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ABSTRACT
Superradiance is an enhanced decay of an excited system of emitters resulting from

their mutual coupling. This thesis is focused on superradiance of the emitters

coupled via their interaction with a plasmonic nanoparticle. So-called plasmon-

mediated superradiance results in even stronger enhancement of the decay rate as

the nanoparticle serves as an additional decay chanel. We have developed a quan-

tum model of the system of emitters coupled to a plasmonic nanoparticle, which

allows us to differentiate between a pure dephasing and decay processes. We show

that the pure dephasing can destroy the cooperative effect leading to superradiance.

Furthermore, we have studied how the direct mutual coupling between emitters af-

fects time evolution of the system in dependence on its configuration, and we show

conditions when a decay of the system is dramatically decreased by direct coupling.

KEYWORDS

Superradiance, pure dephasing, strong coupling, weak coupling, plasmonics

ABSTRAKT
Superzářivost je ześıleńı rychlosti spontánńı emise, které má p̊uvod ve vzájemné

vazbě mezi emitory. Tato práce se zabývá superradianćı skupiny emitor̊u, které

jsou vzájemně vázány skrz plazmonickou nanočástici. Plasmonem zprostředkovaná

superzářivost se projevuje výrazněǰśım ześıleńım rychlosti spontánńı emise, jelikož

plazmonická částice poskytuje daľśı možnost pro vyzářeńı energie. V rámci práce

jsme vytvořili kvantový model systému emitor̊u vázaných k plazmonické částici,

který nám umožňuje rozlǐsit mezi náhodným rozfázováńım emitor̊u a jejich rekom-

binaćı. Práce ukazuje, že náhodné rozfázováńı může porušit kooperativńı chováńı

emitor̊u, které vede k superradianci. Dále je v práci popsán efekt př́ımé vzájemné

vazby mezi emitory na časový vývoj systému v závislosti na jeho konfiguraci a jsou

stanoveny podmı́nky, při kterých systém vyzařuje výrazně pomaleji právě z d̊uvodu

př́ımé vzájemné vazby.

KLÍČOVÁ SLOVA

Supezářivost, náhodné rozfázováńı, silná vazba, slabá vazba, plazmonika

OLIVÍKOVÁ, Gabriela Quantum description of superradiance of emitters with

plasmon-mediated interaction: master’s thesis. Brno: Brno University of Tech-

nology, Faculty of Mechanical Engineering, Institute of Physical Engineering, 2017.
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about superradiance and related topics (and baking).

My gratitude definitely belongs to my family and friends, especially to my part-

ner Vojta Schánilec, who always provide me with unfailing support and continuous

encouragement.

Part of the work was carried out with the support of CEITEC Nano Research

Infrastructure (MEYS CR, 2016–2019). Financial support from the FEI, which is

now part of Thermo Fisher Scientific is gratefully acknowledged.

Gabriela Oliv́ıková
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1 INTRODUCTION

In this thesis, we study how the emission from multiple emitters is influenced by

their interaction with localized surface plasmons (i.e. surface plasmons bound to

metallic nanoparticles). Surface plasmons are collective oscillations of the conduc-

tion electrons in metals resulting in strong enhancement of the electromagnetic field.

Furthermore, surface plasmons have the ability to squeeze light into the nanometre

scale and to enhance absorption and scattering of light [1, 2].

Localized surface plasmons supported by metallic nanoparticles can also enhance

the emission rate from a nearby emitter, such as a quantum dot or a dye molecule.

For a weak interaction between the emitter and the plasmon (the so-called weak

coupling regime) the emitter decays by exciting the plasmon, which then reradiates

the energy to the far field [3]. This enhancement of spontaneous emission is called

the Purcell enhancement [4]. On the other hand, if the interaction between the

plasmon and the emitter is strong enough, the energy that the emitter gives to the

plasmon can be transferred back to the emitter, and the system enters the strong

coupling regime [5, 6]. Symptomatic for strong coupling is an oscillatory evolution

of populations of the emitter and plasmon, known as the Rabi oscillations [7].

An ensemble of N mutually coupled emitters (not coupled to any plasmon) is

known to experience the phenomenon of superradiance. This effect has its origin

in the coupling between the emitters, which results in the formation of cooperative

states. One of these states, the superradiant or Dicke state [8], decays with an

emission rate (per emitter) up to N times larger than the spontaneous decay rate of

an individual emitter, whereas the decay rate of the other states, subradiant states,

is decreased.

The present theoretical work studies a setup that combine superradiance with en-

hanced spontaneous emission by coupling an ensemble of emitters with a plasmonic

particle. A simple classical model [9, 10] of such a system predicts a formation of

the superradiant state with an enhancement of the decay rate given by the Purcell

factor multiplied by the number of emitters. This classical model, however, ignores

the phenomenon of pure dephasing – incoherent loss of phase without the emis-

sion of photon – which becomes very important at room temperature. Therefore,

we have developed a quantum model, which incorporates pure dephasing. Besides

that, effects of asymmetry (different properties of individual emitters) and random

distribution of emitters can be studied using this model as well.

In Chapter 2 we describe a plasmon-emitter hybrid system – we address the

effect of plasmon-enhanced spontaneous emission in the weak coupling regime and

behaviour of a plasmon-emitter system in the strong coupling regime. Further, in

Chapter 3 we introduce superradiance and its quantum description. In Chapter 4
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we present the full model used for the description of superradiant emission from

many single emitters coupled to a number of plasmon modes.

Following the introductory part, in Chapters 5–7 we discuss our results. After

discussing the behaviour of the system with a symmetric configuration of emitters

in the weak coupling regime in Chapter 5, we explore the behaviour of the system

in the strong coupling regime in Chapter 6. Finally, in Chapter 7 we investigate the

effect of asymmetry in emitter coupling strength. To study effects of asymmetry,

we use a simple model of two groups of emitters identical within each group but

otherwise different, and a more complex model of non-identical emitters, where the

coupling strength between plasmon and each emitter depends on position of the

emitter. In the latter, the effect of direct mutual coupling between two emitters is

also studied.
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2 PLASMON-EMITTER HYBRID SYSTEMS

Interaction between a plasmon and an emitter plays a crucial role in the effect of

plasmon-mediated superradiance. In this section, we first introduce both a plasmon

and an emitter independently with focus on the quantum description of each system.

Next, the interaction between a plasmon and an emitter will be explained, and

a quantum model of a plasmon-emitter hybrid system will be presented. In the

following we will show two distinct regimes of plasmon-emitter systems – weak and

strong coupling. Finally, we show how the illumination of a plasmon and an emitter

can be introduced to the quantum model.

2.1 Emitter

We consider the emitter to be a system well described by two energy levels. Typi-

cally, this is the case of a quantum dot or fluorescent molecule undergoing dipolar

transition between the lowest unoccupied and the highest occupied molecule orbital.

Such a two-level system is described by a dipole moment operator [11]

µ̂ = µσ̂+ + µ∗σ̂−, (2.1)

where µ is the transition dipole moment, σ̂+ and σ̂− are the raising and lowering

Pauli spin operators, respectively.

Excited emitter decays spontaneously to the ground state and emits a photon.

This process called spontaneous emission is a transition between combined states

of emitter and photon in the free space affected by a perturbation. Therefore, the

probability of spontaneous emission per unit time γs (spontaneous decay rate) can

be determined using Fermi’s golden rule. This approach leads to following formula

for spontaneous decay rate [12]

γs =
ω3
s |µ|2

3πε0~c3
, (2.2)

where ωs is the transition frequency, ε0 is the vacuum permitivity and c is the speed

of light. Note, that for emission into a dielectric medium this equation holds with c

being speed of light inside the medium.

Furthermore, energy of the emitter is given by the Hamiltonian

Ĥem =
1

2
~ωsσ̂z (2.3)

with the Pauli operator σ̂z = 2σ̂+σ̂− − 1.
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To describe dynamics of the emitter we use the master equation [13]

d
〈
Ô
〉

dt
= − i

~

〈[
Ô, Ĥ

]〉
+ Tr

(
Ô
∑
i

L̂i
)
, (2.4)

which describes time evolution of an observable represented by the operator Ô in

open quantum system. In general, the losses to the environment are introduced by

Lindblad operators L̂i. Specifically, for emitter evolution, we use operator L̂s to

incorporate spontaneous emission

L̂s = −γs
2

(
σ̂+σ̂−ρ̂+ ρ̂σ̂+σ̂− − 2σ̂−ρ̂σ̂+

)
, (2.5)

where ρ̂ is the density matrix.

Furthermore, the phase of the emitter interacting with an environment can relax

with a rate γd, while the population of the emitter is sustained. This process is

called pure dephasing and can be modelled by Lindblad operator L̂d

L̂d = −γd
(
σ̂+σ̂−ρ̂+ ρ̂σ̂+σ̂− − 2σ̂+σ̂−ρ̂σ̂+σ̂−

)
. (2.6)

Typically, we study dynamics of the system by observing average population of

the emitter expressed by the operator
〈
σ̂+σ̂−

〉
.

2.2 Plasmon

Plasmon is a quantum of collective oscillation of conduction electrons in metals.

Depending on the type of electron charge density contributing to oscillations we can

distinguish two types of plasmons – volume and surface. Volume plasmons cannot

be excited by light, therefore they are not of interest for study of light interactions

with plasmon-emitters hybrid systems. On the contrary, surface charge density

oscillations at metal-dielectric interface naturally couple to electromagnetic field

and form surface plasmon polaritons (SPPs) [12].

Modes of electromagnetic (EM) field of SPPs are bound to metal-dielectric in-

terface. In case of infinite interface SPPs are propagating modes with continuous

dispersion relation. These modes can be excited by light if frequency and wave

vector of the light match with SPP (otherwise energy or momentum conservation

would be violated). This condition can be achieved using special techniques as

Otto-Kretschmann configuration, scanning near-field optical microscopy (SNOM),

or using grating. [2]

Metallic nanoparticles support special type of SPP, so called localized SPP

(LSP), which can be excited by resonant light regardless the wave vector of incident
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light. Beside that LSPs can radiate to far field, which results in typical feature of

reflection (transmission) measurements of nanoparticles – a peak (dip) at resonant

frequency of LSP. This fact can be explained as follows. LSP is a mode bound to a

closed surface of a nanoparticle which thus acts as optical cavity, i.e., wave vector

(and frequency) of LSP is limited to discrete values due to spatial restriction of

EM mode of LSP. Also quantum mechanical description of LSP is equivalent to the

treatment of optical cavity. Using a standard approach for quantization of EM field

in cavity we can express electric field of LSP as [14]

Ês =

√
~ω0

2ε0Veff

(
Es (r)

|Es
m|

â +
Es∗ (r)

|Es
m|

â†
)
, (2.7)

where ω0 is the resonant frequency of LSP, Es (r) is the scattered electric field at

position r and Es
m denotes the maximum value of the scattered field. Operators â

and â† are the creation and the annihilation operators of cavity mode, respectively.

Finally, Veff is the effective volume of a plasmonic nanoparticle (equivalent of volume

of optical cavity).

Let us consider total energy stored by the EM mode of LSP, which is in case of

plasmonic structure equal to electric energy

WE =
1

2

�
R

{
d [ωε (r, ω)]

dω

}∣∣∣∣
ω=ω0

Ês · Ês dV (2.8)

=
~ω0

4ε0Veff

�
R

{
d [ωε (r, ω)]

dω

}∣∣∣∣
ω=ω0

∣∣∣∣Es (r)

Es
m

∣∣∣∣2 (â†â + ââ†
)

dV, (2.9)

where ε denotes the dielectric function. As can be seen from Eq. (2.9), energy of

LSP is expressed analogically to a harmonic oscillator with the Hamiltonian

Ĥpl =
~ω0

2

(
â†â + ââ†

)
= ~ω0

(
â†â +

1

2

)
. (2.10)

Energy stored in one plasmonic mode is indeed ~ω0, hence the effective volume

of a nanoparticle can be determined by comparing Eqs. (2.9) and (2.10), which leads

to

Veff =

�
1
2
R
{

d[ωε(r,ω)]
dω

}∣∣∣
ω=ω0

|Es (r)|2 dV

ε0 |Es
m|2

. (2.11)

Important property of LSP is strong enhancement of the field in vicinity of the

nanoparticle. In general, the local-field enhancement becomes stronger with sharper

resonance, represented by the higher Q factor (quality factor). For the plasmonic

nanoparticle with resonant frequency ω0, the Q factor can be determined from the

dielectric function of the metal ε(ω) = ε′(ω) + iε′′(ω)

Q =

ω0
dε′(ω)

dω

∣∣∣
ω=ω0

2ε′′(ω0)
. (2.12)
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Generally, the Q factor is defined as a ratio between resonant frequency and

bandwidth of resonance. Bandwidth of the resonance is directly related to finite

lifetime (1/κ) of LSP. The decay rate of LSP is thus

κ =
ω0

Q
. (2.13)

A standard way to include the LSP decay into master equation (2.4) is introduc-

ing a Lindblad term L̂p

L̂p = −κ
2

(
â†âρ̂+ ρ̂â†â − 2âρ̂â†

)
. (2.14)

As this thesis studies interaction of emitters with LSP, the term plasmon will be

always used to refer to LSP in the following.

