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INTRODUCTION

This work will show will make the reader acquainted with the concept of reliability
models. In the first part we will describe, how reliability data can be accessed by
parametric and non-parametric methods. In the second part the gained knowledge
will be applied on real world data, acquired from an industrial partner. The prob-
lematic of durability in statistics and production is important, because it helps to
predict, improve and analyze data in order make reliable long lasting products.

The most used fields of reliability/survival models are factory production and
medical research. In production we describe the time to failure of a component,
whereas in medical research the focus is given on modeling the time to death of
a ill patient or the time of healing from a certain disease. However counting the
remaining time of a patent is a risky undertaking and take not in account the faith
and determination to heal and live on. This work will analyze in the section 5 data
from a real industrial process.

0.1 Survival Analysis

In survival analysis, we try to understand the reliability and durability of compo-
nents via different methods. In this thesis the main attention is dedicated to the
parametric and non-parametric methods. Through this methods we are trying to
reveal the data’s reliability characteristics. A typical hazard function of a compo-
nent is the bathtub function, see figure 1.2. On the x-axes is the time and on the
y-axes is the failure rate. After a higher failure rate at the beginning, called infant
mortality or burn in phase, follows a steady-state operating time. On the end of the
components lifetime comes finally the wear-out phase. The burn-in phase follows
the Weibull distribution, the steady-state phase has commonly an exponential dis-
tribution, which is a special case of the Weibull distribution. The wear-out phase
follows often the lognormal distribution. Examples of other bathtub functions are
shown in figure 1.

0.2 Basic definitions

The following definitions are summarized in table 1.

Common technical definition of reliability

The probability that a system or a component will perform its intended task, under
given operational conditions, for a specified time period.
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Survival time (lifetime in medical research)

Time to occurrence of some event of interest for individuals in some population.
The event may or may not be "death", and is often referred to as "failure" [7]. There
are two states: "functioning" and "failed". Both can be clearly decided. We will
consider only one way of transition. From "functioning" to "failed". The event of
interest is random and can be described with statistic instruments.

Definition 1 (Component). An element on which we are observing the time to
failure.

Definition 2 (Time to failure). A random variable X, which can have values x ∈
〈0,∞). This is a continuous random variable and represents the time between the
beginning of the life (usage) of the component and the failure (death, event of
interest).

Definition 3 (Distribution function F (x)). The distribution function of the random
variable X is F (x) = P (X < x), for all x ∈ (−∞,∞) It shows the probability that
the time to failure is smaller than x. F (x) = 0 for all x ∈ (−∞, 0) [6].

Definition 4 (Survival function S(x)). The survival function is also called reliability
function: S(x) = P (X ≥ x)

Definition 5 (Hazard function). The hazard function h(x) explains the probability
of survival from time x into the next moment.

h(x) = lim
Δ→0

P (x < X ≤ x+ Δx|X > x)
Δx

Theorem 1 (Change of variable formula). Let X be a continuous random variable
with density fX(x). Consider the random variable Y = g(X). Then the density of
Y is

fY (y) = fX(g−1(y)) ·
∣∣∣dg−1(y)

d(y)

∣∣∣
Likelihood

Let’s state that x is a random observation from a distribution with parameter θ.
In the discrete case P (x|θ) or Pθx represents the probability of realizations x for a
specific value θ (from the distribution with specified parameter theta). We want to
find the parameter θ that fits the best the data. Thus we use the likelihood function
1 of the parameter θ with fixed (conditioned on) observations L(θ|x) = Pθ(x) and
maximize it. Similarly in the continuous case. We assume the terms x1, ..., xn

admitting a joint density of the random vector x are i.i.d. random variables. The
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Functional characteristics f(t) F (t) S(t) h(t)

f(t) = dF (t)
dt −dS(t)

dt h(t) exp
[
−
∫ t

0 h(τ)dτ
]

F (t)
∫ t

0 f(τ)dτ = 1− S(t) 1− exp
[
−
∫ t

0 h(τ)dτ
]

S(t) 1−
∫ t

0 f(τ)dτ 1− F (t) = exp
[
−
∫ t

0 h(τ)dτ
]

h(t) f(t)
1−
∫ t

0 f(τ)dτ

dF (t)
dt

1− F (t)
− dS(t)

dt
S(t) =

Table 1: Overview of relationships [6]

joint density can be factorized using ∀i ∈ {1, ..., n} : fxi|·(xi|·) = fxi(xi) with the
chain rule, see [11].We define the likelihood function as stated in definition 6, using
lemma 1.

If we want denote in the text that we are not considering the normalizing constant
c (only the core is used) in the way f(x) = c·f̃ , we write f̃ and the likelihood function
as π(θ|x). We use also π(x|θ) = f̃θ(x).

L(θ|x) = fθ(x) (1)

Definition 6 (Likelihood function). The likelihood function of parameter value θ
and realizations x is

L(θ|x) =
n∏
i=1

f(xi, θ) (2)

Lemma 1. Continuous random variables X1, ..., Xn admitting a joint density are
independent from each other if and only if fX1,...,Xn(x1, ..., xn) = fX1(x1) · · · fXn(xn)

Anderson-Darling statistics

The Anderson-Darling statistics describes, how well data follow a proposed distri-
bution. The smaller the statistic is, the better the distribution fits the data. For
multiple censored times (censored at different times) the p-value can not be calcu-
lated. It is the squared distance between the plot points and the nonparametric step
function. In addition, it is weighted more in the tails. The statistic is calculated in
Minitab after equation 3. When we want to determine which distribution fits the
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Figure 1: Different bathtub functions [1]

data the best, we choose the one with the lowest Anderson-Darling statistic. If the
statistics don’t differ very much, as in our case in chapter 5, we look on additional
criteria such as probability plots.

AD∗ = n
n+1∑
i=1

(Ai +Bi + Ci) (3)

where

n = number of plotted points
Ai = −Zi − ln(1− Zi) + Zi−1 + ln(1− Zi−1)
Bi = 2 ln(1− Zi)Fn(Zi−1)2 ln(1− Zi−1)Fn(Zi−1)
Ci = ln(Zi)Fn(Zi−1)2 − ln(1− Zi)Fn(Zi−1)2 − ln(Zi−1)Fn(Zi−1)2 + ln(1− Zi−1)Fn(Zi−1)2

Zi = fitted estimate of the cumulative distribution function in the ith data point
Fn(Zi) = ith data point

Z0 = Fn(Z0) = ln(Z0) = 0
Zn+1 = 1− (1E-12)
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0.2.1 Censoring

The studies usually end earlier before by all subjects can occur the event of interest.
A situation when the time from the beginning to the event of interest is not known,
is called censoring. A situation when incomplete information is available occur often
in practice. From censored data is obtained partial information.

We distinguish between left-censoring, right-censoring and interval censoring.
We can speak about left-censoring by e.g. patients with detected cancer. In figure
2, situation A. We don’t know when the disease exactly started. An example for
right-censoring could be, when we are modeling the life-time of cars. Some cars
have got an accident and can’t serve to their usual life expectancy as in figure 2,
situation C. Interval censoring occur if investigate the population of birds and in
the winter times we lose track of them, because they fly South. Figure 2, situation
B. In the technical praxis this situation equals to failure findings by regular car
service checks.

A:

B:

C:

time

† event of interest

0

†

†

†

†

Figure 2: Censoring illustration
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1 DISTRIBUTIONS

1.1 Exponential distribution

f(x) = λe−λx (1.1)

The pdf is described by formula 1.1. Sometimes instead of the rate parameter λ
in Exp(λ) is used Exp(1/λ), where 1/λ is the mean time between events. For
simulation purposes, it is possible to transform samples from a uniform distribution
into an exponential by the transformation: X = −(1/λ)ln(1 − U), where u ∼
Unif(0, 1).

