider the Minimum Energy Path (MEP) which
connects initial and final states of a reaction, passing the least energetically favorable point
with the lowest possible energy on a Potential Energy Surface (PES). This configuration,
called transition state, is a saddle point connecting the initial and final states. PES has
the dimensionality equal to the number of degrees of freedom of the calculated system.
For the system consisting of N atoms, the PES dimensionality is equal to 3(N — 2)%. Tt
means that more complex systems have more degrees of freedom and it becomes harder
to find a proper minimum energy path.

It is possible to overcome this barrier using a molecular dynamics simulation at elev-
ated temperatures. However, due to the magnitude of the barrier, the transition would
be a rare event, resulting in unfeasible simulation times. This method based on the spon-
taneous transition is not therefore usable in many cases because these simulations would
take too much time. For this reason, more effective methods were developed where bias
forces or potentials are introduced. These forces and potentials influence the system in
order to scan the minimum energy path with a much lower computational effort.

4.1. Nudged elastic band method

Nudged elastic band method is one of the techniques used to find the transition paths
from the initial to final positions. The method is based on a construction of intermediate
images which are chained together with spring forces to ensure an equal spacing of the
reaction path. These forces are defined to act along the chain, whereas the forces coming
from the potential energy are projected to the perpendicular direction of the band so a
relaxation is only allowed in the hyperplanes perpendicular to the path.

The great advantage of this method is an explicit mapping of the reaction pathway
with a reasonable computational cost, depending on the number of evaluated images. In
practice, we need to define the images connecting the initial and final state, which is
possible with a linear interpolation of the atomic positions as it is shown in figure 4.1.
However, this initial guess doesn’t have to be optimal in all cases and we might end with
the transition path which is not the minimal energy path. Another drawback of this
method is the fact, that the transition state is not calculated directly. If the sufficient
number of images is generated, this method provides a structure close to the saddle point,
but if one needs to calculate the saddle point accurately, it is necessary to use variations
on NEB, such as climbing NEB or another method. The other disadvantage is related to
the temperature dependent simulations. Because the nudged elastic band method works
at the 0 K temperature, one needs to use more advanced methods to estimate e.g. the
temperature dependences of energy barriers. More comprehensive study concerning the
nudged elastic band method can be found in [32].

Lfor all N > 2.
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4. METHODS FOR FINDING MINIMUM ENERGY PATHS

Figure 4.1: A scheme of the Nudged Elastic Band method. The dashed line notes the
band connecting the initial and final state at the beginning of the calculation. Images
composing the band are relaxed with help of projected forces coming from the spring
binding of the images and potential energy of the landscape. The final band marked as
the solid line is obtained by minimizing the total energy for each image which is biased
by these forces. Image taken from [33].

4.2. Dimer method

Dimer method is a technique for finding saddle points on the potential energy surface.
The main idea is to move a reactant in the direction of the softest vibrational mode. To
find this direction, two auxiliary systems need to be created which are equally displaced
from the actual position on the opposite sides along an axis, creating a dimer as it is
shown in figure 4.2. The dimer is rotated around the middle point and we look for the
lowest sum of total energies of the auxiliary systems composing the dimer. This procedure
aligns the dimer along the softest unstable vibrational mode. As the last step, the energy
is maximized in this direction, while all other perpendicular directions are minimized. It
results into an introduction of an “Effective Force” which is a sum of the “True Force”
acting on atoms in the system and the force acting along the lowest curvature direction,
as it is shown in figure 4.2.

Because there are usually many saddle points in the potential energy landscape, it is
necessary to define an initial dimer axis. The axis can be guessed or we can also overcome
this problem by the vibrational analysis to find the proper direction for the first step of
the dimer method. This method works better when we have an idea about the structure
of the transition state so we are close to the saddle point on PES. For our purposes, the
main advantage of this method is the possible combination with the nudged elastic band
method discussed in the previous section.

A disadvantage of the dimer method is again connected with more complex systems.
Unfortunately, there is no guarantee that this method finds the proper saddle point which
might be a problem in more complex systems. More information about this method,
e.g., how does the rotation of the dimer work with different algorithms, the process of
translation of dimer, how to select the initial configurations and some practical examples
can be found in [34].
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4.3. METADYNAMICS

Figure 4.2: A scheme of a dimer method. A dimer is created from the image and it is
aligned along the lowest curvature direction. The force acting on ions is biased by the
force acting along the dimer axis, resulting to the effective force.

4.3. Metadynamics

The last method discussed in this chapter and used in the thesis is called metadynamics.
Unlike the previous methods, this method calculates free energies which also includes the
entropic contribution. In this method, the bias potential V is introduced which acts on
the geometrical parameters, e.g., distances between atoms, angles, torsions and its linear
combinations, which are called collective variables. The bias potential is updated during
the simulation with the Gaussian hills, usually after several ionic steps, according to this
equation:

N 2
V() = hze_(%fé)_ (4.1)
1=1

where h and w are parameters provided by a user defining the Gaussian hill — height and
width respectively. After several ionic steps, another Gaussian hill is added to the bias
potential at the actual position of the collective variable &;. The bias potential influences
the Hamiltonian of the system in the following way:

H=H+V (4.2)

where H is the Hamiltonian for a metadynamics simulation and H notes the Hamilto-
nian for an original unbiased system. Once we define a collective variable, a bias po-
tential starts to fill the low-energy regions which allows to overcome the barriers placed
at the collective variable. Furthermore, it is possible (and often necessary) to perform
temperature-dependent calculations by giving a kinetic energy to the atoms and invest-
igate a temperature dependence of the barriers. When the calculations don’t run under
the 0 K temperature, this method provides a free energy barrier [35].

The calculation process is shown in figure 4.3. The collective variable is filled with
the bias potential, until the whole valley is filled and the movement along the collective
variable is diffusive. The free energy is then estimated from the sum of all Gaussian hills
put to the system.
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4. METHODS FOR FINDING MINIMUM ENERGY PATHS

This method provides a way how to overcome the problems of NEB and dimer method,
because we can introduce a temperature for these calculations and we scan the whole
relevant part of the potential energy surface for the transition. A drawback is related to
the computational cost of these simulations, because we usually need thousands of ionic
steps to obtain relevant results.
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Figure 4.3: Computational procedure of a metadynamics simulation. Image taken from

[35].

More comprehensive study concerning metadynamics method can be found in [30].
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5. Lead zirconate titanate (PZT)

Lead zirconate titanate is a piezoelectric and ferroelectric ceramics material which con-
sists of lead titanate (PbTiO3) and lead zirconate(PbZrOs3). It belongs to the perovskites
group which has a general formula ABO3, where “A” denotes the divalent cation® located
at the corners of the unit cell, “B” is related to the tetravalent cation? placed in the middle
of the unit cell, and “O3” marks the oxygen atoms which are located in the center of the
faces. The structure of the single compounds of the PZT ceramics is shown in figure 5.1.

Figure 5.1: Structure of the cubic phases of PbZrO3; and PbTiOs.

The PZT ceramics can be formally written as PbZr;,Ti,O3 and can be considered
as an alloy made of two compounds. Structural properties depend on a fraction of ti-
tanium (equal to x in the chemical formula) and temperature. As the phase diagram
which was reported by Woodward et al. [37] in figure 5.2 shows, PZT exists in the rhom-
bohedral phase for the high Zr:Ti ratio (x < 46) while the tetragonal phase is preferred
in the titanium-rich alloys. The most important part of the phase diagram is the ver-
tical line located at x ~ 0.47 which is called morphotropic phase boundary (MPB). It
divides the region into the titanium-rich part with the antiferroelectric tetragonal phase
with the space group symmetry P/mm. The region located on the left side where the
concentration of zirconium dominates, is composed of the ferroelectric rhombohedral low-
temperature and high-temperature phases with the space group symmetry R3m and R3c.
The phase diagram also shows the temperature-dependent phase transition to the cubic
phase which doesn’t evince any ferroelectricity when the temperature exceeds the Curie
point. These points form the highest line in the graph which goes from 230 °C for the lead
titanate to 490 °C for the pure lead zirconate. The experiments show increased piezoelec-
tric sensitivity near the morphotropic phase boundary. It was proposed that the increased
piezoelectricity is observed due to the coexistence of both rhombohedral and tetragonal
phases. In 1999, Noheda et al. explained this effect by the presence of the monoclinic
phase [38] which was also reported in other experiments [39—11]. However, the measure-

n our case Pb2t
27y4* or Ti*t for the PZT ceramics
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5. LEAD ZIRCONATE TITANATE (PZT)

ments in [39] showed that the monoclinic phase is also present in the Zr-rich region and
the real composition of the phase diagram is therefore still unsolved.
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Figure 5.2: Phase diagram of the lead zirconate titanate alloy. Taken and rearranged
from [37].

5.1. Applications

Ferroelectricity and piezoelectricity of the lead zirconate titanate can be employed in the
number of applications and it is nowadays one of the most frequently studied piezoelectric
material. Unfortunately, lead oxide, which is a part of this material, is very toxic and
causes the pollution of an environment. Therefore lead-free piezoelectric materials like
bismuth sodium titanate, potassium sodium niobate and bismuth potassium titanate are
being recently studied [12]. However, because there is not still reasonable substitute for
PZT, it is still being used in many applications.

