VÝSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA CHEMICKÁ
ÚSTAV CHEMIE POTRAVIN A BIOTECHNOLOGIÍ

FACULTY OF CHEMISTRY
INSTITUTE OF FOOD SCIENCE AND BIOTECHNOLOGY

VYUŽITÍ KLASICKÝCH ANALYTICKÝCH TECHNIK PŘI KONTROLE ZÁKLADNÍCH PARAMETRŮ KVALITY VÍNA

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE
AUTHOR
KRISTÍNA HÁNOVÁ

BRNO 2009
VYUŽITÍ KLASICKÝCH ANALYTICKÝCH TECHNIK
PŘI KONTROLE ZÁKLADNÍCH PARAMETRŮ
KVALITY VÍNA
USE OF STANDARD ANALYTICAL TECHNICS BY THE INSPECTION OF BASIC
PARAMETERS
OF WINE QUALITY

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE
KRISTÍNA HÁNOVÁ

VEDOUCÍ PRÁCE
RNDr. MILENA VESPALCOVÁ, Ph.D.

BRNO 2009
Zadání diplomové práce

Číslo diplomové práce: FCH-DIP0338/2008
Ústav: Ústav chemie potravin a biotechnologií
Student(ka): Hánová Kristína
Studijní program: Chemie a technologie potravin (M2901)
Studijní obor: Potravinářská chemie a biotechnologie (2901T010)
Vedoucí práce: RNDr. Milena Vespalcová, Ph.D.
Konzultant:

Akademický rok: 2008/09

Název diplomové práce:
Využití klasických analytických technik při kontrole základních parametrů kvality vína

Zadání diplomové práce:

Literární část:
a) Zpracování hroznů a výroba vína
b) Popis použitých postupů a metod stanovení

Experimentální část:
a) Stanovení základních charakteristik vína manuálními postupy
b) Stanovení redukujících sacharidů na automatickém analyzátoru

c) Vyhodnocení naměřených výsledků

Termín odevzdání diplomové práce: 22.5.2009
Diplomová práce se odevzdává v děkanem stanoveném počtu exemplářů na sekretariát ústavu a v elektronické formě vedoucímu diplomové práce. Toto zadání je přílohou diplomové práce.

Hánová Kristína
Student(ka)

RNDr. Milena Vespalcová, Ph.D.
Vedoucí práce

doc. Ing. Jiřina Omelková, CSc.
Ředitel ústavu

doc. Ing. Jaromír Havlíček, DrSc.
Děkan fakulty

V Brně, dne 22.5.2009

Vytiskl(a): Ing. Jan Brada
ABSTRAKT

Experimentální část je rozdělena na 2 oddíly. První se zabývá stanovením základních kvalitativních parametrů čtyř odrůdových vín. Analyzy se soustředily na poslední fáze výroby vína tj. závěrečné čiření, filtrace a stabilizace vína až po lahvování. Při sledování hodnot analytických výsledků jednotlivých vín v průběhu procesu jejích závěrečných úprav nebyl zjištěn žádný zásadní rozdíl v těchto parametrech. Rozdíly v hodnotách jednotlivých kvalitativních parametrů byly malé, ale zásadně přispívají ke zkvalitnění vína.

ABSTRACT

Standard analytical technics are used by the inspection of basic parameters of wine quality in the presented graduation theses. Theoretical part contains short description of viniculture history. Description of elementary bunch of grapes stage of processing and wine production from stem pressing until bottling follow. There is short description of wine diseases and wine defekt, too. Attention paid to quality assessment.

Experimental part is divided to 2 parts. The first part contains determination of four wines qualitative parameters value. Analysis are focused on final wine processing phase, e.g. wine filtration, wine clarification and stabilisation, wine bottling.

Data evaluation of these four sort of wine get no basic parameters differences. Parameters value differences are small but fundamentally conducive to wine enhance quality.

KLÍČOVÁ SLOVA

víno, stabilizace vína, normované analytické metody, automatizované metody

KEYWORDS

wine, stabilization of wine, standardized analytical metods, automatized methods
HÁNOVÁ, K. Využití klasických analytických technik při kontrole základních parametrů kvality vína. Brno, Vysoké učení technické v Brně, Fakulta chemická, Ústav chemie potravin a biotechnologií, 2009. 70 s. Vedoucí diplomové práce RNDr. Milena Vespalcová, Ph.D.

PROHLÁŠENÍ

Prohlašuji, že jsem diplomovou práci vypracovala samostatně a že všechny použité literární zdroje jsem správně a úplně citovala. Diplomová práce je z hlediska obsahu majetkem Fakulty chemické VUT v Brně a může být využita ke komerčním účelům jen se souhlasem vedoucího diplomové práce a děkana FCH VUT.

..
podpis diplomanta

Poděkování :
Na tomto místě bych ráda poděkovala RNDr. Mileně Vespalcové, Ph.D. za odborné vedení, podporu a pomoc při realizaci této diplomové práce, zvláštní poděkování patří mé rodině za velkou obětavost a pochopení.
OBSAH

1 ÚVOD .. 7

2 TEORETICKÁ ČÁST .. 8

2.1 Vinařství .. 8
2.1.1 Historie vinařství ... 8
2.1.2 Získání mošt ... 11
 2.1.2.1 Hrozně, získání mošt ... 11
 2.1.2.2 Složení moštů, vín .. 13
 2.1.2.3 Úpravy moštů ... 16
2.1.3 Vznik vína a úpravy .. 16
 2.1.3.1 Kvašení .. 16
 2.1.3.2 Druhy kvašení .. 17
 2.1.3.3 Stáčení vína ... 19
 2.1.3.4 Filtrace ... 20
 2.1.3.5 Školení 20
 2.1.3.6 Zrání ... 20
 2.1.3.7 Lahvování ... 21
2.1.4 Choroby a vady vína .. 22
2.1.5 Víno a zdraví .. 22
2.1.6 Popis analyzovaných odrůd vín .. 24
2.1.7 Výběry – fáze přerování hroznů ... 25
2.1.8 Vývoj produkce .. 26
2.1.9 Pěstování vinné révy a zpracování
 v systému integrované produkce ... 27
2.1.10 Kontrolní orgány ... 28

2.2 Hodnocení vína ... 28
2.2.1 Chemický rozbor vín ... 28

2.3 Validace ... 33
2.3.1 Stanovení validačních parametrů ... 33
2.3.2 Přesnost metody ... 34
2.3.3 Volba kalibračního modelu ... 34
2.3.4 Automatický analyzátor SKALAR .. 35
3 EXPERIMENTÁLNÍ ČÁST

3.1 Chemikálie, roztoky, činidla
3.2 Vzorky a materiál
3.3 Přístroje, pomůcky
3.4 Pracovní postupy, metody
3.5 Výpočty
3.5.1 Stanovení hustoty vína pyknometricky EECNo 2676/90
3.5.2 Stanovení přítomného alkoholu pyknometricky EECNo 2676/90
3.5.3 Gravimetrické stanovení redukujících cukrů
3.5.4 Stanovení veškerých titrovatelných kyselin EECNo 2676/90
3.5.5 Stanovení těkavých kyselin modifikovanou metodou
3.5.6 Stanovení netěkavých kyselin EECNo 2676/90
3.5.7 Stanovení extraktu EECNo 2676/90
3.5.8 Stanovení oxidu sířičitého titrací
3.6 Popis vzorků analyzovaných vín

4 VÝSLEDKY A DISKUZE

4.1 Stanovení koncentrace cukru
4.1.1 Hustoty, extraktu
4.1.2 Stanovení koncentrace alkoholu
4.2 Stanovení koncentrace veškerých kyselin
4.3 Stanovení koncentrace těkavých kyselin
4.4 Stanovení koncentrace netěkavých kyselin
4.5 Stanovení koncentrace volného oxidu sířičitého
4.6 Stanovení koncentrace vázaného oxidu sířičitého
4.7 Senzorické hodnocení
4.8 Validační parametry
4.11 Porovnání výsledků stanovení sacharidů

5 ZÁVĚR

6 SEZNAM POUŽITÝCH ZDROJŮ

7 SEZNAM POUŽITÝCH ZKRATEK

8 SEZNAM PŘÍLOH

9 PŘÍLOHY
1 ÚVOD

Víno bylo od nejstarších dob používáno nejen jako součást náboženských rituálů a jako účinný prostředek v lékařství, v neposlední řadě si získalo svoji oblibu díky uvolňujícím účinkům na tělo a psychiku. Jedinečná kombinace obsahových složek vína z něj činí nenahraditelný a významný dietetický nápoj.

Výroba vína až po konečný produkt s vyváženou kombinací všech složek, jež z něj činí královský nápoj, představuje dlouhodobý proces vyžadující léta zkušeností, znalostí a praxe. K produkcii jakostního vína je mimo jakostních hroznů zapotřebí i dostatečných vědomostí ve všech oblastech sklepního hospodářství.

Jako se každý rok vyznačuje odlišným průběhem a vývojem počasí, má i vyzrálý hrozen vína každý rok jiný „potenciál“; jiný poměr jednotlivých složek a tím je zásadně ovlivněn i proces výroby a výsledné složení vína. I ze sebelepšího hroznového vína může nezkušený vinař vyrobit nepitelné víno a naopak z průměrného hroznového vína je zkušený vinař schopen vyrobit kvalitní víno.

Vinař musí v jednotlivých stupních výroby a zrání vína včas určit a odhadnout ten správný okamžik pro určitě zásahy a úpravy vína, protože víno je živý organismus musí se jeho vývoj neustále sledovat a kontrolovat.

V této diplomové práci byl sledován vývoj čtyř druhů odrůdových vín od okamžiku první filtrace, tedy po prvním stočení, přes školení a formování těchto vín až po jejich nalahování.

Postupně byly analytické měřeny základní parametry ve vývoji kvality vín vždy po určitém technologickém zásahu vínaře. Při měření byly částečně aplikovány každým vinařem běžně používané techniky měření, ostatní parametry byly měřeny analytickými postupy v souladu se schválenými postupy Evropského společenství.

Tato diplomová práce má za cíl sledovat změny v chemickém složení jednotlivých druhů vín v průběhu jejich úprav a výroby a tím zjistit, jak se jednotlivé technologické zásahy ve výrobě vína zobrazí v analytických sledovaných parametrech.
2 TEORETICKÁ ČÁST

2.1 Vinařství

2.1.1 Historie vinařství

Přesto, že vino doprovází člověka již od pradávna, je také jisté, že ne na všech územích, kde se dařilo planě révě, z ní bylo také vyráběno. Na rozdíl od destilace tvrdého alkoholu či vaření piva může víno vzniknout i přirozeně, bez zásahu lidské ruky. [1]

O rozšíření révy vinné ve střední a severní Itálii se zasloužili Etruskové, kteří sem přišli asi v 11. století. Že starověkých římských spisů se dozvídáme také o výrobě
Po vykvašení bylo čisté víno přelito do jiných nádob, kde se čistilo vaječným bílkem, sebraným mlékem nebo i sádro či křidě. K udržení stability vína se mnohdy používalo i kadidlo, pryskyřice, jíl nebo drcený mramor. Neplné nádoby byly následky zality olejem, který se držel na hladině a zabralo křížovatě vína, očtění nebo oxidaci. [1]

Po temném období pohanského věku se mohlo přestavování vinné révy a výroba vína opět rozvíjet za vlády Karla Velikého. Pod jeho pevnou vládou vzkvétala klášterní společenství, která vyvinula tak dobré vinohradnické a sklepní metody, že se někteří tradicionalisté vinaři podnese drží jejich zásad. [1]

ČECHY A MORAVA

Z let 1100-1200 pochází první písemné zmínky o vinicích, které jsou spojeny s zakládáním klášterů. Nejstarší vinařské zemědělské zájezdy pocházejí z období kolem roku 1300. Roku 1325 ustanovil král Jan Lucemburský na žádost měšťanů z Brna omezení pro dovoz rakouských vín v období od vzniku do velikonoc. [3]

O rozvoj vinařství v Čechách se zasloužil císař Karel IV., který převezl révu vinnou z Burgundského království a nechal ji vysázet v Praze i na Karlštejně. V roce 1358 vydal Karel IV. viniční řád a nařízení o zakládání vinic na všech vhodných pozemcích. [3] Zvýhodňoval zakladatele
vinic, ale i tvrdě trestal jejich poškozovatele. Podle závažnosti mohla být přistiženému škůdci useknuta ruka, mohl propadnout hrdlem nebo přijít o majetek. Mnoho vinic bylo založeno jak u severočeských měst tak i u měst jižní Moravy např. u Hustopečí, Židlochovic a v okolí Mikulova.

Rastro, že množství obyvatel bylo mnohonásobně nižší, víno se k nám i dováželo. Období mezi lety 1500-1700 je silně poznamenáno konkurenčními boji ve vývozu a dovozu vína.

Střídavě je v Čechách, na Moravě a v Rakousku omezován rozsáhly dovoz cizího vína a posílen vývoz domácí produkce. Silná konkurence a ochrana vlastní produkce vládla i mezi jednotlivými městy. To vedlo k dalšímu rozšíření vinic v Čechách a na Moravě.

2.1.2 Získání moštu

2.1.2.1 Hrozny, získání moštu

Hrozen se skládá z třapiny a bobule. Bobule ze slupky, dužniny a semen. Vyzrálosť a zdravotní stav všech součástí má vliv na jakost vyrobeného vína. Nevyzrálé třapiny se při zpracování snadno drtí a vyluhují do moštu. Je nutné je odstopkovat, protože se z nich vylouží třísloviny a chlorofyl, které snižují kvalitu moštu. Vyzrálé třapiny jsou zdřevnatělé, není třeba je odstopkovat, jejich přítomnost ovlivní kládné výšlnost. Slupka má velký vliv na barvu, vůni, chuť a celkový odrůdový charakter vína. Obsahuje cukry, kyseliny, třísloviny, barviva, aromatické látky, vosky, dusíkaté a minerální látky.

Bílé odrůdy vína obsahují ve slupce flavonová barviva a chlorofyl. Červené a modré odrůdy anthokyan (poměr jednotlivých anthokyanů podle odrůdy). Z modrých odrůd lze vyrobit i bílá nebo podle technologie různovárová vína. Bílé odrůdy vína obsahují ve slupce flavonová barviva a chlorofyl. Červené a modré odrůdy anthokyan (poměr jednotlivých anthokyanů podle odrůdy). Z modrých odrůd lze vyrobit i bílá nebo podle technologie různovárová vína.
a lisují ihned, některé z aromatických odrůd se nechají naležet či mírně nakvasit 10 - 24 hodin čímž se uvolní chuťové a buketní látky. [1]

U modrých odrůd hroznového vina je odznění nutné. Při nakvášení červených rmutů by se z hroznových stopek do vina vyluhoval chlorofyl a třísloviny.