2.3 Quantum description of plasmon-emitter hy-

brid systems

In Sections 2.1 and 2.2 emitter and plasmon are described as independent systems.

Interaction between these two elements can be easily understood as interaction of

dipole moment with electric field – emitter is characterized by dipole moment oper-

ator µ̂ and it is located in the near field of plasmon mode described by electric field

operator Ês. Hamiltonian describing plasmon-emitter interaction is therefore

Ĥpl−em = −µ̂ · Ês (2.15)

= −
√

~ω0

2ε0Veff

1

|Es
m|
(
µσ̂+ + µ∗σ̂−

)
·
(
Es (r) â +Es∗ (r) â†

)
. (2.16)

In the interaction (or Heisenberg) picture, time dependence of the operators σ̂+ and

â† is eiωt, the operators σ̂− and â† have time dependence e−iωt. The operators σ̂+â
†

and σ̂−â therefore oscillate very fast in comparison with the terms σ̂+â and σ̂−â
†.

In a rotating wave approximation, the fast oscillating terms are neglected and the

Hamiltonian has a simplified form

Ĥpl−em = ~
[
g (r) σ̂+â + g∗ (r) σ̂−â

†] , (2.17)

with g (r) being

g (r) = −µ ·E
s (r)

~ |Es
m|

√
~ω0

2ε0Veff

, (2.18)

where Es (r) is the scattered electric field of plasmonic nanoparticle at the position

of the emitter. The spatial distribution of the emitter over the nanoparticle is thus

introduced to the Hamiltonian by the parameter g (r). However, for simplicity we

will not consider a spatial dependence hereafter.
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Plasmon-emitter system is then described by the so-called Jaynes-Cumming

Hamiltonian [15,16]

H = ~ω0

(
â†â +

1

2

)
+

1

2
~ωsσ̂z + ~

(
gσ̂+â + g∗σ̂−â

†) , (2.19)

composed of the interaction Hamiltonian (2.17) and the terms describing plasmon

[Eq. (2.10)] and emitter [Eq. (2.3)] separately. Dynamics of this system can be

found using master equation (2.4) with the Lindblad terms describing a decay of

the emitter [Eq. (2.5)] and plasmon [Eq. (2.14)], and pure dephasing of the emitter

[Eq. (2.6)].

Furthermore, we assume that average populations of the ground state of both

emitter and plasmon is always higher than average populations of the corresponding

excited state, therefore

〈σ̂z〉 ≈ −1,
〈
â†â
〉
−
〈
ââ†
〉
≈ −1. (2.20)

This approximation, called weak illumination, leads to an effective reduction of the

Hilbert space, so that the plasmon population
〈
â†â
〉
, the emitter population

〈
σ̂+σ̂−

〉
and coherences

〈
σ̂+â

〉
,
〈
σ̂−â

†〉 form a closed system of ordinary differential equations

d
〈
â†â
〉

dt
= −κ

〈
â†â
〉

+ i
(
g
〈
σ̂+â

〉
− g∗

〈
σ̂−â

†〉) , (2.21)

d
〈
σ̂+â

〉
dt

= −
{
κ + γs

2
+ γd − i (ωs − ω0)

}〈
σ̂+â

〉
− ig∗

〈
σ̂+σ̂−

〉
+ ig∗

〈
â†â
〉
,

(2.22)

d
〈
σ̂−â

†〉
dt

= −
{
κ + γs

2
+ γd + i (ωs − ω0)

}〈
σ̂−â

†〉+ ig
〈
σ̂+σ̂−

〉
− ig

〈
â†â
〉
,

(2.23)

d
〈
σ̂+σ̂−

〉
dt

= −i
(
g
〈
σ̂+â

〉
− g∗

〈
σ̂−â

†〉)− γs 〈σ̂+σ̂−
〉
. (2.24)

Time evolution of population of the emitter as given by this system of equations

shows very different behaviour depending on the strength g characterizing the cou-

pling between the plasmon and the emitter. Notably, one often differentiates be-

tween the weak and strong coupling regimes, which are described next. For plas-

monic losses much larger than the spontaneous decay and the pure dephasing, the

transition between both regimes occurs for g ∼ κ/4.

2.3.1 Weak coupling regime and Purcell enhancement

When coupling between the plasmon and the emitter is weak compared to the plas-

mon decay, i.e., g . κ
4

(where κ� γs, γd), negligible energy is transferred from the
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plasmon back to the emitter. The plasmon thus serves as additional decay channel

and the emitter population continues to decay exponentially – as in the absence of

plasmon – but with decay rate enhanced by the Purcell factor.

This effect can be more fundamentally explained by Fermi’s golden rule as fol-

lows. As was stated above, spontaneous emission is transition between combined

states of emitter and photon. According to Fermi’s golden rule emission rate is pro-

portional to the density of final states. Plasmon enhances density of electromagnetic

states corresponding to final states of photon, and therefore spontaneous emission

is enhanced. [12]

Let us now derive Purcell factor by solving Eqs. (2.21)–(2.24) in weak coupling

limit. In the weak coupling regime, the plasmon reaches its equilibrium very fast

compared to the time scale of the emitter decay, which allows us to assume, that

at every instant the plasmon operators always correspond to a steady state, so that

d
〈
σ̂+â

〉
/dt = 0, d

〈
σ̂−â

†〉 /dt = 0. This corresponds to the adiabatic approxi-

mation. Furthermore, in typical plasmonic systems in the weak coupling regime〈
â†â
〉
�
〈
σ̂+σ̂−

〉
. Under this conditions Eqs. (2.21)–(2.24) are simplified to

d
〈
σ̂+σ̂−

〉
dt

= −


2 |g|2

(
κ + γs

2
+ γd

)
(
κ + γs

2
+ γd

)2

+ ∆2

+ γs

〈σ̂+σ̂−
〉
, (2.25)

where ∆ = ωs − ω0 is the detuning between the plasmon and the emitter. The

population of the emitter decays exponentially〈
σ̂+σ̂−

〉
= e−γt

〈
σ̂+σ̂−

〉∣∣
t=0

(2.26)

with the decay rate

γ =

2 |g|2
(
κ + γs

2
+ γd

)
(
κ + γs

2
+ γd

)2

+ ∆2

+ γs. (2.27)

Fig. 2.1 compares this analytical solution obtained within the adiabatic approxi-

mation to the numerical solution of Eqs. (2.21)–(2.24). We can observe that for

the weak coupling regime the adiabatic approximation is valid and the analytical

solution agrees well with the numerical simulation.

Using Eq. (2.27) we can directly define a generalized Purcell factor P g
F cor-

responding to the increase of the decay rate with respect to the value γs of the

spontaneous emission in vacuum [17]

P g
F =

γ

γs
=

2 |g|2
γs

(
κ + γs

2
+ γd

)
(
κ + γs

2
+ γd

)2

+ ∆2

+ 1. (2.28)
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Fig. 2.1: Time evolution of the population of an emitter coupled to a plasmon mode in the

weak coupling regime. The decay given by the generalized Purcell factor (red

solid line) is compared with the numerical solution of Eqs. (2.21)–(2.24) (black

dashed line). The parameters used for simulation are κ = 3.14× 1014 s−1, ω0 =

3.14× 1015 s−1, γs = 1× 109 s−1, γd = 100γs, g = 0.2× 1013 s−1 ≈ 0.025κ/4,

∆ = 0 s−1.

For κ� γs, κ� γd and ∆ = 0, the Purcell factor simplifies to

PF =
4 |g|2
κγs

+ 1. (2.29)

Unless otherwise stated, when we give a value of the Purcell factor in the following

we refer to the simplified Purcell factor.

This effect can be more fundamentally explained by Fermi’s golden rule [12].

The spontaneous decay rate of the emitter is, according to Fermi’s golden rule,

proportional to the density of electromagnetic states, which is increased (compared

to vacuum density of electromagnetic states) in vicinity of the plasmon.

2.3.2 Strong coupling

In the previous section, we found an exponential decay of an emitter coupled to a

plasmon mode in the weak coupling regime. On the other hand, when the coupling

strength g & κ
4
, γs

4
,
γd
4

, we enter the strong coupling regime. In this case, the energy

transferred from the emitter to the plasmon is only partly lost into environment

but a substantial part is given back to the emitter, which results in a coherent

exchange of energy between the plasmon and the emitter until dissipation occurs.

This phenomenon is called Rabi oscillations.
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Rabi oscillations can be observed in time evolution of the system given by

Eqs. (2.21)–(2.24). Analytical solution for the case of no pure dephasing is pro-

vided in Appendix A. As the solution is rather complicated, we simplify it for the

case when the decay rate of the emitter is negligible compared to the decay rate of

the plasmon, γs � κ and the emitter is in resonance with the plasmon (ω0 = ωs).

Population of the emitter is then〈
σ̂+σ̂−

〉
=

8 |g|2

16 |g|2 − κ2
exp

(
−κ + γs

2
t

)[
cos

(√
4 |g|2 − κ2

4
t+ φ

)
+ 1

]
, (2.30)

where

φ = arctan
κ
√

16 |g|2 − κ2

κ2 − |8g|2
. (2.31)

Thus, the exponential decay of the emitter population with rate (κ+ γs)/2 is mod-

ulated by oscillations of frequency
√

4 |g|2 − κ2/4.

The analytical result is shown in Fig. 2.2 by the red line. Fig. 2.2 further shows

the numerical solution of Eqs. (2.21)–(2.24) for different values of pure dephasing.

We observe a perfect match of the analytical and numerical solution for zero dephas-

ing (γd = 0). The black dotted and dash-dotted lines for γd > 0 show the effect of

pure dephasing: increasing the pure dephasing decreases the amplitude and slightly

increases the frequency of the oscillations.

2.4 Excitation by classical light

Typical way to excite a plasmon-emitter system in experiments is to illuminate the

system by a plane wave. Interaction of the emitter with the plane wave can be

describe as an interaction of its dipole moment with the electric field of the plane

wave at the position of the emitter Ei (r), therefore the interaction Hamiltonian is

Ĥcl−em = −
(
µσ̂+ + µ∗σ̂−

)
·
(

1

2
Ei (r) e−iωt +

1

2
Ei∗ (r) eiωt

)
(2.32)

As we are using the rotating wave approximation, the fast oscillating terms σ̂+eiωt

and σ̂−e−iωt can be neglected. Then the interaction Hamiltonian is

Ĥcl−em = ~
(
Ωe−iωtσ̂+ + Ω∗eiωtσ̂−

)
(2.33)

with Ω being

Ω = −µ ·E
i (r)

2~
. (2.34)

The interaction Hamiltonian for a plasmon described by the bosonic operators

can be written in analogy to Eq. (2.33)

Ĥcl−pl = ~
(
f e−iωtâ† + f ∗eiωtâ

)
(2.35)
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Fig. 2.2: Time evolution of the population of emitters coupled to a plasmon mode in the

strong coupling regime. The analytical solution of Eqs. (2.21)–(2.24) for the

case of no dephasing (red solid line) is compared with the numerical simulation

for no dephasing (black dashed line), dephasing γd = 2× 104γs (black dotted

line), and γd = 6× 104γs (black dash-dotted line). The parameters used for

simulation are κ = 3.14× 1014 s−1, ω0 = 3.14× 1015 s−1, γs = 1× 109 s−1,

g = 0.3× 1015 s−1, ∆ = 0 s−1.