Piezoelectric sensors are used to measure the stress changes by generating a charge
output which is proportional to an applied stress. PZT ceramics has been successfully
used for these purposes because of high piezoelectric coefficients near the morphotropic
phase boundary [13]. Nevertheless, Dubois reported [11] that also other alloys which are
not located at MPB are usable because of their high transverse piezoelectric coefficient.
Figure 5.3 shows a simple scheme of a sensor. The structure of the sensor is equal to
the capacitor, consisting of two metal plates and a piezoelectric material between them.
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5.2. EFFECT OF DOPING

When an external pressure is applied, the sensor is deformed which invokes an excess of the
surface charge which results in a voltage. Since the voltage is proportional to an applied
stress, it is also possible to use the piezoelectric effect reversely in manipulators used e.g.
in the Atomic Force Microscopy (AFM) cantilevers [15]. When the voltage is applied to
the piezoelectric manipulator, the material is deformed due to the piezoelectricity. The
goal of the manipulator is to repeat slow and fast displacements which cause the motion.
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Figure 5.3: A scheme of the piezoelectric sensor.

Ferroelectric materials have two different electric polarization states which are stable
even when the external electric field is absent. These states can be swapped by applying an
external field which makes the PZT ceramics possible to use it in non-volatile ferroelectric
random access memory applications [16]. With the help of these two different polarization
states it is possible to store a binary information — logic 1 and logic 0. Unfortunately it
was revealed that PZT suffers from the fatigue problem which is probably connected with
trapping of oxygen vacancies at electrodes [47].

5.2. Effect of doping

Properties of the lead zirconate titanate can be tuned with a dopant which replaces an
original ion in the structure. Doping of the PZT ceramics can be used to enhance the
specific structural or electronic property which is crucial in real applications. For example,
in the case of sensors or actuators, high dielectric constant and piezoelectric coefficient
is required. Doping can be also used to suppress the fatigue problem occurred in non-
volatile memories [18]. Considering the perovskite ABOj structure, both ions in“A” site
or “B” site can be substituted. The preference is mainly dependent on the atomic radius
of the doped atom. If the atom radius is small, the “B”-sites are rather occupied with
a dopant, “A”-sites are preferred in the case of large atomic radius. The doping of the
PZT ceramics can be divided on the “soft”-donor doping (e.g. Nb>T, Sb>F La3*t, Fe?")
and “hard”-acceptor doping (Fe?™, Mn3t) [19].

Effect of doping strongly influences formation of oxygen vacancies which have an
important impact on functionality of the PZT. Recent experiments show unusual behavior
of the ionic conductivity in doped PZT ceramics which is related to the ability of the
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5. LEAD ZIRCONATE TITANATE (PZT)

oxygen vacancies to diffuse through the material. The following subsections describe the
experimental results [50] of the donor-doped and acceptor-doped lead zirconate titanate
which is in focus of computational simulations presented in this work.

Soft doping

Formation of an oxygen vacancy is done by removal of an oxygen atom from the perovskite
structure. The oxygen is in O% state and it is needed to balance the charge of two electrons
by other atoms in the material to create an oxygen vacancy. In other way, we can consider
the oxygen vacancy as a positive particle which can react with doped atoms. The “soft”
doping is caused by an electron donor, e.g. La®", which replaces the lead atoms at “A”-
sites. Replacement of a divalent lead by a trivalent lanthanum brings an extra electron
which can react with the positively-charged oxygen vacancy according to the equation:

1
2
According to this formula, oxygen vacancies are being trapped with the divalent lanthanum
atom, which comes to the more stable, trivalent configuration. It means that donor-doping
suppresses the formation of the oxygen vacancies in the bulk. However, the ionic con-
ductivity is not completely suppressed, but it is only significant at the grain boundaries
which is a defect-rich area. Image 5.4b shows the distribution of the 'O tracer in the
near-surface region. The areas with high concentrations of the 8O tracer implies high
diffusion of the oxygen vacancies. As it is shown in figure 5.5, the penetration of the
oxygen tracer is suppressed in the case of lanthanum-doped samples which corresponds
to the lower mobility of the oxygen vacancies. More information concerning the results
for the soft-doped PZT can be found in the experimental paper [50].

La’t 4+ - V&§ < La’* (5.1)
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Figure 5.4: 180 tracer fractions of differently doped PZT analyzed by Time of Flight
Secondary Ion Mass Spectroscopy (ToF-SIMS). Images taken from [50].
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5.2. EFFECT OF DOPING

Hard doping

In contrary to the soft-doped PZT, hard doping supports creation of the oxygen vacancy in
the material. Unlike the soft doping, when a tetravalent Ti*" is replaced with a trivalent
Fe3t, it forms half of an oxygen vacancy by trapping an electron from the oxygen and the
oxygen vacancy is created according to the following formula:

1
Fe't <= Fe’* + 5\/2; (5.2)

The acceptor-doped samples exhibit less sharp hysteresis loops and lower dielectric con-
stants [50]. Mobility of the oxygen vacancies is also higher than in the donor-doped case
which causes the accumulation near the film-electrode interfaces. Higher concentration
of the oxygen vacancies causes higher ionic conductivity without indication of the fast
grain boundary diffusion. Figures 5.4a and 5.4b show the main difference in the oxygen
vacancy diffusion in acceptor-doped and donor-doped PZT. In the first case, the oxygen
vacancy diffuse through the whole material, while in the donor-doped PZT, the diffusion
is limited only to the grain boundary.
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Figure 5.5: Depth profiles of donor-doped, undoped and acceptor-doped samples measured
by Time of Flight Secondary Ion Mass Spectroscopy after 30 min tracer diffusion at 560 °C.
Image taken from [50].

Figure 5.5 shows the logarithmic depth profile of five differently doped PZT samples.
It is shown that the 1% Fe-doped samples evince higher oxygen penetration than the
undoped PZT ceramic. The rest of the samples have the smaller penetration depth which
indicates that the oxygen vacancies are trapped even in the acceptor 0.5 % Fe case.

Diffusion of the oxygen vacancies is described by the diffusion coefficient Dy resulting
from the Fick’s laws of diffusion. The tracer diffusion coefficients D, measured in the
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5. LEAD ZIRCONATE TITANATE (PZT)

experiments are related to the correlated motion of the mobile oxygen vacancies xy by [50)]

Db = vaDv (53)

where f is the correlation factor of the lattice. The diffusion coefficients are dependent
on the temperature according to the Arrhenius equation

Ea

Dy = Dye” 7t (5.4)

where F 4 notes the activation energy and T temperature of the system.

The estimated diffusion coefficient for the oxygen vacancy is in terms of 10~'? cm?s™
according to [50] for a acceptor-doped case and the similar value is predicted in the earlier
study for undoped case [51].

1

5.3. Trapping mechanisms of oxygen vacancies

This section summarizes the experimental results [50] concerning diffusion coefficients of
the oxygen vacancies in both doped and undoped lead zirconate titanate. The resulting
values of diffusion coefficients in the acceptor-doped PZT couldn’t be explained by simple
chemical considerations which sets up the motivation for the practical part of this thesis.

The first remarkable fact proceeds from the comparison of the relative differences
between measured diffusion coefficients of the 1.5% La-doped and 1% Fe-doped PZT.
The ratio between the diffusion coefficients in the donor-doped and acceptor-doped PZT
was estimated to be ~ 371 for 560°C and ~ 54 for 715°C. However, the ratios are very
small compared to the expectation values. Concentration of mobile oxygen vacancies in
a similar Nd-donor doped PZT was estimated to 0.01 ppm range [52] which would result
in 4 ppm concentration of mobile oxygen vacancies for the 1% Fe-doped PZT. If all iron
dopants were participated in the creation of the mobile oxygen vacancy, there would be the
normalized vacancy concentration 1667 ppm with respect to the oxygen sites. Comparison
of diffusion coefficients and activation energies in the Sr'TiO3 perovskite [53] also indicates
that concentration of the mobile oxygen vacancies in the lead zirconate titanate is in terms
of 2ppm. It was proposed that the unusually low diffusion coefficients for the acceptor
doped PZT are caused by trapping of the oxygen vacancies and a trapping mechanism
increases the activation energy in equation 5.4 which causes the oxygen vacancies to
be immobile. To explain the trapping of oxygen vacancies, several mechanisms were
proposed:

e The first mechanism known from the SrTiO3 perovskite is based on the formation
of the Fe** cations — the reverse process described by the equation 5.2. However,
it was assumed that this cannot be the only relevant trapping mechanism because
some experimental results, like temperature dependence of the hole conductivity
couldn’t be explained.

e Existence of the tetravalent Pb** instead of on the“A”-site in the perovskite struc-

tures was proposed in many works [54-56]. It was suggested and discussed in [50,51]
that trapping of the oxygen vacancies can be caused by formation of a tetravalent
lead.
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5.3. TRAPPING MECHANISMS OF OXYGEN VACANCIES

There are some theoretical works dealing with structural, electronic and piezoelectric
properties in the PZT or in pure compounds [57,58], using GGA and hybrid functionals.
Because there are not any published theoretical works estimating the activation energies of
the oxygen vacancy motion in lead zirconate titanate, the aim of this diploma thesis is to
use the density functional theory to investigate the trapping mechanisms from a theoretical
point of view using the GGA and hybrid DFT approach to perform the calculations.