Pak se postupně zvyšuje tlak na lisovanou hmotu až do 1,2-2,5 mPa. Vyšší tlak může již způsobit drčení semen a tím zhoršení jakosti vina. Výtěžek moštů se pohybuje kolem 70 %. Lisování trvá 2 až 5 hodin. [6] Pro výlísnost má velký význam struktura hroznů, která je dána poměrem dužniny k pevným částem. S vysokou výlísností se do hroznových moštů a do mladých vín dostane značné množství termolabilní bílkovin, které se musí odstranit, jinak by mohly při změnách teploty vina v lahvicích kalit. [1]

Tvrdým lisováním rozdrcených hroznů se do moštů dostane také větší podíl různých cizích látek, které jsou vhodně odstranit. Zejména u moštů z nahnilých či chorobami poškozených hroznů se doporučuje provádět tzv. odkalování.
Chemické sloučeniny obsažené v moštu:

Voda

Sacharidy: monosacharidy hexosy: glukosa (hroznový cukr) fruktosa (ovocný cukr) pentosy: arabinosa, xylosa, rhamnosa, sorbitol
disacharidy: sacharosa (řepný, třtinový cukr)

Kyseliny: kyselina vinná, jablečná, citronová, jantarová, glukonová, šťavelová, octová

N – sloučeniny bílkoviny, aminokyseliny, amonné sloučeniny

Třísloučeniny polyfenoly, fenoly

Flavonoidy flavonoly, flavan-3-oly, flavan-3,4-dioly a anthokyanidiny

Aromatické látky vyšší alkoholy, terpeny, karbonylové sloučeniny, acetaldehyd, formaldehyd, vanilín, estery karboxylových kyselin

Minerální látky kovy, K, Ca, Fe, Na, Mg, uhličitan, síran, fosforecitan, chloridy

Vitamíny kyselina askorbová, pantothenová, thiamin, biotin.

2.1.2.2 Složení moštu, vina

Hroznová sestává až z 90 % vody. Veškerá činnost vinařů je před sklizní zaměřena na snížování jejího podílu ve prospěch ostatních obsahových látek. Tj. zvyšování především koncentrace cukrů, v jižních oblastech zase kyselin. A to buď přirozenou cestou přezrávání hroznů při vhodném klimatu (horko, mráz) kdy množství cukru již nezrůstá, ale dochází k vypařování, vymražení vody. Nebo prostřednictvím ušlechtilé houby Botrytis cinerea, nebo vlastním zásahem tj. příktým půdy fólií, osušením hroznů horkým vzduchem či zahušťováním moštu reverzní osmózou. Cukry tvoří základní součást hroznového vína a jejich obsah závisí kromě jiných podmínek jako půdy, stanoviště, počasí, povětrnostní podmínky, především na odrůdě a na jejich akumulačních schopnostech. Réva vinná je z ovocných rostlin největší hromaditelem cukru na světě. 15-25 % šťávy tvoří zkvasitelný cukr. [2]

Množství a poměr aromatických látek vína závisí předešlém na odrůdu vína a je pro ni typické. Zásadní je však odhadnout optimální dobu zralosti a sklizení, protože u některých odrůd se při přezrání opadem snižuje jejich obsah. Jelikož se snadno odpařují jsou i hniloba hroznů nebo živočišní škůdci velmi nepříznivým faktorem pro jejich výskyt.

snižuje kvašením, reakce s tříslovinami a bentonitem. Volné aminokyseliny jsou významné pro tvorbu buketu, plnost vína, v šumivém vínu váže CO₂.

Třísloviny náleží spolu s barvivy do skupiny polyfenolů a vyskytují se převážně v semenech a v třapině. Během zráni hroznového vína se syntetizují kondenzované třísloviny a jejich obsah postupně klesá. Fenoly vytvářejí vosmikovce, které tvoří spolu s barvivy polyfenoly (deriváty kyseliny benzoové a skořicové), Flavonoly, Flavan-3-oly, Flavan-3,4-dioly a Anthokyanidiny. Největší část fenolů je ve slupce, zároveň jsou nejjemnější (tanin).

Třísloviny náleží spolu s barvivy do skupiny polyfenolů a vyskytují se pěvážně v semenech a v třapině. Během zráni hroznového vína se syntetizují kondenzované třísloviny a jejich obsah postupně klesá. Fenoly vytvářejí vosmikovce, které tvoří spolu s barvivy polyfenoly (deriváty kyseliny benzoové a skořicové), Flavonoly, Flavan-3-oly, Flavan-3,4-dioly a Anthokyanidiny. Největší část fenolů je ve slupce, zároveň jsou nejjemnější (tanin).

Podle způsobu reakce se rozdělují na kyseliny fenolkarboxylové (deriváty kyseliny benzoové a skořicové), Flavonoly, Flavan-3-oly, Flavan-3,4-dioly a Anthokyanidiny. Největší část fenolů je ve slupce, zároveň jsou nejjemnější (tanin).

2.1.2.3 Úpravy moštu

Ve zvláštních případech se mošt provzdušuje, silí, doslazuje, odkyseluje či ošetřuje enzymy. Úpravy se používají především pro mošt, jehož kvalita je určitým způsobem narušena. Platí to často pro vína z nahnělých hroznů, předčasně sklízně, nedostatečně vyzrálé apod. Mošt se docukřuje koncentrovaným moštem nebo třtinovým cukrem. Odkyseluje se uhličitanem vápenatým maximálně o 2°/oo. Pro jakostní vína s přílastkem jsou určité úpravy moštu zakázány právě proto, že surovina musí být nejen zdravá, ale i vysoce kvalitní a původní. Evropské zákonodářství tyto postupy přísně reguluje a rozděluje podle vinařských zón.

Před kvašením se mošt pro bílá vína musí odkalit, což je velmi důležité pro získání čisté suroviny a pro klidné kvašení. Mošt odtékající při lisování hroznů je žlutozelený, hustý a kalný. Obsahuje drobné částky dužniny, kousky slupek, stopky, hlínu a jiné nečistoty, které by nepřínosivě ovlivnily jakost vína. Kalová částice podporují uvolňování CO2, tím se mošt promísí a kvašení je intenzivnější. Před kvašením mošt se mísa odkalí na optimální hodnotu 0,6 % obj. kalů. [17] Kvašení je pak klidné, rovnoměrné s optimální teplotou ohřevu, mladá vína jsou bez postranních tónů, získává se více alkoholu i aroma. [17] Velké podniky přidávají často i enzymy rozpouštějící pektin, který zvyšuje viskozitu a hustotu moštu a zabraňuje tím i lepší sedimentaci nečistot.

2.1.3 Vznik vína a úpravy

2.1.3. Kvašení

Kvašení probíhá ve třech etapách. Kvašení začíná postupným rozmmnožováním a přizpůsobováním kvasinek. Po adaptaci kvasinek nastává fáze bouřlivého kvašení spojená s maximálním rozmmnožováním a růstem kvasinek, které vede k zahřívání moštu a tvorbě

2.1.3.2 Druhy kvašení

Mladé víno je velmi citlivé na všechny druhy zápachů a aromat, které snadno vstřebá, proto je důležité udržovat v jeho okolí maximální čistotu. Víno se v dalších krocích ošetřuje v souladu s požadavky na konečný produkt.

2.1.3.3 Stáčení vína

Pro formování vína je důležité, aby mohlo víno po prokvašení a v souladu s jeho obsahovými složkami přiměřenou dobu tzv.ležet na kvasnicích, do vína se tím dostanou další kvasná aromata, která jej činí plnějším a delikátnějším.[2] Pokud však nevystihneme ten správný okamžik může být chuť vína poškozena působením mikrobiálního rozkladu, stejně tak jako při předčasném stočení vláčkovaté. Důležité je nejen odhadnout ten správný okamžik pro stáčení vína, ale i zvolit ten správný postup stáčení pro daný druh a charakter vína, abychom jej také nepoškodily. V případě, že parametry vína jako např.obh.obsah kyselin a cukru dosáhly námí požadované optimální hodnoty pro daný druh vína, přistoupíme ke stáčení vína. Stáčení je proces, během něhož oddělíme víno od kalů a kvasinek usazených ve spodní části kvasné nádoby. Rozlišujeme způsob stáčení za přístupu vzduchu a bez přístupu vzduchu. Vína jemná, odrůdová, buketní stáčíme bez přístupu vzduchu, neboť by se tím zhoršily jeho senzorické vlastnosti. Za přístupu vzduchu pak většinou vína nedostatečně prokvašená či jinak nedokonalá, jejichž vlastnosti se tímto způsobem nijak nezmění, nebo se dokonce zlepší. Při prvním stáčení se provádí i první čiření, lze víno současně filtrovat křemelinovým filtrem nebo odstředit. Praktikuje se převážně u stolního vína, které nemusí dlouho vydržet. To už jsou procesy školení. Většinou se druhé stáčení vína spojuje se scelováním/kupážováním/ vína před jeho dalším školením. Což je důležité pro vína, jež se nechávají vyzrát delší dobu, tedy

2.1.3.4 Filtrace

Filtraci se oddělují pevné částice vína pomocí pórovitého filtru. K filtraci se používá textilní vlákno, celulóza, křemelina apod. [6]

2.1.3.5 Školení

2.1.3.6 Zrání

V případě skladování vína bez úplného přístupu vzduchu hrozí nebezpečí vzniku nepříjemných pachů např. po zkažených vejcích či podobně. Po každém vykvašení obsahuje

2.1.3.7 Lahrování

2.1.4 Choroby a vady vína

Pro výrobu kvalitního vína je důležité, aby výchozí zpracovávaná surovina, tedy hroznové víno bylo zdravé, vyráželé a mechanicky nepoškozené. Pak lze očekávat i normální průběh vývoje vína. Může se však stát, že neodbornou manipulací nebo nedbalým ošetřováním víno zkazíme popřípadě, že hrozny kvalitativně neodpovídají požadavkům pro výrobu kvalitního vína. Pak vznikne nemozné víno, nebo víno vykazuje určité vady. Nemoci vína způsobují většinou mikroorganismy, které je znehodnotí do té míry, že víno není v konečné fázi poživatelné. Je to křísotavení, octovatění, vláčkovitost, mléčné a manitolové kvašení, myšina. Křísotavení se vyskytuje ve vínech s nízkým obsahem alkoholu, málo zasířených a v neplných nádobách. Hladina vína je za přístupu vzduchu napadena kvasinkou

Vady vína vznikají během technologického procesu vína a jsou většinou zapříčiněny nesprávným a nedbalým zacházením s vínem, moštem nebo rmutem. Stejně jako u nemocí vína je základem prevence dostatečná čistota, a hygiena nejen prostředí, ale i veškerého nářadí a vybavení sklepa. Víno je poměrně citlivý a živý biologický produkt a v případě, že se dostane do styku s nevhodným materiálem snadno pribírá různé pachy či přichutě a díky kyselinám také velmi ochotně reaguje. Jsou to např. kovové zákaly, přichutě sírovodíku, po korku, sudovina. Mnoho nemocí i vaid jako např. hnednutí vína je důsledkem nadměrného působení kyslíku na víno, a to již při jeho výrobě. Víno začne hnednutí od povrchu hladiny a získává netypickou chuť, také se kalí. Krystalické sraženiny vinného kamene nejsou přímo vadou vína, je zdravotně nezadavána a neovlivní ani chuť vína. Vinný kámen se vysáhne v případě vyššího množství kyseliny vinné a minerálních látek. Odstraní se vymražením nebo přidávkem kyseliny metavinné. [7] Bílkovinné zákaly se objevují při nedostatečném odstranění vysokomolekulárních bílkovin pomocí bentonitu či jinými čiřidly. Vína se zákalet bílkovin jsou nejen nevzhledná, ale mění se i jejich chuť a vůně.

2.1.5 Víno a zdraví

Třísloviny
Taniny jsou jako polyfenolické látky také významnými antioxidanty. Kromě antibakteriálních účinků, posilují imunitní systém, snižují krevní tlak a riziko vzniku nádorů.
Fenolické látky především flavonoidní látky

Jako *quercetin, katechin resveratrol, epikatechin, fenolkarboxylové kyseliny-gallová, kumarová, protokatechová, kávová*...působí jako antioxidantly, potlačují vznik krevních sražení, dokáží ji i rozpuštít. V kombinaci s vitamíní se podílí na odbourávání špatného LDL cholesterolu. Flavonoidy obsažené ve víně zlepšují bakteriální fermentaci a tím vstřebávání vitamínů a minerálních látek, potlačují zánětlivé reakce

vitamíny skupiny B

Z **minerálních látek** jsou obsaženy nejvíce draslík (K), vápník (Ca) a hořčík (Mg), dále fosfor (P), železo (Fe) a Mangan (Mn) a řada stopových prvků.

Kyseliny

Tělesná hmotnost

Umírněnou konzumací vína lze také docílit váhového úbytku. Vědci tento vliv vysvětlují nízkým obsahem kalorií ve víně, které se místo ukládání ve formě tuku mají tendenci okamžitě spalovat. Alkohol usnadňuje trávení tuků a dalších látek nerozpustných ve vodě.

Stárnutí

Imunitní systém

Víno má účinky antivirální a antibakteriální. Přesto, že alkohol v těle má podle provedených výzkumů imunitní systém potlačovat, v případě konzumace vína se žádné podobné účinky neprokázaly. Díky obsahu tříslovina na rozdíl od jiných alkoholických nápojů je funkce imunitního systému podporována. Látky obsažené ve víně pomáhají redukovat životaschopnost staphylokoků, detoxikují bakterie, bakteriální jedy a viry. Vínem se lze preventivně chránit před napadením virového onemocnění chřipky.

Rakovina - víno má účinky antimutagenní. Ochrana před zhoubným bujením buněk je přiřízena účinku resveratrol, který potlačuje vznik karcinogenů.

Cukrovka - dlouhodobý výzkum Harvardské školy prokázal, že pravidelné a mírné pití vína snižilo u sledované skupiny riziko rozvoje dědíčné cukrovky téměř o 60% oproti abstinentům nebo příležitostním konzumentům vína.
Zrak - přiměřená spotřeba vina je spojována s nižším rizikem věkového stárnutí oční sítnice, které může vést až ke slepotě.

Křečové žíly - konzumenti jedné nebo dvou skleniček vina za den snižují riziko tvorby křečových žil.

Plet’ - účinky vina zpomalují lokální záněty na pleti, posiluje průběh hojení ran, působí adstringentně.

2.1.6 Popis analyzovaných odrůd vín

Rulandské bílé

Rulandské šedé

Ryzlink vlašský
aromatických látek, což se pozitivně projeví ve vlastnostech vína. [7] Často se používá ke kupážím a k výrobě sektů. [14]

Veltlínské zelené

2.1.7 Výběry - Fáze přezrávání hroznů

Většina vinnic se celosvětově vyskytuje především v mírném podnebném pásu. Hrozně sice potřebují teplo, ale v případě nižších teplot se cukry asimilují pomaleji a kyseliny se při dozrávání odbourávají méně. Vzniklá vína jsou méně alkoholická a lehčí. Platí především pro bílá vína. Česká republika patří mezi severní položené oblasti v pěstování révy vinné.

Jakostní vino s přívlastkem
Legislativa EU člení vino na jakostní a stolní, přívlastková vina neřeší. Legislativa České republiky proto z hlediska svých vlastních potřeb třídí vina ještě na přívlastková vina jako kabinetní, slámové, ledové vino.