The coupling constant f can be determined by comparing the scattered electric field

of nanoparticle at the position rm of maximum amplitude (i. e. Es (rm) = Es
m)

Es (rm) =
Es

m

2
e−iωt +

Es∗
m

2
eiωt (2.36)

with the expectation value of the electric field operator 〈Es (rm)〉, Eq. (2.7), at the

same position. For such a comparison, we determine value of the operator â by

applying the master equation (2.4) with the Hamiltonian (2.10) extended by the

interaction term (2.35). Dissipative part of the master equation is formed by the

Lindblad term (2.14). Equation for the annihilation operator â is then

d 〈â〉
dt

= −iω0 〈â〉 − ife−iωt − κ

2
〈â〉 , (2.37)

which has a solution

â =
if

i (ω − ω0)− κ/2 e−iωt. (2.38)

The expectation value of the electric field operator 〈Es (rm)〉 for ω = ω0 is then

〈Es (rm)〉 = −
√

~ω0

2ε0Veff

(
Es

m

|Es
m|

2if

κ
e−iωt +

Es∗
m

|Es
m|

2if ∗

κ
eiωt

)
. (2.39)

By comparing Eqs. (2.36) and (2.39) we obtain the coupling constant f

f = i
κ

2

√
ε0Veff

2~ω0

|Es
m| (2.40)
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3 SUPERRADIANCE

Superradiance is an enhanced spontaneous emission, which results from a mutual

interaction between emitters. The coupling between emitters gives rise to global

states with decay rates different from those of the single emitters, and at least one

of these states, so-called superradiant state, decays with a rate significantly enhanced

with respect to the single emitter. [18]

Superradiance is typically observed in an ensemble of emitters confined in a

volume with characteristic size much smaller than the radiation wavelength. In such

case the emitters are coupled to each other directly, because they are all coupled

to the common radiation field. Besides that, the coupling between emitters can be

mediated by their interaction with another body, e.g., plasmonic nanoparticle. We

show in the following that a classical model of such a system predicts even stronger

superradiant effect in comparison to the system of directly coupled emitters.

3.1 Superradiance in absence of plasmon

To introduce the superradiant effect in absence of a plasmon, we will first describe

a system of two emitters coupled to a common radiation field, which allows us

to derive analytical solution for the system of emitters with identical spontaneous

decay rate and pure dephasing located at arbitrary positions. Two coupled emitters

in the absence of any plasmonic mode are described by the following Hamiltonian

and Lindblad operators [19].

Ĥ =
1

2
~

2∑
i=1

ωisσ̂
i
z + ~

2∑
i,j=1
i 6=j

ωijc σ̂
i
+σ̂

j
−, (3.1)

L̂s = −1

2

2∑
i=1

γis
(
σ̂i+σ̂

i
−ρ̂+ ρ̂σ̂i+σ̂

i
− − 2σ̂i−ρ̂σ̂

i
+

)
, (3.2)

L̂d = −1

2

2∑
i=1

γid
(
σ̂i+σ̂

i
−ρ̂+ ρ̂σ̂i+σ̂

i
− − 2σ̂i+σ̂

i
−ρ̂σ̂

i
+σ̂

i
−
)
, (3.3)

L̂c = −1

2

2∑
i,j=1
i 6=j

γijc
(
σ̂i+σ̂

j
−ρ̂+ ρ̂σ̂i+σ̂

j
− − 2σ̂j−ρ̂σ̂

i
+

)
, (3.4)

where the first term in the Hamiltonian expresses the energy of the emitters, as in

Eq. (2.3), and the Lindblad operators L̂s and L̂d describe the spontaneous decay and

the pure dephasing of the single emitters, respectively, as in Eqs. (2.5) and (2.6). The

coupling between the emitters is incorporated by the second term of the Hamiltonian

with coupling constants ωijc [20]
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ωijc =
3

4

√
γisγ

j
s

{
− [(eµ,i · eµ,j)− (eµ,i · er) (eµ,j · er)]

cos ξ

ξ

+ [(eµ,i · eµ,j)− 3 (eµ,i · er) (eµ,j · er)]×
[

sin ξ

ξ2
− cos ξ

ξ3

]}
, (3.5)

and by the Lindblad operator L̂c with decay rates [20]

γijc =
3

4

√
γisγ

j
s

{
[(eµ,i · eµ,j)− (eµ,i · er) (eµ,j · er)]

sin ξ

ξ

+ [(eµ,i · eµ,j)− 3 (eµ,i · er) (eµ,j · er)]×
[

cos ξ

ξ2
− sin ξ

ξ3

]}
, (3.6)

where γis is the spontaneous decay rate of i-th emitter with the dipole moment µi =

µieµ,i. The parameter ξ is equal to 2πrij/λ0, where λ0 is the resonant wavelength

and rij is the distance between emitters. Finally, er is the unit vector pointing from

the i-th emitter to j-th emitter.

Utilizing the master equation (2.4), and the weak illumination approximation,

Eq. (2.20), and assuming two identical emitters (γ1
s = γ2

s = γs, γ
1
d = γ2

d = γd,

γ12
c = γ21

c = γc, ω
1
s = ω2

s , ω
12
c = ω21

c ) excited in the same manner allows to consider〈
σ̂1

+σ̂
1
−
〉

=
〈
σ̂2

+σ̂
2
−
〉

and
〈
σ̂1

+σ̂
2
−
〉

=
〈
σ̂2

+σ̂
1
−
〉
, obtaining a simple system of equations

for the emitter population

d
〈
σ̂1

+σ̂
1
−
〉

dt
= −γs

〈
σ̂1

+σ̂
1
−
〉
− γc

〈
σ̂2

+σ̂
1
−
〉
, (3.7)

d
〈
σ̂2

+σ̂
1
−
〉

dt
= −γc

〈
σ̂1

+σ̂
1
−
〉
− (γs + 2γd)

〈
σ̂2

+σ̂
1
−
〉
. (3.8)

Time evolution of the system is linear combination of two exponentials – one corre-

sponds to a fast superradiant decay, and the other represents much slower subradiant

decay. Decay rates given by eigenvalues of the system (3.7) and (3.8) are

Γsup = (γs + γd) +
√
γ2
d + γ2

c , (3.9)

Γsub = (γs + γd)−
√
γ2
d + γ2

c . (3.10)

This result shows that the decay rate of the emitter given by its spontaneous decay

rate can be indeed either enhanced or decreased due to the coupling between emit-

ters, resulting in a superradiant state with decay rate Γsup > γs and a subradiant

state with decay rate Γsub < γs.

The description of two coupled emitters can be easily extended to a system of N

emitters. However, analytical solution can be provided only for the case of identical

emitters aligned in same direction and located infinitesimally close to each other.

Under these conditions γijc = γs for all i, j, and population of each of the emitter is

13



determined by system of equations

d
〈
σ̂i+σ̂

i
−
〉

dt
= −γs

〈
σ̂i+σ̂

i
−
〉
− (N − 1) γs

〈
σ̂i+σ̂

j
−
〉
, (3.11)

d
〈
σ̂i+σ̂

j
−
〉

dt
= −γs

〈
σ̂i+σ̂

i
−
〉
− [(N − 1) γs + 2γd]

〈
σ̂i+σ̂

j
−
〉
. (3.12)

Additionally, for no dephasing the superradiant decay rate Γsup and subradiant decay

rate Γsup have the value of

Γsup = Nγs, Γsub = 0. (3.13)

This result is in agreement with the theory of superradiance introduced by Dicke [21].

3.2 Plasmon-mediated superradiance

Superradiance emerges also in case when all emitters are coupled to the same plas-

monic nanoparticle. The plasmon-mediated coupling between the emitters is ad-

vantageous for two reasons. First, effective coupling of multiple emitters is possible

as the coupling strength depends on plasmon-emitters distance. Providing equal

distance between the plasmon and each of the emitters is easier than keeping equal

distance between each pair of emitters. Second, if the coupling strength between the

plasmon and the emitter corresponds to a weak coupling regime, superradiant effect

is combined with Purcell enhancement, which results in a further enhancement of

the decay rates. Classical model introduced by Pustovit and Shahbazyan [9] predicts

superradiant decay rate

Γsup = NP g
Fγs, (3.14)

where P g
F is the generalized Purcell factor [see Eq. (2.28)]. Eq. (3.14) assumes an

idealized direct coupling between emitters. Assuming that emitters couple only via

the plasmon the resulting superradiance decay reads

Γsup = N (P g
F − 1) γs + γs. (3.15)

In the following, we develop a complex model describing a system of non-identical

emitters. To study its properties we often utilize classical prediction (3.15).
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4 THEORETICAL MODEL

In this thesis, we are interested in describing very general situations where an ensem-

ble of emitters is coupled to a plasmon mode, possibly under a laser illumination and

including the possibility of a strong pure dephasing. To study this situation, we first

extend the simple models described in the previous section [Eqs. (2.5), (2.6), (2.14),

(2.19) and (3.1)–(3.4)] to an arbitrary number of emitters M and plasmon modes

N . Moreover, we incorporate the excitation of the system by a laser illumination,

which leads to a more complex Hamiltonian

Ĥ = ~
N∑
k=1

ωk0

(
âk†âk +

1

2

)
+

~
2

M∑
i=1

ωisσ̂
i
z + ~

M∑
i,j=1
i 6=j

ωijc σ̂
i
+σ̂

j
−+

+ ~
N∑
k=1

M∑
i=1

(
gikσ̂i+â

k
)

+ ~
N∑
k=1

(
fke−iωtâk†

)
+ ~

M∑
i=1

(
Ωie−iωtσ̂i+

)
+ h.c. (4.1)

and Lindblad operators

L̂p = −1

2

N∑
k=1

κk
(
âk†âkρ̂+ ρ̂âk†âk − 2âkρ̂âk†

)
, (4.2)

L̂s = −1

2

M∑
i=1

γis
(
σ̂i+σ̂

i
−ρ̂+ ρ̂σ̂i+σ̂

i
− − 2σ̂i−ρ̂σ̂

i
+

)
, (4.3)

L̂c = −1

2

M∑
i,j=1
i 6=j

γijc
(
σ̂i+σ̂

j
−ρ̂+ ρ̂σ̂i+σ̂

j
− − 2σ̂j−ρ̂σ̂

i
+

)
, (4.4)

L̂d = −
M∑
i=1

γid
(
σ̂i+σ̂

i
−ρ̂+ ρ̂σ̂i+σ̂

i
− − 2σ̂i+σ̂

i
−ρ̂σ̂

i
+σ̂

i
−
)
. (4.5)

The first term in the Hamiltonian and the Lindblad operator L̂p describe the energy

and losses, respectively, of the plasmon modes with a frequency ωk0 and a decay rate

κk. The ωisσ̂
i
z terms in the Hamiltonian describe the transition energy of the two-level

emitters, and L̂s the spontaneous decay of emitters with rates γi = γis. Furthermore,

the ωijc σ̂
i
+σ̂

j
− terms in the Hamiltonian for i 6= j introduce the coupling between

different emitters with a strength ωijc . The L̂ijc terms (i 6= j) introduce changes of

the decay losses due to the emitter-emitter coupling via γij = γijc (see Section 3.1).

Further, the Lindblad term L̂d describes pure dephasing of each emitter with rate

γid. The last two terms in the Hamiltonian express the coupling of the system

with photons described classically. These two terms introduce the excitation of the

plasmon and emitters by the illumination with an efficiency given by the coupling

strength fk and Ωi, respectively.

15



We consider the case of a weak illumination approximation σ̂z ≈ −1 (see Sec-

tion 2.3), giving the following finite system of equations for populations and coher-

ences:

d
〈
âl†âm

〉
dt

=

[
i
(
ωl0 − ωm0

)
− κl + κm

2

] 〈
âl†âm

〉
− i
(
fme−iωt

〈
âl†
〉
− f l∗eiωt 〈âm〉

)
+ i

M∑
i=1

(
gil
〈
σ̂i+â

m
〉
− gim∗

〈
σ̂i−â

l†〉) ,
(4.6)

d
〈
âl
〉

dt
= −

(
iωl0 +

κl

2

)〈
âl
〉
− if le−iωt − i

M∑
i=1

gil∗
〈
σ̂i−
〉
, (4.7)

d
〈
σ̂m+ â

l
〉

dt
= −

(
iωl0 +

κl

2
+ γmd

)〈
σ̂m+ â

l
〉

+
M∑
i=1

{(
iωim − γim

2

)〈
σ̂i+â

l
〉
− igil∗

〈
σ̂m+ σ̂

i
−
〉}

+ i
N∑
k=1

gmk∗
〈
âk†âl

〉
− i
(
f le−iωt

〈
σ̂m+
〉
− Ωm∗eiωt

〈
âl
〉)
,

(4.8)

d
〈
σ̂m+ σ̂

n
−
〉

dt
= −

M∑
i=1

{(
γni

2
+ iωni

)〈
σ̂m+ σ̂

i
−
〉

+

(
γim

2
− iωim

)〈
σ̂i+σ̂

n
−
〉}

− (1− δmn) (γmd + γnd )
〈
σ̂m+ σ̂

n
−
〉
− i

N∑
k=1

(
gnk
〈
σ̂m+ â

k
〉
− gmk∗

〈
σ̂n−â

k†〉)
− i
(
Ωne−iωt

〈
σ̂m+
〉
− Ωm∗eiωt

〈
σ̂n−
〉)
,

(4.9)

d
〈
σ̂m+
〉

dt
= i

N∑
k=1

gmk∗
〈
âk†
〉
−

M∑
i=1

(
γim

2
− iωim

)〈
σ̂i+
〉
− γmd

〈
σ̂m+
〉
− iΩm∗eiωt.