The exponential distribution has a significant contribution to reliability analysis
and forms the basis of reliability methods , which are introduced and formalized by
it and them formed into more advanced methods. However the use of the exponen-
tial distribution reveals often inappropriate. Most real world data doesn’t have a
constant failure rate as e.g. the human mortality rate (see 1.) Despite this fact, the
exponential distribution is still widely used in today’s approaches and standards,
[24].

1.2 Weibull distribution

The exponential distribution is a special case of the Weibull distribution for β =
η = 1. There are more possibilities, how to write the pdf. The most used form for
the Weibull distribution is:

f(x) = β

λ

(
x− γ
λ

β−1
)

exp−(x−γ
λ )β (1.2)

where x ≥ 0 is the time, the shape parameter (1/slope) β > 0, the scale parameter
λ > 0 and the location parameter −∞ < γ < ∞. The location parameter is
frequently not used. For analysis of small data sets we use the one-parameter Weibull
distribution, where the parameter β has to be estimated. The estimation of β is
recommended to be a good and justifiable estimate before use. The one-parameter
Weibull distribution allows analysis of small data sets [26]. The bathtub function
in figure 1.2 illustrates a mixed failure rate of the Weibull distribution with β < 1
in the infant mortality time, β = 1 in the random failures time and β > 1 in
the wearout failures time. By the Weibull distribution the cumulative distribution
function is known, equation 1.3. Another characteristics are the survival function
(1 − F (t)) and hazard function, see equation 1.4. On figure 1.3 the probability

1https://www.science-of-aging.com/timelines/gompertz-aging-human-mortality.php
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density function with varying scale parameter and on figure 1.4 with varying shape
parameter. Since the problematic in section 5 is dealing with quantities. We are for
better understanding of the later part denoting the x-axes with x instead of t.

F (x; β, λ) = 1− e−(x/λ)β (1.3)

h(x; β, λ) = β

λ

(
x

λ

)β−1
(1.4)

Figure 1.1: The risk function of the Weibull distribution

h(x)

x

Infant Mortality Random Failures Wearout Failures

Bathtub Curve Hazard Function

Figure 1.2: Usual bathtub function.
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Figure 1.3: The Weibull density with varying scale parameter

Figure 1.4: The Weibull density with varying shape parameter
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2 SIX SIGMA

Six sigma is a management system for improving processes and controlling quality.
The objective of the Six Sigma methodology is to have 3.4 defects on 106 products.
This comes from an effort that a process (with a Gaussian error, figure 2.3) should
stay within 6 standard deviations from both sides, 6σ on the left and 6σ on the right
hand side. From the short-term view, an empirically based 1.5 σ shift is introduced.
We can see it as a short term process bias. With this shift, the process will have 3.4
on 106 products outside the limits as on figure 2.2. The effort is not only to minimize
the defects, but also the costs related to them. Six Sigma provides increases of
profit and reduction of costs, as described here [17]. The methodology is based on
understanding the needs and expectations of the customer, collection of good data
which provides good information for statistical analysis. This provides a helpful tool
in manufacturing, business, logistic and other fields. A clear commitment is given
to make decisions based on verifiable data and statistical methods. The goals could
be summarized as:

• maximization of profit
• increase of productivity and decrease of variation in the process
• effectively use of sources
• monitoring and controlling processes
• minimization of defects and prevention of their generation

Six Sigma is composed of 3 main areas, as illustrated on the graphic 2.1.

2.1 DMAIC

Improvement of existing products is done in 5 steps - Define, Measure, Analyze,
Improve, Control. This set is abbreviated DMAIC. The process flow visualized
in the schema 2.4. In the define phase, we try at first to set up all possible causes
that could have impact on the process. We ask ourselves clauses, which start with
a "w". What, who, why, how much and till when? For this purposes might also
be useful a Ishikawa diagram or flow chart, called also a cause-and-effect diagram.
Let’s see such a diagram on figure 2.5. The main terms are placed at the tips of
the branches. Related terms are attached to them in order to form a hierarchical
structure. In reliability a similar concept is made by FTA (Fault Tree Analysis),
explained in subsection FTA 2.2. Software as CAFTA 5.3 is used. In the measure
phase we obtain data. Usually is done so by selecting 1− 3 dependent variables and
10 − 15 independent variables (can be passively known about 30 − 50 that are not
measured) which shrink in the analyze phase to 2 − 3. The analyze phase focuses
also of finding the functional dependencies Y = f(x) and identifies the causes of the
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6σ

Methodology how to
design NEW products
or processes 

D
F
S

M

Process control

D
M

A
IC

A way how to improve 
EXISTING products

or processes

An approach how to control processes 
to satisfy customer needs

Figure 2.1: 3 main areas of Six Sigma

process [14]. In the phase analysis, we are accessing specific durability data with
parametric and non-parametric methods.

2.2 Key roles

We rank the level of expertise in Six Sigma. For this purpose is used the raking
from martial arts. Experts in Six Sigma are given belts. Starting with the Yellow
Belt, continuing with the Green and Black Best, to the Master Black Belt. Over
the Master Black Belt is the Champion, see [22], [17].

Yellow Belt

Doesn’t need to have any previous experience or education. He has got a small
role with the need of developing only foundational knowledge. He understands in
a limited context how to apply, implement, perform and interpret Six Sigma. He
understands the PDCA (Plan, Do, Check, Act) methodology.
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Figure 2.2: Graphical illustration of the role of the 1.5 σ shift

Figure 2.3: The normal distribution

Green Belt

A green belt operates under the guidance of a black belt. He should have at least 3
years of work experience. He spends 20-30% with Six Sigma projects. He is involved
in quality improvement projects, but has no led. The Green Belt has an overview of
Six Sigma and the DMAIC Methodology. He understands the impact of Six Sigma
in the organization and can see the financial benefits of it.

Black Belt

The Black Belt spends 100% of his time with Six Sigma projects. He is the leader
of the projects. He manages the team and organizes the Six Sigma projects. The
Black Belt also teaches and trains project teams. His knowledge in Six Sigma is well-
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Define

• Taguchi   
flow chart

Measure

• Y(1-3)

• X(8-16)

Analyze

• Y=f(x)

• hypoth. test.

• reduc�on 
x(1-3)

Improve

• manipula�on 
with entries

• new 
solu�ons

Control

• control plans

• long term 
solu�ons

Prac�cal problem
Theore�cal 

problem
Theore�cal 

solu�on Prac�cal solu�on

Figure 2.4: DMAIC

grounded. He identifies possible troubles in the project, whereas the Champion and
Master Black Belt identify the projects. He understands all aspects of the DMAIC
model. To become a Black Belt, 3 years of work experience are needed with one
completed project or 2 completed Six Sigma projects.

Master Black Belt

The Master Black Belt is chosen by the champion. He has an overview about
the company’s goals and strategies. He is implementing Six Sigma across various
functions and departments. He is networking with other Master Black Belts. He is
required to know about advanced Six Sigma and have grounded knowledge in topics
such as DFSS, Lean, Integration of initiatives, Cross-cultural project leadership,
Strategic project selection and performance management. He has an overview about
the project situation. He must at completed at least 10 Six Sigma projects or 5 years
work experience as a Black Belt.