Hroznové pole pro výrobu vína s přívlastkem – výběr z bobulí a vyšších přívlastků, se musí sklizet ručně, pouze z hroznu tzv. vinařského původu. [15] Musí být sklizeny ve stejné vinotécké podoblasti a výběr musí proběhnout ve vinařské oblasti, v niž byly vinné hroznové sklizeny, lze je vyrábět pouze z hroznů, jejichž odrůda, původ, cukernatost a hmotnost byla ověřena státní zemědělskou a potravinářskou inspekci.

Vino může být vyrobeno z vinných hroznů, rmutu nebo hroznového moštu nejvýše 3 odrůd. (dříve pouze 1) [7] Pozdní sběry jsou plná vína s komplexním aromatem.

Výběr z hroznů
Výběr z hroznů je pozdní sběr z pečlivě vybraných hroznů, tedy po vytržení hroznů nezralých, vadných a nemocných. Možt musí mít cukernatost nejméně 24 °NM. Víno může být vyrobeno jako suché s vysokým obsahem alkoholu, nebo v kategorii polosuché až polosladké.

Díky přezrání hroznů získávají vína specifické chuť a vůni a jsou schopna vytvořit odrůdový charakter a dostávají nádech medu a hrozinek. Tato kvalita svědčí zejména některým odrůdám (např. Tramín červený, Ryzlink vlašský i rýnský, Rulandské bílé i šedé, Chardonnay).

Jsou však odrůdy, které tato vysoká zralost mohou připravit o kyseliny a víno se pak stává fádní a méně harmonické.

2.1.8 Vývoj produkce

V důsledku průmyslové revoluce, která měla za následek zásadní změnu našeho životního stylu se v posledních 100 letech více změnily i naše vyživovací zvyky. Domácnosti, které byly do této chvíle z hlediska zajištění zásob potravin pevně zasedačně se stávají závislé na zásobování a nabídce z vnějších zdrojů tj. trhu.

S cílem zajistit hromadně dostatek potravy pro co nejvíce obyvatel se mělo nejen procesy a způsoby zemědělské produkce, ale i navazujícího zpracovatelského průmyslu. Potraviny a nápoje se stávají zbožím, předmětem obchodování. A tedy i fálování a nekalé produkce, což mělo za následek potřebu kontroly a uzákonění povolených postupů a prostředků výroby. Vinice jakož i ostatní zemědělské produkty se pěstují jako monokultury a musí být založeny co nejvýhodněji pro obdělávání pomocí strojů. K zajištění maximální výkonnosti je třeba chránit monokultury před nemocemi a živočišnými škůdci. Vinice musí být tedy již od jara pečlivě připravovány, hojně se využívají speciální minerální hnojiva a chemické postřiky. Jsou to pesticidy jako herbicidy, fungicidy a insekticidy. Snaha o maximální prevenci a ochranu vinařské produkce pomocí chemických postřiků však při dlouhodobém a pravidelném používání narušuje přirozenou rovnováhu všech složek biotopu. Rostliny často zatežuje a tedy i oslabuje a činí je v konečném důsledku opět náchyně na napadení a o to více musí být opět ošetřovány, kromě toho se projevuje i rezistence.

2.1.9 Pěstování révy vinné a zpracování hroznů v systému integrované produkce

Víno, které je v této diplomové práci posuzováno, pochází z vlastních vinic rodinné firmy. Vinaři hospodaří systémem integrované produkce. Pro vytvoření přirozené rovnováhy v ekosystému vinice jsou tyto celoplošně zatravněny s potřebou minimálních zásahů chemickými prostředky.

IP je celosvětově nejvýznamnější směr ekologického zemědělství. Pěstování a ochrana vinné révy je stejně jako zpracování hroznů a produkce vína probíhají co možná nejpřirozenější způsobem v souladu s životním prostředím a podle přesně stanovených mezinárodních kritérií Svazu IP. Základní snahou je minimalizace, resp. úplné vyloučení použití hnojiv a chemických pesticidů. [10] Přednostně se v tomto způsobu hospodaření využívají a podporují přirozené regulační mechanismy. Hlavní zásady zahrnují povinné a zakázané postupy v ochraně rostlin, péče o půdu a hnojení, regulaci chorob a živočišných škůdců. Pro názornost a lepší pochopení následuje několik příkladů aplikace kritérií IP v souladu s přirozenými pochody životního prostředí. Např. při nevhodné výživě révy vinné dusíkem je tato náchylnější na napadení botrytidou ještě před dosažením zralosti, což je vysoce nežádoucí.

Směrnice IP omezuje množství použitého dusíku během jedné sezóny do 50 kg čistých živin a zároveň je podmínkou i zatravnění meziřadí vinic, které kumuluje pěstitel dusíku v rozhodujícím období a snížuje tak přirozenou cestou citlivost hroznů na napadení. Hnojení se provádí na základě rozborů půdy, doporučené dávky nesmí být překročeny. Je omezen i počet ošetření proti houbovým chorobám, z hlediska ekologie měšťaté prostředky do maximálně. 2 kg čisté mědi na hektar. Proti živočišným škůdcům se upřednostňuje biologická ochrana např. nasazení dravých roztočů nebo dojde díky zatravnění k samovolnému vytvoření biologické rovnováhy. Omezený počet postříků a pesticidů je regulován krátkodobě, tedy každý týden se zveřejňuje prodloužení ohrážka a snížuje tak přirozenou cestou citlivost hroznů na napadení. Hnojení se provádí na základě rozborů půdy, doporučené dávky nesmí být překročeny. Je omezen i počet ošetření proti houbovým chorobám, z hlediska ekologie měšťaté prostředky do maximálně. 2 kg čisté mědi na hektar. Proti živočišným škůdcům se upřednostňuje biologická ochrana např. nasazení dravých roztočů nebo dojde díky zatravnění k samovolnému vytvoření biologické rovnováhy. Omezený počet postříků a pesticidů je regulován krátkodobě, tedy každý týden se zveřejňuje prodloužení ohrážka a snížuje tak přirozenou cestou citlivost hroznů na napadení. Hnojení se provádí na základě rozborů půdy, doporučené dávky nesmí být překročeny. Je omezen i počet ošetření proti houbovým chorobám, z hlediska ekologie měšťaté prostředky do maximálně. 2 kg čisté mědi na hektar. Proti živočišným škůdcům se upřednostňuje biologická ochrana např. nasazení dravých roztočů nebo dojde díky zatravnění k samovolnému vytvoření biologické rovnováhy. Omezený počet postříků a pesticidů je regulován krátkodobě, tedy každý týden se zveřejňuje prodloužení ohrážka a snížuje tak přirozenou cestou citlivost hroznů na napadení. Hnojení se provádí na základě rozborů půdy, doporučené dávky nesmí být překročeny. Je omezen i počet ošetření proti houbovým chorobám, z hlediska ekologie měšťaté prostředky do maximálně. 2 kg čisté mědi na hektar. Proti živočišným škůdcům se upřednostňuje biologická ochrana např. nasazení dravých roztočů nebo dojde díky zatravnění k samovolnému vytvoření biologické rovnováhy.
2.1.10 Kontrolní orgány

Česká zemědělská a potravinářská inspekce SZPI je orgán dozoru pro vinařství, kontroluje vedení vinařské evidence, zjišťuje prostřednictvím svých vinařských důvěrníků cukernatost hroznů, jež přicházejí v úvahu pro výrobu jakostních vín s přílivském a hodnocení vín tuzemských i dovezených. Má pravomoc zákazu uvádění vína na trh nebo udělovat pokuty. Orgány hygienické služby a v obchodech Česká obchodní inspekce zajišťují zdravotní bezpečnost vín.

2.2 Hodnocení vína

2.2.1 Chemický rozbor vína

Vyhláška 189/1995 Ministerstva zemědělství z r.1995, kterou se provádějí některá ustanovení zákona o vinohradnictví a vinařství stanovuje kromě jiného také látky a výrobní operace, které lze použít při výrobě révového vína. Podle této vyhlášky se provádí i hodnocení jakosti révového vína a odběr vzorků pro chemický rozbor.

Stanovení hustoty vína určíme pomocí pyknometru. Relativní hustota při 20°C je poměr hustoty homogenní látky při 20°C k hustotě vody při 20°C nebo-li poměr hmotnosti

28

Stanovení pH Hodnota pH je záporný dekadický logaritmus aktivity vodíkových kationů v moště nebo víně. Stanoví se na základě měření potenciálu skleněné elektrody, jenž závisí od aktivity vodíkových kationtů, vzhledem k referenční kalomelové elektrodě vhodným pH-metrem kalibrovaným tlumivými roztoky o známém pH. Hodnota rH vína podává informaci o stavu rovnováhy mezi reverzibilními formami sloučenin redoxsystémů, tj. látek přítomných ve své oxidované a redukované podobě. Vína s hodnotou rH nad 25 jsou velmi naoxidována. Hodnota se stanoví na základě pH vína a potenciálu platinné elektrody popř. kombinované redox-elektrody proti kalomelové nebo argentochloridové.

Stanovení popela se provádí spálením, kdy se přítomné kationy vína (kromě amonného) převedou do podoby uhličitanů nebo jiných bezvodých anorganických solí. Popel je souhrn všech látek zbylých po úplném spálení (oxidaci organického materiálu) odparku vína půi 500-550°C a vzniklý popel se stanoví gravimetricky. [6]

Stanovení oxidu siřičitého. Volný oxid siřičitý se vyskytuje ve víně ve formě SO₂, H₂SO₃, HSO₃⁻, SO₃²⁻. Veškerý oxid siřičitý zahrnuje oxid siřičitý jak ve volné, tak i ve vázané formě. Volný oxid siřičitý je působením kyseliny fosforečné přenesen z testovaného vína proudu vzduchu do absorpční nádoby při nízké teplotě. Veškerý oxid siřičitý je přenesen do absorpční nádoby za varu testovaného vína. V absorpční nádobě je zachytáván a oxidován neutrálním roztokem peroxidu vodíku. Vzniklá kys. sírová je titrována odměrným roztokem jódu. Při stanovení titrací odměrným roztokem jódu oxiduje přímo volný oxid siřičitý obsažený ve víně. Po uvolnění oxidu siřičitého z vazeb s karbonylovými sloučeninami v alakickém prostředí se stanoví současně i vázaný oxid siřičitý. [9]

Test bikovinné stability vína uvedenými postupy simulujeme v testovaném víně podmínky, při kterých přítomné termolabilní bílkoviny vypadávají nebo mění povrchové napětí. Je to tepelný test s přídavkem nasyceného roztoku síranu amonného. Pěnová zkouška nebo test s kyselinou fosfomolybdanovou.
Podložku pak popis barevného odstínu a intenzity barvy. Barva by měla říci srovnání s bílou barvou, v praxi je potřeba se podívat na praktické zkušenosti a určit jejich účinnost. Pro praktické zkušenosti je potřeba se zústavit maximálně objektivizovat určitou standardizaci a opakovanost metod. Dále pak teplota podle typu vína, která se pohybuje v rozmezí od 6-18°C, bílé víny se může bavit na bílou podložku a bílou povahu, polyfenoly, polysacharidy. Mezi základní čerstvá prostředky patří bentonit, želatina a gel kyseliny křemíčité.

Senzorické hodnocení vína.

<table>
<thead>
<tr>
<th>ČIROST, ČISTOTA</th>
<th>0 – 2 body</th>
</tr>
</thead>
<tbody>
<tr>
<td>slepě, kalné</td>
<td>0 – 0,3</td>
</tr>
<tr>
<td>zakalené,matné</td>
<td>0,4 – 0,8</td>
</tr>
<tr>
<td>se závojem</td>
<td>0,9 – 1,3</td>
</tr>
<tr>
<td>čiré (čisté)</td>
<td>1,4 – 1,8</td>
</tr>
<tr>
<td>jiskrné</td>
<td>1,8 - 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BARVA, INTENZITA</th>
<th>0 - 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>nahnědlá (zcela neodpovídající)</td>
<td>0 – 0,5</td>
</tr>
<tr>
<td>vodová (méně odpovídající)</td>
<td>0,6 – 1,5</td>
</tr>
<tr>
<td>odpovídající</td>
<td>1,6 – 2,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VUNĚ, ČISTOTA, INTENZITA, KVALITA</th>
<th>0 – 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>cizí, chybná</td>
<td>0 – 0,2</td>
</tr>
<tr>
<td>nevýrazná, lehce narušená</td>
<td>0,3 – 0,5</td>
</tr>
<tr>
<td>méně odpovídající, méně čistá</td>
<td>0,6 – 0,8</td>
</tr>
<tr>
<td>slabá, čistá</td>
<td>0,9 – 1,2</td>
</tr>
<tr>
<td>odpovídající, čistá, příjemná</td>
<td>1,3 – 1,6</td>
</tr>
<tr>
<td>plně odpovídající, příjemná, výrazná</td>
<td>1,7 – 2,0</td>
</tr>
</tbody>
</table>

| 0 - 12 |
2.3 VALIDACE

Validace je procedura, jejímž cílem je demonstrovat a dokumentovat kvalitu analytické metody ustanovením definovalých kritérií a měřením hodnot těchto kritérií. Validace slouží k prokázání spolehlivosti analytické metody a k ověření platnosti zvoleného analytického postupu. Používá se při validaci nové metody, při převodu validované metody (z vývojové do přijímací laboratoře), při kontrole způsobilosti systému, při revalidaci.

2.3.1 Stanovení vybraných validačních parametrů

Shodnost
Je definována jako míra těsnosti shody mezi navzájem nezávislými výsledky zkoušek za předem specifikovaných podmíněk. Shodnost závisí pouze na rozdělení náhodných chyb a nemá vztah k pravé hodnotě. Míra shodnosti se počítá jako směrodatná odchylka výsledků zkoušek.

a) Směrodatná odchylka

Příklad výpočtu směrodatné odchylky a chyby metody:

\[
\text{Směrodatná odchylka: } s = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2}
\]

n – počet měření
n-1 – počet stupňů volnosti

Chyba metody (relativní směrodatná odchylka): \(x - \text{výška píku} \)
\(\bar{x} - \text{průměrná výška píku} \)

\[
RDS = \frac{s}{x} \cdot 100(\%)
\]

Směrodatná odchylka představuje rozptylení jednotlivých hodnot xi okolo průměru x.

b) Opakovatelnost metody

V případě dvou paralelních stanovení se přesnost výsledků určuje pomocí tzv. dovolené diference paralelních stanovení, tj. maximální rozpětí, které charakterizuje přesnost výsledků. Definováno jako těsnost shody mezi navzájem nezávislými výsledky zkoušek získanými za
podmínkou opakovatelnosti (opakováno použití též experimentálních metod na identickém materiálu, v téže laboratoři, týmito pracovníkem, použitím týchž přístrojů během krátkého časového rozmezí). Pro výpočet dovolené diference pro n – paralelních stanovení se vychází z vypočtené směrodatné odchylky

\[R_{\text{max}} = q \cdot s_x \]

\[R_{\text{max}} \] - maximální rozpětí
\[s_x \] - je směrodatná odchylka
\[q = 2,8 \] Studentizované rozpětí

2.3.2 Přesnost metody

a) Test regresní rovnice
Pomocí tohoto testu se zjišťuje, zda je soustavná chyba konstantní, nebo proporcionální, tj. závislá na obsahu analytu. Pro několik standardních vzorků se určí velikost signálu (odezva analyzátoru) a vzájemná závislost se vyjadřuje formou lineární regrese.

\[y_i = a + b x_i \]

\[y_i \] - velikost signálu, \(x_i \) - standardní vzorek

\[a = 0, b = 1 \] závislost je lineární, nalezená i referenční hodnota standardu je stejná
\[a \neq 0 \] konstantní chyba
\[b \neq 1 \] soustavná chyba

2.3.3 Volba kalibračního modelu

a) Linearita
Je chápána jako přímková závislost mezi dvěma náhodnými proměnnými, tj. odezvou instrumentace (analytický signál) a koncentrací analytu. Těsnost vzájemné závislosti dvou náhodných proměnných charakterizuje korelační koeficient (r).

\[r = \frac{\sum (x_i \cdot y_i)}{\sqrt{\sum (x_i)^2} \cdot \sqrt{\sum (y_i)^2}} \]

\[y_i = y_i - \bar{y} \]
\[x_i = x_i - \bar{x} \]
\[\bar{y} \] je průměr hodnoty \(y_i \),
\[\bar{x} \] je průměr hodnoty \(x_i \).

\[r = +1 \] při lineární závislosti,
- čím více se blíží jedné, tím je závislost obou proměnných těsnější
- hodnota korelačního koeficientu nesmí klesnout pod hodnotu 0,98
c) Mez detekce
Mez detekce odpovídá koncentraci, pro kterou je analytický signál významně odlišný od šumu. Mez detekce udává skutečnou úroveň signálu, která ještě umožňuje detekci koncentrace. U separačních metod se používá k výpočtu mez detekce velikost hodnoty signálu slepého pokusu. Podmínkou je, že jsou k dispozici chromatogram slepého pokusu a směrnice kalibrační přímky. Postup výpočtu je následující: z chromatogramu slepého pokusu se určí maximální kolísání základní linie \(h_{\text{max}} \) v oblasti dané dvacetinásobkem polosířky piku stanovovaného analytu.