(4.10)

In Chapters 5 and 6 we study symmetric configurations of the system – con-

figurations where all parameters for all emitters are identical – and in Chapters 7

and 8, we study asymmetric configurations using two models. In the first model, we

assume two different groups of emitters, where within each group all emitters are

identical. Therefore, we distinguish operators and parameters related to these two

groups of emitters by indices p and q. The number of emitters of each type is P

and Q, respectively. This assumption leads to a system of 11 equations presented

in Appendix B, which together with their complex conjugates describe an ensemble

of arbitrary number of emitters [whereas the size of the system of Eqs. (4.6)–(4.10)

grows as square of the number of particles, both plasmons and emitters, in the sys-

tem]. The corresponding calculation code has been implemented and tested using
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programme R [22], and it was used to obtain the results discussed in Chapters 5

and 6 and Section 7.1.

(a) Distribution of emitters (b) Orientation of emitter’s dipole moments

(c) Three dipolar plasmon modes

Plasmonic
nanoparticle

Emitter

x y z

TangentialPerpendicular

Dielectric
shell

Fig. 4.1: (a) The system studied in Section 7.2 and Chapter 8 is composed of a plas-

monic nanoparticle surrounded by a dielectric shell covered by an ensemble of

randomly distributed emitters. (b) Emitters are characterized by dipole mo-

ments, whose orientation is considered to be either perpendicular or tangential

with respect to the surface of the dielectric shell. (c) The nanoparticle is mod-

elled as three dipolar modes – one in each of x, y and z directions.

The second model used to study asymmetric configurations utilizes directly

Eqs. (4.6)–(4.10), whose numerical solution was retrieved with Matlab. As this

model allows to describe emitters as non-identical, we can model more complex sys-

tems which require to consider the spatial distribution of the emitters. In this thesis,

we study time evolution of the system composed of a spherical metal nanoparticle

coupled to an ensemble of the emitters, which are separated from the nanoparticle

by a dielectric shell with a relative permittivity εd, as it is shown in Fig. 4.1(a). For

simplicity, we assume that the hybrid system is embedded in a dielectric medium

with the same relative permittivity εd. Each emitter of the system is characterized

by a dipole moment µ and we study two kinds of system according to the orienta-

tion of emitters’ dipole moments with respect to the surface of the dielectric shell –

tangential and radial (perpendicular) – shown in Fig. 4.1(b).

We model the plasmonic nanoparticle as three dipolar modes with dipole mo-

ments px, py, pz [see Fig. 4.1(c)] induced by incident electric field Ei =
(
Ei
x, E

i
y, E

i
z

)
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as given by [23]

pβ = ε0αE
i
βeβ, (4.11)

where eβ is a unit vector in the direction β = x, y, z, ε0 is vacuum permittivity and

α is polarizability

α = 3
εNP (ω)− εd
εNP (ω) + 2εd

V (4.12)

with εNP (ω) being dielectric function of the material of the nanoparticle at fre-

quency of the incident light and V being volume of the nanoparticle. Note that a

nanoparticle is at resonance if its polarizability is maximal, which requires

R {εNP (ω)}+ 2εd = 0. (4.13)

To determine coupling strength giβ between i-th emitter and plasmon mode β,

given by Eq. (2.18), we evaluate the electric field scattered by the plasmon mode

at position of the emitter r = rer with respect to the center of the nanoparticle

using [23]

Es =
1

4πε0

{
k2
(
er × pβ

)
× er

exp (ikr)

r
+
[
3er

(
er · pβ

)
− pβ

]( 1

r3
− ik

r2

)
exp (ik r)

}
,

(4.14)

where k is wave vector of scattered electromagnetic wave. Furthermore, we compute

effective volume Veff of the nanoparticle [Eq. (2.11)] using near field term of Eq. (4.14)

(term proportional to 1/r3), we exclude far field terms as they diverge when r goes

to infinity.

Coupling of the plasmon to the light f is dependent on parameters of the plas-

monic resonance and intensity of the incident beam [see Eq. (2.40)], therefore in

experiment we can achieve desired value of f by choosing suitable intensity of the

incident light. Coupling strength between the emitter and the light Ωi also de-

pends on intensity of the incident light, and it can be determined using values of

plasmon-light coupling fβ and plasmon-emitter coupling giβ. From Eqs. (2.18),

(2.34) and (2.40) we find

Ωi = − 2i

κβ
µ ·Ei

µ ·Esf
βgiβ. (4.15)

Model of non-identical emitters is used in Section 7.2 to study effects of asymme-

try in plasmon-emitter coupling strength and in Chapter 8 to study effect of direct

coupling.
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5 SYMMETRIC CONFIGURATION:

WEAK COUPLING

We first study the emission from an ensemble of emitters coupled to a plasmon mode

in a symmetric configuration, i.e., with all the emitters having identical properties

including the coupling strength to the plasmonic particle g. Even though perfectly

symmetric configurations cannot be achieved in realistic situations, they can provide

important insights. Thus, we solve here the system of equations in Appendix B for

the case in which all emitters are identical, including the same excitation, coupling

with the plasmon g and the same pure dephasing γd and spontaneous decay rate

γs = 1× 109 s−1. The emitters are coupled to the a plasmon mode with frequency

ω0 = 3.14× 1015 s−1 (corresponding to wavelength λ = 600 nm) and quality factor

Q = ω0/κ = 10 [24]. We use coupling strength g = 2.8× 1012 s−1, which corresponds

to a Purcell factor PF = 100, as given by Eq. (2.29). These values are typical for

plasmonic resonances [25] and correspond to the weak coupling regime for all the

numbers of emitters N considered in this work. For simplicity, we assume that the

emission energy of the emitters is equal to the energy of the plasmon resonance,

i. e., the detuning equals to zero.

For simplicity we neglect the direct coupling between the emitters. We will

include it into the model in Chapter 8.

5.1 Effect of initial state

The excitation of the system in experiment can be performed by different approaches.

For example, it is possible to illuminate the particle with a short pulse of light of

the adequate frequency to excite resonantly the plasmon. This approach can be

naturally simulated by introducing a time dependent strength f of the coupling

between the photon and the plasmon (see Section 2.4). Another possibility is to

excite an emitter by high-frequency light into some higher excited state from which

it rapidly decays into the lowest (metastable) excited state corresponding to the

transition under study. This excitation can be simulated by setting the emitter’s

upper states populated without direct inclusion of the illumination.

The way of the excitation is expected to influence the dynamics of the studied

system. In the following, we will demonstrate the effect of the excitation on the

time evolution of the system for three different situations:

1. Plasmon in the ground state and emitters populated at t = 0, for no illumina-

tion (f = 0, Ω = 0).

19



2. Plasmon populated and emitters in the ground state at t = 0, for no illumina-

tion (f = 0, Ω = 0).

3. Plasmon and emitters initially in the ground state, illumination by a short

pulse exciting the plasmonic mode (Ω = 0, time dependent coupling strength

f (t) is modelled as a Gaussian function).

We always choose an initial state corresponding to a small enough population or a

sufficiently weak laser illumination, so that the assumptions 〈σ̂z〉 ≈ −1 and
〈
â†â
〉
−〈

ââ†
〉
≈ −1, which were considered to obtain Eqs. (4.6)–(4.10), remain valid. In

all cases we explore conditions where pure dephasing is negligible or appreciable,

in order to explore to what extent this parameter – which does not have a simple

classical equivalent – can affect the results.

First, we consider the case 1 with no illumination and initial population of the

emitters (while the plasmon is in the ground state). Fig. 5.1(a) shows the time evo-

lution of the population of the emitter with no pure dephasing as the total number of

emitters in the system increases from 1 to 20. In the considered symmetrical config-

uration, all emitters will show identical behaviour. When a single emitter is coupled

to the plasmon (blue line), it decays with spontaneous decay rate enhanced by the

Purcell factor,1 as expected (black dashed line corresponds to a simple exponential

decay with rate P g
Fγs). However, as we increase the number of emitters, N ≥ 2,

we do not observe the expected superradiance, because initial state of populated

emitters with coherences equal to zero does not correspond to pure superradiant

state. In such case, we excite statistical mixture of one superradiant state with

decay rate N (P g
F − 1) γs + γs and N − 1 subradiant states decaying with rate γs.

Time evolution of normalized average population of single emitter is therefore〈
σ̂m+ σ̂

m
−
〉

=
1

N
exp {− [N (P g

F − 1) γs + γs] t}+
N − 1

N
exp (−γst), (5.1)

which is shown by black dash-dotted line in Fig. 5.1(a).

Next, we introduce a pure dephasing with a rate γd = 10 γs. Fig. 5.1 (b) indicates

that pure dephasing does not change the qualitative behaviour of the superradiant

state, although it significantly increases the decay rate of the subradiant states.

This increase of subradiant decay rate is more pronounced for a lower number of

emitters. This can be intuitively explained in the following way. There is in total

N distinct states of the system of the emitters, (N − 1) being subradiant. The

dephasing introduces transitions between these states with a rate γd, i.e., once per

a time of 1/γd (on average) the system transforms into one of its N states, one of

1Note that under the conditions studied in this section, the simplified [Eq. (2.29)] and gener-

alized [Eq. (2.28)] Purcell factors are, in practice, identical. However, we refer to the generalized

Purcell factor P g
F if we take into account pure dephasing and to the simplified Purcell factor PF if

it refers to no pure dephasing.
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Fig. 5.1: Initial state – emitters populated: Time evolution of the normalized pop-

ulation of one emitter for different total number of emitters N between 1 and

20 for (a) no pure dephasing and (b) pure dephasing γd = 10 γs. There is

no illumination and initially the emitters are populated and the plasmon is in

the ground state. The parameters used for simulation are γs = 1× 109 s−1,

ω0 = 3.14× 1015 s−1, κ = 3.14× 1014 s−1, ωs = ω0, PF = 100. The black

dashed line indicates an exponential decay with rate P gFγs, corresponding to

the single emitter coupled to the plasmon mode. The black dashed-dotted lines

correspond to a statistical mixture of super- and subradiant states given by

Eq. (5.1).
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them superradiant. The probability that the final state will be superradiant is 1/N ,

larger for smaller number of emitters.

Let us now consider the same system with initial conditions of the case 2 – the

plasmon is initially populated while all emitters are in the ground state. Fig. 5.2(a)

calculated for the case of no dephasing shows an exponential decay of the emitter

population that becomes faster with increasing number of emitters. The results are

in excellent agreement with the classical prediction (black dashed lines) showing that

the emission is governed by superradiant collective states [9], as given by Eq. (3.15).
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Fig. 5.2: Initial state – plasmon populated: Time evolution of the normalized pop-

ulation of one emitter for different total number of emitters N between 1 and

20 for (a) no pure dephasing and (b) pure dephasing γd = 10γs. There is no

illumination and initially the emitters are in the ground state and the plas-

mon is populated. The parameters used for simulation are γs = 1× 109 s−1,

ω0 = 3.14× 1015 s−1, κ = 3.14× 1014 s−1, ωs = ω0, PF = 100. The black

dashed line indicates an exponential decay with the rate given by the classical

prediction, Eq. (3.15).

More intriguing behaviour appears when pure dephasing γd = 10 γs is introduced

to the system [Fig. 5.2(b)]. Initially, only superradiant state is populated, and there-

fore the emitter decays as before – with decay rate proportional to N (P g
F − 1) γs+γs.

Due to pure dephasing, superradiant state decays into subradiant states, which gives

rise to a statistical mixture of superradiant and subradiant states similar to Eq. (5.1),
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but with different weights. In this case, the faster the superradiant state decays the

lower is the population at which subradiant states start to dominate time evolution

of the system. Moreover, as there are no cooperative states in case of single emitter,

pure dephasing does not affect its decay as long as its influence on Purcell enhance-

ment is negligible [see Eq. (2.28)]. Thus, after some time the population for a single

emitter becomes smaller than for multiple emitters.

Finally, we study the effect of the number of emitters and pure dephasing on the

system when initially all the emitters and the plasmon are in the ground state and

the system is excited by laser illumination. All the other parameters are identical as

those in Figs. 5.1 and 5.2. For this type of illumination, a coherent excitation pulse

resonant with the plasmon excites the system. We are interested in the evolution of

the population after the pulse has vanished. In our case, we simulate the laser pulse

through the coupling f between photons and a plasmon (see Section 2.4), with the

emitters being excited via their coupling with the plasmon. We ignore the direct

excitation of the molecules (Ω = 0), which is typically weaker. We model the pulse

as a Gaussian function with standard deviation of 10 fs and intensity low enough to

be in the weak illumination limit. The pulse reaches its maximum value at the time

of 100 fs. Results are plotted in Fig. 5.3(a) for no pure dephasing and in Fig. 5.3(b)

for pure dephasing γd = 10γs. For very short times we observe a very fast increase

of the population that corresponds to the excitation of the emitter by the laser via

the plasmon. When the plasmon is no longer excited, the emitter decays over the

considerably larger time scale. Notably, the results are almost identical to those

found for the case of initial population of plasmon in Fig. 5.2. In addition, we note,

that the system evolves identically even for case when emitters are directly excited

by light pulse (Ω 6= 0) and the plasmon is not excited (f = 0).