Champion

This is a position chosen from the upper management. He is responsible for the
methodology Six Sigma in the company. He mentors the Black Belts. The role of a
champion is to remove roadblocks. He is the intermediate piece between the Black
Belts and the management. A Champion is supposed to have diplomatic skills as
well as to be proficient in: Business and operations interface, Project selection, Pace
mediation, Results implementation.
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Figure 2.5: Ishikawa diagram

FTA & FMEA

FMEA (Faulure Mode and Effect Analysis) and FTA (Fault Tree Analysis) are
methods. These methods are used for evaluating risk and reliability in systems.
Through, we are in this thesis mainly on reliability (durability) a single of a single
component, we can make us an image, how it look when the components are put
together. These methods are used extensively in the aviation industry. It find its
place as well in production. Outside FTA and FMEA are many other variations
of these methods and different approaches like FMECA (Failure Mode, Effect and
Critical Analysis), RPN (Risk Priority Number). The main differences between
FTA and FMEA is that in FTA we examine different combinations components
and conditions, which lead to a single effect, whereas FMEA examines all single
components and lists by every single one its range of effects. FMEA might be used
more in processes and FTA is suitable in more difficult complex systems. Similar to
these methods can be applied in urban planning the cross-impact analysis. With this
method we predict the development of events in relationships with the surrounding
factors. The relationships are visualized in a cross-impact matrix. On its basis the
final development scenario is compiled. More can be found in [15].
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FTA

FTA is a graphical representation analysis in risk management. It is constructed of
gates and events. The main used events are a basic event, external event, undevel-
oped event and conditioning event [21], denoted in figure 2.6.

• basic event - it is the most used event, a failure or error in the system
• external event - an event that is expected to occur and is by itself not a fault
• undeveloped event - event with insufficient information
• conditioning event - a condition that has effect on the logic gate

Figure 2.6: FTA events

Now, let’s turn our attention at the gates. They characterize the relation between
the input and output events. The main gates are the AND and OR gates, see 2.7.
But other gates as an e.g. Exclusive OR gate or Priority AND gate are also used.

• AND gate - iff all events occur
• OR gate - at least one event occurs
• Priority AND gate - all events occur in a specified sequence
• Exclusive OR gate - exactly one event occur

Figure 2.7: FTA gates

FMEA

There are different types of FMEA as functional, design, process, control of PFME.
We can also extend FMEA to FMECA. FMEA looks at the distinct components of
the system and analysis their different failure modes. By a valve for example can
be the failure modes failure in opening the valve and failure in closing the valve.
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Example

As an example, we take the electric circuit. Figure 2.8 is part of a seminar presen-
tation to shown the FMEA and FTA methodologies.

Figure 2.8: circuit example

2.3 DFSS & Design for Reliability

DFSS

Design for Six Sigma (DFSS) is a business-process management method related to
Six Sigma [5]. Contrary to the classical Six Sigma DMAIC approach, it doesn’t focus
on improving existing processes, but the designing of products. Whereas Six Sigma
used the DMAIC logic, Design for Six Sigma is familiar with DMADV (Define,
Measure, Analyze, Verify) or IDOV (Identify, Design, Optimize, Verify) logic.
DFSS doesn’t have an underlying process to work with. It generates a new one, o
replaces the old one.
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DfR

Design for Reliability (DfR) is a set of tools that support process and product design
[19]. It encompasses all stages from early design stage to the aging stage. It gives
a tutorial throughout the design cycle where to use which tools and what to be
careful about for achieving reliability. Understanding the reliability form different
aspects and seeing particular risks becomes even more important in complex systems.
However, in this thesis our focus is given more on simple cases.

Comparison: DFSS & DfR

Whereas DFSS (focused on quality) have the objective that the product will basically
work, DfR (focused on reliability) is interested in how long will the product work
under specified conditions. Both approaches try avoiding defects. DFSS looks that
the product doesn’t have defects and the reliability is low, whereas DfR tries to have
a reliable product on the long-term. Both methodologies have their similarities and
differences, as we can see on figure 2.9. On figure 2.10 we can se the illustration of
the rule of ten. The cost of a failure is ten times lower, when it is detected in the
previous stage. Therefore it is a good investment to focus on reliability and early
failure detection.

DFSS DFR
ANOVA

Regression

Hypothesis Testing

General Linear Model

Environmental &
Usage Conditions

Life Data Analysis

Sensitivity Analysis

Tolerancing

VOC

Flowdown

QFD

Control Plans

MSA

Physics of Failure

Accelerated Life Testing

Reliability Growth

Warranty Predictions

FA recognition

DOE

Modeling

FMEA

Figure 2.9: Tools used in DFSS and DFR [19]

2.4 Accelerated Lifetime Tests

The reliability tests are used not to seek product weaknesses, but also to demonstrate
improvement and the ability to meet the demands of the customer. There are a
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Figure 2.10: Failure prevention rule of 10

lot of testing techniques, see [5]. Let’s look at the more important ones. On the
assumption on physically founded models, we deal in this section the lifetime under
operational conditions, can be by data obtained under high load levels.

Time-Acceleration Factor

If the Wöhler curve is linear, we model the relationship between the normal operation
conditions and the lifetime in an accelerated test by the time-acceleration factor AF .
Let’s have 6 elastic bands. We examine, whether after stretching them a certain
length they return into the starting position. In the table 2.1 we have the entries
for how many times (cycles) they were able to stretch, before failing. We have 3
different levels of stretching length, i.e. 3 stress levels.

AF = t

tacc
(2.1)

We can see that the acceleration factor for 36 cm with respect to 9 cm is 13.

No. 9 cm 18 cm 36 cm
1 58 16 4
2 63 17 5
3 65 18 5
4 72 21 5.5
5 78 22 6
6 86 23 6.5

Table 2.1: Sample of survival data from [1]
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AF36cm = t9cm
t36cm

= 74.85
5.72 = 13

Using some similar data, we might continue in our thoughts that the factor is
in a relationship with the stress level. This describes the Wöhler curve. It connects
means of the failure distributions for different stress parameters. I.e., for every
stress level, there is are different parameters, mostly of the Weibull distribution.
The figure 2.11 illustrates a failure rate of a component under different pressure.
The higher the pressure, the shorter the failure time. This concept has got practical
use. Let’s imagine an experiment would last under normal conditions year. Under
increased stress conditions the components fail within days. With the Wöhler curve
(accelerated factor), we estimate how would the experiment behave under normal
stress conditions

Figure 2.11: Ilustration of the Wöhler curve, retrived from [1].

Accelerated Life Testing (ALT)

This test is described in the situation shown in figure 2.11. An example might
be letting the inert gas in the light bulb. A physical relationship describes the
accelerated factor. It is a test to proof that the product meets the customer demands
in a reasonable time period. Using a relationship between the accelerated and normal
conditions, we can conduct tests in a reasonable time period.
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Highly Accelerated Life Testing (HALT)

A reliability test used to find failure modes during the product development phase
of the design cycle. Contrary to the Accelerated Life Testing, it uses 2 or more stress
factors (e.g. temperature and vibration) in order to find failure modes as quickly as
possible. A failure mode is a kind of manner that causes the component to fail (or
work properly), see [16].

Environmental Stress Screening (ESS)

A stress test that uses stress conditions that are common in the customer environ-
ment. Basically, no special improvements are implemented. The objective of ESS is
to accelerate early failures such that repair is accomplished at the most cost-effective
stage, see [16] and [16].

Highly Accelerated Stress Screening (HASS)

HASS is focused on improving the products infant mortality. It uses higher stress
levels as ESS, but not as aggressive as HAST.

Highly Accelerated Stress Testing (HAST)

An aggressive technique that uses an additional stress factor in order to highlight
the remaining ones. For example if we cant to examine condensation on a device,
which is dependent on temperature and humidity in normal conditions, we introduce
the stress condition pressure to shorten the testing as explains [5].