Pro odezvu mez detekce platí: \(y_D = 3 \cdot h_{\text{max}} \)
Pro koncentraci mez detekce: \(x_D = y_D / b_1 \quad b_1 – \text{směrnice kalibrační křivky} \)

2.3.4 Automatický analyzátor SKALAR SAN++

je segmentovaný kontinuálně průtokový automatický analyzátor.

1) Analýza: redukce cukru
 Rozsah: 1 – 20 g/l
 Vzorek: víno, standardy

Analyzátor se skládá z dávkovače, chemické jednotky, detektoru a zapisovače příp. Software jednotky. Robustní peristaltická pumpa pro přesné dávkování s přesným vzduchovým injektorem zabezpečuje pravidelný přítok. Vzduchový injektor má zabudovaný kompresor a regulátor tlaku pro vzduchové segmenty. Čerpací hadičky jsou pro dvě oblasti použití. Peristaltická pumpa nasává a dávkuje vzorky připravené v otočném dávkovacím mechanismu a zároveň si dávkuje jednotlivá činidla. Chemická jednotka důkladně promíchá všechny složky tzn. vzorek a činidla se vzduchem. Vzorek je smíchán a prochází dialyzou spolu s roztokem uhličitanu sodného. Po přidání mědi směsi neocuproin se proud ohřeje na 97°C. Chelát mědi neocuproin je přítomným cukrem redukován a vytváří žlutý komplex cupro-neocuproin, který je detekován spektrofotometrem při 460 nm. Fotometry jsou integrované v napojení na chemické moduly v chemické jednotce.
3. EXPERIMENTÁLNÍ ČÁST

3.1 Chemikálie, roztoky, činidla

Chemikálie:
- vina sodno – draselný
- hydroxid sodný
- ethanol
- diethylether
- tlumivé roztoky o známém pH

Roztoky:
- 1 mol.l⁻¹, 0,01 mol .l⁻¹, 0,02 mol.l⁻¹ roztok NaOH
- Fehling I: 69,3 g CuSO₄·5H₂O v 1000 ml
- Fehling II: 346,0 vina sodno-draselný, 103,2 g NaOH v 1000 ml
- Roztok I. : 15% K₄Fe(CN)₆·3H₂O
- Roztok II: 30% ZnSO₄·7H₂O
- 0,02 mol .l⁻¹ roztok NaOH
- 1% fenolfalein v alkoholu.
- 0,02 mol.l⁻¹ roztok jódu
- 0,5 % škrobový maz
- 16 % roztok H₂SO₄
- roztok NaCl - 18 g NaCl+1,5ml Brij do 500 ml
- roztok Na₂CO₃ – 13,25 g Na₂CO₃ +1,5ml Brij 35 do 500 ml
- barevný neocuproin hydrochlorid - 100mg C₁₄H₁₂N₂.HCl, + 50mg CuSO₄·5H₂O do 250 ml

Činidla:
- Brij 35 (30%) – 3 ml Brij do 1000 ml destilované vody

3.2 Vzorky a materiál

- přívalstková moravská vína výběry z hroznů vypěstovaných a v systému integrované produkce
 - Veltlínské zelené, Ryzlink vlašský, Rulandské bílé, Rulandské šedé
- Byla získána postupně v časovém sledu vždy po ukončení určité fáze úpravy a vývoje vín v průběhu ½ roku, červenec - prosinec. Pro udržení optimálních fyzikálně-chemických vlastností byly vzorky uchovávány v chladu při teplotě +2°C.
- Standardy cukru - 2g glukozy ve 100ml destil.vody
- bílá vína: Sylvánské zelené (SZ), Ryzlink ryńský (RR), Tramin červený (TC), Chardonnay (CH), Veltlínské zelené (VZ)
- modrá vína: Modrý portugal (MP), Cabernet sauvignon (CS), Frankovka (F), Rulandské modré (RM)
3.3 Přístroje, pomůcky

Přístroje:
- sušárna
- pH-metr
- lednice
- automatický analyzátor SKALAR

Pomůcky:
- vysušený pyknometr
- analytické váhy
- destilační aparatura
- vařič, pemza
- teploměr
- frity
- destilační baňka, kádinky, nálevky
- byrety
- filtrační papír

3.4 Pracovní postup, metody

- Každé stanovení se provedlo nejméně třikrát a vypočetla se relativní směrodatná odchylka. Pro příklad vyhodnocení byla použita naměřená hodnota vzorku.

Stanovení hustoty vína pyknometricky
- zjistí se přesná hmotnost vzorku o určitém objem
- vysušený pyknometr se zváží, naplní destilovanou vodou, nechá vytémperovat půl hodiny při 20°C a zváží. Pak se voda z pyknometru vyleje, pyknometr se vysuší a naplní vzorkem vina. Před naplněním se odstraní z vina oxid sířičitý vytrčený nebo probubláním dusíkem. Nechá se temperovat při 20°C a odměří přesný objem. Po vyrovnání teploty se pyknometr se vzorkem vina zváží.

Stanovení přítomného alkoholu
- víno se z pyknometru vydestiluje a hustota přítomného destilátu se stanoví pyknometricky, koncentrace se vyhledá v tabulkách
- víno obsažené po předchozím měření v pyknometru se přenese do destilační baňky, přidá se 40 ml destilované vody, zneutralizuje se roztokem NaOH, přidá se pemza a zapojí destilační aparaturní. Pyknometr se naplní destilátém do ¼ a doplní po značku desilovanou vodou. Nechá se půl hodiny temperovat při 20°C a pyknometr se zváží.
Gravimetrické stanovení redukujících cukrů
- do baňky se odměří 25ml roztoku Fehling I a 25 ml roztoku Fehling II a přidá se 50 ml upraveného vína. Směs se promíchá a během 5 minut přivede k varu. Směs se 2 minuty vaří, pak se ochladí na teplotu laboratoře. Redukujícími cukry vyloučený červený oxid měďný se zfiltruje, promyje ethanolem a diethyletherem. Frita s oxidem měďným se vysuší do konstantní hmotnosti v sušárně a zváží.
- úprava vzorků (EEC No 2676/90)- pro odstranění látek, které interferují nebo ruší stanovení redukujících cukrů jako aminokyseliny, bílkoviny, barviva, gumovité, slizovité látky se k 50 ml vína přidá 5 ml roztoku I. a 5 ml roztoku II. Vše se důkladně promíchá, nechá 10 minut stát a doplní do 100 ml destilovanou vodou, promíchá a zfiltruje.

Stanovení veškerých titrovatelných kyselin (EEC No 2676/90)
- suma sloučenin titrovatelných odměrým alkalickým roztokem do pH 7.
- pH metr se kalibruje na standardní tlumivý roztok o pH 7. Do 10 ml vzorku přidáme do kádinky 10 ml destilované vody a ponoříme kombinovanou elektrodu pro měření pH. Za stálého míchání pomalu přidáváme z byrety roztok 0,1 mol/l NaOH až do vyrovnání pH na hodnotu 7.

Stanovení těkavých kyselin modifikovanou metodou
- při destilaci přechází těkavé kyseliny vodní parou do destilátu např. kys.octová (volná nebo ve formě soli)
- varná baňka se naplní destilovanou vodou, 10 ml testovaného vína se odměří do destilační nádobky. Varná baňka se zahřívá a pomalu se zavírá regulační ventil, aby se pěnění v baňce ustálilo. Destilát je jímán do kádinky a destilace je ukončena po získání 50-60 ml destilátu. Destilát se titruje 0,02 mol/l roztokem NaOH na fenoltalein až do trvalého slabě žlového zabarvení.

Stanovení pH
- měří se na základě potenciálu skleněné elektrody, který závisí od aktivity vodíkových kationtů vzhledem k referenční kalomelové elektrodě vhodným pH metrem. Ten je kalibrován tlumivými roztoky o známém pH
- 10 ml vzorku se odměří do titrační kádinky, přidá se 10 ml destilované vody a do směsi se ponoří kombinovaná elektroda, po ustálení hodnoty se změří pH

Stanovení extraktu
- po odstranění těkavých látek zůstane ve víně rozpuštěný extrakt
- veškerý extrakt se stanoví nepřímo z relativní hustoty destilátu a relativní hustoty vína, hodnota veškerého extraktu se vyhledá v tabulce na základě vypočítané relativní hustoty extraktu vína
• **Stanovení oxidu siřičitého titrací omděrným roztokem jodu**
 - omděrný roztok jodu oxiduje přímo volný oxid siřičitý obsažený ve víně, případně i vázaný po jeho uvolnění
 - volný oxid siřičitý – do baňky se naměří pipetou 50 ml vina, neprodleně se přidá 10 ml 16 % roztoku H₂SO₄ a asi 5 ml 0,5 % škrobového mazu a ihned se titruje 0,02 mol.l⁻¹ roztokem jodu do modrého zbarvení, které vydrží 30 sekund (spotřeba a₁).
 - veškerý oxid siřičitý - do baňky se odměří pipetou 50 ml testovaného vina tak, že pipeta se stále dotýká dna baňky. Přidá se 25 ml - 1 mol.l⁻¹ roztoku NaOH. Po 15 minutách stání se přidá 15 ml 16 % roztoku H₂SO₄ a asi 5 ml 0,5 % škrobového mazu a ihned se titruje 0,02 mol.l⁻¹ roztokem jodu do modrého zbarvení, které vydrží 30 sekund (spotřeba a₂).

• **Stanovení bílkovin**
 - Stanovení množství bílkovin je důležité pro stabilizaci vína a pro prevenci možných zákalů.
 - dále uvedeným postupem se simuluji v testovaném víně podmínky, při kterých přítomné termolabilní bílkoviny vypadávají nebo mění povrchové napětí vína. Do zkumavky se odměří 10 ml vina, ohřeje se na 80˚C. Pak se ochladí na laboratorní teplotu a intenzivně třepe do vytvoření pěny. Jestliže se vytvořená pěň do 1 minuty neztratí, hrozí vypadávání dodatečného bílkovinného zákalu.

• **Stanovení vinného kamene**
 - kyselina vinná je sama o sobě dobře rozpustná jak ve vodě, tak v alkoholu i při pokojové teplotě. Reakcí kyseliny vinné s draslíkem vzniká vinný kámen, jeho rozpustnost se mění podle teploty, obsahu alkoholu, draselných iontů, kyseliny vinné a dalších látek. Nízká teplota a alkohol jeho rozpustnost snižuje.
 - Krystalické zákaly vína vznikají především při nižších teplotách jeho uskladnění. Nejčastěji jsou jejich přičinou hydrogenvinan draselný a vinan vápenatý.
 - 150 ml vína se umístí na 24 hod. do mrazicího zařízení. Pak se vyhodnotí množství krystalů i zákal.

Automatický analyzátor SKALAR

Před vlastním spuštěním analyzátoru jej musíme připravit na provoz. Napneme hadičky do klipsen otáčecího mechanismu na malém peristaltu. Zkontrolujeme spodní stranu uzávěrů velkého peristaltu, zda jsou dostatečně promazány, pak je uzavřeme, dále otočíme a spustíme klíčky vzdunového mechanismu do stavu provozu. Výjmeme hadičky příslušného analytického rozboru z destilované vody a vložíme je do jednotlivých činidel tak, aby byly po celou dobu provozu analyzátoru ponořeny dostatečně pod hladinou činidel. Při větším počtu
analyzovaných vzorků si připravíme vždy dostatek všech činidel, abychom je nemuseli
v průběhu daných analýz toho daného dne doplňovat.
Analyzátor je nutno před vlastní analýzou připravit a najet. Je nutno zajistit jeho bezchybný
provoz a zabezpečit potřebné parametry provozu po dobu min. 1/2h před vlastní analýzou
vzorku či standardu. Neodpovídá-li provoz ani po 1h najetí požadovaným parametru, je
nutno ponovit čerpadla analyzátoru do 1 Mol chlorovodíku a po dobu 15min. nechat
promývat. Následně ponovit čerpadla do destilované vody a nechat promýt po dobu 20min.
Případně vyměnit membránu v dialyzační jednotce.

Příprava standardních roztoků pro kalibraci

D-glukósa byla použita pro přípravu standardních roztoků o koncentraci 1, 2, 3, 4, 8, 12, 16,
20 g·l⁻¹. Do odměrné baňky na 100 ml bylo naváženo 0,1; 0,2; 0,3; 0,4; 0,8; 1,2; 1,6; 2,0 g
glukosy a doplněno deionizovanou vodou po značku.

Vzorky :

bílá vína : Sylvánské zelené (SZ), Ryzlink rýnský (RR), Tramin červený (TC),
Chardonnay (CH), Veltlínské zelené (VZ)
modrá vína : Modrý portugal (MP), Cabernet sauvignon (CS), Frankovka (F),
Rulandské modré (RM)

Láhve s vínem byly po celou dobu skladovány v lednici. Před analýzou nebylo potřeba vzorky
upravovat, rovnou byly podrobeny analýze při laboratorní teplotě.

Příprava činidel

Destilovaná voda + Brij
Odsměrná baňka na 1000 ml byla naplněna deionizovanou vodou po značku. Teprve poté bylo
přidáno 3 ml 30% Brijů a roztok byl promíchán.

Roztok NaCl
Do odměrné baňky na 500 ml bylo naváženo 18 g NaCl, doplněno destilovanou vodou po
značku a bylo přidáno 1,5 ml 30% Brijů, vše bylo promícháno.