36



6. APPLICATION OF DFT ON LEAD PEROVSKITES

6. Application of DFT on lead
perovskites

This chapter is focused on density functional theory calculations of electronic and
structural properties of lead titanate (PbTiO3) and lead zirconate (PbZrO3). The aim of
the presented work is to identify the diffusion energy barriers of oxygen vacancies inside
the bulk material. Our aim is to explain the trapping mechanisms of oxygen vacancies
which is still unclear. All structural and electronic calculations were performed in Vienna
ab-initio simulation package (VASP) and the structural plots were exported using VESTA
program [59].

Lead zirconate titanate is an alloy of two perovskite materials — lead zirconate and
lead titanate. We will discuss the structural and electronic properties of the separate
alloys and changes of these properties by presence of an oxygen vacancy. We will also
present results of activation energies and energy barriers related to the diffusion of an
oxygen vacancy in the lead titanate and lead zirconate perovskites.

DFT pre-calculations

First-principles (or ab-initio) methods don’t generally need any empirical parameters for
a calculation process. Nevertheless, these methods often solve problems numerically and
it is necessary to define properly certain parameters related to the accuracy of the cal-
culations to obtain reliable results. In all cases, it is needed to define properly at least
two parameters which correspond to the convergence issue and which are dependent on
the specific material, shape of the unit cell and the size of the cell. The first required
parameter, k-points grid, is related to sampling of the Brillouin zone, according to the
formula 3.11 where the sufficient number of k-points must be evaluated to describe the
sampling correctly. The number of essential k-points also depends on the electronic prop-
erties of the system. For example, metallic materials generally require more k-points than
insulators or semiconductors. A relevant grid is also dependent on the chosen smearing
method and on the cut-off energy. Furthermore, even and odd uniform k-points grids
can provide different results so it is necessary to reach the absolute convergence. For our
purposes we chose Gamma-centered and Monkhorst-Pack schemes [31]. The convergence
criterion for the k-points grid was established in the way that the absolute difference of
the total energy per atom of the systems calculated with the converged grid and 12x12x12
Monkhorst-Pack grid was below 1 meV.

The second parameter corresponds to a size of thew plane-wave basis set which is
needed to describe correctly valence electrons. Number of required plane waves depends
on the chosen k-points grid, atoms inside the unit cell and also on the shape and volume
of the cell. Size of the basis set is defined by the cut-off energy of plane waves that fulfill
the inequation

h2

€

K +k[* < Ee (6.1)

are considered. The left part of this equation is related to the kinetic energy of a free
electron described by the wave vector K + k. Usual values of the energy cut-off are given
in terms of hundreds of electronvolts. The chosen convergence criterion is similar to the
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case of the k-points grid. We took the energy cut-oftf which results in the error of the total

energy per atom lower than 1meV.
5

The reference cut-off energy was set to 1000eV.
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Figure 6.1: Convergence of the energy cut-off parameter using 5x5x5 Monkhorst-Pack
k-points grid on the cubic lead zirconate. The 1 meV convergence criterion is reached for

the cut-off energy equal to 700eV.
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Figure 6.2: Convergence of the Monkhorst-Pack k-points grid using the 700eV cut-off
energy. The convergence criterion is reached for 5x5x5 k-points grid in the case of the

cubic lead zirconate.

Cut-off energy and k-points grid

are mutually dependent and it is necessary to reach

both convergence criteria at the same time. With a change of one property must be also
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6. APPLICATION OF DFT ON LEAD PEROVSKITES

checked the second property. Figures 6.1 and 6.2 show the convergence of the k-points
grid and energy cut-off for the cubic lead zirconate unit cell. We can see that cut-off
energy is converged at the same value as the k-points grid and vice versa.

DFT precalculations were also performed for the cubic lead titanate systems and we
received the same energy cut-off and k-points grid as in the case of the lead zirconate.

6.1. Bulk properties of PbZrO3; and PbTiO;

Lead zirconate (PZ) is an antiferroelectric material which is employed in many applications
like actuators, capacitors and charge storage devices [60]. The antiferroelectricity exists
only in the orthorhombic phase which is stable up to 520 K [61]. When the lead zirconate
is heated above this temperature, PZ becomes cubic.

Unlike the PZ, lead titanate is a ferroelectric material at the room temperature which
stays tetragonal up to 760 K and then it is transformed to the cubic phase and the fer-

roelectricity disappears [62]. The ferroelectricity is caused by the displacement of the
titanium atom from the center of the oxygen octahedra.
Phase ‘ a [A] ‘ b [A] ‘ c [A] ‘ vV [A?]
cPZ PBE 419 | 4.19 | 4.19 | 73.56
HSE 4.14 | 414 | 4.14 | 70.96
Exp. [63] | 4.16 | 4.16 | 4.16 | 72.06
oPZ PBE 5.96 | 11.88 | 8.29 | 586.97
HSE 5.85 | 11.83 | 8.22 | 568.87
Exp. [64] | 5.88 | 11.78 | 8.20 | 568.27
cPT PBE 3.96 | 3.96 | 3.96 | 62.29
HSE 3.92 | 392 | 3.92 | 60.24
Exp. [65] | 3.96 | 3.96 | 3.96 | 62.28
tPT PBE 3.85 | 3.85 | 4.72 | 69.86
HSE 3.87 | 3.87 | 424 | 63.50
PBESol | 3.90 | 3.90 | 4.08 | 62.06
Exp. [66] | 3.89 | 3.89 | 4.17 | 63.28

Table 6.1: Lattice parameters of the PZ and PT phases calculated with PBE, HSE and
PBESol functional and compared with the experimental values.

This section is focused on the process of evaluating structural and electronic bulk
properties of PZ and PT perovskites. The starting point of our calculations is the estim-
ation of unit cells of all mentioned structures. The experimental data of the unit cells
were taken as the starting configuration for calculations and we optimized them to its
equilibrium state with respect to the volume of the cell, shape of the cell and internal
coordinates of atoms. The energy cut-off was chosen according to the convergence calcu-
lations to 700 eV and we used 5x5x5 Monkhorst-Pack k-points grid. Electronic relaxations
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were stopped when the energy differences between electronic steps were below 107° eV and
ionic relaxation was stopped when all forces acting on ions were lower than 107 2eV A~

Table 6.1 shows the bulk lattice parameters for the cubic and orthorhombic lead zir-
conate (cPZ, oPZ) and cubic and tetragonal lead titanate (cPT, tPT). Except the cPT
phase, PBE overestimates the equilibrium volumes up to 3.6 % for the PZ phases. It is
known from other perovskite structures that PBE tends to overestimate the volume of the
cells [67]. Tt is also shown that PBE fails in describing the tetragonal lead titanate phase.
The volume of the cell is increased by 10% and c/a ratio which defines the tetragonal
distortion is increased from 1,07 to 1,23. Because the results obtained by PBESol func-
tional' are in much better agreement with the experimental data in the case of tetragonal
lead titanate, we chose this functional for this phase for further calculations.

Figure 6.3 shows the calculated structures of all mentioned PT and PZ phases. The
length of the unit cell vectors of the cubic lead zirconate shown in figure 6.3b is ~ 1,06 x
higher than for the cubic lead titanate. This increase of the length is expectable because
zirconium atom has an extra d-shell filled with electrons compared to the titanium atom
and has therefore a bigger atomic radius. Volumes of the tetragonal and cubic lead
titanate unit cells are comparable. The main difference between these structures is a shift
of titanium atoms upwards which gives rise to a dipole moment between the titanium and
oxygen atom. The unit cell evinces a spontaneous polarization in direction of the shift
of the titanium atom which causes this material to be ferroelectric. Zirconium atoms in
the orthorhombic PZ are also displaced from the centers and all octahedra are alternately
tilted to the right and to the left which causes opposite dipole moments and for this reason
the material shows antiferroelectricity.

6.1.1. Electronic properties of the PZ and PT phases

An important quantity for investigation of the electronic properties is the density of states
(DOS) which describes the number of states per energy interval. This property can be
calculated using the equation 3.11 from the following formula:

p(E) = 3 3 dleis— ) (6:2)

where ¢ is a delta function which is equal to 1 for ¢;x — E = 0, otherwise it is equal to
0. By plotting this energy we can obtain the important properties like a band gap value
which defines whether the material is metallic, semiconductor or insulator. To estimate
the localization of the states in atomic orbitals it is possible to monitor projected density
of states (PDOS) which is calculated by inserting this complete orthonormal basis into
the equation 6.2:

pE) = 3= 33 (nli) i) Sleinc — ) (6:3)

where the orthonormal basis (like atomic orbitals) fulfill the condition ) |i,) (i,| = 1.
"

'PBESol functional also belongs to the GGA class and the computational cost is comparable with
PBE.
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4.08A

3.90 A

(a) Optimized cubic lead titanate (b) Optimized cubic lead zircon- (c) Optimized tetragonal lead ti-
structure with PBE functional. ate structure with PBE func- tanate structure with PBESol
tional. functional. The unit cell is pro-
longated in ¢ direction and the ti-
tanium atom is shifted from the

center of the oxygen octahedra.

8.29 A

5.96/;\1 -

11.88 A
(d) Optimized structure of the orthorhombic lead zirconate. Oxygen
octahedra are tilted in the material.

Figure 6.3: Structures of the calculated bulk phases of lead titanate and lead zirconate
with PBE or PBESol functional.