Step-Stress Testing (SST)

A test designed to expose the failure distribution under stress condition. E.g. vi-
bration in a car. The components are in a short time examined for failures and the
effect of stress on them. The stress level is throughout the test constantly step-wise
increasing and the impact in observed.
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3 PARAMETRIC METHODS

The parametric methods are based on the assumption that the data follow a known
distribution. The goal is to find that distribution and estimate it’s parameters.

3.1 Life data analysis

The basic concept is the life data analysis (commonly refered as Weibull analysis,
see [23]). While looking for the optimal distribution, we examine probability plots
and the Anderson-Darling statistic, subsection 0.2. We are looking for a distribution
that expresses the best the nature of the collected data. This analysis requires to:

• gather life data
• select a lifetime distribution
• fit the distribution to the data by estimating parameters
• generate plots and results to express the life characteristics of the product

Let’s look a the example at the end of this chapter, A reliability example with
Minitab in section 3.4. We are interested in at which time half.

A more specific approach is to interfere the data with a bayesian hierarchical
model. For this topic are dedicated the following sections INLA and MCMC.

3.2 INLA

Approximate simulation free Bayesian inference using integrated nested Laplace
approximations. The technique is commonly used on spacial or latent Gaussian
models, see [2]. It’s application is also in reliability.

3.2.1 The INLA idea

We take the posterior distribution

π(x,θ|y) ∝ π(y|x,θ)π(x|θ)π(θ) (3.1)

and approximate the posterior marginals

π(xi|y) and π(θi|y) (3.2)

directly.
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Stage 1: The data

The data are represented in the relationship 3.1 by the likelihood π(y|x,θ). It is
the highest part of the hierarchical model. They are generated from the underlying
components x and the hyperparameters θ. The main usage of INLA is in data with
Gaussian responses (temperature, people infected with a disease in each area). It
can be also good used in point data (air pollution measured at fix stations), binary
data (binary image) or as in our example in survival data.

Stage 2: The latent model

The latent model is build up by latent (unobserved) components x. They can
represent structured random effects (AR(1), regional effects), unstructured random
effects (individual effects, group effects), in general covariates (predictor variable).
The latent components are linked to the likelihood through linear predictors.

Stage 3: Hyperparamether

The crucial part of Bayesian inference is to set a good prior distribution. The
hyperparamether is a term in the prior distribution. They are usually the precisions
of the covariate, spacial or unstructured effect. Each hyperparamether must be
given a prior.

GMRF

A random vector x = (x1, ..., xn)t is called a GMRF (Gaussian Markov Random
Field)with respect to a labeled graph G=(V,ε) with mean vector µ and precision
matrix (inverse covariance matrix) Q > 0, if it’s density has the form

π(x) = (2π)−n/2|Q|1/2exp(−1/2(x− µ)tQ(x− µ))

and Q 6= 0 <=> i, j, ∈ ε for all i 6= j.
Note: Any normal distribution with a symmetric positive definite covariance

matrix is also a GMRF and vice versa.
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3.3 Markov Chain Monte Carlo

The Markow Chain Monte Carlo Method is a strategy for drawing samples from the
target density f . In Bayesian analysis, the posterior moments can be written in an
integral form, but practically cannot be analytically evaluated. We deal with this
problem so that we simulate random draws X1, ...,Xn from the target distribution.
On this samples, we perform Monte Carlo Integration. This is the most frequent ap-
proach of processing the samples. This a statistical estimation of the integral by the
evaluation of the integral in random draws, which are drawn from the distribution
and include the hole range on integration, see [9]. Let’s say for example, we want
to calculate E{h(X)}. Having drawn X1, ...,Xn i.i.d.(independent and identically
distributed) random samples from f , we use Monte Carlo integration in formula 3.3
to evaluate the integral. We are going to discuss a specific strategy of Monte Carlo
Integration called Markov Chain Monte Carlo.

µ̂MC = 1
n

n∑
i=1

h(Xi)→
∫
h(x)f(x)dx = µ (3.3)

A Markov chain is a discrete-time stochastic process {Xi}∞i=0, Xi ∈ S, where given
the present state, past and future states are independent (Markov assumption 3.4)
[12]. Note that a stochastic process is a collection of random variables X = {Xt :
t ∈ T}. We simulate a Markov chain X1, ..., Xn in a way that it converges to the
target posterior distribution f . After convergence, we can estimate the posterior
properties. The samples are typically dependent. The central algorithms we will
use for this purpose is the Gibbs sampling algorithm and the Metropolis-Hastings
algorithm.

P (Xi+1 = xi+1|X0 = x0, X1 = x1, ..., Xi = xi) = P (Xi+1 = xi+1|Xi = xi) (3.4)

3.3.1 Metropolis algorithm

Because of absence of strong prior information in the problem discussed in chapter
5, we use the Metropolis algorithm 1. The efficiancy of the algorithm depends on
the relative frequency of acceptance. A too large acceptance rate yealds a slow ex-
ploration of the target density. A too small acceptance rate causes large proposed
moves, but rarely accepted. For independence proposals a hight acceptance rate
is desired, which indicates that the proposal density is close to the target density.
For random walk proposals, an acceptance rate between 20% and 50% is recom-
mended. It is achieved by changing the variance of the proposal density, as stated

in [12]. In the acceptance probability (see code line 6) min
(

1, π(x∗)
π(xi−1)

)
the frac-

tion is not explicitly multiplied by the proposal ratio Q(xi−1|x∗)
Q(x∗|xi−1) since it is symmetric
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Algorithm 1 Metropolis algorithm
1: procedure Metropolis(N, x0, Q(x), π(x)) . Initial value x0 ∼ π(x0)
2: x0 ← x0
3: for i = 1, 2, ..., N do
4: Generate a proposal x∗ ∼ Q(x∗|xi−1)
5: u ∼ U(0, 1)

6: if u < min
1, π(x∗)

π(xi−1)

 then . If less than the accep. prob. α

7: xi ← x∗

8: else
9: xi ← xi−1

10: end if
11: end for

Q(xi−1|x∗) = Q(x∗|xi−1). This is the difference to the Metropolis-Hastings algo-
rithm.

3.3.2 Gibbs sampling algorithm

The Gibbs sampler is a Markov chain who samples univariate conditional distribu-
tions. The sampled stationary distribution becomes the target distribution f , see
[3]. We sample repeatedly according to formula 3.5. |· denotes conditioning on the
most recent updates. As an example, a Gibbs sampler for the normal distribution
3.6 in figure 3.1.

x
(i+1)
1 |· ∼ π(x1|x(i)

1 , · · · , x(i)
n )

x
(i+1)
2 |· ∼ π(x2|x(i+1)

1 , x
(i)
3 , · · · , x(i)

n )
...

x
(i+1)
n−1 |· ∼ π(xn|x(i+1)

1 , x
(i+1)
2 , · · · , x(i+1)

n−2 , x
(i+1)
n )

x(i+1)
n |· ∼ π(xn|x(i+1)

1 , · · · , x(i+1)
n−1 )

(3.5)
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Bivariate normal with ρ=0,9 

θ1

θ2

Figure 3.1: Gibbs sampler for normal distribution

θ ∼N2 (0,Σ) ,Σ =
1 ρ

ρ 1


θ1|θ2 ∼ N

(
ρθ2,

[
1− ρ2

])
θ2|θ1 ∼ N

(
ρθ1,

[
1− ρ2

])
(3.6)
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3.4 A reliability example with Minitab

Let’s have data of engine windings in an electro motor. Sometimes a short-circuit
happens and the winding fails. We use the under two temperature, 80 °C (50
observations) and 100 °C (40 observations). Let’s be interested in:

• at which times fails 10% of the windings
• whether the survival curves differ

The rule of thumb says: do not to trust the data. Can we trust them, who did
collect them. Did something change during the collection process? Which units are
we using? Can we see a typing error? In our first ideas, we shouldn’t thing over,
which method we are going to use. This we can do always. On the first place, we
should be cautious with the data.