Roztok Na₂CO₃
Do odměrné baňky na 500 ml bylo naváženo 13,25 g Na₂CO₃ , doplněno destilovanou vodou
po značku a bylo přidáno 1,5 ml 30% Brijů, vše bylo promícháno.

Colour reagent
Do odměrné baňky bylo naváženo 100 mg neocuproinu a poté 50 mg CuSO₄, doplněno
destilovanou vodou po značku a promícháno.

Příprava přístroje a analýza

Nejprve se zasunou hadičky do jednotlivých pracovních roztoků, napou hadičky na
dávkovací pumpě, zaklapnou čerpadla a kroužky pro rovnoměrnou tvorbu bublin v hadičkách.
Teprve poté se zapne celý přístroj, regulátor teploty, detektor a nechá se cca 20 min. ustálit
(blikající kontrolka ukazuje dosažení správné teploty). V celém systému hadiček a
směšovacích spirál je nutné dosáhnout rovnoměrného rozložení bublin. Je to velice důležité
pro celou analýzu. Znamená to důkladné rozložení zón roztoků a vzorků. Fotometr se kalibruje zhruba na 50 mV, za použití aretačního šroubu (při počátečním napětí nižším než 50 mV budou nižší i výsledné píky). Nakonec se zapne zapisovač.

Plastové války se standardy a vzorky se vloží do kolotoče dávkovacího zařízení. Po standardech následuje válka s deionizovanou vodou jako blank, po každých deseti vzorcích je též zařazena válka s deionizovanou vodou.

Navolí se počet vzorků v kolotoči, čas nasávání vzorků, vzduchu a promývání. Nakonec se zapne start. Stanovení 8 vzorků trvá a asi 90 min. Celá analýza je plně automatická a kontinuální. Výsledkem je výstup ze zapisovače.

Po analýze se systém promývá (20 min) deionizovanou vodou. Jednou za týden, aby se zabránilo kontaminaci systému, se systémem promývá 1 M HCl (15 min) a opět deionizovanou vodou (20 min).

Parametry přístroje
Čas nasávání vzorku: 60 s, promývání: 60 s, vzduch: 0 s
Stabilizace systému: přibližně 20 min
Teplota: 97 °C
Vlnová délka měření: 460 nm
Nastavení počtu vzorků: 56, 33

3.5 Výpočty

3.5.1 Stanovení hustoty vína pyknometricky EEC No 2676/90

Výpočet:

\[x = \frac{a - c}{b - c} \]

\(x \, [g/ml]\) – hustota stanovovaného vzorku vína
\(a \, [g]\) - hmotnost pyknometru s vzorkem
\(b \, [g]\) - hmotnost pyknometru s destilovanou vodou
\(c \, [g]\) - hmotnost prázdného pyknometru

Příklad:

\[\frac{a - c}{b - c} = \frac{78,5164 - 29,2283}{78,9386 - 29,2283} = 0,9915 \, g/ml^{-1} \]

3.5.2 Stanovení přítomného alkoholu pyknometricky EEC No 2676/90

Výpočet:

\[\rho = \frac{ma - mc}{mb - mc} \]

\(\rho \, [% \, obj.]\) – hustota přítomného alkoholu
\(ma \, [g/ml]\) - hmotnost pyknometru s alkoholem
\(mb \, [g/ml]\) - hmotnost pyknometru s destilovanou vodou
\(mc \, [g/ml]\) - hmotnost prázdného pyknometru
Příklad: \[\rho = \frac{ma - mc}{mb - mc} = \frac{78,0739 - 29,2283}{78,9386 - 29,2283} = 0,98260 \approx 13,31\% \text{ obj.} \]

3.5.3 Gravimetrické stanovení redukujících cukrů

Výpočet:
1 mg CuO2 odpovídá 0,462 mg cukru
0,3713 g CuO2 odpovídá 0,1715 g cukru
25 ml vína
\[x \text{ g cukru} \quad \frac{\ldots}{1000 \text{ ml}} \]
\[x = 1000/25 \cdot 0,1715 = 6,8 \text{ g.ml}^{-1} \]
\[x \text{ [g.ml}^{-1}\text{]} - \text{množství redukujících cukrů} \]

3.5.4 Stanovení veškerých titrovatelných kyselin (EEC No 2676/90)

Výpočet:
\[x = a \cdot f \cdot 0,75 \]
\[x \text{ [g.l}^{-1}\text{]} - \text{veškeré titrovatelné kyseliny} \]
\[a \text{ [ml]} - \text{spotřebovaný roztok} \quad 0,1 \text{ mol .l}^{-1} \text{ NaOH} \]
\[f - \text{faktor} \quad 0,1 \text{ mol .l}^{-1} \text{ roztoku NaOH} \]
\[Příklad: \quad x = 6,5 \cdot 0,858 \cdot 0,75 = 4,18 \text{ g.l}^{-1} \]

3.5.5 Stanovení těkavých kyselin modifikovanou metodou

Výpočet:
\[x = 0,12 \cdot a \]
\[a - \text{spotřeba} \quad 0,02 \text{ mol.l}^{-1} \text{ roztoku Na OH} \]
\[x \text{ [g.l}^{-1}\text{]} - \text{množství těkavých kyselin vyjádřených jako hmotnost kyseliny octové} \]
\[Příklad: \quad x = 0,12 \cdot 3,25 = 0,39 \text{ g.l}^{-1} \]

Korekce na SO₂:
1 mg SO₂
\[x - 1,875 \cdot 10^{-3} = 0,39 - 1,875 \cdot 10^{-3} = 0,388 \text{ g.l}^{-1} \]

3.5.6 Stanovení netěkavých kyselin EEC No 2676/90

Výpočet:
\[x = a - (1,25 \cdot b) \]
\[x \text{ [g.l}^{-1}\text{]} - \text{množství netěkavých kyselin jako kyselina vinná} \]
\[a \text{ [g.l}^{-1}\text{]} - \text{veškerých titrovatelných kyselin jako kyselina vinná} \]
\[b \text{ [g.l}^{-1}\text{]} - \text{těkavých kyselin jako kyselina octová} \]
\[Příklad: \quad x = 3,85 - (1,25 \cdot 0,39) = 3,36 \text{ g.l}^{-1} \]
3.5.7 Stanovení extraktu EEC No 2676/90

Výpočet:
\[d_{20/20} \text{ (extraktu)} = 1,0000 + [d_{20/20} \text{ (vína)} - 0,00014 \cdot \text{Va}] - d_{20/20} \text{ (destilátu)} \]

\[d_{20/20} \text{ (extraktu)} \quad - \text{relativní hustota extraktu při } 20^\circ\text{C} \]
\[d_{20/20} \text{ (vína)} \quad - \text{relativní hustota vína při } 20^\circ\text{C} \]
\[d_{20/20} \text{ (destilátu)} \quad - \text{relativní hustota destilátu při } 20^\circ\text{C} \]

\(\text{Va} \ldots \text{koncentrace těkových kyselin ve víně jako kyselina octová g/l} \)

\[\text{Příklad:} \]
\[d_{20/20} \text{ (extraktu)} = 1,0000 + [0,9915 - 0,00014 \cdot 0,39] - 0,9826 = 1,0088 \]

\[E = 23,2 \text{ g.l}^{-1} \quad \text{veškerého extraktu} \]

3.5.8 Stanovení oxidu siřičitého titrací odměrným roztokem jodu

Výpočet:
\[x_{1,2} = a_{1,2} \cdot f \cdot 12,8 \]
\[x_{3} = x_{2} - x_{1} \]

\(x_{1} \text{ [mg.l}^{-1}] = \text{množství volného oxidu siřičitého} \)
\(x_{2} \text{ [mg.l}^{-1}] = \text{množství veškerého oxidu siřičitého} \)
\(x_{3} \text{ [mg.l}^{-1}] = \text{množství vázaného oxidu siřičitého} \)

\(a_{1,2} = \text{spotřeba } 0,02 \text{ mol.l}^{-1} \text{ roztoku jódu na volný nebo veškerý oxid siřičité} \)

\(f = \text{faktor } 0,02 \text{ mol.l}^{-1} \text{ roztoku jódu} \)

\[\text{Příklad:} \]
\[x_{1} = 3 \cdot 1,4894 \cdot 12,8 = 57 \text{ mg.l}^{-1} \]
\[x_{2} = 10,9 \cdot 1,4894 \cdot 12,8 = 208 \text{ mg.l}^{-1} \]
\[x_{3} = 208,7 - 57,2 = 151,5 \]
3.6 Popis vzorků analyzovaných vín

Vzorky jednotlivých vín byly analyzovány v následujícím časovém sledu:

Sklizení – listopad
- hrozny vínné révy jsou lisovány a mošt je zbaven hrubých kalu flotací a přidáním bentonitu.
Kvašení – prosinec
- mošt je po flotaci přečerpán do zasištených nerezových nádrží a zakvašen čistou kulturou kvasinek.
- kvašení 20-25°C (začátek, bouřlivé kvašení, dokvašení)
- alkoholové kvašení, biologické odbourávání kyselin, jablečno-mléčné kvašení,
- vyloučení HVK, následuje formování vína - dohírají biochemické změny,
- fyzikálně chemické změny – končí redukční činnost

Víno se čistí prosinec – leden – (4-8 týdnů) – sedimentace kalů

Mladé víno – únor – I. stačení
- leží na jemném kalu, uvolňují se auto-lyzáty kvasinek
- /jablečno-mléčné kvašení, vypadne vinný kámen, bílkoviny, třísloviny,

1. vzorek před filtrací 3.7. - červenec
- křemelinový filtr
2. vzorek po filtraci 20.7.- červenec
- čiření, srpen, září, bentonit, taninem + želatina nebo Clarsol (křemičitá sůl), Tosisol (křemičitý gel) + Erbigel (želatina), Vyzina
- filtrace křemelinový filtr
3. vzorek před láhví 23.9.-září
- membránová filtrace
II. stačení 14.10. říjen
- lahování
4. vzorek, lahev 8.1. - leden

Popis použitých prostředků k úpravě a čiření

Síření vína
Síra je ve svých různých formách prostředkem k ošetření vina. Tento způsob byl využíván již Řeky a Řimany. Oxid sířičitý je bezbarvý, štíplavý plyn. Ve vodném roztoku z něj vzniká kyselina sířičitá.

biologický účinek – zabránění aktivit divokých kvasinek a bakterií (octového kvašení, mléčného kvašení) využívána už během zpracování hroznů.

Antioxidační účinek – vyvázání kyselíku, látky obsažené ve víně jsou tím chráněny před oxidací, víno zůstává svěží, ovocné, vyniká odrůdové aroma.

Účinek deaktivující enzymy – deaktivuje enzymy přenášející kyslík, potlačuje hnědmutí.
Aroma zlepšující účinek – vyvázáním kvasných produktů např. acetaldehydu, kyseliny pyrohroznové apod. se zlepšuje aroma vína.

Analyticky je rozlišován volný a vázaný oxid siřičitého, jejich součet pak udává veškerý oxid siřičitého. Vázaný se váže na různé produkty kvašení jako acetaldehyd, kyselina ketoglutarová, kyselina pyrohroznová apod. a nepůsobí pak ani antibakteriálně ani nedeaktivuje enzymy. [17]

Čítrícími prostředky se ošetřuje víno aby bylo stabilní i po skladování v různých podmínkách a používá se i místo filtrace a odstranění. Lze je i využít ke snížení i odstranění vadných vůní a chutí.

Bentonit

Bentonity jsou zeminy obsahující silikáty vápníku, sodíku a hliníku, vyznávají se adsorpční schopností vůči rozpuštěným bílkovinám, odstranění termolabilních bílkovin, aby víno bylo stabilní i při změnách teploty. Adsorbuje i barviva a látky ovlivňující chuť. Bentonit byl aplikován do moštu (50 g/hl) a během čiření do vína (100 g/hl). Po jedné hodině po nadávkování je adsorpce ukončena a cca. 1 týden bentonit sedimentuje. Pak je odstraněn křemelinovým filtrem. Ca-Na směsi bentonitů lépe vyvazují bílkoviny.

Termolabilní bílkoviny se při zahřátí na 75-80°C, 60sec., nebo působením alkoholu sráží, zvláště v přítomnosti tříslovina. Tato vlastnost se využívá při čiření vína prostředky obsahujícími bílkovinu (želatina).

Křemelinový filtr – náplavový
Křemelina se získává v povrchových dolech z usazenin mořských řas a je tvořena z 85-90 % křemíkem a 4-10% oxidem hliníkovým. Je složena ze stabilních částic, které vytváří oporu a průchodnost filtrační vrstvy. Na vhodném síti se vytvoří spolu s kaly filtrační koláč a tak se křemelina i kaly oddělí. [17]

Membránová filtrace – ostrá filtrace
Přes přesně definovanou velikost otvorů neprojdou kvasinky ani bakterie. Kvasinky 2,5 μm, Bakterie octového kvašení 0,5-1 μm Bakterie mléčného kvašení 0,4 -1,5 μm [17]

Tanin (tříslovina) – směs různých esterů glukosy a kyseliny galové

Klar-sol (křemiciitá sůl). tosil – křemiciitý gel
Mléčně bílý kyselý speciální křemiciitý sól s extrémně vysokým nábojem, umožňujícím mimořádně vysokou účinnost a tím i hospodárnost použití připravku. Vedle elektrického náboje zvyšuje účinnost i specifický tvar částeček sůlu. Účinné čiření vína, ovocných šťáv a jiných nápojů zároveň s použitím želatiny. Mimo výborných čítrících vlastností se jeho aplikací sníží hladina polyfenolů a bílkovin. KLAR-SOL SUPER účinkuje jen současně se želatinou. Flokulace nastává reakcí záporně nabitéch částeček křemiciitého sůlu a kladně nabitéch koloidů želatiny. Obsah tříslovina ve víně nehraje při vzniku sraženiny rozhodující úlohu. Čiření tedy probíhá do úplného konce. Mimo to má kyselý křemiciitý sól tu výhodu, že rychle vločkuje a vytváří kompaktní usazeninu. Ve většině případů stačí dávka v rozmezí 20 - 50 ml KLAR SOL SUPER na 100 l ošetřovaného nápoje. Dávkujte s želatinou v poměru cca 5:1. Do vína se nejdříve aplikuje křemiciitý sól a potom želatina. [27]
Erbigel je želatina živočišného původu určená k aplikaci do ovocných šťáv, do vín a do jiných nápojů. Je určen k odstranění přebytečného množství tříslovin a polyfenolů, především z moštu. Tím se zabezpečí optimální stabilizace proti koloidním zákalům. Další použití je při čiření společně s aplikací křemičitého sólu. [27]

Komplexon (Ferroplex). Preparát je určen k zamezení tvorby kovových zákalů. Je vyroben z kombinace upraveného polymeru arabské gumy a kyseliny citrónové. Tyto látky vytvářejí ochranný obal, který zamezuje vyčování mědi a železa. FERROPLEX zamezuje ve víně flokulaci kovů s ostatními složkami nacházejícími se v nápoji. FERROPLEX je jemně krystalický, a proto je jeho použití jednoduché. Zvýšený obsah kovů, zvláště železa a mědi, může vést ke vzniku zákalů v lahovovaném víně. Tyto zákaly způsobují v převážné míře komplexy kovu - tříslovinu. U moderních sklepních technologií je snaha udržet zatížení kovů na co nejnižší úrovni. Přesto se např. technologií z vinohradu, skladováním nebo ošetřováním nesprávnými preparáty může stát, že obsah těžkých kovů dosáhne kritické hranice. Taktéž lze udržet ve vině obsah kovů odpovídající až 7 g/hl aniž by došlo ke sraženině. [17] Dávkování je 50 g/hl. [27]

Vyzina (+) je klasický čišťící prostředek pocházející ze sušených měchýřů ryb vyzy, jesetera nebo sumce. Nepatrně pozměňuje tříslovinový komplex. Používá se ke zlepšení filtrovatelnosti vín a ke skladování vín. Používá se ke zlepšení filtrovatelnosti vín a ke skladování vín. Listy, prášek nebo pasta. 1-2 g/hl. [17]
4 VÝSLEDKY A DISKUZE

V této diplomové práci byl sledován vývoj čtyř družstevních vín od okamžiku první filtrace, tedy po prvním stočení, přes školení a formování vín až po jejich nalévání. Postupně byly analytické sledovány základní parametry kvality vín vždy po určitém technologickém zásahu vinaře. Při měření byly částečně aplikovány každým vinařem běžně používané techniky měření, ostatní parametry byly měřeny analytickými postupy podle návodu do laboratorních cvičení pro vinařství. Analýzy označené EEC No 2676/90 jsou shodné s referenčními metodami platnými v členských státech Evropského společenství.