Figures 6.4 show the plotted DOS and PDOS on the energy scale. Projected densities
of states are taken with respect to the atomic orbitals localized at lead, titanium and
zirconium atoms. Since the DFT calculations were performed at the 0 K temperature, the
Fermi energy is equal to the energy of the highest occupied band. The Fermi energy in the
graphs is set to zero so the states of the negative values of energy are related to valence and
core bands, while the region of positive energies corresponds to a conduction band. The
valence and conduction bands are split by the energy gap which can be experimentally
measured. It turned out that the band gap values are not calculated correctly at GGA
level [68]. Therefore we also performed hybrid HSE calculations which are in much better
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(a) Density of states for the ¢cPT calculated with (b) Density of states for the cPZ calculated with
PBE functional. The band gap value is 1.83€V. PBE functional. The band gap value is 2.84eV.
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(c) Density of states for the cPT calculated with (d) Density of states of cPZ calculated with HSE
HSE functional. The band gap value is 3.19eV. functional. The band gap value is 4.29eV.

Figure 6.4: Density of states of the cubic PT and PZ phases calculated with PBE and
HSE functional.

agreement with the experimental band gap results of the titanate perovskites [69]. The
density of states performed with HSE are calculated at the equilibrium lattice constant.

In all cases, the band gap is wider for the HSE functional and are in a better agreement
with the experimental data which are shown in table 6.2. The PDOS show the important
difference between cPZ and cPT plots in the conductive band. The states of the conductive
band in cPT, which are shown in figures 6.4a and 6.4c, are localized mainly in the titanium
atoms. On the other hand, PBE and HSE predict a localization of these states in the lead
atoms for the cPZ as it is shown in figures 6.4b and 6.4d.

Phase ‘ GGA ‘ HSE ‘ Exp.
cPT | 1.83 [ 3.19 [ 3.4 [70]
cPZ | 2.84 | 429 | 3.7 [70]
tPT | 1.99 | 2.66 | 3.6 [71]

[72]

oPZ | 2.80 | 5.00 | 4.3

Table 6.2: Comparison of experimental and calculated band gaps (in eV) at GGA and
hybrid level. PBE functional was used for cPT, cPZ and oPZ phases, the band gap of the
tPT phase was calculated with PBESol.

Figure 6.5 shows the plotted density of states and PDOS to the lead and tetravalent
atom. By comparing images 6.5b with 6.5a or 6.5d and 6.5c we can see that the lead
zirconate contains much more lead states in the conduction band as in the case of the
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(a) Density of states for the tPT calculated with (b) Density of states for the oPZ calculated with
PBESol functional. The band gap value is 1.99eV. PBE functional. The band gap value is 2.80eV.
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(c) Density of states for the tPT calculated with (d) Density of states of oPZ calculated with HSE
HSE functional. The band gap value is 2.66eV. functional. The band gap value is 5.00eV.

Figure 6.5: Density of states of the tetragonal PT and orthorhombic PZ calculated with
PBEsol/PBE and HSE functional.

cubic phase. The band gap of the orthorhombic phase is increased with respect to the
cubic phase at PBE and HSE level. This is in agreement with observations in [72].

6.1.2. Formation of an oxygen vacancy

In real measurements of the ionic conductivity of PZT, concentration of oxygen vacancies
is in terms of ppm. It is therefore necessary to build a supercell which is made of several
unit cells to reflect this fact. Unfortunately we are only able to deal with concentrations
around ~ 1% because of too large computational cost which is needed for calculations
of larger supercells. An oxygen vacancy can be included to the system by removal one
oxygen atom. Since we need to break the bonds of the oxygen, this process is described by
a formation energy which defines how much energy is needed to form an oxygen vacancy.
The formation energy can be thus calculated by the following equation with the energy
of molecular oxygen as the reference.
1
Eform = Evac — N Egui + 5 Fo, (6.4)
Ev.. is the total energy of the supercell with the oxygen vacancy, N notes number of unit
cells which the supercell is made of and Egyy is the total energy of one unit cell of the
same bulk phase.
When the structural changes are calculated, we can evaluate the influence of the
oxygen vacancy on density of states as in the case of the bulk phases. The calculation
procedure of the oxygen vacancy formation consists of introduction of the oxygen vacancy
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by removal of one oxygen atom and relaxation of positions of ions inside the unit cell at
the bulk lattice parameters.

We created 2x2x2 and 2x2x4 supercells containing 8 and 16 formula units? of all
discussed phases. Because the calculated unit cell is bigger, the k-points grid can be
reduced. According to the convergence tests, we chose 3x3x3 Monkhorst-Pack k-points
grid for GGA calculations, which provided the total energy error 1.23meV per atom.
Calculation of the formation energies with the hybrid HSE were performed on 2x2x2
Gamma k-points grid with the total energy error equal to 3.7 meV per atom. Because the
formation energies are in terms of electronvolts, the results are still reliable.

Phase | Functional ‘ Eupux [eV/fu] ‘ FEtormax2x2 [€V] ‘ FEformax2xa [€V]

cPZ PBE -39.19 4.83 3.92
PBESol 4111 5.63 5.71

HSE _47.63 3.90 3.41

oPZ PBE -39.45 4.66 4.60
PBESol ~41.38 5.84 5.28

HSE 4817 5.61 7.04

cPT PBE _37.45 5.34 5.88
PBESol -39.36 5.21 4.77

HSE -45.92 3.35 3.47

tPT | PBESol -39.42 5.44 5.41
HSE -46.01 3.61 3.02

Table 6.3: Bulk and formation energies for lead titanate and lead zirconate phases, con-
sidering 2x2x2 and 2x2x4 supercells.

Table 6.3 shows calculated bulk and formation energies of lead titanate and lead zir-
conate phases. FEyy is the total energy of the ground state taken per formula unit. We can
estimate the preference of the phases by comparing these energies with the corresponding
functional. In the case of lead zirconate, all functionals predict that the orthorhombic
phase is more stable than cubic phase. The total energy differences are in range from
270 meV /f.u. according to the PBESol to 540 meV /f.u. according to the HSE functional.
The energetic order is in agreement with experiments because the antiferroelectric or-
thorhombic phase is more stable at low temperatures. Tetragonal lead titanate which
is known from experiments at low temperatures, is more preferred according to PBE,
PBESol and HSE functionals by 30, 60 and 90 meV /f.u., respectively.

Formation energies were calculated according to the equation 6.4. The energy of the
supercells with an oxygen vacancy were calculated in different way for low temperature and
high temperature phases. We observed significant octahedra distortions and dislocations
of lead atoms for the cPZ and cPT phases. Therefore the positions of atoms whose distance
was bigger than 5 A were fixed. For most of the systems the formation energy is smaller
in the bigger supercell which would mean that the vacancies are repulsive in the material.

2formula unit means the group of atoms which create the primitive cell. In our case one formula unit
means PbTiO3 or PbZrO3 group.
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Unfortunately the fixation of atoms can strongly influence the formation energies and
the results for cubic phases are not thus reliable. There is a huge difference between
the formation energies of orthorhombic lead zirconate calculated with HSE functional for
different supercells. This can be an effect of strong localization of oxygen vacancies in
the material which is a consequence of the non-symmetric rhombohedral unit cell. The
charge localization can also depend on the functional. It is known that hybrid functionals
tend to localize the electrons much stronger. To overcome this problem, one should build
an orthorhombic supercell doubled in a and ¢ direction, consisting of 32 formula units,
which would lead to the computationally very demanding problem. Another aspect which
we need to consider is the possibility that we obtained only the structure related to the
local minimum. We can also see that the HSE results for other phases, where the oxygen
vacancies are uniformly distributed, are ~ 2eV lower than for the orthorhombic lead
zirconate. According to the PBESol and HSE functionals, the formation energy of the
tetragonal lead titanate is lower for the bigger supercells which corresponds with our
expectations.

Electronic properties of the systems including oxygen vacancies

Density and projected density of states were calculated in the similar way as the bulk
phases. We used 2x2x4 supercells containing 16 formula units with one oxygen vacancy.
The low temperature phases were fully relaxed whereas the cPT and cPZ systems were
partially optimized to keep the cubic structures and avoid octahedra distortions.

Total DOS mmmmm  Pb-projected DOS mmmm Total DOS =  Pb-projected DOS mmmm
. Ti-projected DOS 100 . Zr-Projected DOS

80
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40

20

L 0 L
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Energy [eV] Energy [eV]

Density [states/eV]
Density [states/eV]

(a) Density of states for the cPT supercell with (b) Density of states for the ¢PZ supercell with
an oxygen vacancy calculated with PBE functional. an oxygen vacancy calculated with PBE functional.

The band gap value is 1.64 V. The band gap value is 2.42¢€V.
Total DOS mmmmm  Pb-projected DOS mmm Total DOS =  Pb-projected DOS mmmm
% 100 + Ti-projected DOS % 100 Zr-projected DOS
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(c) Density of states for the c¢PT supercell with (d) Density of states of cPZ supercell with an oxy-
an oxygen vacancy calculated with HSE functional. gen vacancy calculated with HSE functional. The
The band gap value is 2.2eV. band gap value is 3.09eV.