We have a first sight at the right censored data on the Dotplot 5.1.

Figure 3.2: Dotplot

The Parametric Method

In the next stage we evaluate which distribution the data follow. We create for this
purpose a distribution ID plot 3.4. In this case the lognormal distribution wins.
We see that the data follow good the plot and in both cases the Adreson-Darling
statistic in listings 3.1 and 3.2 is the lowest. With a look on the probability plots
3.3, we clearly select the lognormal distribution. Having selected the distribution,
we have a closer look on the data under they are lognormaly distributed. Figure 3.4
provides us with visual information about the general and survival properties.

To determine, when 10% of the items will fail, we look at the table tables of
percentiles in listing 3.3 and for 10%, we estimate the time to be at 32,1225 for 80
°C windings and 14,7606 for 100 °C windings. We reject the null hypothesis that the
distributions are the same according to the statistic in listing 3.5 on the significance
lever of 5%.
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Figure 3.3: Probability plot

Figure 3.4: Probability and survival plot for the chosen lognormal distribution

Listing 3.1: Anderson-Darling statistic for Temp80
R e s u l t s f o r v a r i a b l e : Temp80

Goodness−of−F i t

Anderson−D a r l i n g
D i s t r i b u t i o n ( adj )
Weibull 68 ,204
Lognormal 67 ,800
Exponentia l 70 ,871
Normal 68 ,305

Listing 3.2: A-D for Temp100
R e s u l t s f o r v a r i a b l e : Temp100

Goodness−of−F i t

Anderson−D a r l i n g
D i s t r i b u t i o n ( adj )
Weibull 17 ,339
Lognormal 17 ,253
Exponentia l 18 ,879
Normal
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Listing 3.3: percentiles for Temp80
V a r i a b l e : Temp80
Censoring I n f o r m a t i o n Count
Uncensored value 37
Right c e n s o r e d value 13

Table o f P e r c e n t i l e s

95,0% Normal CI
Percent P e r c e n t i l e Lower Upper

0 ,1 13 ,3317 9 ,21026 19 ,2975
1 19 ,3281 14 ,4953 25 ,7722
2 22 ,0674 17 ,0178 28 ,6154
3 24 ,0034 18 ,8304 30 ,5975
4 25 ,5709 20 ,3126 32 ,1906
5 26 ,9212 21 ,5978 33 ,5566
6 28 ,1265 22 ,7506 34 ,7727
7 29 ,2276 23 ,8074 35 ,8819
8 30 ,2501 24 ,7910 36 ,9113
9 31 ,2110 25 ,7170 37 ,8788

10 32 ,1225 26 ,5962 38 ,7970
20 39 ,7837 33 ,9646 46 ,5999
30 46 ,4184 40 ,1936 53 ,6073

.
.
.
98 162 ,590 120 ,175 219 ,977
99 185 ,634 133 ,271 258 ,570

Listing 3.4: p. for Temp100
V a r i a b l e : Temp100
Censoring I n f o r m a t i o n Count
Uncensored value 34
Right c e n s o r e d value 6

Table o f P e r c e n t i l e s
95,0% Normal CI

Percent P e r c e n t i l e Lower Upper
0 ,1 3 ,93505 2 ,19401 7 ,05767

1 6 ,87764 4 ,33827 10 ,9034
2 8 ,39410 5 ,52121 12 ,7619
3 9 ,52528 6 ,42827 14 ,1144
4 10 ,4756 7 ,20360 15 ,2338
5 11 ,3181 7 ,89954 16 ,2162
6 12 ,0884 8 ,54184 17 ,1076
7 12 ,8069 9 ,14535 17 ,9343
8 13 ,4863 9 ,71949 18 ,7129
9 14 ,1354 10 ,2707 19 ,4544

10 14 ,7606 10 ,8036 20 ,1667
20 20 ,3589 15 ,6197 26 ,5362
30 25 ,6717 20 ,1592 32 ,6916

.

.

.
98 168 ,993 107 ,427 265 ,843
99 206 ,255 125 ,600 338 ,704

Listing 3.5: scale and location tests
D i s t r i b u t i o n A n a l y s i s : Temp80 ; Temp100
Test f o r Equal S c a l e and Locat ion Parameters
Chi−Square DF P

18 ,6468 2 0 ,000

Test f o r Equal S c a l e Parameters
Chi−Square DF P

5 ,29599 1 0 ,021

Test f o r Equal Locat ion Parameters
Chi−Square DF P

11 ,2988 1 0 ,001
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3.5 A reliability example with INLA

We consider data from [18], discussed in [20] or also [8]. Patients are placed catheters
in 2 ways for the time of their hospitalization. Unfortunately sometimes an infection
occurs. The variables variables are time, event and placement. The time repre-
sents the time spent in the hospital. If the hospitalization is without complications
censoring occurs. If the patients get an infection, we observe the event of interest
event (0, 1). As described in the R dokumentation, event, he status indicator, can
acquire 1=observed event, 0=right censored event, 2=left censored event, 3=inter-
val censored event. Placement represents 2 ways (1, 2) of placing the catheter. The
data set is right censored. Here a sample of the data in table 3.1.

For the exponential model we have the following parts: The data are exponen-
tially distributed exponential 3.7, where ti is the ith survival time following the λi
distribution. The latent components are β0 and β1). The GMRF x = β = (β0, β1)
is represented in the latent field 3.8 by the latent linear model 3.9. β1, β2, must
come from a Gaussian distribution that we can use INLA and the GMRF definition
in subsection 3.2.1 holds. We assign the following priors 3.10. The priors have a
small precision since we don’t have any prior information about them. So the are set
small. We give just a small hint that the mean could be at zero. No hyperparameter
is used for this model.

ti ∼ Exp(λi) (3.7)
λi = 1/exp(ηi) (3.8)
ηi = β0 + trtiβ1 (3.9)

β0 = N(0, 0.001)
β1 = N(0, 0.001)

(3.10)

In the Weibull model we see time Weibull distributed in equation 3.11. The
latent field is as by the previous model 3.12 with the latent linear model 3.13 and the
priors 3.14. In this case the model has one hyperparameter (parameter controlling
the distribution) α, assigned a prior 3.15.

ti ∼Weibull(α, λi) (3.11)
λi = 1/exp(ηi) (3.12)
ηi = β0 + trtiβ1 (3.13)
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β0 = N(0, 0.001)
β1 = N(0, 0.001)

(3.14)

α ∼ Gamma(1, 0.001) (3.15)

We set up an R-code and process it by the software RStudio.

Survival data
Time Event Placement
0.15 1 1
2.85 0 2
0.35 1 2
etc.

Table 3.1: Sample of survival data from [20]

Given the code 3.6, we get the results for the exponential model in listing 3.7. β =
(β0, β1) = (−0.6242,−0.5334). For the second placement we get η2 = −0, 6242 +
2 · (−0, 5334) = −1, 39974828 and t2 ∼ Exp(4, 05417932). Similarly for the first
placement.

In the Weibull model the results are in listing 3.8. Here the for the second place-
ment we obtain β = (β0, β1) = (−0.5923,−0.5438). Therefore λ2 = e−1,40969274 =
0.24421831014 t2 ∼Weibull(0.9217, 4.094697075).