Sledovaly se změny v chemickém složení jednotlivých družstevních vín v průběhu jejich úprav a výroby a jejich souvislost s uskutečněnými technologickými zásahy. Tedy jak se postupně aplikované prostředky a metody ve výrobě vína zobrazí v analytické zjištěných hodnotách.

Vzorky jednotlivých vín byly odebrány v následujícím časovém období:

1. vzorek před filtrací 3.7. - červenec
 křemelinový filtr
2. vzorek po filtraci 20.7. - červenec
 - čiření srpen, září
 - filtrace křemelinový filtr
3. vzorek před lahví 23.9. - září
 II.stáčení membránová filtrace
 lahvování 14.10. říjen
4. vzorek , lahev 8.1. - leden

Po dokvašení vína určí vínař na základě svých zkušeností a dlouholeté praxi správný okamžik pro první stočení vína z hrubého kalu. Následně leží víno na jemných kalech, aby získalo nejen potřebnou výživu pro činnost bakterií mléčného kvašení, ale i potřebný buket a aroma. Po ukončení jablečno-mléčného kvašení určí vínař senzorickou kvalitu vína a vzájemnou vyváženost jeho základních složek, tedy alkoholu, kyselin a cukru. Po dosažení základních požadavků, které má každé víno splňovat v souladu s jeho odrůdou a ročníkem přistoupí vínař ke křemelinové filtraci, aby víno zbavil veškerých usazenin a zbytek kalu. Poté se vizuálně stanoví pro každé víno zvýšit potřebná dávka a složení čiřicích prostředků

Uvedená vína byla čiřena následujícími prostředky:
- taninem + želatina nebo Clarsol (křemičitá sůl), Tosisil (křemičitý gel) + Erbigel (želatina).
- U mladých vín odděluje kvasničné kaly a zlepšuje filtrovatelnost. [17]

Vysněna byla použita pro závěrečně jemné čiření. Do vína byl ještě přidán Ferropplex, proti kovovým zákalům. Před lahvováním je použita membránová filtrace jako prevence proti mikrobiologickým změnám vína.
4.1 Stanovení koncentrace cukru v jednotlivých vínech podle fáze výroby

Podle postupu uvedeném v kapitole 3.4 byly v jednotlivých vínech stanoveny koncentrace cukru v závislosti na stupni výroby

Graf 4.1.1: gravimetrické stanovení koncentrace cukru v jednotlivých vínech podle fáze výroby

Tabulka 4.1.2: rozdíly v koncentraci cukru v jednotlivých vínech vzhledem k zjištěné předcházející hodnotě

<table>
<thead>
<tr>
<th>CUKR</th>
<th>před filtrací g/l</th>
<th>po filtraci</th>
<th>před lahví</th>
<th>v lahví</th>
</tr>
</thead>
<tbody>
<tr>
<td>VZ</td>
<td>3,8</td>
<td>- 0,1</td>
<td>+ 0,2</td>
<td>+ 0,0</td>
</tr>
<tr>
<td>RV</td>
<td>1,7</td>
<td>- 0,06</td>
<td>+ 0,05</td>
<td>+ 0,0</td>
</tr>
<tr>
<td>RB</td>
<td>3,6</td>
<td>- 0,08</td>
<td>+ 0,18</td>
<td>+ 0,0</td>
</tr>
<tr>
<td>RS</td>
<td>6,6</td>
<td>- 0,1</td>
<td>+ 0,37</td>
<td>+ 0,0</td>
</tr>
</tbody>
</table>

Diskuze

Koncentrace cukru je u každého vína velmi odlišná. Nejnižší u vína RV pod 2 g/l, nejvyšší u RS pod 7 g/l. Vína VZ a RB obsahují 3 až 4 g/l. Po filtraci dochází u všech vín k mírnému snížení koncentrace cukru a sice zhruba o -0,1g/l. Toto může být způsobeno pokračující mikrobiologickou činností kvasinek a bakterií. Bakterie potřebují k tvorbě biomasy malé množství cukrů (2 g/l).[17] Po filtraci dojde k zasíření vína a oxid sířičitý váže určité množství glukosy, což může být další z faktorů.
Po čiření byl u všech vín zjištěn mírný nárůst koncentrace cukru. U vína RV o +0,05 g/l u vína RB a VZ o +0,2 g/l a víno RS mělo o +0,37 g/l vyšší koncentraci. V lahvi již nebyly zaznamenány žádné změny koncentrace cukru.

Během čiření se odstraňují také oxidační enzymy adsorpcí na kalové částice, čímž je jejich činnost dále eliminována. Po filtraci je víno přečerpáno do dubových sudů, kde se dále formuje a zraje. Při delší skladování vina v sudech může dojít k vyluhování pentos ze dřeva. Po skončení kvašení a při zráni vina v sudech je nutno udržovat v sudech redukční prostředí a víno v sudech neustále doplňovat, aby hladina nepříliš byla do styku se vzdušným kyslíkem a nedošlo k nežádoucím oxidace procesů. V průměru se doplní víno stejně odrůdy a jakosti v množství obj. 5 %. Zjištěný nárůst koncentrace cukru odpovídá uvedenému množství dolévaného vina.

Hodnoty naměřeného zbytkového cukru odpovídají charakteristice měrených vín. Podle naměřených hodnot jsou to vše vína suchá, s obsahem zbytkového cukru nejvýš 4 g/l, nebo nejvýš 9 g/l cukru, pokud obsah kyselin je nejvýš o 2 g/l nižší než obsah cukru. [17] Pouze u vína RS byl v lahvi zjištěn obsah kyselin vyšší než 2 g/l než obsah cukru.

Tabulka 4.1.3: rozdíl ve stanovení hustoty v jednotlivých vinech vzhledem ke zjištěně předcházející hodnotě

<table>
<thead>
<tr>
<th>HUSTOTA g/ml</th>
<th>před filtrací</th>
<th>po filtraci</th>
<th>před lahví</th>
<th>láhev</th>
<th>celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>VZ</td>
<td>0,9898</td>
<td>-0,06 %</td>
<td>-0,02 %</td>
<td>-0,0 %</td>
<td>- 0,1 %</td>
</tr>
<tr>
<td>RV</td>
<td>0,9893</td>
<td>-0,13 %</td>
<td>-0,04 %</td>
<td>-0,0 %</td>
<td>- 0,2 %</td>
</tr>
<tr>
<td>RB</td>
<td>0,9889</td>
<td>-0,05 %</td>
<td>-0,15 %</td>
<td>-0,0 %</td>
<td>- 0,2 %</td>
</tr>
<tr>
<td>RS</td>
<td>0,9902</td>
<td>-0,06 %</td>
<td>-0,07 %</td>
<td>-0,0 %</td>
<td>- 0,1 %</td>
</tr>
</tbody>
</table>

4.1.1 Hustota

U všech analyzovaných vín poklesla po filtraci hustota v průměru o - 0,05 %.

Nejvíce u RV o -0,13 %. Po čiření došlo k dalšímu poklesu v průměru o -0,06 %.

Nejvíce u RB o -0,15 %. Hustota je tvořena především obsahem cukru, který po filtraci také poklesl. Zároveň dochází po filtraci i po čiření k poklesu netěkavých kyselin, které tvoří rozpustnou součást extraktu, což mělo vliv na pokles hustoty.

Suché víno je lehčí než voda, hustota je tedy menší než 1.

4.1.2 Extrakt

Po filtraci došlo u všech vín ke snížení veškerého i bezcukerného extraktu. Vína Rulandské bílé a Ryzlink vlašský zaznamenala po čiření další pokles hodnoty extraktu. Veltlínské zelené a Rulandské šedé měla hodnotu extraktu již beze změn. Bezcukerný extrakt poklesl v závislosti na koncentraci cukru u jednotlivých vín.
Hodnota extraktu poklesla v závislosti na úpravách vín tj. filtrace a čiření, které snížily obsah extraktivních látek. V obou případech byl zjištěn pokles netěkavých kyselin.

1 g/l vyšázeného vinného kamene sníží obsah titrovatelných kyselin o 0,4 g/l. Extrakt se sníží o 1,4 g/l. [17] Při vyšázení 0,9 g/l vinného kamene po filtraci i po čiření činí celkový úbytek extraktu 2,8 g/l což odpovídá naměřeným hodnotám.
4. 2 Stanovení koncentrace alkoholu v jednotlivých vínech podle fáze výroby

Podle postupu uvedeném v kapitole 3.4 byly v jednotlivých vínech stanoveny v závislosti na stupni výroby objemové koncentrace alkoholu pyknometricky.

Graf 4.2.1: pyknometrické stanovení přítomného alkoholu v jednotlivých vínech podle fáze výroby

Tabulka 4.2.2: rozdíly v koncentraci ethanolu vzhledem ke zjištěné předcházející hodnotě

<table>
<thead>
<tr>
<th>ETHANOL</th>
<th>před filtrací %</th>
<th>po filtraci</th>
<th>před lahví</th>
<th>láhev</th>
<th>celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>VZ</td>
<td>13,7</td>
<td>+ 0,3 %</td>
<td>- 0,1 %</td>
<td>- 0,3 %</td>
<td>- 0,1 %</td>
</tr>
<tr>
<td>RV</td>
<td>14,2</td>
<td>+ 0,1 %</td>
<td>- 0,2 %</td>
<td>- 0,1 %</td>
<td>- 0,2 %</td>
</tr>
<tr>
<td>RB</td>
<td>14,8</td>
<td>+ 0,1 %</td>
<td>- 0,3 %</td>
<td>- 0,2 %</td>
<td>- 0,4 %</td>
</tr>
<tr>
<td>RS</td>
<td>13,9</td>
<td>+ 0,2 %</td>
<td>- 0,2 %</td>
<td>- 0,3 %</td>
<td>- 0,3 %</td>
</tr>
</tbody>
</table>

Diskuze

Po filtraci došlo všeobecně k nárůstu koncentrace ethanolu v průměru o 0,2 %. Nárůst koncentrace poukazuje na mikrobiologickou aktivitu, čemuž nasvědčuje i mírný pokles koncentrace cukru zjištěný po filtraci. V dalších stanoveních byl zjištěn postupný pokles koncentrace alkoholu. Pokles ethanolu lze zaznamenat nejen v důsledku výparu při manipulaci vína, část se také chemicky mění na buketní látky jako např. acetaly, estery zvláště pak vzniká vínan ethylnaty, jablečnan ethylnatý, které nejsou těkavé a označují se jako kyselé estery.
4. 3 Stanovení koncentrace veškerých titrovatelných kyselin v jednotlivých vínech podle fáze výroby

Podle postupu uvedeném v kapitole 3.4 byly v jednotlivých vínech stanoveny koncentrace veškerých titrovatelných kyselin v závislosti na stupni výroby

Graf 4.3.1: stanovení obsahu veškerých titrovatelných kyselin v jednotlivých vínech podle stupně výroby

Tabulka 4.3.2: rozdíly v obsahu veškerých kyselin vzhledem ke zjištěné předcházející hodnotě

<table>
<thead>
<tr>
<th>KYSIEL. g/l</th>
<th>před filtr. g/l</th>
<th>po filtraci</th>
<th>před lahví</th>
<th>láhev</th>
<th>celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>VZ</td>
<td>4,2</td>
<td>- 0,30</td>
<td>+ 0,20</td>
<td>+ 0,26</td>
<td>+ 0,2</td>
</tr>
<tr>
<td>RV</td>
<td>5,5</td>
<td>- 0,70</td>
<td>- 0,20</td>
<td>+ 0,26</td>
<td>- 0,6</td>
</tr>
<tr>
<td>RB</td>
<td>4,5</td>
<td>- 0,60</td>
<td>- 0,26</td>
<td>+ 0,30</td>
<td>- 0,6</td>
</tr>
<tr>
<td>RS</td>
<td>4,6</td>
<td>- 0,60</td>
<td>- 0,16</td>
<td>+ 0,30</td>
<td>- 0,5</td>
</tr>
</tbody>
</table>

Diskuze

Koncentrace titrovatelných kyselin postupně klesala po filtraci a dále ještě i před lahví, nárůst byl zjištěn pouze u vín v lahvi v průměru o +0,3 g/l. Celkově obsah titrovatelných kyselin vzrostl u vína VZ o +0,2 g/l, u RV i RB poklesl o -0,6 g/l, u RS o -0,5 g/l. Veškeré titrovatelné kyseliny zahrnují těkavé kyseliny a netěkavé kyseliny. Po filtraci poklesla koncentrace obou forem kyselin. Před lahví již nebyl pokles veškerých kyselin tak markantní jako po filtraci a sice díky těkavým kyselinám, jejichž koncentrace před lahví na rozdíl od netěkavých kyselin vzrostla. Koncentrace netěkavých kyselin znovu poklesla.

Pouze u vín VZ byl nárůst těkavých kyselin před lahví vyšší, než pokles kyselin netěkavých.
4. 4 Stanovení koncentrace těkavých kyselin modifikovanou metodou v jednotlivých vínech podle fáze výroby

Podle postupu uvedeném v kapitole 3.4 byly v jednotlivých vínech stanoveny koncentrace těkavých kyselin v závislosti na stupni výroby

Graf 4.4.1: stanovení koncentrace těkavých kyselin v jednotlivých vínech podle stupně výroby

<table>
<thead>
<tr>
<th>Tabulka 4.4.2</th>
<th>rozdíly v koncentraci těkavých kyselin vzhledem ke zjištěné předcházející hodnotě</th>
</tr>
</thead>
<tbody>
<tr>
<td>KYSEL. g/l</td>
<td>před filtrací g/l</td>
</tr>
<tr>
<td>VZ</td>
<td>0,333</td>
</tr>
<tr>
<td>RV</td>
<td>0,37</td>
</tr>
<tr>
<td>RB</td>
<td>0,474</td>
</tr>
<tr>
<td>RS</td>
<td>0,360</td>
</tr>
</tbody>
</table>

Diskuze
Zavedením SO\(_2\) (g) do vody vzniká kyselina sírová H\(_2\)SO\(_3\), jeho oxidací vzniká kyselina sírová H\(_2\)SO\(_4\). Kyselina sírová ovlivňuje stanovení těkavých kyselin, kyselina sírová stanovení netěkavých kyselin.