Previous discussion of Figs. 5.1–5.3 implies that the simple classical prediction

of superradiant decay rate [Eq. (3.15)] is valid regardless of the type of excitation.

The reason why the excitation does not affect the decay rate of the superradiant

state is that as far as we are interested in the time evolution after illumination

the system of Eqs. (4.6)–(4.10) (see Chapter 4) describing dynamics of the studied

system does not change. Thus, the decay of each mode of the system is unaffected

by the illumination. However, the excitation can influence the initial condition,

determining which modes have a stronger contribution to the time evolution, and

thus to the emission of the system. We observe expected increment of decay rate

with increasing number of emitters in time evolution of the system only if the initial

state is satisfactorily described by a pure superradiant mode, which is the case when

the system is excited via the plasmon or by the light illumination. The reason why

illumination of either plasmon or emitters excites superradiant state is that light

couples to superradiant state much more effectively than to subradiant states. On
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Fig. 5.3: Excitation of the plasmon by external illumination: Time evolution of

the normalized population of one emitter for different total number of emitters

N between 1 and 20 for (a) no pure dephasing and (b) pure dephasing γd = 10γs.

Initially the emitters and the plasmon are in the ground state. Illumination of

the system is provided by a Gaussian pulse with the standard deviation 10 fs and

frequency resonant with the plasmon ω = 3.14× 1015 s−1. The parameters used

for simulation are γs = 1× 109 s−1, ω0 = 3.14× 1015 s−1, κ = 3.14× 1014 s−1,

ωs = ω0, PF = 100. The black dashed line indicates an exponential decay with

the rate given by the classical prediction, Eq. (3.15).
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the other hand, if all emitters are initially populated system is in the statistical

mixture of all states and typical feature of superradiance – increase of the decay

rate with increasing number of emitters – is not observed.

Furthermore, Figs. 5.1 and 5.2 show that due to pure dephasing any populated

state decays into other states and populates them (such decay is additional to decay

into environment). Therefore, the initial superradiant state becomes dephased after

the time proportional to 1/ (2Nγd) and decay of the population becomes slower.

In experiment, the description by the pure superradiant mode can still be relevant

provided the decoherence applies only after the population of the emitter becomes

undetectably small. On the other hand, for large pure dephasing, deviations from

the simple description can become large, and the influence of the subradiant modes

on the decay becomes apparent. The effect of stronger dephasing will be studied in

more detail in the Section 5.2.

5.2 Effect of pure dephasing

Let us study in more detail the effect of pure dephasing on the system composed

by 2 emitters and described by parameters stated at the beginning of Chapter 5.

As time evolution of the system is given by linear combination of superradiant and

subradiant states, we will discuss effect of pure dephasing on the system which

is initially in one of these states. Superradiant initial state is modelled by initial

condition when plasmon is in the ground state and populations and coherences of

emitters are α/2. Subradiant state is excited if populations of the emitters are α/2,

and their coherences are −α/2. In both cases α is arbitrary real number much

smaller than 1 [to fulfil conditions (2.20)].

First, we study the effect of weak dephasing (defined as γd ≤ P g
Fγs, red and

green lines in Fig. 5.4). Time evolution of the initially superradiant state is shown

in Fig. 5.4(a), where we observe qualitatively same behaviour as in Figs. 5.2(b)

and 5.3(b) – superradiant state characterized by the decay rate N (P g
F − 1) γs + γs

decays due to pure dephasing into subradiant states, and therefore the decay of the

emitter population becomes significantly slower. Moreover, Fig. 5.4(a) shows that

contribution of subradiant states increases with increasing dephasing. At least half

of the decay of the emitter population is yet dominated by the superradiant emission

(notice the logarithmic scale) even for γd = PFγs = 100γs.

Time evolution of the subradiant state of the system undergoing weak dephasing

is shown in Fig. 5.4(b). This state starts to decay with rate γs, however, due to pure

dephasing it populates also other states including superradiant state, and therefore

decay of the emitter becomes faster. The resulting decay rate is identical with the
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Fig. 5.4: Time evolution of the normalized population of one emitter in a system of

N = 2 emitters for different values of pure dephasing. The system is initially

in (a) a superradiant state or (b) a subradiant state. The parameters used

for simulation are γs = 1× 109 s−1, ω0 = 3.14× 1015 s−1, κ = 3.14× 1014 s−1,

ωs = ω0, and coupling strength g = 2.8× 1012 s−1 (corresponding to the Purcell

factor PF = 100 for low pure dephasing). The black dashed line shows an

exponential decay with the rate equal to N
(
P gF − 1

)
γs + γs, the black dotted

line indicates an exponential decay with rate P gFγs and black dash-dotted line

shows the exponential spontaneous decay rate γs.
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corresponding one in time evolution of initially superradiant state [Fig. 5.4(a)].

Secondly, when pure dephasing is large, γd � PFγs, system enters a regime,

where the decay rate corresponds to P g
Fγs (blue lines in Fig. 5.4). Thus, this situation

is equivalent to having each emitter being coupled to the plasmon, but not to other

emitters. As a result, time evolution of the system does not depend on the initial

state, because both states correspond to same situation of a single emitter coupled

to a plasmon mode. Note, that while for γd = 104γs = 100PFγs we obtain a decay

P g
Fγs (black dotted line), for γd = 108γs = 106PFγs (yellow line) the decay is γs

(black dash-dotted line), because generalized Purcell factor is reduced to 1 when the

pure dephasing is in the order of κ, as indicated by Eq. (2.28). This fact reflects that

dephasing much larger than PFγs disables coupling between plasmon and emitter

and emitter behaves independently on plasmon and other emitters.

To conclude, time evolution of the system of N emitters in the weak coupling

regime is described by superposition of one superradiant state with decay rate

N (P g
F − 1) γs + γs and N − 1 subradiant states with much slower decay rate. Pure

dephasing and type of excitation determines the relative weights of superradiant

state and subradiant states. Furthermore, depending on the type of excitation, sys-

tem can be initially prepared either in a pure superradiant state or in a statistical

mixture of super- and subradiant states. For both types of excitation pure dephasing

acting on the system causes mixing of super- and subradiant states, which leads to

change in the decay rate. The resulting decay rate depends on number of emitters

and value of pure dephasing.
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6 SYMMETRIC CONFIGURATION:

STRONG COUPLING

This section is devoted to conditions for which the interaction strength is large

enough to reach the strong coupling regime. We consider system in the symmetric

configuration where all emitters behave identically, plasmon is initially populated

and no illumination is considered. In the previous section, treating the weak coupling

regime, the system often behaves as a single emitter with the spontaneous decay rate

multiplied by the Purcell factor and the number of emitters. Such behaviour can

be understood, if we consider a plasmon and an effective emitter (representing a

system of N emitters) coupled with effective coupling strength

geff =
√
N |g| , (6.1)

where g is coupling strength between the plasmon and one emitter. Using descrip-

tion of plasmon-emitter hybrid system presented in Section 2.3, we can expect that

system of N emitters would enter strong coupling regime as the effective coupling

overcomes the plasmonic losses, i.e., geff > κ/4.

In Fig. 6.1(a) we study the decay of the emitters for N = 20, for no dephasing and

as a function of coupling strength g. We focus first on the behaviour of the emitter

population after it reaches its maximum population, i.e., neglecting the initial phase

in which the population of the emitters rises due to their excitation via the plasmon.

For g = 8.9× 1012 s−1 (geff = 0.13κ, blue line) and g = 1.8× 1013 s−1 (geff =

0.25κ, red line), we observe an exponential decay typical for the weak coupling

regime. However, if we further increase the coupling g, the system enters the strong

coupling regime and Rabi oscillations can be observed in the decay of the emitter

as shown by yellow (g = 4.0× 1013 s−1 corresponding to geff = 0.53κ) and green

(g = 5.6× 1013 s−1 corresponding to geff = 0.80κ) lines.

As the effective coupling strength is given by
√
N |g|, we can expect that a similar

effect can be achieved by increasing the number of emitters N . In Fig. 6.1(b) we

plot the time evolution of the system for the same values of geff as in Fig. 6.1(a),

but in this case the coupling g between the plasmon and the emitter is fixed to the

value of 4× 1013 s−1, while the number of emitters increases. Indeed, we can see

that there is no apparent difference between these two situations, changing |g| or

N , as far as geff remains the same [compare lines of same colour in Fig. 6.1(a) and

(b)].

We now briefly discuss the evolution of the emitter population in Fig. 6.1 during

excitation (before it reaches the maximum). As we are considering no coupling of

emitters to illuminating wave (Ω = 0), the emitter is excited by the plasmon, and
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Fig. 6.1: Time evolution of the normalized emitter population for (a) 20 emitters and

different values of the coupling strength g and for (b) g = 4× 1013 s−1 and

a different number of emitters N . Each colour corresponds to same value of

the effective coupling strength geff in both panels. The parameters used for

the simulation are γs = 1× 109 s−1, γd = 0 s−1, ω0 = 3.14× 1015 s−1, κ =

3.14× 1014 s−1, ωs = ω0.
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therefore, emitter population reaches maximum faster for stronger effective coupling

between the plasmon and the emitter.

Next, we will consider the effect of pure dephasing on the population of the

emitter when the system is in the strong coupling regime. Fig. 6.2 shows the decay

of one of the N = 20 emitters, for different values of dephasing, and for the coupling

strength g = 2× 1014 s−1 which corresponds the strong coupling regime (geff =

2.85κ). For no dephasing (blue line) we observe clearly the Rabi oscillations –

oscillations with the frequency of
√

4N |g|2 − κ2/4 – modified by the exponential

decay (with the rate of (κ+ γs) /2), which is in good agreement with the description

of the strong coupling for a single emitter described in Section 2.3.2.

Pure dephasing affects time evolution of the emitter in two ways – it damps

Rabi oscillations and changes the rate of exponential decay which modulates the

oscillations. The latter is illustrated in Fig. 6.2, where the population of the emitter

in case of no pure dephasing (blue line) decays much faster than in any case with

non-zero pure dephasing. Thus, decay rate is decreased by introducing a weak pure

dephasing. However, by further increasing the pure dephasing decay rate of the

system is increased. This result is in agreement with the effects of pure dephasing

found in the case of weak coupling – pure dephasing populates of subradiant states,

which causes the sudden decrease of decay rate, and the subradiant states decays

faster the larger is dephasing.

Time (ps)

0 0.05 0.1 0.15 0.2

N
o
rm

a
li
z
e
d

p
o
p
u
la

ti
o
n

o
f

e
m

it
te

r

0

0.2

0.4

0.6

0.8

1
.d = 0 ge,

.d = 0:04 ge,

.d = 0:09 ge,

.d = 0:2 ge,

.d = 0:3 ge,

.d = 0:4 ge,

0 0.01 0.02
0

0.5

1

Fig. 6.2: Time evolution of the normalized emitter population for 20 emitters and dif-

ferent values of dephasing γd. The parameters used for the simulation are

γs = 1× 109 s−1, ω0 = 3.14× 1015 s−1, κ = 3.14× 1014 s−1, ωs = ω0 and

g = 2× 1014 s−1.
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Fig. 6.2 further shows that with increasing dephasing Rabi oscillations become

less pronounced and they diminish faster. To quantify the effect of damping we

define visibility of the oscillations as

V =
max 〈σ̂p+σ̂p−〉 −min 〈σ̂p+σ̂p−〉
max 〈σ̂p+σ̂p−〉+ min 〈σ̂p+σ̂p−〉

. (6.2)

In case of no dephasing the population of the emitter reaches zero at the minimum

of the oscillations, implying perfect visibility V = 1. With increasing dephasing

visibility decreases, as it is shown in Fig. 6.3(a) for different number of emitters in

the system and (b) for different coupling strength g. Furthermore, visibility suddenly

becomes zero as pure dephasing reaches values comparable with effective coupling

strength. The fact that dependence of visibility of the oscillations on number of

emitters and coupling strength is different even if the effective coupling strength is

identical [same colour in Fig. 6.3(a) and (b)] implies that in case of pure dephasing

systems with same effective coupling strengths but different number of emitters are

no longer equivalent.
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Fig. 6.3: Visibility of the Rabi oscillations as a function of pure dephasing γd for (a) N =

20 emitters and different coupling strength g and (b) for the coupling strength

g = 0.5× 1015 s−1 and different number of emitters N . Each colour corresponds

to the same value of effective coupling in both graphs. The parameters used for

the simulation are γs = 1× 109 s−1, ω0 = 3.14× 1015 s−1, κ = 3.14× 1014 s−1,

ωs = ω0.