Listing 3.6: Survival INLA
#i n s t a l l . p a c k a g e s ( ( " INLA " , r e p o s =" h t t p : //www. math . ntnu . no/ i n l a /R/ t e s t i n g " )
#l i b r a r y (MASS)
#l i b r a r y ( sp )
#setwd ( " ~ /R" )
###########################
#Code f o r E x p o n e n t i a l Model
###########################
data=read . t a b l e ( " Kidney−i n f e c . t x t " , header = T)
# The r o u t i n e s in R−INLA work w i t h o b j e c t s o f c l a s s " i n l a . s u r v " ,
# which i s a data s t r u c t u r e t h a t combines times , c e n s o r i n g and
# t r u n c a t i o n i n f o r m a t i o n Here we have r i g h t c e n s o r e d data and t h u s
# t h e time i s r e p r e s e n t e d in t h i s way
i n l a . surv ( data $ time , data $ event )
formula = i n l a . surv ( time , event ) ~ placement
r e s u l t = i n l a ( formula , f a m i l y=" e x p o n e n t i a l s u r v " , data= data , v e r b o s e=TRUE)
summary ( r e s u l t )
################################
# Code f o r W e i b u l l Model example
################################
data=read . t a b l e ( " Kideny−i n f e c . t x t " , header = T)
i n l a . surv ( data $ time , data $ event )
formula = i n l a . surv ( time , event ) ~ placement
model = i n l a ( formula , f a m i l y=" w e i b u l l s u r v " , data= data , v e r b o s e=TRUE )

Listing 3.7: Result INLA exponential model
Time used :
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Pre−p r o c e s s i n g Running i n l a Post−p r o c e s s i n g Total
0 . 7 5 1 0 0 . 4 3 9 0 0 . 1 1 9 0 1 . 3 0 9 1

Fixed e f f e c t s :
mean sd 0 . 0 2 5 quant 0 . 5 quant 0 . 9 7 5 quant mode kld

( I n t e r c e p t ) −0.6242 0 . 5 9 7 9 −1.8391 −0.6098 0 . 5 1 0 8 −0.5805 0
placement −0.5334 0 . 3 9 6 9 −1.3261 −0.5289 0 . 2 3 3 6 −0.5197 0

The model has no random e f f e c t s

The model has no hyperparameters

Expected number o f e f f e c t i v e parameters ( std dev ) : 2 . 0 0 ( 0 . 0 0 )
Number o f e q u i v a l e n t r e p l i c a t e s : 5 9 . 5 0

Marginal log−L i k e l i h o o d : −67.49

Listing 3.8: Result INLA Weibull model
Time used :

Pre−p r o c e s s i n g Running i n l a Post−p r o c e s s i n g Total
0 . 8 2 6 0 0 . 6 2 3 0 0 . 2 2 0 0 1 . 6 6 9 1

Fixed e f f e c t s :
mean sd 0 . 0 2 5 quant 0 . 5 quant 0 . 9 7 5 quant mode kld

( I n t e r c e p t ) −0.5923 0 . 6 0 0 0 −1.811 −0.5779 0 . 5 4 7 0 −0.5489 0
placement −0.5438 0 . 3 9 7 2 −1.337 −0.5393 0 . 2 2 3 7 −0.5302 0

The model has no random e f f e c t s

Model hyperparameters :
mean sd 0 . 0 2 5 quant 0 . 5 quant 0 . 9 7 5 quant mode

alpha parameter f o r w e i b u l l s u r v 0 . 9 2 1 7 0 . 1 1 2 8 0 . 7 1 0 1 0 . 9 1 8 2 1 . 1 5 1 0 . 9 0 9 8

Expected number o f e f f e c t i v e parameters ( std dev ) : 2 . 0 0 ( 0 . 0 0 )
Number o f e q u i v a l e n t r e p l i c a t e s : 5 9 . 5 0

Marginal log−L i k e l i h o o d : −67.75
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4 NON-PARAMETRIC METHODS

In this chapter we will investigate the Kaplan-Meier method and the Actuarian
Method. Whereas the Kaplan-Meier method is more useful in clinical studies, the
Actuarian method is more of use in cases, where the data about survivals are not
exact. The Kaplan-Meier assumes all censorings precedes failures of the component
(we are not censoring already failed components). The Actuarian method precedes
half of the components we are censoring, have failed at the end of the computed
time interval.

4.1 Kaplan-Meier Method

Denote ti the ith time of the actual death, di the number of death, ni the correspond-
ing number of patients. di = ni− ni+1 denotes failures (deaths) in age 〈ti, ti+1). We
know S(ti) = P (t > ti) is the probability of surviving beyond time ti. For t ∈ [t1, t2)
we have the probability of survival in time interval [0, t1) times the probability of
survival in time interval [t1, t2) given the probability the previous survival (given
you are still alive).

S(t1) = P (T > t) = P (0 < T < t1) · P (t1 < T < t2|0 < T < t1) (4.1)

i.e,
Ŝ(t0) = n0 − 0

n0
= 1 (4.2)

Ŝ(t1) = n0 − 0
n0

· n1 − d1

n1
(4.3)

simplified
Ŝ(t) = 1− d1

n1
(4.4)

subsequently we get in general t ∈ [tj, tj+1), j ∈ N

Ŝ(t) =
(

1− d1

n1

)(
1− d2

n2

)
· · ·

(
1− dj

nj

)
=

j∏
i=1

(
1− di

ni

)
(4.5)

Ŝ(ti) =
i∏

j=1

nj − rj
nj

, i = 1, ...,m (4.6)

where m is the total number of data points, n the total number of units. nj is
defined by

ni = n−
i−1∑
j=0

cj −
i−1∑
j=0

rj (4.7)
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where rj is the number of failures in the jth data group and cj the number of
censorings in the jth data group. The recurrent formula

Ŝ(ti) = Ŝ(ti−1) · (1− pi) (4.8)

, where pi = di
ni

holds.

4.2 Actuarian Method

This method also called the life-tables method is widely used in insurance math-
ematics for calculations with life-tables. We will denote a failure what is usually
in insurance mathematics written as a death. The time is parted into equal sized
intervals. Contrary to the Kaplan-Meier method the interval does not end at each
failure, but at a given time step. Let’s have a look at the method without censoring,
as in the insurance. Let’s denote:

x age of the persons
nx number living on the beginning of the interval xth time interval
dx number of failures observations in the xth time interval, dx = nx − nx+1

cx number of censorings observations in the xth time interval, dx = nx−nx+1

qx probability of failure from age x to age x+ 1 calculated as dx
nx

sx probability of survival from age x to x+ 1 calculated as nx+1
nx

Evidently, nx = cx+dx. We will not work with cumulative numbers and other items,
since it is in our case not needed. Further reading and extension might be found in
[10]. The probability of survival in the ith interval is

sj = 1−
dj

nj − 1
2cj

(4.9)

We see that it is supposed that about half of the censorings happened before the
failures and half after. The survival function is then:

Ŝ(j) =
j∏
i=1

si (4.10)

If there wouldn’t be any censorings, the situation would be much more easy. We
could just devide the S(j) = nj

n1

Sj = 1−
dj

nj − 1
2cj

denotes that censorings are equally distributed.
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5 ANALYSIS OF TECHNICAL DATA

In this part we are going to apply the gained knowledge on industrial data. We are
investigating the lifetime of of valves. Within process improvement, we would like
to determine, whether we can use one valve type (type B) instead of the used (type
A) without loss of reliability. The effort of this substitution is mainly motivated by
the lower cost of the new proposed valve. The valves are working in an open/close
mechanism. There was held an experiment, to determine the lifetime of the valves.
First was type A tested and after some time was add type B. In the experiment
the valves are opening and closing 100 times faster as normal. One such opening
and closing we denote as one cycle. It is therefore considered an accelerated test.
We request from the valves to hold at least 2 million cycles. Unfortunately, during
the experiment the condition changed for a while, which caused some of the valves
failed prematurely. We tested valve type A up to 6048 cycles and valve type B up to
5287, 68 cycles. This is given by the conditions of the test we started testing valve
type A about 760 cycles earlier than the second type, which was added later to the
test and after some time we stopped the test, which caused significant censoring by
valve type B as can be seen on the dotplot 5.1.