Pokles těkavých kyselin u vína RV činil po filtraci 25% z celkového poklesu kyselin. Rozdíl činil 0,168 g/l. Zároveň dochází k nárůstu volného SO\(_2\) o 20 mg/ l což činí nárůst o 0,02 g/l.

53
těkavých kyselin. Vzhledem k poklesu je to jen nepatrný nárůst, který se ve stanovení těkavých kyselin neprojevil. U vína RB byl pokles těkavých kyselin ještě vyšší o 0,240 g/l a čínil 41% z poklesu titr. kyselin. Volná forma SO2 vzrostla o 0,016 g/l. U vína RS činil pokles 0,18 g/l (30%), volná SO2 vzrostla o 0,02 g/l. U VZ se koncentrace snížila o 0,1 g/l. Nárůst volné formy SO2 o 0,02 g/l. Nárůst volného SO2 byl i v ostatních případech vzhledem k poklesu těkavých kyselin nepatrný. Během procesu filtrace došlo tedy díky provzdušnění k úniku těkavých kyselin.

Před lahví došlo všeobecně k výraznému nárůstu koncentrace těkavých kyselin v průměru o 0,230 g/l. Toto zjištění potvrzuje skutečnost, že během úprav čiřením došlo k provzdušnění vína a k následné mikrobiologické tvorbě těkavých kyselin. Jsou to kys.octová, kys.mravenčí, vznikají jako vedlejší produkty alkoholového kvašení činností kvasinek, zejména však bakterií. Kvasinky tvoří anaerobně kys.octovou 0,3 – 0,6 g/l. I po filtraci obsahuje mladé víno určité množství kvasničních kalů. Bakterie mléčného kvašení ve víně především rody *Leuconostoc, Lactobacillus nebo Pediococcus* tvoří také těkavé kyseliny. V lahvi byl u všech vín zjištěn pokles těkavých kyselin v průměru o 0,07 g/l. K tomu došlo únikem těkavých kyselin během procesu lahvování. Zároveň vznikají při zrání vína ve víně vzájemným působením kyselin a alkoholů estery, tedy chemickou reakcí a k dalšímu poklesu těkavých kyselin. [25] Množství těkavých kyselin odpovídá hodnotám v literatuře, kdy vína v průměru obsahují 0,2 – 0,6 g/l kyseliny octové, k. mravenčí a dalších těkavých kyselin. [17].
4. 5 Stanovení koncentrace netěkavých kyselin v jednotlivých vínech podle fáze výroby

Podle postupu uvedeném v kapitole 3.4 byly v jednotlivých vínech stanoveny koncentrace netěkavých kyselin v závislosti na stupni výroby

Graf 4.5.1: stanovení koncentrace netěkavých kyselin v jednotlivých vínech podle stupně výroby

Tabulka 4.5.2 rozdíly v koncentraci netěkavých kyselin vzhledem ke zjištěné předcházející hodnotě

<table>
<thead>
<tr>
<th>KYSEL. g/l</th>
<th>před filtrací g/l</th>
<th>po filtraci</th>
<th>před lahví</th>
<th>láhev</th>
<th>celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>VZ</td>
<td>3,7</td>
<td>- 0,11</td>
<td>- 0,10</td>
<td>+ 0,37</td>
<td>+ 0,16</td>
</tr>
<tr>
<td>RV</td>
<td>5,1</td>
<td>- 0,51</td>
<td>- 0,45</td>
<td>+ 0,35</td>
<td>- 0,61</td>
</tr>
<tr>
<td>RB</td>
<td>3,9</td>
<td>- 0,34</td>
<td>- 0,56</td>
<td>+ 0,39</td>
<td>- 0,51</td>
</tr>
<tr>
<td>RS</td>
<td>4,2</td>
<td>- 0,42</td>
<td>- 0,48</td>
<td>+ 0,34</td>
<td>- 0,56</td>
</tr>
</tbody>
</table>

Diskuze

Po filtraci výrazně poklesla koncentrace netěkavých kyselin postupně u RV o -0,51 g/l, RB o -0,340 g/l, RS o -0,420 g/l a VZ o -0,113 g/l a po čiření byl zjištěn další pokles netěkavých kyselin u RV o -0,45 g/l, RB o -0,56 g/l, RS o -0,480 a VZ o -0,10 g/l. Obsah titrovatelných
kyselin se udává v přepočtu na kyselinu vinnou. Při titraci se spolustanoví i kyselé soli jako vinan draselný. Koncentrace netěkavých kyselin výrazně klesla u všech vín jak po filtraci, tak po čiření. Dle analýz z literatury se bakteriální činností ve vínech jablečná úplně odbourala, obsah kyseliny vinné a citronové klesl na minimum, naproto tomu se zvýšil obsah kys.mléčné a těkavých kyselin. Snížil se obsah glycerinu a částečně i obsah cukru. [25] Pokles byl způsoben především vypadnutím vinného kamene ve formě soli, hydrogenvinan draselný, podpořeno provzdušněním během úprav. Dobře vyzrálé ročníky vína tvoří 65-70% kyselina vinná. Během kvašení a školení vína se většina kyselných kyselin výrazně klesla u všech vín jak po filtraci, tak po čiření. Dle analýz z literatury se bakteriální činností ve vínech kyselina jablečná úplně odbourala, obsah kyseliny vinné a citronové klesl na minimum, naproto tomu se zvýšil obsah kys.mléčné a těkavých kyselin. Snížil se obsah glycerinu a částečně i obsah cukru. [25]

O mikrobiologické činnosti svědčí i nárůst těkavých kyselin ve všech vzorcích vína po čiření a to v průměru o 0,230 g/l. Jsou to kyselina octová, kyselina mravenčí, vznikají jako vedlejší produkty alkoholového kvašení činnosti kvasinek, zejména však bakterií. Koncentrace volného oxidu sířičitého byla před lahvi v rozmezí 20-35 mg/l. Nízké dávky do 20 mg/l působí na kvasný proces (kvasinky) stimulují činnosti kvasinek a bakterií neutrální estery, které nemají funkci kyselina a jsou těkavé (laktát ethylnatý, octan ethylnatý). Bakterie jablečno-mléčného kvašení enzymaticky odbourávají kyselinu citronovou. [17] V lahvi byl u všech vín zjištěn netěkavý obsah právě vázané formy SO2. Do vína byl přidán prostředek Ferroplex pro eliminaci závislosti vázanou so są. Přípravek obsahuje také kyselinu citronovou. Při doporučené dávce 50 g/hl před závěrečnou ostrou filtrací se nezvýšil celkový obsah více než o 0,5 g/l. Použitá dávka byla nižší. Podle nařízení ES může být kyselina citronová přidána do vína do celkového obsahu více a nepovažuje se to za přikyselování.
4. 6 Stanovení koncentrace veškerého oxidu sířičitého v jednotlivých vínech podle fáze výroby

Podle postupu uvedeném v kapitole 3.4 byla v jednotlivých vínech stanovena koncentrace veškerého oxidu sířičitého v závislosti na stupni výroby

Graf 4.6.1: stanovení koncentrace veškerého SO₂ v jednotlivých vínech podle fáze výroby

Tabulka 4.6.2: rozdíly v koncentraci veškerého oxidu sířičitého vzhledem ke zjištěné předcházející hodnotě

<table>
<thead>
<tr>
<th>SO₂ mg/l</th>
<th>před filtrací</th>
<th>po filtraci</th>
<th>před lahví</th>
<th>láhev</th>
<th>celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>VZ</td>
<td>72,4</td>
<td>+ 30,0</td>
<td>- 2,6</td>
<td>+ 81,0</td>
<td>+ 108</td>
</tr>
<tr>
<td>RV</td>
<td>116,4</td>
<td>+ 29,0</td>
<td>+ 7,6</td>
<td>+ 48,6</td>
<td>+ 85</td>
</tr>
<tr>
<td>RB</td>
<td>81,5</td>
<td>+ 31,6</td>
<td>+ 8,9</td>
<td>+117,7</td>
<td>+ 158</td>
</tr>
<tr>
<td>RS</td>
<td>90,9</td>
<td>+ 27,7</td>
<td>+ 1,6</td>
<td>+ 77,2</td>
<td>+ 106</td>
</tr>
</tbody>
</table>

Diskuze
4. 7 Stanovení koncentrace volného oxidu siřičitého v jednotlivých vínech podle fáze výroby

Podle postupu uvedeném v kapitole 3.4 byla v jednotlivých vínech stanovena koncentrace volného oxidu siřičitého v závislosti na stupni výroby

Graf 4.7.1: stanovení koncentrace volného oxidu siřičitého v jednotlivých vínech podle fáze výroby

Tabulka 4.7.2: rozdíly v koncentraci volného oxidu siřičitého vzhledem ke zjištěné předcházející hodnotě

<table>
<thead>
<tr>
<th>SO₂ mg/l</th>
<th>před filtrací</th>
<th>po filtraci</th>
<th>před lahví</th>
<th>v lahví</th>
<th>celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>VZ</td>
<td>23,8</td>
<td>+ 20,00</td>
<td>- 15,6</td>
<td>+ 50,8</td>
<td>+ 55</td>
</tr>
<tr>
<td>RV</td>
<td>17,2</td>
<td>+ 20,00</td>
<td>- 3,8</td>
<td>+ 9,5</td>
<td>+ 26</td>
</tr>
<tr>
<td>RB</td>
<td>17,2</td>
<td>+ 15,5</td>
<td>+ 0,2</td>
<td>+ 60,5</td>
<td>+ 76</td>
</tr>
<tr>
<td>RS</td>
<td>21,0</td>
<td>+ 19,0</td>
<td>- 10,0</td>
<td>+ 27,2</td>
<td>+ 36</td>
</tr>
</tbody>
</table>
Diskuze
Po filtraci bylo víno přečerpáno do zasílených sudů což se projevilo v nárůstu koncentrace volné i vázané formy SO2. Volná forma vzrostla v průměru o 20 mg/l, nejméně u vína RB o 15,6 mg/l kde došlo zároveň k nárůstu vázané formy o 16 mg/l. Sudy byly zasíleny tak, aby se koncentrace volné formy zvýšila o 20 mg/l. U RB bylo 16 mg/l SO2 vyvázáno kyslíkem a produkty kvašení, došlo tedy k provzuďšení, což se projevilo i ve vyšším úniku těkavých kyselin. I u všech ostatních vín došlo k nárůstu koncentrace vázané formy SO2 v průměru o 9 mg/l díky provzuďšení vína během filtrace. Po čiření koncentrace volné formy SO2 poklesla v průměru o 10 mg/l a zároveň vzrostla koncentrace vázané formy SO2 v průměru o 11 mg/l. SO2 bylo vyvázáno v důsledku provzuďšení během čiření vína. Sudy byly zasíleny, aby koncentrace volné formy vzrostla o 10 mg/l. Při čiření byl použit bentonit, který snižuje rH vína, odstraňuje z vína oxidační enzymy, postačí tedy slabší síření. [25] Aplikace spalováním sirných plátků není zcela přesná, asi 50% SO2 se během kvašení váže, čast vyprchá. Účinnost má pouze volný oxid sířičitý, který postupně vyvazuje kyslík a také produkty kvašení jako acetaldehyd, kys.pyrohroznová či ketoglutarová. [17] Víno Rulaňské bílé obsahuje v lahvi nejvyšší hodnotu veškerého SO2 a to 249 mg/l. Rulandské šedé s obsahem cukru 6,9 g/l obsahuje ve víně 209 mg/l SO2. Obsah veškerého oxidu sířičitého je ve všech vínech pod normou platnou v ČR kde je stanoven obsah pouze veškerého SO2. Pro výběr z hroznů je to 350 mg/l. [17] Protože je kyselina sířičitá zařazena mezinárodně mezi alergeny denní příjem člověka by neměl přesáhnout 40 mg/l. Podle kritérií IP je zakázáno překročit hygienickou normu obsahu síry ve víně.
4. 8 Stanovení koncentrace vázaného oxidu siřičitého v jednotlivých vínech podle fáze výroby

Podle postupu uvedeném v kapitole 3.4 byla v jednotlivých vínech stanovena koncentrace vázaného oxidu siřičitého v závislosti na stupni výroby

Graf 4.8.1: stanovení vázaného \(SO_2 \) v jednotlivých vínech podle stupně výroby

Tabulka 4.8.2: rozdíly v koncentraci vázaného oxidu siřičitého vzhledem ke zjištěné předcházející hodnotě

<table>
<thead>
<tr>
<th>SO(_2) mg/l</th>
<th>před filtrací</th>
<th>po filtraci</th>
<th>před lahví</th>
<th>láhev</th>
<th>celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>VZ</td>
<td>48,6</td>
<td>+ 10,3</td>
<td>+ 13,0</td>
<td>+ 30,0</td>
<td>+ 53</td>
</tr>
<tr>
<td>RV</td>
<td>99,3</td>
<td>+ 7,5</td>
<td>+ 11,4</td>
<td>+ 39,0</td>
<td>+ 58</td>
</tr>
<tr>
<td>RB</td>
<td>64,3</td>
<td>+ 16,0</td>
<td>+ 8,7</td>
<td>+ 57,2</td>
<td>+ 82</td>
</tr>
<tr>
<td>RS</td>
<td>70,0</td>
<td>+ 8,7</td>
<td>+ 11,6</td>
<td>+ 50,0</td>
<td>+ 70</td>
</tr>
</tbody>
</table>

Zhodnocení
Konzentrace vázaného oxidu siřičitého postupně rostla ve všech případech ve všech fázích úpravy vína, což svědčí o neustálém biochemickém procesu, který ve víně probíhá, ať už vlivem provzdušňení tedy z vnějšího prostředí, nebo vlivem procesů probíhajících uvnitř vína samotného. Viz. volný oxid siřičitý. Jedinou výjimkou tvoří víno RS před lahví, kde došlo k uvolnění vázané formy.
4. 9 Senzorické hodnocení

Barva je před filtrací často výraznější, žlutější, zůstává v zásadě zachována i po filtraci. Před lahvi vykazuje výrazné zvětšení důsledkem zasiření a v lahvi je již opět sytější a libivější, i když ne tolik, jako před filtrací. Podle literatury je u přírodních bílých vín žádoucí barva světle žlutozelenkavá nebo zelenožlutá s různým odstínem až do zlatova. Dáno odrůdou i stařím.

Chut' a buket vína velmi ovlivňují štěpné produkty dusíkatých látek a bílkovin. Vůně je obecně čiré nejen po filtraci, ale i před ní. V lahvi je jiskrné s krásným odleskem. Po filtraci je vždy víno více čiré a jiskrné.