To conclude, in the strong coupling regime a system of emitters with no pure

dephasing behaves as an effective emitter coupled to a plasmon by the effective

coupling strength proportional to the plasmon-emitter coupling strength and square

root of number of emitters. Population of the emitter shows a typical feature of
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strong coupling – Rabi oscillations. In addition, dephasing acts as a damping of

Rabi oscillations. By analysis of the damping we found that systems with same

effective coupling strength but different number of emitters are no longer equivalent

if pure dephasing is present.
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7 ASYMMETRY IN PLASMON-EMITTER

COUPLING STRENGTH

In a realistic situation, when an ensemble of emitters is coupled to a plasmon mode

supported by a metallic nanoparticle, an exact modelling of the system can be rather

complicated, as it is not possible to perfectly control the position and orientation of

the dipoles. Notably, the idealized symmetric configuration may not fully describe

an experiment. In Section 7.1 we provide insights into the effects of asymmetry in

the plasmon-emitter coupling strength using a model which assumes two different

groups of emitters, where all emitters within each group are identical. Such a model

does not increase too much the number of equations that describe the dynamics

of the system, which allows better understanding of the results. However, such

a model is still too simplified to describe experimental situations, and therefore we

developed model where all emitters are considered to be non-identical. In Section 7.2

we utilize this model to study system of emitters randomly distributed over metal

sphere covered by dielectric layer. We consider three plasmonic dipole modes of the

sphere and coupling strength between each emitter and plasmon mode reflects the

position and orientation of the emitter with respect to plasmon.

7.1 System of two groups of identical emitters

We study the effect of asymmetry in the coupling strength between the plasmon and

the emitters in a system consisting of P emitters of type p and Q emitters of type q,

where the total number of emitters N = P+Q = 20. The studied system is described

by system of equations presented in Appendix B. To introduce the asymmetry in

the coupling strength g, we first set a fixed value of gq for the emitters of the type

q. Then, we consider three different values of gp given as multiples of gq and the

excitation of the system by a Gaussian pulse similar to the one used in Chapter 5

(with a standard deviation of 10 fs and its maximum value at 100 fs). We focus on

the decay of the emitters of type p.

In Fig. 7.1 we show the case of no pure dephasing γd = 0. The different panels

show results for different number P of emitters of type p. From top to bottom,

we show results for P being (a) 25 %, (b) 50 %, (c) 75 % and (d) 100 % of the

total number of emitters N . The last graph thus shows the symmetric situation

where all emitters are of the same type p. The red line in all graphs shows the

decay in the symmetric case gp = gq, while green and blue lines show the decay for

asymmetric cases gp = 2gq and gp = 3gq, respectively. We choose gq = 3× 1012 s−1

(corresponding to PF = 115) which corresponds to the weak coupling regime for
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all values gp and P . Indeed, in Fig. 7.1 we can observe that the decay remains

exponential in all cases.

By looking at each single panel in Fig. 7.1, it is clear that with increasing gp,

the decay rate increases. On the other hand, comparing the different panels shows

that, as the percentage of the emitters of type p in the system increases, the decay

rate also increases (because of increased Purcell factor). Notice that the red line

corresponds to gp = gq, so all emitters are in practice identical, and we need to

compare the blue and green lines in the Fig. 7.1. In these two cases gp > gq, and

thus increasing P corresponds to having a larger proportion of the emitters with

larger coupling strength and faster emission.

As could be expected, by increasing the value of the coupling strength g of some

of the emitters we obtain a faster decay. More quantitatively, from previous work [9]

and the results in Chapter 5, we can expect the system to behave as a single emitter

experiencing a superradiant decay with a rate

Γp,eff
sup = P (P g,p

F − 1) γps +Q (P g,q
F − 1) γqs + γps , (7.1)

where P g,p
F (P g,q

F ) is the generalized Purcell factor of a single emitter p (q) defined

by Eq. (2.28). The corresponding effective Purcell factor is

P p,eff
F =

Γp,eff
sup

γps
. (7.2)

For no pure dephasing and γps = γqs , Eq. (7.2) is equivalent to introducing an effective

coupling strength geff =
√
P |gp|2 +Q |gq|2 consistently with Chapter 6. Notice, that

we obtain the same effective Purcell factor for the two types of emitters. Following

discussion in the Chapters 2 and 3, it is possible to interpret Eqs. (7.1) and (7.2) as

reflecting the fact that the Purcell effect depends on the coupling strength between

plasmon and emitters (as given by P p
F and P q

F ) and that superradiance depends on

the number of emitters involved (P and Q).

The black lines in Fig. 7.1 correspond to an exponential decay with decay rate

Γp,eff
sup , given by Eq. (7.1), for gp = gq (dashed line), gp = 1.5gq (dotted line), gp =

2gq (dash-dotted line). It is apparent that the numerical results are in very good

agreement with Eq. (7.1), so that this simple description is valid for configuration

with asymmetry in the coupling strength and no pure dephasing.

Next, we study the effect of a pure dephasing in the asymmetric system (com-

posed of p-type and q-type emitters). In Fig. 7.2, we show the decay of the emitter’s

population with time as a function of asymmetry parameters gp (decay rate of the

p-type emitters) and P (number of the p-type emitters). The values of all other

parameters are the same as in the previous case (related to Fig. 7.1). The value of

the pure dephasing reads γpd = γqd = 10γs. We can see that the emitter is initially
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Fig. 7.1: Effect of introducing an asymmetry on the time evolution of the normalized

population of the emitter p for the case of no pure dephasing. The asymmetry

is introduced by considering two groups of emitters characterized by different

coupling strength with the plasmon, gp and gq. The panels show the results for

the ratio gp/gq being 1 (red solid line), 1.5 (green solid line) and 2 (blue solid

line), and for different number P of emitters of the type p: (a) P = 0.25N , (b)

P = 0.5N , (c) P = 0.75N and (d) P = 1N , where N = 20 is the total number of

emitters. The exponential decay with the rate Γsup [crefsup-eff] corresponding to

the effective Purcell factor is shown by the black dashed lines. The parameters

used for the simulation are gq = 3× 1012 s−1, γps = γqs = 1× 109 s−1, ω0 =

3.14× 1015 s−1, κ = 3.14× 1014 s−1, and ωps = ωqs = ω0.
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in the superradiant state which decays with rate Γsup [Eq. (7.1)], then subradiant

states become populated due to dephasing and thus decay rate of the emitter is

significantly decreased. By comparing decays for different value of gp and same

P , or for same value of gp and different P , we can observe that relative weight

of subradiant states decreases with increasing gp and with increasing P , that is,

when we increase the effective plasmon-emitter coupling strength (or effective Pur-

cell factor P eff
F ). Thus, increasing the ratio between the coherent interaction and

the pure dephasing increases the importance of the superradiant mode with respect

to the subradiant ones. These results are consistent with those in Figs. 5.2 and 5.3,

where the effective coupling strength was increased by considering more emitters in

a symmetric situation.

7.2 System of non-identical emitters

In this section, we study decay of the ensemble of emitters coupled to each other via

a silver nanoparticle, which is covered a by dielectric shell with a relative permittiv-

ity εd = 1.5 and thickness d = 20 nm. Emitters are randomly distributed over the

dielectric shell. All emitters have a dipole moment of same size which corresponds

to spontaneous decay rate γs = 1× 109 s−1, and they are oriented (a) radially or (b)

tangentially to the surface. Coupling strength of each emitter to each of three dipo-

lar plasmon modes of nanoparticle is determined using Eq. (2.18), where effective

volume is given by Eq. (2.11) and scattered electric field by Eq. (4.14).

The system is illuminated by a linearly polarized plane wave, which excites one

plasmon mode and emitters. To model coupling of the plasmon to the light we use

f = 108 and we determine coupling strength of each emitter to the light Ωi using

Eq. (4.15) and values of fβ and giβ.

Resonant frequency of a silver nanoparticle embedded in a medium with permit-

tivity εd = 1.5 is given by Eq. (4.13). Using dielectric function of silver published by

Johnson and Christy [26] we determine resonant frequency as ω0 = 5.05× 1015 s−1,

which corresponds to light with the wavelength of 372 nm. For simplicity, we consider

plasmon modes, emitters, and incident light to be in resonance. Moreover, using

Eqs. (2.12) and (2.13) we determine the decay rate of plasmon κ = 1.08× 1014 s−1.

In Fig. 7.3 we show time evolution of the population of 20 emitters for different

values of pure dephasing. The system of emitters with the radial polarization dis-

tributed as shown in Fig. 7.3(a) shows qualitatively same behaviour as symmetrical

system discussed in Sections 5.1 and 5.2 – the system initially decays exponentially

with a decay rate considerably larger than the spontaneous decay rate, and subse-

quently subradiant states become populated due to pure dephasing and the decay
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Fig. 7.2: Effect of introducing an asymmetry on the time evolution of the normalized

population of the emitter p for the case of pure dephasing γpd = γqd = 10γs. The

asymmetry is introduced by considering two groups of emitters characterized

by different coupling strength with the plasmon, gp and gq. The panels show

the results for the ratio gp/gq being 1 (red solid line), 1.5 (green solid line) and

2 (blue solid line), and for different number P of emitters of the type p: (a)

P = 0.25N , (b) P = 0.5N , (c) P = 0.75N and (d) P = 1N , where N = 20 is

the total number of emitters. The exponential decay with the rate Γsup [crefsup-

eff] corresponding to the effective Purcell factor is shown by the black dashed

lines. The parameters used for the simulation are gq = 3× 1012 s−1, γps = γqs =

1× 109 s−1, ω0 = 3.14× 1015 s−1, κ = 3.14× 1014 s−1, and ωps = ωqs = ω0.

37



rate of the system is decreased. Moreover, the decay rate of a subradiant state and

its relative contribution to time evolution of the system increases with increasing

dephasing. To find the decay rate of superradiant state we can utilize a standard

equation for Purcell factor of the cavity [4] with an effective volume of plasmonic

nanoparticle Veff instead of a volume of cavity. The standard equation for Purcell

factor corresponds to the situation in which emitter is at position of maximum en-

hancement of the electric field. Therefore, to get enhancement of the decay rate of

the emitter at position ri we multiply standard Purcell factor by enhancement of

the field at position of emitter |µi ·Es (ri)|2 divided by maximum enhancement of

the electric field |Es
m|2. Purcell factor for system of M emitters is therefore

P as
F =

3Q

4π2Veff

(
λ

n

)3 M∑
i=1

|µi ·Es (ri)|2

|Es
m|2

+ 1, (7.3)

where Q is quality factor of plasmonic resonance, λ is vacuum wavelength of emitted

light and n is real part of refractive index of surrounding media. Exponential decay

of the system with decay rate P as
F γs, where Purcell factor P as

F was computed for

distribution of emitters shown in Fig. 7.3(a) is plotted by dashed line in the same

figure. We observe good agreement of the time evolution computed using Purcell

factor P as
F with simulation for no pure dephasing (blue line).
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Fig. 7.3: Time evolution of the system of 20 emitters coupled to a plasmonic nanoparticle

with the diameter D = 20 nm for different values of pure dephasing. The

emitters are randomly distributed over a dielectric shell with the permittivity

of 1.5 and the thickness d = 10 nm, dipole moments of the emitters are oriented

(a) perpendicularly or (b) tangentially to the surface.
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In Fig. 7.3(b) we consider a system with an identical spatial distribution of emit-

ters as in Fig. 7.3(a), which have dipole moments oriented tangentially to the surface

of the nanoparticle. From comparison of Fig. 7.3(a) and (b) it can be observed that

enhancement of the spontaneous decay rate is considerably smaller if the emitters’

dipole moments are oriented tangentially. Due to weaker enhancement subradiant

states have larger contribution to the time evolution of the system with pure dephas-

ing. Similar effect was already discussed in Section 5.1, where we observed increasing

contribution of subradiant states with decreasing number of emitters in the system

and thus decreasing enhancement of the superradiant decay rate. Furthermore, in

the case of tangential distribution we observe biexponential decay even for system

with no pure dephasing (blue line). This effect originates in the asymmetry of the

system – for asymmetric system more than one superradiant state can exist – and

can be in principle present also in case of perpendicular polarization. Nonetheless

at least half of the decay of the system is sufficiently described by the superradiant

state with the rate P as
F γs. Nonetheless the decay of the system is sufficiently de-

scribed by the superradiant decay rate until its average population reaches value of

0.5.