Figure 5.1: Dotplot of failures

5.1 Parametric analysis

A common methodology how to approach survival data is to assume that they come
from a particular distribution and examine then the distribution. To find the optimal
distribution to fit the data in, we compare with a probability plot the data with the
proposed distribution as we can see on figures 5.2 and 5.3. While looking at the
chart and the Anderson-Darling statistic in subsection 0.2, we see the performance is
very poor and the data are not suitable for a serious parametric analysis. However,
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for academic purposes and with the hope that they might perform better in the
next experiment, where would not happen a similar accident, we continue with the
analysis. We see outlayers at the left tail of the distribution. In praxis the valves will
be tested before use to lower later vacancy claims. This gives us a clarification for
removing in valve A the 5th and 99th data entry with value 0. In valve B we remove
the 5th, 24th and 56th data entry with value 69, 12. In the adjusted probability plot
5.4, the Weibull distribution perform as well the best. The next step is the Weibull
analysis. The the main question is whether the valve B is better. The minor
question or more a wish is whether enough valves get have a lifetime expectancy of
more than 4000 cycles. In the figure 5.5, we see that the distributions might differ.
This confirms also the test for equal share and scale as well as the partial ones,
listing 5.1.

Figure 5.2: Probability plot for different distributions

Listing 5.1: Test for equal shape and scale in the Weibull distribution
Test f o r Equal Shape and S c a l e Parameters
Chi−Square DF P

80 ,5942 2 0 ,000

Test f o r Equal Shape Parameters
Chi−Square DF P

16 ,9594 1 0 ,000

Test f o r Equal S c a l e Parameters
Chi−Square DF P

42 ,7504 1 0 ,000
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Figure 5.3: Second probability plot for different distributions

Figure 5.4: Adjusted probability plot for different distributions
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Figure 5.5: Weibull analysis overview chart

5.2 Nonparametric analysis

We examine the data with the Caplan-Mayer and Actuarian method. In the test
statistic in listing 5.2 for comparing the two survival curves. For both statistics we
reject the null hypothesis that survival curves don’t differ. When we are looking
the survival plot of the Actuarian Method, we notice that failure rate of group B
is nicely constant. This constant failure rate would probably continue, if at about
2000 cycles the situation wouldn’t change (accident in the experiment). At about
changes the curve to a wear-out phase, which has surprisingly in this case a lower
failure rate. We are there probably examining the remaining strong components.
In contrast valve type B has clearly from the beginning a lower failure rate. In this
case it can be seen better on the Kaplan-Meier Failure Plot 5.6. The wear-out phase
begins at about 4300 cycles. Again with the remaining strong components with a
lower failure rate.

Listing 5.2: Nonparametric comparison of the valve type A and B survival functions
Comparison o f S u r v i v a l Curves
Test S t a t i s t i c s
Method Chi−Square DF P−Value
Log−Rank 51 ,1298 1 0 ,000
Wilcoxon 53 ,1759 1 0 ,000
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Figure 5.6: Cumulative failure plot with the Caplan-Meier Method

Figure 5.7: Survival plot with the Caplan-Meier Method



CHAPTER 5. ANALYSIS OF CONCRETE TECHNICAL DATA 38

Figure 5.8: Cumulative failure plot with the Actuarian Method

Figure 5.9: Survival plot with the Actuarian Method
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5.3 INLA

In the way the example provided in the previous INLA Example, I have constructed
an INLA method that solves the our technical data in this section. Let’s model the
data with the subsequent hierarchical model. The relevant R code is provided in
listing 5.3. Note, that to be able to compute the result, we scale the data by the
maximum value. The computed result is shown in listing 5.4. To get the relevant
coefficients, we transform the data back as can be seen in formula 5.2. In comparism
to the Weibul analysis we conclude that however ηB and β differ a bit, nearly the
same parameters are calculated for 1/λA.

ti ∝Weibull(β, λi)
λi = exp(µi)

µi = ψA + 1B · ψB
ψA = N(0, 0.001)
ψB = N(0, 0.001)

β ∼ Gamma(1, 0.001)

(5.1)

data
Valve cycles censor group
1 4423,68 0 B
2 1002,24 0 B
3 4181,76 1 B
etc.

Table 5.1: Data table sample

Listing 5.3: INLA code - Weibull model
library("MASS")
library("INLA")
data=read.table("valve.txt", header = T, dec=",")
data$cycles = data$cycles / max(data$cycles)
inla.surv(data$cycles , data$censor)
formula = inla.surv(cycles , censor) ~ group
model=inla(formula ,family="weibullsurv", data= data , verbose=TRUE )
summary(model)

Listing 5.4: Calculated R result.
Time used: 3.8702
Fixed effects:

mean sd 0.025 quant 0.5 quant 0.975 quant mode
(Intercept) 1.0759 0.1192 0.8368 1.0776 1.3051 1.0812
groupB -1.4757 0.2096 -1.8986 -1.4718 -1.0746 -1.4638

Model hyperparameters:
mean sd 0.025 quant 0.5 quant 0.975 quant mode

alpha parameter for weibullsurv 1.104 0.0708 0.9719 1.102 1.246 1.098
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β = 1, 104

1/λA = 1
e1,0759 · max(data$cycles) = 2062, 311908

1/λB = 1
e(1,0759−1,4757) · max(data$cycles) = 9020, 751441

(5.2)

5.4 MCMC

As a highlight of this work I created to the INLA model a MCMC algorithm. Let’s
have the stated model 5.1. My MCMC algorithm consists of a Metropolis algorithm
within a Gibbs algorithm, see code 2. The marginalization will be performed in the
likelihood function 5.3, see [4]. Since the full-conditionals don’t belong to a known
distribution, we introduce for each a Metropolis step using a univariate normal
distribution. For easier calculations, we characterize the Weibull’s rate paramether
as 1/λi. We define the variables 5.5. Since the sum of normal distributed random
variables via the characteristic function is normaly distributed, see [25], we can write
by the change of variable formula, theorem 1, the prior distributions 5.6. Now we
derive the full-conditionals in equations 5.7. The the survival and hazard function
5.4 in the likelihood function 5.3 with the prior distributions 5.6 are combined. In
the listing 5.5 the programmed R code. After removing the burn-in period 5.10, the
trace plots are in figure 5.11. The resuts (means) have been calculated as the shape
parameter β = 0, 821552 and the paramethers 1/λA = 2186, 976, 1/λB = 4366, 361
and compared in table 5.2.

L(x,θ, c) =
n∏
i=1
{[h(xi,θ)]ci · [S(xi,θ)]} (5.3)

h(xi|β, λ) = βλβxβ−1
i

S(xi|β, λ) = e−(λxi)β
(5.4)

λA = eψA

λB = eψA+ψB
(5.5)

π(λA) = f̃λA(ψA) = e− ln(λA) 0,001
2 · 1

λA
= e−ψA

1
2000 · 1

eψA

π(λB) = f̃λB(ψA + ψB) = e−
1
2

ln(λB)
1000+1000 · 1

λA
= e−

ψA+ψB
4000 · 1

eψA+ψB

(5.6)
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Let us denote C1 = {xi ∈ X|c = 1}, C0 = {xi ∈ X|c = 0}, ΛA = {xi ∈ X|λ =
λA} and ΛB = {xi ∈ X|λ = λB}.