Figure 6.6: Influence of the oxygen vacancy on DOS and PDOS in the 2x2x4 cubic PT
and PZ supercells calculated with PBE and HSE functional.
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Removal of an oxygen atom from a supercell causes structural changes which have an
effect on the resulting density of states. Furthermore, due to the oxygen bonds breaking,
an extra states can be observed when the DOS are plotted. Depending on the localization
of these states, the PDOS of Pb, Ti and Zr atoms can be also influenced. Figure 6.6 shows
the DOS plots for the cubic phases. The first difference with respect to the bulk DOS is
the presence of the ”gap states” which come from creation of the oxygen vacancy. These
gap states are clearly visible in HSE DOS plots as the dots in the middle of the band gap.
In the case of cubic lead titanate PBE DOS, the gap states overlap the conduction band
and the system is predicted to be metallic. The second difference with respect to bulk is
the introduction of the gap states which are strongly localized in the titanium atoms in
the case of the cubic lead titanate, while the gap states in the cubic lead zirconate phase
are localized in the lead atoms. Figure 6.7 shows the charge distribution of the gap states
in the unit cell which are localized in the vicinity of the oxygen vacancy. As we can see,
the charge is strongly localized near the titanium atoms in the cubic lead titanate whereas
in the cubic lead zirconate the gap states charge is localized in the lead plane.

(a) Electronic charge density distribution of the gap (b) Electronic charge density distribution of the gap
states in the cubic lead titanate states in the cubic lead zirconate

Figure 6.7: Distribution of the charge related to the states which lay between the Fermi
energy and 1 eV below. Blue oxygen atom is marked for the comparison with the transition
states discussed later.

The plotted DOS graphs of the PBE functionals are very sharp while the HSE plots
are much smoother. This is caused by different smearing method used to ensure the con-
vergence of the calculations. PBE DOS plots are calculated with the tetrahedron method
with Blochl corrections [73] and for the HSE calculations we used gaussian smearing.

Figure 6.8 shows the plotted density of states for the orthogonal and tetragonal su-
percells. Many aspects are similar, but we can see the difference in the delocalization of
the gap states which is caused by the broken symmetry. For example, the gap states for
the tetragonal lead titanate calculated with HSE which are shown in figure 6.8c are made
of two peaks, but only one of them is below the Fermi level. The HSE calculations of
orthorhombic lead zirconate also show the splitting of the vacancy states located in the
band gap.

Since the vacancy states are located in the band gap, we also present the comparison
of the band gap values where the gap states in the middle of the band gap are omitted.
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(a) Density of states for the tPT supercell with (b) Density of states for the oPZ supercell with
an oxygen vacancy calculated with PBE functional. an oxygen vacancy calculated with PBE functional.
The band gap value is 1.44€V. The band gap value is 2.89¢€V.
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(c¢) Density of states for the tPT supercell with (d) Density of states of oPZ supercell with an oxy-
an oxygen vacancy calculated with HSE functional. gen vacancy calculated with HSE functional. The
The band gap value is 3.19¢€V. band gap value is 3.35€V.

Figure 6.8: Influence of the oxygen vacancy on DOS and PDOS in the 2x2x2 tetragonal PT
and 1x1x2 orthorhombic PZ supercells calculated with PBE, PBESol and HSE functional.

Comparing the results with the table 6.2, we can see that the gap states also influence
the edges of the valence or conductive band. The increased value of the band gap in
the tetragonal lead titanate by HSE functional is caused by the shift of the conductive
band edge to the gap state so the band gap is higher. In other cases, the band gaps are
comparable or lower than for the bulk phase. It means that the gap states are not only
localized in the middle of the band gap but they also influence the valence and conduction
band.

Phase | GGA | HSE
cPT | 1.64 | 22
cPZ | 242 | 3.09

tPT | 1.44 | 3.19
oPZ | 2.89 | 3.35

Table 6.4: Calculated band gaps (in eV) for the supercells with an oxygen vacancy at
GGA and hybrid level. PBE functional was used for cPT, cPZ and oPZ phases, the band
gap of the tPT phase was calculated with PBESol. The gap states were omitted.
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6.2. Diffusion of the oxygen vacancy

This section describes the calculation process of energy barriers of the oxygen vacancy
transport in the lead titanate and lead zirconate perovskites and several aspects will be
examined to find out their influence on the barriers. Since the behavior of the vacancy
states arising from the oxygen vacancy formation is different in the PZ and PT systems,
the phase dependence on the energy barriers will be discussed. The influence of the oxygen
vacancy concentration on the activation barriers is investigated by varying the size of the
supercell. The last property which is studied in this chapter is the dependence of the
energy barriers on the reaction path.

Computational setup

We investigated energy barriers of the oxygen vacancies in the supercells containing 8
and 16 formula units. In all cases, we used Gamma or Monkhorst-Pack 3x3x3 k-points
grids which result in error lower than 1.23 meV per atom. Calculation of energy barriers
required more computational effort, therefore the energy cut-off was reduced to 440eV
which resulted in the maximal total energy error 4 meV per atom. A motion of oxygen
vacancies was specified using two different reaction paths which are shown in figure 6.9.

Figure 6.9: Studied reaction paths of the oxygen vacancy motion. Blue line marks a
long path where the oxygen vacancy travels across two octahedra through the lead plane.
Shorter red reaction path is related to the motion of the oxygen vacancy along a titanium
octahedra.

In the first step, initial and final structures were created by removal of an oxygen
at the beginning and at the end of a reaction path. Positions of ions in the unit cell
were fully relaxed to obtain ground states for the initial and final systems containing an
oxygen vacancy. These systems were taken as the ending points of the reaction path in the
nudged elastic band method [74] (NEB). Figure 6.10 shows the optimized ground states
with the oxygen vacancy. The blue oxygen moves along the titanium octahedra to the
right which causes that the oxygen vacancy moves reversely with respect to the motion
of the oxygen. In the next step, we generated the images between the initial and final
positions by linear interpolation. Nudged elastic band method constrains these systems
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(a) Initial structure for the investigation of a reac- (b) Final structure for the investigation of a reaction
tion path with nudged elastic band method. path with nudged elastic band method.

Figure 6.10: Optimized initial and final states used of the cubic lead titanate system. The
blue oxygen marks the moving atom from the initial to the final position.

by adding spring forces between the neighboring images along the band. All images are
optimized with respect to their total energy which is biased by the potential coming from
the forces between the bands. Figure 6.11 shows the linearly interpolated images from the
initial to the final state. The difficulty of these calculations comes from the optimization
of all structures at the same time.

O O 0O
© o

© 0 O
o © o

Figure 6.11: Linear interpolation of the initial and final state in the cubic lead zirconate
supercell. The linear interpolation is shown only for the moved oxygen.

Nudged elastic band method is implemented in the VASP code. It is only necessary to
create interpolated images and to define the spring constant which determines the force
between the images. According to the size of the supercell, we used 4 or 8 interpolated
images and the spring constant was set to -5 which is a default value. For the relaxation
of ions, the quasi-Newton algorithm was used which turned out as the most stable option.

Figure 6.12 shows the resulting reaction path using the nudged elastic band method.
The initial state is located at the zero on the x-axis, while the final state which is marked
as the last point lies at 9. The intermediate steps are related to the NEB images and the
interpolated line between these points shows the energy barrier for the oxygen vacancy.
The height of the barrier is calculated only from the interpolation of the images which is
going to be improved in the last step.
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Figure 6.12: Energy barrier of the cubic lead titanate obtained by nudged elastic band
method. The reaction path defines the transition between the initial and final states
which are placed at 0 and 9 respectively. The reaction path was scanned using 8 images
between the initial and final states.

The transition state was optimized using the dimer method [34], which requires the
initial guess of the transition state and the initial velocities for each atom which define
the starting direction to the transition state at the potential energy surface. We took
the image from the NEB optimization with the highest energy as the initial guess for the
transition state. Initial ion velocities were proportional to differences between positions of
the initial guess and the image on the other side of the interpolated barrier. In the case of
the cubic lead titanate, the image 4 from the figure 6.12 was taken as the initial guess of
the transition state and image 5 was taken to define the initial velocities. Unfortunately,
this method often failed in finding the proper transition state, especially in the bigger
supercells which have more degrees of freedom. For this reason, we also calculated the
energy barriers using the tangential forces acting on the moved oxygen atom.

To calculate the energy barriers from the tangential forces, we took the forces acting
on the moved oxygen atom which are written in the OUTCAR file when the calculation
was done. The force acting on the oxygen atom is considered as the negative gradient of
the total energy. Therefore, the reaction barrier is interpolated from the total energy of
the images and the forces with respect to the position of the oxygen. Since we consider
the total energy and its derivative in two points on the reaction path, there are more
ways how to interpolate the energy barrier. In this work we used linear and cubic spline
interpolation.

Reaction path is visualized in figure 6.13. The violet atoms are related to the oxygen
positions of the NEB images, the blue one comes from the transition state calculated with
a dimer method. The neighboring red oxygens are placed at the initial and final positions.
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Figure 6.13: Visualization of the reaction path of the oxygen atom.