To conclude, the systems with asymmetry in coupling strength behave qualita-

tively very similarly to symmetric systems, except for the fact, that there can exist

multiple superradiant states in asymmetric systems. Moreover, we can estimate the

decay rate of the superradiant state of the system comprising non-identical emitters

with known distribution using the modification of the standard expression for the

Purcell factor Eq. (7.3).
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8 EFFECT OF MUTUAL COUPLING

BETWEEN EMITTERS

In Chapters 5–7 we studied systems of emitters which are coupled only via plasmon.

Following the study of the system of non-identical emitters provided in Section 7.2

this chapter is focused on effect of direct mutual coupling between emitters.

We consider a system composed of 20 emitters with a spontaneous decay rate

γs = 1× 109 s−1 and 3 dipolar plasmon modes of a silver nanoparticle with the decay

rate κ = 1.08× 1014 s−1. Emitters are separated from the surface of the nanoparticle

by a dielectric layer with a permittivity εd = 1.5 and a thickness d (which is varied

between 10 nm and 40 nm in the following). A spatial distribution of the emitters

over the surface of the dielectric shell is random. Plasmon-emitter coupling strength

for each emitter is determined using Eqs. (2.18), (2.11), and (4.14). The system is

excited by linearly polarized light, which couples only to one plasmon mode with

the strength f = 1× 108, coupling between light and emitters is computed using

Eq. (4.15).

First, we study an effect of direct coupling between emitters with radial ori-

entation of dipole moments [see Fig. 8.1(a)] for different separation d between the

emitters and the plasmonic nanoparticle (i.e. for different thickness of the dielec-

tric shell) and for different values of pure dephasing. Let us first discuss the time

evolution of the sum of the emitters’ populations in the system without pure de-

phasing. When direct coupling is not considered (blue lines in Fig. 8.1) the emitters

decay superradiantly. However, if the emitters couple also directly to each other

(red lines in Fig. 8.1) the system first decay superradiantly and then the decay rate

is significantly decreased. Due to direct coupling, energy is exchanged between the

emitters and therefore the population of each emitter oscillates, as it is shown in

Fig. 8.2. These oscillations are rather complex as the frequency of the energy ex-

change between each pair of emitters can be different. The resulting evolution of the

sum of the emitters’ populations, shown in Fig. 8.1, corresponds to superposition

of N oscillations with different frequencies. Initially, individual emitters decay fast

(see Fig. 8.2), namely the with the superradiant decay rate (P as
F γs, see Section 7.2).

As time evolves, emitters’ decay rates become slower and oscillations dominate the

time evolution of the emitters. Moreover, emitters become dephased because they

oscillate at different frequencies, and the resulting decay rate of the system varies

slowly and non-uniformly.

Fig. 8.1(b)–(e) shows time evolution of the system for different values of plasmon-

emitters separation d. Systems of directly coupled emitters with no pure dephasing

(red lines in different panels) become dephased at larger populations the larger is
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distance d, thus the effect of direct coupling is more significant for the systems with

larger distance between plasmonic nanoparticle and emitters. The explanation is

following. The enhancement of the electric field at the position of the emitter re-

sponsible for the Purcell effect decays exponentially with its distance d from the

nanoparticle, whereas coupling between the emitters decays as terms r−1, r−2, and

r−3 with the distance r between them. The average distance between emitters is√
4π/N(d+R), where R is the radius of the nanoparticle. For a small distance d be-

tween the nanoparticle and the plasmon, average distance between emitters is much

larger than plasmon-emitter distance, and therefore, plasmon-emitter interaction is

stronger than mutual interaction between emitters.

Next, we study the effect of pure dephasing. Fig. 8.1 shows that by introducing

pure dephasing (yellow and violet lines) the decay of the system becomes closer to

exponential, because pure dephasing acts as damping of the oscillations of emitters.

Note that similar effect was found for symmetric system in weak coupling regime

(Chapter 6). With increasing pure dephasing damping of the oscillations increases

and system approaches time evolution of the system without the mutual interaction

between the emitters (dashed line for pure dephasing γd = 10 γs and dashed-dotted

line for pure dephasing γd = 100 γs). For pure dephasing γd = 100 γs the system

with direct coupling between emitters evolves almost identically with the system of

emitters coupled only via plasmon. Furthermore, we can observe that the larger is

plasmon-emitter distance the less significant is direct coupling in the systems with

pure dephasing – for plasmon-emitter distance d = 40 nm direct coupling is almost

negligible even for pure dephasing γd = 10 γs.

Let us now study the effect of direct coupling for tangential polarization of the

system of emitters with identical spatial distribution as in Fig. 8.1. Orientation of

emitters’ dipole moments in the tangential plane is random. The system of tan-

gentially oriented emitters behaves differently from the system with perpendicular

orientation of emitters as can be observed in time evolutions of two emitters from

the studied system shown in Fig. 8.3. In the case of tangential polarization we do

not observe fast exponential decay, which was present in the case of radial polar-

ization (see Fig. 8.2). The time evolution is governed by oscillations which have

significantly larger frequency than the oscillations in the case of the perpendicular

orientation, which results in faster dephasing of the emitters. As a result, by intro-

ducing direct coupling time evolution of the sum of populations of all emitters is

changed dramatically – the system initially decays with a rate much smaller than

the superradiant one – as it is shown by red lines in Fig. 8.4. The large difference

between behaviour of the radial and the tangential polarization can be attributed to

the fact, that deviation between the dipole moments of two emitters in the case of

radial polarization is equal to their angular distance (with respect to the centre of
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Fig. 8.1: (a) A system of 20 emitters coupled to a silver nanoparticle with the diameter

D = 20 nm. Emitters with spontaneous decay rate γs = 1× 109 s−1 and with

perpendicular orientation of dipole moments with respect to the nanoparticle

surface are randomly distributed over a dielectric shell with the permittivity

εd = 1.5. (b)–(e) Time evolution of the system of emitters separated from

the nanoparticle by a distance (b) d = 10 nm, (c) d = 15 nm, (d) d = 20 nm,

(e) d = 40 nm. Comparison of the system without direct coupling (blue lines)

and with direct coupling (red lines) in case of no pure dephasing is provided.

Moreover, time evolution of directly coupled emitters for dephasing γd = 10γs
(yellow lines) and γd = 100γs (violet line) is compared with evolution of the

same system without direct coupling (dashed line for γd = 10γs and dashed-

dotted line for γd = 100γs).
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Fig. 8.2: Time evolution of two different emitters from an ensemble of 20 emitters coupled

to each other directly and via a plasmon. The system is composed of a plasmonic

nanoparticle with the diameter D = 20 nm covered by a dielectric shell with the

permittivity of εd = 1.5 and the thickness d = 10 nm and the emitters randomly

distributed over the shell with dipole moments oriented perpendicularly to the

surface of the nanoparticle.

the nanoparticle), whereas in the case of tangential polarization the deviation can be

very large even between two nearby emitters (as their orientation in the tangential

plane is random).

Fig. 8.4 further shows time evolution of the system for different values of pure

dephasing and plasmon-emitter distance. In the case of tangential orientation of

emitters’ dipole moments we observe similar behaviour as in the case of perpen-

dicular orientation (Fig. 8.1). Fig. 8.4(b)-(e) shows that by increasing either pure

dephasing or distance of emitters from nanoparticle direct coupling becomes less

significant. This effect is even stronger than in case of perpendicular distribution as

for pure dephasing γd = 100γs, direct coupling is negligible for distances 20 nm and

40 nm of emitters from nanoparticle. However, system never decays superradiantly

in case of tangential orientation of directly coupled emitters.

To conclude, direct coupling causes mutual dephasing of the emitters which re-

sults in decrease of the decay rate of the system. The system of emitters with

the transition dipole moments oriented perpendicularly to the surface of the plas-

monic particle decays initially with the superradiant decay rate, and for very small

plasmon-emitter distances direct coupling can be negligible. On the contrary, the

system with the tangential orientation of the dipole moments never decays super-

radiantly and therefore direct coupling is significant even for small plasmon-emitter

distances. For large plasmon-emitter distances systems of directly coupled emitters

with either perpendicular or tangential orientation of the dipole moments behave as

independent emitters.
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Fig. 8.3: Time evolution of two different emitters from an ensemble of 20 emitters cou-

pled to each other directly and via a plasmon. The system is composed of a

plasmonic nanoparticle with the diameter D = 20 nm covered by a dielectric

shell with permittivity of εd = 1.5 and thickness d = 10 nm and emitters ran-

domly distributed over the shell with dipole moments oriented tangentially to

the surface of the nanoparticle.
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Fig. 8.4: (a) A system of 20 emitters coupled to a silver nanoparticle with the diameter

D = 20 nm. Emitters with the spontaneous decay rate γs = 1× 109 s−1 and

with tangential polarization are randomly distributed over a dielectric shell with

the permittivity εd = 1.5. (b)–(e) Time evolution of the system of emitters

separated from the nanoparticle by the distance (b) d = 10 nm, (c) d = 15 nm,

(d) d = 20 nm, (e) d = 40 nm. Comparison of the system without direct coupling

(blue lines) and with direct coupling (red lines) in case of no pure dephasing is

provided. Moreover, time evolution of directly coupled emitters for dephasing

γd = 10γs (yellow lines) and γd = 100γs (violet line) is compared with evolution

of the same system without direct coupling (dashed line for γd = 10γs and

dashed-dotted line for γd = 100γs).
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9 CONCLUSION

Light emission of a system comprising an ensemble of emitters coupled to a central

plasmonic nanoparticle shows a phenomenon of plasmon-mediated superradiance

– effect which combines the Purcell enhancement of spontaneous emission with a

cooperative behaviour of coupled emitters. As a result, the decay rate of the system

can be considerably enhanced, as was predicted by Pustovit and Shahbazyan [9]. We

utilize a quantum model of emitters coupled to a plasmon to study time evolution

of the system.

In this diploma thesis, we have first introduced a quantum description of an

individual emitter coupled to a plasmon, and we have shown typical behaviour of

such a system in weak and strong coupling regimes. For specific cases we have

provided analytical solutions for time evolution of the system. We have also used

a quantum model to describe classical (not mediated by plasmon) superradiance,

which is an enhancement of the decay rate due to mutual coupling between emitters.

The obtained results have been used to connect the quantum description with the

classical predictions of the superradiant decay rate of emitters coupled via plasmon.

Following the description of simple systems, we have developed a complex model

describing an arbitrary number of emitters coupled to several plasmon modes and

excited by light illumination. First, we have studied a system of identical emitters

at equivalent positions with respect to the nanoparticle. For the symmetric configu-

ration in the weak coupling regime we have studied the effect of excitation and pure

dephasing. We have shown that, although the type of excitation used does not af-

fect the modes of the system, it determines which mode has a stronger contribution

to the resulting time evolution. For example, if all dipoles are initially populated,

a statistical mixture of a superradiant mode and subradiant modes is excited and

a decay rate of the system does not increase with the number of emitters. On the

other hand, when the plasmon is initially populated or excited by a short pulse, a

superradiant mode dominates the response if pure dephasing is small enough. As

the pure dephasing increases, but remains moderate, the contribution of the subra-

diant state becomes more apparent, and the decay rate of the system is significantly

decreased. For very large values of pure dephasing the population of the emitter

evolves as if only a single emitter was present.

In addition, we investigated how the symmetric system enters the strong coupling

regime when the plasmon-emitter coupling strength and the number of emitters is

sufficiently large. We have shown that an effective coupling strength, that takes into

account the coupling of each emitter to the plasmon, allows to understand many of

the obtained results. We also showed that increasing pure dephasing decreases the

visibility and increases the damping of the Rabi oscillations.
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Finally, we have focused on the effect of asymmetry in the plasmon-emitter

coupling strength in the system of emitters randomly distributed over surface of a

spherical nanoparticle covered by a dielectric shell. The decay rate of such a sys-

tem depends on an actual distribution of emitters and orientation of their dipole

moments. We have shown that for the known distribution, the superradiant decay

rate can be determined using a modification of the standard equation for the Purcell

factor of a cavity. Moreover, the effect of pure dephasing in an asymmetric config-

uration is qualitatively identical as in a symmetric system. We have also studied

the effect of direct mutual coupling between emitters in the system. Direct coupling

causes dephasing between the emitters, and therefore, the decay rate of the system

become significantly decreased. Emitters located near the nanoparticle with dipole

moments oriented perpendicularly to its surface decay mostly superradiantly and

the effect of the direct coupling can be neglected. On the contrary, direct coupling

dramatically changes the time evolution of the emitters with a tangential orientation

of the dipole moments with respect to the nanoparticle. In such a system we do not

observe superradiant decay.
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A ANALYTICAL SOLUTION FOR STRONG

COUPLING

In Section 2.3.2 we introduced the strong coupling regime of the plasmon-emitter sys-

tem as given by the system of Eqs. (2.21)–(2.24). For the case of no pure dephasing,

this system can be solved analytically by finding the eigenvalues and eigenvectors

of the system.