π(λA|·) = eψAβ·cA · e−
∑

ΛB (xieψA)β × π(λA)

π(λB|·) = e(ψA+ψB)β·cB · e−
∑

ΛA (xieψA+ψB)β × π(λB) (5.7)

π(β|·) = βcecψA+cBψB
∏
C1

xβ−1
i · e

−

(∑
C1

(xieψA)+
∑
C0

(xieψA+ψB)
)β
× π(β)

ψ(i)∗ represents the possibilities ψ(i)∗
A , ψ(i)∗

B and β(i)∗

Algorithm 2 WeibullMCMC
1: procedure MCMC(ψA, ψ,N) . Initial values ψA, ψ
2: ψ

(0)
A ← ψA; ψ(0) ← ψ;

3: ψ(i)∗ , N(ψ(i−1), t) . t is the relevant tuning parameter.
4: while i ≤ N do
5: ψ

(i)
A ←Metropolis

(
1, ψ(i)∗

A , π(λA|λ(i−1)
B , β(i−1))

)
6: ψ(i) ←Metropolis

(
1, ψ(i)∗

B , π(λB|λ(i)
B , β

(i−1))
)

7: β(i) ←Metropolis
(
1, β(i)∗

A , π(β|λ(i)
B , β

(i))
)

8: end while

βMCMC

βaverage−Minitab

1/λA−MCMC

λA−Minitab

1/λB−MCMC

λB−Minitab

0,98869163 0,73001909 1,505446016

Table 5.2: Compared Minitab and MCMC results.

Figure 5.10: The burn-in period.
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Figure 5.11: The trace plots.
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Figure 5.12: Parameter β.
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Figure 5.13: Parameters ψA and ψB.

Listing 5.5: Programmed Markov chain Monte Carlo algorithm
set.seed (11)
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setwd("~/R/mcmc")
library("MASS")
# posterior sample size
M = 20000
#Load the data set
data=read.table("valve.txt", header = T, dec=",")
data$cycles = data$cycles / max(data$cycles)
#data$ cycles = data$ cycles / median (data$ cycles )
data <-as.data.frame(data)
# initial values
beta =0.3; psiA =1; psiB=-2;
#given values
c=length(data$valve)
cA=length(which(data$censor == 1 & data$group == "A"))
cB=length(which(data$censor == 1 & data$group == "B"))
# ###########################################
# Functions used in the MCMC 's iteration step
# ###########################################
#full conditional $\ lambda _A$
psi_Af<-function(psiA , beta , cA){

exp(psiA*beta*cA -sum( (data[which(data$group == "A"),]$cycles*
exp(psiA ))^ beta )

-psiA/4000- psiA) #prior
}
#full conditional $\ lambda _B$
psi_Bf<-function(psiB , beta , cB){

exp(psiB*beta*cB -sum( (data[which(data$group == "B"),]$cycles* # problem
exp(psiB ))^ beta )

-psi/2000-psi) #prior
}
#full conditional $\beta$
beta_f<-function(beta , psiA , psiB , c, cB){

beta^c*prod( data[which(data$censor == 1),]$cycles )^(beta -1)*
exp((c*psiA+cB*psiB)*beta -

(sum( data[which(data$group == "A"),]$cycles*
exp(psiA)) + sum(data[which(data$group == "B"),]$cycles*exp(psiB )))^beta -

0.001*beta) #gamma prior
}
# ##########
# Metropolis
# ##########
# vector of samples
samples_psiA <- numeric(M)
samples_psiB <- numeric(M)
samples_beta <- numeric(M)
# indexes
acceptedA =0; acceptedB =0; acceptedbeta =0;i=0;
# tuning parameters
t1=0.3;t2=0.5;t3 =0.07;
while ( i <= M ) {
# propose new value
psi_A_star=rnorm(1,psiA ,t1)
psi_B_star=rnorm(1,psiB ,t2)
beta_star=rnorm(1,beta ,t3)
# acceptance step lambda _A
alpha_prob= min(1,exp(

log(psi_Af(psi_A_star ,beta ,cA))-log(psi_Af(psiA ,beta ,cA))
))
u_alpha=runif (1)

if (alpha_prob > u_alpha ){
psiA=psi_A_star
acceptedA = acceptedA + 1
samples_psiA[acceptedA] <- psiA

}
# acceptance step lambda _B
alpha_prob= min(1,exp(

log(psi_Bf(psi_B_star ,beta ,cB))-log(psi_Bf(psiB ,beta ,cB))
))
u_alpha=runif (1)
if (alpha_prob > u_alpha ){

psiB=psi_B_star
acceptedB = acceptedB + 1
samples_psiB[acceptedB] <- psiB

}
# acceptance step beta
alpha_prob= min(1,exp(

log(beta_f(beta_star , psiA , psiB , c, cB))-
log(beta_f(beta , psiA , psiB , c, cB))

))
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u_alpha=runif (1)
if (alpha_prob > u_alpha ){

beta=beta_star
acceptedbeta = acceptedbeta + 1
samples_beta[acceptedbeta] <- beta

}
i=i+1;

}
acceptrate_psiA=acceptedA/M
acceptrate_psiB=acceptedB/M
acceptrate_beta=acceptedbeta/M
samples_psiA <- samples_psiA [100: acceptedA]
samples_psiB <- samples_psiB [100: acceptedB]
samples_beta <- samples_beta [100: acceptedbeta]
acceptedpsiA=acceptedA
n1=length(samples_psiA)
n2=length(samples_psiB)
n3=length(samples_beta)
par(mfrow = c(1 ,3))
#Plots the generated kappa_u and kappa _v's versus iteration
plot (1:n1 ,samples_psiA , type = "l", col =2)
plot (1:n2 ,samples_psiB , type = "l", col =2) #type = "b", pch='.'
plot (1:n3 ,samples_beta , type = "l", col =2)
# variable means
result_psiA=mean(samples_psiA)
result_psiB=mean(samples_psiB)
result_beta=mean(samples_beta)
result_psiA
result_psiB
result_beta
#dev.off ()
hist(samples_psiA ,probability='TRUE', col="grey", main = expression(psi[A]),

xlab=expression(paste("values␣of␣",psi[A]) ))
lines(density(samples_psiA), col="blue", lwd =2)
lines(density(samples_psiA , adjust =2), lty="dotted", col="darkgreen", lwd=2)

Outcome

Nonparametric models showed themselves as a good alternative to parametric mod-
els, which need confidence, that the data follow a common distribution. Valve type
A type had high failure rate during the 1. test interval. Valve type B performed
better during the hole experiment and is recommend to substitute the used valve
type B. Suitable appeared the usage of non-parametric methods, which distinctly
proofed the different behavior of the valves and the durability of the 1. type is
greater than the 2. type, see figure 5.9. We do recommend to do a burn in test and
let the valves run 100 cycles, before we will use them. The calculation in the thesis
were done under this situation.
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6 CONCLUSION

In the introductory chapter we apprised with the basic definitions and concepts of the
survival analysis. In the subsequent chapter, we described the main distributions,
which we used for the parametric lifetime methods. In the chapter dealing with
Six Sigma we showed methods that are related to the reliability problematic. In
particular, we can use the methods provided in this thesis in the phase Analyse. The
next chapter was dedicated to parametric methods. We examined closely the Weibull
analysis and a new method called INLA. The subsequent chapter dealer in contrast
to the previous with non-parametric methods. We treated the most use methods,
the Kaplan-Meier Method and the Actuarian Method. To get a first impression with
the practical use in Minitab, we provided in the next-to-last chapter a small example
in Minitab. The last chapter was concentrated on solving an industrial reliability
problem. A bayesian hierarchical model was derived and solved using integrated
nested Laplace approximation. In comparism was programmed a Markov chain
Monte Carlo algorithm.
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