6.2.1. Dependence of the reaction path on barriers

We studied the reaction paths along and cross the octahedra as it is shown in figure
6.9 to investigate the basic mechanism how the oxygen vacancies diffuse in the material.
According to all obtained data, the energy barriers are much higher for the long reaction
path.
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Figure 6.14: Energy barrier of the motion of the oxygen vacancy across an oxygen oc-
tahedra in the 2x2x2 cubic lead zirconate interpolated by cubic splines. The activation
energy obtained by dimer method (the blue dot) is equal to 2936 meV. Red dots mark
initial and final states. The blue dot is the transition state calculated with dimer method.

Figure 6.14 shows the energy barrier for the long path (across an oxygen octahedra)
in the cubic lead zirconate 2x2x2 supercell, interpolated by cubic splines between the
energies of the NEB images. The obtained activation energy is comparable with the
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Figure 6.15: Transition state for the long path. The oxygen crosses the lead plane very
close to the lead atoms, at the distance 2.24 A. All neighboring octahedra are broken.

barriers related to the long paths in the lead titanate supercell. In the case of short paths,
all energy barriers were at least 500 meV lower compared to the long paths, depending on
the chosen phase. For example, the energy difference between the long and short paths
for the cubic lead zirconate phase is 1454 meV which can be seen from figures 6.14 and
6.16. We assume that it is caused by breaking the bond between a moving oxygen and
a tetravalent metal. Furthermore, the oxygen-lead distances are small — only 2.24 A for
the lead zirconate as it is shown in figure 6.15. According to the obtained energy barriers
for the long and the short paths we assume that long paths are not preferred and the
diffusion process is done only along the oxygen octahedra.
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Figure 6.16: Energy barrier of the motion of the oxygen vacancy across an oxygen oc-
tahedra in the 2x2x4 cubic lead zirconate interpolated by cubic splines. The activation
energy obtained by dimer method (the blue dot) is calculated to be 1482meV. Red dots
mark initial and final states.
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6.2.2. Lead zirconate vs. lead titanate

A phase dependence was investigated with the same procedure. Even when titanium and
zirconium atoms have the same electronic structure of valence electrons, we observed a
difference in the vacancy states and different representation of lead states in conduction
bands of PT and PZ phases. We also observed a strong influence of the activation energy
by the tetravalent atom (titanium or zirconium).
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Figure 6.17: Energy barrier of the motion of the oxygen vacancy across an oxygen oc-
tahedra in the 2x2x2 cubic lead titanate interpolated by cubic splines. The activation
energy obtained by dimer method (the blue dot) is calculated to be 609 meV. Red dots

mark initial and final states.

Figure 6.17 shows the reaction barrier for the 2x2x2 cubic lead titanate. However,
we observed large orthorhombic-like oxygen octahedra distortions and the shifts of lead
atoms in the cubic zirconate supercell, most probably because of the large energy differ-
ence between the orthorhombic and cubic phases. NEB reaction path for the cubic lead
zirconate is partly shown in figure 6.18. No transition state was found using the dimer
method, but the NEB image with the highest total energy is located 1502 meV above the
ground state which is ~ 2,5x higher value than the activation energy obtained for the
lead titanate systems. Moreover, we obtained similar values of the activation energy for
the orthorhombic unit cell. Even when we observed large distortions in the material, a
reaction path of the moving oxygen was similar to the lead titanate reaction path, which
is shown in figure 6.13.

To take a close look on this surprising difference, we estimated the ground state and
the transition state from the cubic lead titanate structures where we didn’t observe the
distortions. We expanded the lattice vectors by 1.058 which is related to the ratio between
the cPZ and cPT lattice vectors, replaced titanium atoms to zirconium and we optimized
the structures with the quasi-Newton algorithm, which minimizes the forces acting on
ions and is also worth to use it to find the transition states if we have the sufficient initial
structural guess. Using this approach, we obtained the transition state where the moving
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6.2. DIFFUSION OF THE OXYGEN VACANCY

oxygen atom is located in the middle of the path which indicates that the structure of the
transition state is calculated correctly. Furthermore, the energy difference between the
transition state and ground state obtained from the cPT structures is 1640 meV which
is in agreement with the NEB path and also with activation energies calculated for the
orthorhombic lead zirconate.
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Figure 6.18: Energy barrier of the motion of the oxygen vacancy across an oxygen octa-
hedra in the 2x2x2 cubic lead zirconate. Red dots mark initial and final states.

Figure 6.19 shows the difference in DOS between the transition states of ¢cPT and
cPZ structures. The difference is comparable with the DOS plots for the cubic phases in
figure 6.6a and 6.6b where the localization of vacancy states follow the same rule — these
states are strongly localized in titanium atoms for the cubic lead titanate phase and in
lead atoms in the case of lead zirconate.
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(a) Density of states of the transition state of the (b) Density of states calculated for the transition

2x2x2 cubic lead titanate supercell. The structure state of the 2x2x2 cubic lead zirconate supercell.

was calculated with dimer method. The structure was derived from the transition state
of the cubic lead titanate.

Figure 6.19: Comparison of DOS calculated for transition states of cubic lead zirconate
and cubic lead titanate supercells.
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6. APPLICATION OF DFT ON LEAD PEROVSKITES

The structure and distribution of the charge density related to the vacancy states
is shown in figure 6.20. The main structural difference is the prolongation of the bond
connecting the tetravalent metal and the blue moving oxygen from 1.82 A to 1.96 A. The
electronic charge density distribution of the vacancy states for lead zirconate and lead
titanate systems is comparable with the ground states and it is shown in figure 6.20. The
states are localized only in the titanium atoms, whereas in the case of lead zirconate, the
vacancy states are rather localized in the lead atom.

(a) Structure and electronic charge density distri- (b) Structure and electronic charge density distri-
bution of the gap states in the cubic lead titanate bution of the gap states in the cubic lead zirconate
transition state transition state

Figure 6.20: Distribution of the charge density related to the states which lay between
the Fermi energy and 1eV below, calculated for the transition states of the cPT and cPZ
supercells. The position of the blue oxygen atom which is moving from the initial to the
final position is located in the middle of the path in both cases.

We assume that the difference between the energy barriers comes from the different
localization of the vacancy states which are more significantly changed in the case of the
lead zirconate — the most of charge density has to be moved from the lead plane to another
one. While the vacancy states in the lead titanate are localized near titanium atoms and
the change of the charge distribution is not so radical.

6.2.3. Summary and influence of other aspects on barriers

In the previous subsections we discussed the major effects which influence the activation
energy of the oxygen vacancies diffusion in lead zirconate and lead titanate. Here we also
present a complete overview of our results concerning various conditions and discussion
of other effects for which we didn’t observe any significant influence. Tables 6.5 and 6.6
show obtained activation energies for lead titanate and lead zirconate respectively. We
calculated the activation energies by looking for the proper transition state by dimer
method and we compare them with the interpolated values by linear and cubic spline
interpolation. The interpolated activation energies are almost in all cases in a very good
agreement with the dimer method, especially when the NEB images are close to the
transition state. If there are too large forces acting on a moving oxygen or the positions of
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6.2. DIFFUSION OF THE OXYGEN VACANCY

this oxygen are too different in these images, this approximation doesn’t work sufficiently,
as, for example, in the case of a long path in cPZ 2x2x4 supercell.

Lead titanate

Supercell | Phase | Path type | Functional E4 [meV]

dimer ‘ spline ‘ linear
2x2x2 cubic short PBE 610 606 606
2x2x4 | cubic long PBE 2965 | 2987 | 3069
2x2x4 | cubic short PBE (425) | 406 414
2x2x2 cubic short PBESol 650 605 620
2x2x2 | tetra short PBESol | (963) | 986 971
2x2x2 | tetra long PBESol | (3625) | 3605 | 3800
2x2x4 tetra long PBESol - 3219 | 3467

Table 6.5: Summary of activation energies calculated for lead titanate. We considered
different supercells, phases, path types and GGA functionals. Activation energy FE4
was calculated by subtracting the total energies of transition systems obtained by dimer
method and ground state systems. Furthermore, we calculated the activation energies
from the cubic spline and linear interpolation using the NEB images closest to the trans-
ition state. Some transition states weren’t found under the required accuracy and these
numbers are therefore shown in parenthesis.

Lead zirconate

Supercell | Phase | Path type | Functional E4 [meV]

dimer ‘ spline ‘ linear
2x2x2 cubic long PBE (2936) | 2895 | 3219
2x2x2% | cubic short PBE — 1779 | 2150
2x2x4 cubic long PBE 2746 | 2152 | 2583
2x2x4 cubic short PBE (1482) | 1484 | 1485
1x1x1 ortho short PBE 1770 | 1675 | 1739
1x1x2 ortho long PBE (2292) | 2069 | 2087
1x1x2 ortho short PBE - 1691 | 1689

Table 6.6: Summary of activation energies calculated for lead zirconate. We considered
different supercells, phases and path types. Activation energy F, was calculated by
subtracting the total energies of transition systems obtained by dimer method and ground
state systems. Furthermore, we calculated the activation energies from the cubic spline
and linear interpolation using the NEB images closest to the transition state. Some
transition states weren’t found with the required accuracy and these numbers are therefore
shown in parenthesis.
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Supercell dependence

The activation energy decreases by ~ 200meV except for oPZ short path where the
activation energy between bigger and smaller supercell is comparable. The result is in
agreement with our expectations because the size of the supercell modulates the concen-
tration of oxygen vacancies in material. We can consider the oxygen vacancies as the
positively charged objects which repel each other and this effect is more significant in the
smaller supercells because of the periodic boundary conditions.