In this Appendix we present the full solution of the system in case of no dephasing

(γd = 0). We note that analogical system of equations describing coupling of two

non-identical emitters was presented in Ref. [27]. It is convenient to introduce the

following notation

u =
γs − κ

4
(A.1)

B =

√(
|g|2 + u2 +

∆2

4

)2

− 4 |g|2 u2 (A.2)

D± =

√
2B ± 2

(
u2 − |g|2 − ∆2

4

)
(A.3)

(A.4)

The general solution of the system is
〈
â†â
〉〈

σ̂+â
〉〈

σ̂−â
†〉〈

σ̂+σ̂−
〉
 = A1eλ1a1 + A2eλ2a2 + A3eλ3a3 + A4eλ4a4, (A.5)

where λ1, λ2, λ3, λ4 are eigenvalues

λ1 = −κ + γs
2
− iD−, λ2 = −κ + γs

2
+ iD−,

λ3 = −κ + γs
2
−D+, λ4 = −κ + γs

2
+D+,

(A.6)

and a1, a2, a3 and a4 are eigenvectors

a1 =



2u

iD−
+

(2u− iD−)
(
B − u2 − ∆2

4

)
i |g|2D−

i
(2u− iD−) (D− −∆)

2gD−

−i
(2u− iD−) (D− + ∆)

2g∗D−
1


(A.7)
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a2 =



− 2u

iD−
−

(2u+ iD−)
(
B − u2 − ∆2

4

)
i |g|2D−

i
(2u+ iD−) (D− + ∆)

2gD−

−i
(2u+ iD−) (D− −∆)

2g∗D−
1


(A.8)

a3 =



2u

D+

−
(2u−D+)

(
B + u2 + ∆2

4

)
|g|2D+

i
(2u−D+) (D+ − i∆)

2gD+

−i
(2u−D+) (D+ + i∆)

2g∗D+

1


(A.9)

a4 =



− 2u

D+

+
(2u+D+)

(
B + u2 + ∆2

4

)
|g|2D+

i
(2u+D+) (D+ + i∆)

2gD+

−i
(2u+D+) (D+ − i∆)

2g∗D+

1


(A.10)

The particular solution for the case in which the emitter is initially excited and the

plasmon is in the ground state gives the following time evolution of the population

of emitter:

〈
σ̂+σ̂−

〉
= exp

(
−κ + γs

2
t

)
{×

1

2

1−
u2 +

∆2

4
B

 cosD−t+
1

2

1 +
u2 +

∆2

4
B

 coshD+t+

+
D−
(
D2

+ − 4u2
)

8Bu
sinD−t−

D+

(
D2
− + 4u2

)
8Bu

sinhD+t

}
. (A.11)
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B SYSTEM OF EQUATIONS

FOR ASYMMETRICAL CASE

OF TWO GROUPS OF EMITTERS

In this Appendix we present the system of equations which describes time evolution

of the system composed of one plasmon mode and two different groups of emitters

where the emitters within each group are identical. In the system of Eqs. (4.6)–

(4.10) in Chapter 4, we distinguish parameters and operators related to the two

different groups by the indices p and q. The number of the emitters of type p and

g is denoted P and Q, respectively. As the index p stands for arbitrary dipole from

the p type, it is necessary to distinguish two types of operators composed of σ̂p+, σ̂p−:

1. Population of the arbitrary dipole of the type p, further denoted as σ̂p+σ̂
p
−.

2. Coherence of two distinct dipoles from the same group. In order to differentiate

from the population, coherences will be further denoted as σ̂p+σ̂
p′

− .

Decay rates and transition frequencies of the p emitters are γps and ωps , respectively.

Parameters which refer to the coherent and incoherent exchange of energy between

two distinct emitters of the same type are denoted as γppc and ωppc . This notation is

also used for dipoles of the type q in an analogous way.

By applying these considerations to the general set of Eqs. (4.6)–(4.10), we de-

rived the following system of equations:

d
〈
â†â
〉

dt
= −κ

〈
â†â
〉
− i
(
f e−iωt

〈
â†
〉
− f ∗eiωt 〈â〉

)
+ iP

(
gp 〈σ̂p+â〉 − gp∗

〈
σ̂p−â

†〉)
+ iQ

(
gq 〈σ̂q+â〉 − gq∗

〈
σ̂q−â

†〉) ,
(B.1)

d 〈â〉
dt

= −
(κ

2
+ iω0

)
〈â〉 − if e−iωt − iPgp∗ 〈σ̂p−〉 − iQgq∗ 〈σ̂q−〉 , (B.2)

d 〈σ̂p+â〉
dt

= −
{
κ + γps

2
+ γpd + i (ω0 − ωps) + (P − 1)

(
γppc
2
− iωppc

)}
〈σ̂p+â〉

−Q
(
γqpc
2
− iωqpc

)
〈σ̂q+â〉 − i (P − 1) gp∗

〈
σ̂p+σ̂

p′

−

〉
− iQgq∗ 〈σ̂p+σ̂q−〉

+ igp∗
〈
â†â
〉
− igp∗ 〈σ̂p+σ̂p−〉 − i

(
fe−iωt 〈σ̂p+〉 − Ωp∗eiωt 〈â〉

)
,

(B.3)

d 〈σ̂q+â〉
dt

= −
{
κ + γqs

2
+ γqd + i (ω0 − ωqs) + (Q− 1)

(
γqqc
2
− iωqqc

)}
〈σ̂q+â〉

− P
(
γpqc
2
− iωpqc

)
〈σ̂p+â〉 − iPgp∗ 〈σ̂q+σ̂p−〉 − i (Q− 1) gq∗

〈
σ̂q+σ̂

q′

−

〉
+ igq∗

〈
â†â
〉
− igq∗ 〈σ̂q+σ̂q−〉 − i

(
fe−iωt 〈σ̂q+〉 − Ωq∗eiωt 〈â〉

)
,

(B.4)
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d 〈σ̂p+σ̂p−〉
dt

= −i
(
gp 〈σ̂p+â〉 − gp∗

〈
σ̂p−â

†〉)− i
(
Ωpe−iωt 〈σ̂p+〉 − Ωp∗eiωt 〈σ̂p−〉

)
− γps 〈σ̂p+σ̂p−〉 − (P − 1) γppc

〈
σ̂p+σ̂

p′

−

〉
−Q

{(
γqpc
2
− iωqpc

)
〈σ̂q+σ̂p−〉+

(
γpqc
2

+ iωpqc

)
〈σ̂p+σ̂q−〉

}
,

(B.5)

d
〈
σ̂p+σ̂

p′

−

〉
dt

= −i
(
gp 〈σ̂p+â〉 − gp∗

〈
σ̂p−â

†〉)− i
(
Ωpe−iωt 〈σ̂p+〉 − Ωp∗eiωt 〈σ̂p−〉

)
− {(P − 2) γppc + γps + 2γpd}

〈
σ̂p+σ̂

p′

−

〉
− γppc 〈σ̂p+σ̂p−〉

−Q
{(

γqpc
2
− iωqpc

)
〈σ̂q+σ̂p−〉+

(
γpqc
2

+ iωpqc

)
〈σ̂p+σ̂q−〉

}
,

(B.6)

d 〈σ̂q+σ̂q−〉
dt

= −i
(
gq 〈σ̂q+â〉 − gq∗

〈
σ̂q−â

†〉)− i
(
Ωqe−iωt 〈σ̂q+〉 − Ωq∗eiωt 〈σ̂q−〉

)
− γqs 〈σ̂q+σ̂q−〉 − (Q− 1) γqqc

〈
σ̂q+σ̂

q′

−

〉
− P

{(
γpqc
2
− iωpqc

)
〈σ̂p+σ̂q−〉+

(
γqpc
2

+ iωqpc

)
〈σ̂q+σ̂p−〉

}
,

(B.7)

d
〈
σ̂q+σ̂

q′

−

〉
dt

= −i
(
gq 〈σ̂q+â〉 − gq∗

〈
σ̂q−â

†〉)− i
(
Ωqe−iωt 〈σ̂q+〉 − Ωq∗eiωt 〈σ̂q−〉

)
− {(Q− 2) γqqc + γqs + 2γqd}

〈
σ̂q+σ̂

q′

−

〉
− γqqc 〈σ̂q+σ̂q−〉

− P
{(

γpqc
2
− iωpqc

)
〈σ̂p+σ̂q−〉+

(
γqpc
2

+ iωqpc

)
〈σ̂q+σ̂p−〉

}
,

(B.8)

d 〈σ̂p+σ̂q−〉
dt

= −i
(
gq 〈σ̂p+â〉 − gp∗

〈
σ̂q−â

†〉)− i
(
Ωqe−iωt 〈σ̂p+〉 − Ωp∗eiωt 〈σ̂q−〉

)
− (P − 1)

{(
γppc
2
− iωppc

)
〈σ̂p+σ̂q−〉+

(
γqpc
2

+ iωqpc

)〈
σ̂p+σ̂

p′

−

〉}
− (Q− 1)

{(
γqpc
2
− iωqpc

)〈
σ̂q+σ̂

q′

−

〉
+

(
γqqc
2

+ iωqqc

)
〈σ̂p+σ̂q−〉

}
−
(
γqpc
2

+ iωqpc

)
〈σ̂p+σ̂p−〉 −

(
γqpc
2
− iωqpc

)
〈σ̂q+σ̂q−〉

−
{
γps + γqs

2
+ γpd + γqd + i (ωqs − ωps)

}
〈σ̂p+σ̂q−〉 ,

(B.9)

d 〈σ̂p+〉
dt

= −
{

(P − 1)

(
γppc
2
− iωppc

)
+
γps
2
− iωps + γpd

}
〈σ̂p+〉

−Q
(
γqpc
2
− iωqpc

)
〈σ̂q+〉+ igp∗

〈
â†
〉

+ iΩp∗eiωt,

(B.10)

d 〈σ̂q+〉
dt

= −
{

(Q− 1)

(
γqqc
2
− iωqqc

)
+
γqs
2
− iωqs + γqd

}
〈σ̂q+〉

− P
(
γqpc
2
− iωqpc

)
〈σ̂p+〉+ igq∗

〈
â†
〉

+ iΩq∗eiωt.

(B.11)
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[7] Trügler, A., and Hohenester, U. Strong coupling between a metallic

nanoparticle and a single molecule. Physical Review B 77 (2008), 115403. doi:

10.1103/PhysRevB.77.115403.

[8] Brooke, P. G., Marzlin, K.-P., Cresser, J. D., and Sanders, B. C.

Super-and subradiant emission of two-level systems in the near-dicke limit.

Physical Review A 77 (2008), 033844. doi: 10.1103/PhysRevA.77.033844.

[9] Pustovit, V. N., and Shahbazyan, T. V. Plasmon-mediated superradi-

ance near metal nanostructures. Physical Review B 82 (2010), 075429. doi:

10.1103/PhysRevB.82.075429.

[10] Pustovit, V. N., and Shahbazyan, T. V. Cooperative emission of

light by an ensemble of dipoles near a metal nanoparticle: The plasmonic

dicke effect. Physical review letters 102 (2009), 077401. doi: 10.1103/Phys-

RevLett.102.077401.

[11] Mandel, L., and Wolf, E. Optical coherence and quantum optics, 1st ed.

Cambridge University Press, 1995.

53

http://dx.doi.org/10.1002/lpor.200810003
http://dx.doi.org/10.1002/lpor.200810003
http://dx.doi.org/10.1038/nphoton.2008.32
http://dx.doi.org/10.1103/PhysRev.69.674.2
http://dx.doi.org/10.1088/0034-4885/78/1/013901
http://dx.doi.org/10.1088/1367-2630/16/1/013052
http://dx.doi.org/10.1103/PhysRevB.77.115403
http://dx.doi.org/10.1103/PhysRevA.77.033844
http://dx.doi.org/10.1103/PhysRevB.82.075429
http://dx.doi.org/10.1103/PhysRevLett.102.077401
http://dx.doi.org/10.1103/PhysRevLett.102.077401


[12] Novotny, L., and Hecht, B. Principles of nano-optics, 1st ed. Cambridge

University Press, 2006.

[13] Carmichael, H. J. Statistical Methods in Quantum Optics 1: Master Equa-

tions and Fokker-Planck Equations. Springer, 2003.

[14] Scully, M. O., and Zubairy, M. S. Quantum Optics, 1st ed. Cambridge

University Press, 1997.

[15] Shore, B. W., and Knight, P. L. The Jaynes-Cummings model. Journal

of Modern Optics 40 (1993), 1195–1238. doi: 10.1080/09500349314551321.

[16] Savage, C. M. Quantum optics with one atom in an optical cavity. Journal

of Modern Optics 37 (1990), 1711–1725. doi: 10.1080/09500349014551941.
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