Functional dependence

Table 6.5 doesn’t show a significant dependency of the chosen GGA functional on activ-
ation energy for the cubic lead titanate and the short path. All results for tetragonal
phases are also comparable with obtained values from the cubic cell. There is a 350 meV
difference between the short paths which can be caused by the oxygen octahedra dis-
tortions so these paths are not equivalent anymore. This can be also connected with a
phase dependence. The functional dependency should be also checked for the hybrid HSE
functional, but these calculations would be much more time-demanding and are beyond
the scope of this work.

Phase dependence

Considering the PBE functional, we can only compare the results from the lead zirconate
phase because the description of tetragonal lead titanate was insufficient. When the
symmetry is broken, the short paths can be differently favorable. In this work we checked
the vacancy migration through the longest side of the orthorhombic lead zirconate. As
figure 6.21 shows, the highest energy of the image is comparable in all cases and the values
are placed in a 50 meV energy interval.

We only calculated one energy barrier for the cubic lead titanate by PBESol functional
and we would need more data to make a proper conclusion. Nevertheless, concerning the
short paths, the 300 meV energy difference between the cubic and tetragonal phase can
be caused by the wrong choice of the path. The second effect which might influence
the energy barrier is the ferroelectricity of the lead titanate. However, to determine this
influence wouldn’t be straightforward and it is beyond the scope of this work.

6.3. Outlook: metadynamics simulations

There is no guarantee that the dimer method finds the proper transition state. Mainly
in bigger supercells where we need to consider more degrees of freedom, to find a proper
saddle point between two ground states might be a very difficult problem. Furthermore,
we are still limited to the 0 K temperature and it is not therefore possible to calculate for
example the temperature dependence of the activation energy. To overcome this facts,
we have to go beyond the nudged elastic band method and one of the possibilities is to
set up a metadynamics simulation. Because these calculations are very time-demanding

3We took the NEB image with the lowest energy as the reference for a ground state because of the
orthorhombic-like octahedra distortions. Energy barrier was estimated to 1640 meV by modifying the
lead titanate ground state and transition structures.
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Figure 6.21: Energy barrier of the motion of the oxygen vacancy along different short
paths in the orthorhombic lead zirconate. The green dots mark the ground states and the
yellow ones meta-stable states.

and beyond the scope of this diploma thesis, we only present the preliminary results as
an outlook for a subsequent work.

We studied a migration of oxygen vacancies along the short path in cubic 2x2x2 lead
zirconate and lead titanate systems which are the most relevant for our aims. We used
440 eV cut-off energy which is converged to the total energy error 4 meV per atom. For the
preliminary calculations we chose gamma-only k-points grid which results in very high,
127meV per atom total energy error. We set the temperature to 700 K and applied a
Nosé-Hoover thermostat with Nosé-mass equal to 0.3. The biased collective variable was
defined as the difference between the distances of the moving oxygen and the oxygens
which are placed along the motion. Figure 6.22 shows the oxygen bonds which define the
collective variable. In principle, it would be possible to define the collective variable as
the distance dy. However, in the case of high-temperature calculations, it is recommended
to determine the collective variable using more atoms to fix the motion of oxygen better
along the vacancy path.

The bias potential was put into the system every 15 ionic steps in terms of Gaussian
hills with the height of 10meV and width 0.02A. In summary, we performed 10° ionic
steps for lead titanate and 2 x 10°ionic steps for lead zirconate to scan the collective
variable.

Unlike the NEB method, metadynamics simulation offers a way how to calculate a
free energy which is not directly comparable with an activation energy and one needs to
estimate the entropy contribution of the transition state. The free energy was estimated
to ~ 1050 meV for both cubic lead titanate and cubic lead zirconate unit cell. However,
we need to keep in mind that there is a huge energy error coming from the sparse k-points
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6. APPLICATION OF DFT ON LEAD PEROVSKITES

Figure 6.22: Collective variable used in the metadynamics simulation is defined as d; — ds
for both systems. The blue oxygen is the moving one and the green oxygen atoms which
are located along the motion are used to define the collective variable.
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Figure 6.23: Sum of the Gaussian hills added as the bias potential to the collective
variable. The transition state is correctly located at 0 where d; = dy. The free energy is
estimated to ~ 1050 meV for lead titanate.

grid and we thus cannot compare these results with the activation energies calculated by
NEB.

Nevertheless, the preliminary results show that metadynamics method is a promising
way how to verify the barriers obtained with nudged elastic band method for the following
reasons:

e The minimum and maxima of the obtained curves are located at correct positions.
The transition state is related to the zero-point where the distances d; and dy in
figure 6.22 are equal.

e Also the positions of maxima are located at the expectable values of collective
variable — we receive the same value for the initial and final ground state systems
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Figure 6.24: Sum of the Gaussian hills added as the bias potential to the collective
variable. The transition state is correctly located at 0 where d; = dy. The free energy is
estimated to ~ 1050 meV for lead zirconate as well.

e Both peaks are symmetric which is in agreement with the symmetry of the cubic
cell
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7. Application of DFT on PZT alloys

In the last chapter of this work we move to the mixed alloys of lead zirconate and lead
titanate and we will describe the influence of increasing concentration of zirconium on
the activation energies in lead zirconate titanate. We used PBE functional and the same
calculation setup as in the case of the separate bulk phases. In the first section of this
chapter, we will move to the PbZrg 195Tig 37503 alloy where one titanium atom is replaced
by zirconium. To investigate the influence on activation energies of the oxygen vacancy
diffusion, we will discuss the obtained barriers in the PbZrg 25Tig 7503 material where two
zirconium atoms replace titanium atoms in 2x2x2 supercells.

7.1. PbZI‘O.125Ti0.87503 alloy

The calculated structure of the PbZrg 125Tigg7503 mixture is shown in figure 7.1. The
unit cell has the cubic symmetry with lattice parameter 8.005A. This number is in
agreement with the result from the previous chapter because the lattice parameter is
slightly increased compared to the cubic lead titanate lattice parameter (3.96 A). We also
wouldn’t expect any lattice distortions because the perturbation is uniformly distributed
in the material.

Figure 7.1: Structure of PbZrg 105Tig 87503 alloy. The marked oxygen-oxygen bonds show
the investigated oxygen vacancy paths.

The density of states is shown in figure 7.2. The plot is similar to the cubic lead
titanate and the impurity states coming from the zirconium are neither in valence nor
conduction band significant.

To see how the zirconium atom influences the energy barriers, we set up the nudged
elastic band calculations along the green, violet and blue path which are shown in figure
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Figure 7.2: Density of states of the bulk PbZr( 195Ti0.s7503 alloy. The energy gap between
the conduction and valence band is equal to 1.52eV. The conduction band is mainly
composed of the titanium states.

7.1. Considering these paths, there are two unequal positions of the oxygen vacancy —
zirconium-titanium position (number 1 and 4) and titanium-titanium position (2 and 3).
We expect that the energy barriers of violet paths which are symmetric will be the same.
Figure 7.3 shows the change of the density of states in the PZT material when the oxygen
vacancy is created at the position “2” or “3” (figure 7.3a) and “1” or “4” (figure 7.3b).
In both cases, the plots are similar to each other and also correspond to the plots for the
lead titanate phase.
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(a) DOS plot with the oxygen vacancy placed (b) DOS plot with the oxygen vacancy placed
between two titanium atoms. The band gap value between titanium and zirconium atoms. The band
is estimated to 1.72¢€V. gap value is estimated to 1.47eV.

Figure 7.3: Density of states for the PbZrg 1295Ti.37503 alloy calculated with PBE func-
tional with an oxygen vacancy placed at two different positions.

Formation energies of an oxygen vacancy were calculated for the positions “1” and
“2” in the same way as in the previous chapter. The calculated values for these positions
are 4.37eV and 4.05eV respectively, which means that it is easier to remove the atom
neighboring with titanium and zirconium.

To see how the zirconium atom influences the energy barriers in this PZT alloy, we
used the Nudged Elastic Band (NEB) method to scan the circular path shown in figure 7.1.
The results are in agreement with the energy barriers of the separate phases. The highest
barrier is related to the motion of the oxygen vacancy along the zirconium octahedra. We
can also see that the violet barriers which correspond to the motion of the oxygen vacancy
along the titanium octahedra neighboring with the zirconium atoms are asymmetric and
the initial and final positions are not energetically equal. This is caused by the difference
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Figure 7.4: Energy barriers calculated with nudged elastic band method for the marked

paths in image 7.1. The colors correspond to the investigated paths: the barriers mark

the “47-“17 “17-«27  “27-“3” and “3”7-“4” paths related to the motion of the oxygen
vacancy.

between the formation energy which prefers to place an oxygen vacancy to the titanium
octahedra opposite to the zirconium atom.

From the NEB results we can see that zirconium atoms changes the barriers only in
the close surrounding and it doesn’t influence the motion of the oxygen vacancy in the
non-neighboring titanium octahedra. The second section is focused on a lead zirconate
titanate mixture where another zirconium atom replaces titanium and the barriers behave
differently.

7.2. PbZI‘O.25Ti0.7503 alloy

PbZry.25Tip 7503 is the smallest supercell where we can investigate the influence of dis-
tribution of tetravalent atoms on structural and electronic properties. There are three
possibilities how to build a 2x2x2 supercell which contains two zirconium atoms. As the
first step, we investigated bulk properties of these structures which are shown in figure
7.5 and we called the “neighbor” (fig. 7.5a), “corner” (fig. 7.5b) and “cross” (fig. 7.5¢)
configurations, depending on the distribution of zirconium atoms in the supercell.

All presented calculations were performed with PBE functional. The structures were
optimized to their equilibrium volume with the same procedure as the PZT structure in the
previous section. A comparison of the structural properties is shown in table 7.1. We can
observe a minor tetragonal distortion for the “neighbor” and “cross” configurations with
c/a ratio 1.003 and 1.0003 respectively, while the “corner” unit cell stays cubic because
zirconium atoms are uniformly distributed in the supercell. Table shows only a minor
changes of the lattice parameters and the structures have therefore comparable volume.
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c
(a) “neighbor” structure (b) “corner” structure (c) “cross” structure

Figure 7.5: Investigated supercells of PbZrg 95Tio.7503 alloy.

The main difference between these configurations is in the total energy. As we can see, the
“cross” configuration is the most stable and the total energy difference between “neighbor”
and “corner” configurations are 23.5meV /f.u. and 12.9meV /f.u. respectively.

Structure ‘ a [A] ‘ b [A] ‘ c [A] ‘ V [A%] ‘ E, [eV]
“neighbor” | 8.09 | 8.06 | 8.06 | 525.39 | -302.013
“corner” 8.06 | 8.06 | 8.06 | 523.82 | -302.098
“cross” 8.06 | 8.07 | 8.06 | 524.18 | -302.201

Table 7.1: Structural properties of all possible configurations of PbZrg 95T 7503. Ej notes
the bulk energy of the whole supercell.

Density of states for the most stable “cross” configuration is shown in figure 7.6. It is
surprising that there is not any significant change compared to PbZrg 195Tig 7503 alloy.
Even when another zirconium atom is placed to the supercell, we cannot see the change
in the projected states to the lead or to the zirconium atoms. The band gap value is
almost the same, 1.53¢eV.
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Figure 7.6: Density of states of the bulk PbZry25Tiy 7503 alloy. The energy gap between
the conduction and valence band is equal to 1.53eV. The conduction band is mainly
composed of the titanium states.
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However, we observed that the oxygen vacancy influences density of states in a different
way. Figure 7.7 shows the calculated DOS for three different positions of the oxygen
vacancy. All DOS plots are comparable and we can see that the gap states are located
in the middle of the gap. It is also shown that these states are partially located in lead
atoms and we can therefore expect higher energy barriers as we observed for the lead
zirconate in the previous chapter.
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(a) DOS calculated for the “cross” supercell with an (b) DOS calculated for the “cross” supercell with
oxygen vacancy placed between two titanium octa- an oxygen vacancy placed between titanium and
hedra. The energy gap between the valence and zirconium octahedra. The energy gap between the

conduction band is equal to 2.25eV. valence and conduction band is equal to 2.08 eV.
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(c) DOS calculated for the “neighbor” supercell
with an oxygen vacancy placed between two zir-
conium octahedra. The energy gap between the
valence and conduction band is equal to 2.25eV.

Figure 7.7: Density of states for different PbZrg 55 Tiy.7503 positions of an oxygen vacancy.

Formation energies are consistent with the results from the previous section. As the
table 7.2 shows, we calculated formation energies of an oxygen vacancy for all configur-
ations considering all possible locations. The formation energies are only dependent on
the two neighboring tetravalent atoms and we can see that the positions between two
titanium octahedra are again the most preferred with respect to the formation energy. In

Configuration Ti-Ti Zr-Ti Zr-7Zr

“neighbor” 3.49-3,51 | 3.80 4.13
“corner” 3.56-3.57 | 3.92-3.93 | —
“cross” 3.61-3.65 | 3.99-4.03 | —

Table 7.2: Formation energies of the oxygen vacancy in all configurations considering the
relevant positions.

the end of this section, we present an initial guess of the energy barriers calculated with
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nudged elastic band method. Table 7.3 shows the obtained energy differences between
the ground state and the NEB image with the highest energy. We can clearly see that
the energy barriers are increased globally in the whole unit cell. Furthermore, the height
of the energy barriers is comparable between the systems and it doesn’t depend on the
position of a zirconium atom with respect to the reaction path. This result corresponds
to the statement that the energy barriers are increased due to the localization of the
“gap states” charge density in a lead plane which we observed in all DOS plots for the

structures with an oxygen vacancy at different positions.
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Initial position | Final position | “Neighbor” | “Corner” “Cross”
Ti-Ti Ti-Ti 1006 1082 999
Ti-Ti Zr-Ti 871, 1104 1470, 1268 | 1349
Zr-Ti Zr-Ti 1163 1324 1072, 1198, 914
Zr-Ti VASYAY 1190 - -
Table 7.3



8. CONCLUSION

8. Conclusion

This diploma thesis deals with the structural and electronic properties of perovskite
lead titanate, lead zirconate and their mixed compounds, in order to determine energy
barriers for the diffusion of oxygen vacancies for different structural phases and diffusion
paths. We performed Density Functional Theory calculations with periodic boundary
conditions implemented in state-of-the-art computer codes using methods for mapping the
diffusion barriers, namely the Nudged Elastic Band (NEB) method, the Dimer method
and Metadynamics.

In the initial part of this work, we studied the vacancy diffusion in the bare systems.
The oxygen vacancies pass through this materials along the sides of the oxygen octahedra
surrounding the titanium or zirconium atoms. We found that, employing both the NEB
and the dimer method, the energy barriers are much lower in lead titanate (400 meV - 650
meV) than in lead zirconate (1480 meV - 1780 meV). We conclude that this unexpected
result is caused by a different localization of the electronic states related to the formation
of an oxygen vacancy. In the case of lead titanate, these states are located at the titanium
atoms and do not change significantly during the diffusion of an oxygen vacancy. However,
in the case of lead zirconate, the vacancy states are forming localized bonds to the lead
atoms, making the moving oxygen less mobile. We also discussed other effects which might
influence the barriers, like the dependency on different phases. e.g. cubic vs. tetragonal,
size of the supercell or chosen DFT functional. Finally, we presented an outlook with
preliminary metadynamics simulations at 700 K, which offer a promising way how to
assess the values obtained with NEB or Dimer method, which are treating the systems
in the energetic ground state, corresponding to a temperature of 0 K. Thereafter we used
these insights to build appropriate models of the mixed phases by replacement of titanium
atoms by zirconium in 2x2x2 mixed lead titanate-zirconate supercells. Also for the mixed
systems we found a strong dependency of the formation energy of the oxygen vacancy
and the neighboring Ti/Zr cation. There was in both cases ~ 350meV energy difference
between the formation energy of the oxygen vacancy between two titanium atoms and
between one titanium and one zirconium atom. The height of the barriers is dependent
on the localization of vacancy states as in the case of pure phases.

While the energy barriers in the PbZrg 125 Tig 87503 supercell were influenced only loc-
ally by the zirconium atom and their heights corresponds to the results obtained for the
separate bulk phases, in the PbZry95Tig 7503 alloy all barriers are increased to values
between 871 meV and 1349 meV which shows no correspondence to the pure lead titanate
barriers anymore. The reason for the increase of the barriers is the same as in lead zircon-
ate — the vacancy states are localized again in the lead planes so that a moving oxygen
vacancy feels a larger restraining force.

Regarding the experimental data [50], the activation energy of a corresponding lead-
free material is roughly 900 meV and the diffusion coefficients measured for lead zirconate
titanate is 500 meV higher. This finding can be rationalized if we assume that the react-
ant is only short-lived in a mixed titanium-zirconium site, increasing the effective barrier
by 350 meV. Furthermore, the experimentally investigated alloy was PbZrg¢Tig 403 with
a higher Zr:Ti ratio. We therefore suggest that there are specific sites between titanium
atoms where the oxygen vacancies are trapped, because they need to overcome an ad-
ditional energy penalty as compared to starting already a site between a titanium and
zirconium atom, where the initial energy is closer to the barrier maximum.
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9. LIST OF ABBREVIATIONS

9. List of abbreviations
AFM Atomic Force Microscopy

APW Augmented Plane Waves

cPT cubic Lead Titanate

cPZ cubic Lead Zirconate

DFT Density Functional Theory

DOS Density Of States

GGA Generalized Gradient Approximation

HK Hohenberg-Kohn

KS Kohn-Sham

LAPACK Linear Algebra PACKage

LAPW Linearized Augmented Plane Wave
LCAO Linear Combination of Atomic Orbitals
LDA Local Density Approximation

MEP Minimum Energy Path

MPB Morphotropic Phase Boundary

NEB Nudged Elastic Band

NVRAM Non-Volatile Random-Access-Memory
oPZ orthorhombic Lead Zirconate

PAW Projector Augmented Wave

PDOS Projected Density Of States

PES Potential Energy Surface

PT Lead Titanate

PZ Lead Zirconate

PZT Lead Zirconate Titanate

SI  International System

ToF-SIMS Time-of-Flight Secondary Ion Mass Spectroscopy

tPT tetragonal Lead Titanate
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