Barva je před filtrací často výraznější, žlutější, zůstává v zásadě zachována i po filtraci. Před lahvi vykazuje výrazné zvětšení důsledkem zasiření a v lahvi je již opět sytější a libivější, i když ne tolik, jako před filtrací. Podle literatury je u přírodních bílých vín žádoucí barva světle žlutozelenkavá nebo zelenožlutá s různým odstínem až do zlatova. Dáno odrůdou i stařím.

Chuť a buket vína velmi ovlivňují štěpné produkty dusíkatých látek a bílkovin. Vůně je obecně čiré nejen po filtraci, ale i před ní. V lahvi je jiskrné s krásným odleskem. Po filtraci je vždy víno více čiré a jiskrné.

Barva je před filtrací často výraznější, žlutější, zůstává v zásadě zachována i po filtraci. Před lahvi vykazuje výrazné zvětšení důsledkem zasiření a v lahvi je již opět sytější a libivější, i když ne tolik, jako před filtrací. Podle literatury je u přírodních bílých vín žádoucí barva světle žlutozelenkavá nebo zelenožlutá s různým odstínem až do zlatova. Dáno odrůdou i stařím.

Chuť a buket vína velmi ovlivňují štěpné produkty dusíkatých látek a bílkovin. Vůně je obecně čiré nejen po filtraci, ale i před ní. V lahvi je jiskrné s krásným odleskem. Po filtraci je vždy víno více čiré a jiskrné.

Barva je před filtrací často výraznější, žlutější, zůstává v zásadě zachována i po filtraci. Před lahvi vykazuje výrazné zvětšení důsledkem zasiření a v lahvi je již opět sytější a libivější, i když ne tolik, jako před filtrací. Podle literatury je u přírodních bílých vín žádoucí barva světle žlutozelenkavá nebo zelenožlutá s různým odstínem až do zlatova. Dáno odrůdou i stařím.

Chuť a buket vína velmi ovlivňují štěpné produkty dusíkatých látek a bílkovin. Vůně je obecně čiré nejen po filtraci, ale i před ní. V lahvi je jiskrné s krásným odleskem. Po filtraci je vždy víno více čiré a jiskrné.

Barva je před filtrací často výraznější, žlutější, zůstává v zásadě zachována i po filtraci. Před lahvi vykazuje výrazné zvětšení důsledkem zasiření a v lahvi je již opět sytější a libivější, i když ne tolik, jako před filtrací. Podle literatury je u přírodních bílých vín žádoucí barva světle žlutozelenkavá nebo zelenožlutá s různým odstínem až do zlatova. Dáno odrůdou i stařím.

Chuť a buket vína velmi ovlivňují štěpné produkty dusíkatých látek a bílkovin. Vůně je obecně čiré nejen po filtraci, ale i před ní. V lahvi je jiskrné s krásným odleskem. Po filtraci je vždy víno více čiré a jiskrné.

Barva je před filtrací často výraznější, žlutější, zůstává v zásadě zachována i po filtraci. Před lahvi vykazuje výrazné zvětšení důsledkem zasiření a v lahvi je již opět sytější a libivější, i když ne tolik, jako před filtrací. Podle literatury je u přírodních bílých vín žádoucí barva světle žlutozelenkavá nebo zelenožlutá s různým odstínem až do zlatova. Dáno odrůdou i stařím.

Chuť a buket vína velmi ovlivňují štěpné produkty dusíkatých látek a bílkovin. Vůně je obecně čiré nejen po filtraci, ale i před ní. V lahvi je jiskrné s krásným odleskem. Po filtraci je vždy víno více čiré a jiskrné.

Barva je před filtrací často výraznější, žlutější, zůstává v zásadě zachována i po filtraci. Před lahvi vykazuje výrazné zvětšení důsledkem zasiření a v lahvi je již opět sytější a libivější, i když ne tolik, jako před filtrací. Podle literatury je u přírodních bílých vín žádoucí barva světle žlutozelenkavá nebo zelenožlutá s různým odstínem až do zlatova. Dáno odrůdou i stařím.

Chuť a buket vína velmi ovlivňují štěpné produkty dusíkatých látek a bílkovin. Vůně je obecně čiré nejen po filtraci, ale i před ní. V lahvi je jiskrné s krásným odleskem. Po filtraci je vždy víno více čiré a jiskrné.

Barva je před filtrací často výraznější, žlutější, zůstává v zásadě zachována i po filtraci. Před lahvi vykazuje výrazné zvětšení důsledkem zasiření a v lahvi je již opět sytější a libivější, i když ne tolik, jako před filtrací. Podle literatury je u přírodních bílých vín žádoucí barva světle žlutozelenkavá nebo zelenožlutá s různým odstínem až do zlatova. Dáno odrůdou i stařím.

Chuť a buket vína velmi ovlivňují štěpné produkty dusíkatých látek a bílkovin. Vůně je obecně čiré nejen po filtraci, ale i před ní. V lahvi je jiskrné s krásným odleskem. Po filtraci je vždy víno více čiré a jiskrné.

Barva je před filtrací často výraznější, žlutější, zůstává v zásadě zachována i po filtraci. Před lahvi vykazuje výrazné zvětšení důsledkem zasiření a v lahvi je již opět sytější a libivější, i když ne tolik, jako před filtrací. Podle literatury je u přírodních bílých vín žádoucí barva světle žlutozelenkavá nebo zelenožlutá s různým odstínem až do zlatova. Dáno odrůdou i stařím.

Chuť a buket vína velmi ovlivňují štěpné produkty dusíkatých látek a bílkovin. Vůně je obecně čiré nejen po filtraci, ale i před ní. V lahvi je jiskrné s krásným odleskem. Po filtraci je vždy víno více čiré a jiskrné.
Tabulka 4.9.1: celkové zhodnocení senzorických změn v jednotlivých stupních úpravy vína

<table>
<thead>
<tr>
<th></th>
<th>před filtr.</th>
<th>po filtraci</th>
<th>před lahví</th>
<th>v lahvi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Čirost, čistota</td>
<td>čiré,</td>
<td>čiré, jiskrné</td>
<td>čiré,</td>
<td>čiré, jiskrné</td>
</tr>
<tr>
<td>Barva, intenzita</td>
<td>světlá žlutozelená sytější</td>
<td>sytější žlutozelená</td>
<td>žlutozelená, světlejší</td>
<td>bledě žlutozelená, sytější</td>
</tr>
<tr>
<td>Vůně</td>
<td>intenzivní, těžší komplexní, různorodá, vyvážená</td>
<td>výrazné, intenzivní komplexní, sladší, jemnější</td>
<td>Jednodušší Výraznější l tón</td>
<td>čistší, jemnější ne tolik komplexní, výrazně odrů dová</td>
</tr>
<tr>
<td>Chutě</td>
<td>malinko sladší</td>
<td>trpší v dochuti méně sladká</td>
<td>kyselejší</td>
<td>dochutí kyselejší, alkoholičtější</td>
</tr>
<tr>
<td>Viskozita</td>
<td>Větší kapky stékají pomaleji</td>
<td>větší kapky stékají v delší a širší pramínky, soudržné</td>
<td>menší kapičky, tečou rychleji</td>
<td>méně viskozní, bez dlouhých kapek, nahoře jemné kapičky, dole větší, tvoří okraj a stéká</td>
</tr>
</tbody>
</table>
4.10. Vybrané validační parametry

Ve druhé části diplomové práce byla provedena validace metody stanovení redukujících sacharidů na automatickém analyzátoru. Jednalo se o interní validaci v rámci jedné laboratoře. Smyslem validace bylo charakterizovat tuto pracovní metodu z hlediska jejího omezení a možného využití k rutinním analýzám. Výsledky stanovení na analyzátoru byly srovnány s výsledky identického analytického postupu, který byl proveden manuálně. Na automatickém analyzátoru byly nejdříve analyzovány standardy cukru a následně jednotlivé vzorky vín.

4.10.1 Shodnost

1.1 Směrodatná odchylka

Směrodatná odchylka je definována podle vzorce v kapitole 2.3.1. Pro výpočet směrodatné odchylky byly použity průměrné hodnoty výsek píků pro jednotlivé standardy sacharosy o koncentracích v rozsahu 1 až 20 g.l\(^{-1}\) (tabulka 4.10.1). Míra shodnosti počítaná jako směrodatná odchylka výsledků zkoušek se pohybovala u nižších hodnot koncentrace kolem hodnoty 0,2 procentuálně v průměru 2,5 %. Od koncentrace 8g/l se hodnota směrodatné odchylky pohybovala kolem 0,05 tj. 0,43 %. Při koncentraci 16 g/l byla hodnota 0,16 tj. 1%. Směrodatná odchylka byla nejvyšší při koncentraci 6 g/l a sice 0,7 tj. 3,8%. Těsnost shody mezi navzájem nezávislými výsledky zkoušek je při vyšších koncentracích analyzované látky vyšší, měření je tedy přesnější s nižší procentuální chybou jednotlivých měření. Lze konstatovat, že analyzátor je při nižší koncentraci analyzované látky méně citlivý na přesnější stanovení.

1.2 Opakovatelnost metody

Pro stanovení opakovatelnosti byly použity jednotlivé standardy sacharosy v koncentračním rozmezí 1 – 20 g.l\(^{-1}\)(tabulka 4.10.1) Každý ze standardů byl analyzován celkem šestkrát, k výpočtu byla použita směrodatná odchylka stanovení jednotlivých standardů a byla vypočítána dovolená diference. Opakovatelnost byla vypočtena podle vzorce v kapitole 2.3.1. Dílčí údaje jsou uvedeny v příloze v tabulce 9.10.
Tabulka 4.10.1: výsledky stanovení automatickým analyzátorom analýza standardů sacharosy

<table>
<thead>
<tr>
<th>koncentrace glukosy g.l(^{-1})</th>
<th>průměrná hodnota výšky píku (cm)</th>
<th>směrodatná odchylka (s(_x))</th>
<th>RDS Relativní (s(_x)) v %</th>
<th>Opakovanost R(_{max})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,75</td>
<td>0,105</td>
<td>2,8</td>
<td>0,294</td>
</tr>
<tr>
<td>2</td>
<td>7,17</td>
<td>0,234</td>
<td>3,3</td>
<td>0,655</td>
</tr>
<tr>
<td>3</td>
<td>10,60</td>
<td>0,258</td>
<td>2,4</td>
<td>0,722</td>
</tr>
<tr>
<td>4</td>
<td>13,21</td>
<td>0,209</td>
<td>1,6</td>
<td>0,585</td>
</tr>
<tr>
<td>6</td>
<td>18,92</td>
<td>0,722</td>
<td>3,8</td>
<td>2,02</td>
</tr>
<tr>
<td>8</td>
<td>9,43</td>
<td>0,067</td>
<td>0,7</td>
<td>0,187</td>
</tr>
<tr>
<td>12</td>
<td>12,82</td>
<td>0,045</td>
<td>0,4</td>
<td>0,126</td>
</tr>
<tr>
<td>16</td>
<td>15,47</td>
<td>0,156</td>
<td>1,0</td>
<td>0,437</td>
</tr>
<tr>
<td>20</td>
<td>17,77</td>
<td>0,045</td>
<td>0,3</td>
<td>0,126</td>
</tr>
</tbody>
</table>

Dovolená diference paralelních stanovení je nejvyšší u standardu 6 g/l jako tomu bylo i v případě směrodatné odchylky. Pro nižší koncentrace se hodnota diference pohybuje v rozmezí 0,3 až 0,7 v případě vyšší koncentrace standardu tedy od 8 g/l je hodnota diference od 0,1 do 0,4. Což potvrzuje vyšší citlivost analyzátoru při stanovení vyšší koncentrace standardu zminěnou v případě shodnosti.

4.10.2 Přesnost metody

2.1 Test regresní rovnice

Pomocí tohoto testu se zjišťuje, zda je soustavná chyba konstantní, nebo proporcionální, tj.závislá na obsahu analytu Pro koncentrace standardů sacharosy v rozmezí 1 až 20 g.l\(^{-1}\) byla zjištěna odezva analyzátoru viz. tabulka 9.10. v příloze a vzájemná závislost byla vyjádřena kalibrační křivkou lineární závislosti. (graf 4.10.2)
Pro dobrou rozlišitelnost výšky jednotlivých píků při opakované analýze téhož standardu byl snížen rozsah zapisovače z 1V na 50mV. Pro zápis analýzy vyšší koncentrace standardu se však pík nevešel celý na zapisovací papír, proto bylo nutno opět snížit příjem zapisovače na 20 mV. V souladu s tím byly vytvořeny dvě regresní rovnice v závislosti na koncentraci standardu. Regresní rovnice pro koncentraci cukru 1 až 6 g.l⁻¹ má tvar $y = 30,115x + 1,0932$ Pro 8 až 20 g.l⁻¹ je $y = 6,9175x + 4,188$. Protože $b \neq 1$ byla zjištěna soustavná chyba. Dle výsledků stanovení shodnosti a opakovatelnosti bylo zde také zjištěno, že soustavná chyba není konstantní ale proporcionální, závislá na obsahu analytu.

4.10.3 Volba kalibračního modelu

3.1 Linearita

Na základě měření bylo zjištěno, zda je přímková závislost mezi dvěma náhodnými proměnnými, tj. odezvou instrumentace (analytický signál) a koncentraci analytu lineární. Pro koncentrace standardů sacharosy v rozmezí 1 až 20 g.l⁻¹ byla naměřena odezva analyzátoru viz. tabulka 9.10. v příloze a vzájemná závislost byla vyjádřena kalibrační křivkou lineární závislosti. (graf 4.10.2) Zároveň byl podle vzorce uvedeného v kapitole 2.3.3 vypočítán korelační koeficient, který udává těsnost vzájemné závislosti (r). Korelační koeficient stanovený ve všech analytických měřeních měl hodnotu $r = 1$. Čím více se korelační koeficient blíží jedné, tím je závislost obou proměnných těsnější. Při lineární závislosti se $r = +1$. Výsledek všech analytických měření měl lineární závislost.

3.2 Mez detekce

Mez detekce odpovídá koncentraci, pro kterou je analytický signál významně odlišný od šumu. Nejprve byl zaznamenán šum detektoru. Následně bylo určeno maximální kolísání základní linie v oblasti dané dvacetinásobkem pološířky píku podle vzorce uvedeného v kapitole 2.3.3. $h_{max} = 4$
4.11. Porovnání výsledků stanovení sacharidů ve víně prostřednictvím analyzátoru a manuálním postupem

Dle pracovního postupu podle kapitoly 3.4 byla prostřednictvím automatického analyzátoru stanovena koncentrace sacharidů následujících vzorků vín.

- bílá vína: Sylvánské zelené (SZ), Ryzlink rýnský (RR), Tramin červený (TC), Chardonnay (CH), Veltlínské zelené (VZ)
- modrá vína: Modrý portugal (MP), Cabernet sauvignon (CS), Frankovka (F), Rulandské modré (RM)

Následně byly tytéž vzorky analyzovány manuálně a byly dle postupu stanovení uvedeném v kapitole 3.4. zjištěny koncentrace sacharidů.

Výsledky měření analytickým analyzátorom a výsledky manuálního stanovení v laboratoři jsou uvedeny v tabulce 4.10.3.

Tabulka 4.10.3.1: analýza vzorků bílého vína provedená automatickým analyzátorom a vypočtená koncentrace, srovnání s výsledky ručního stanovení

<table>
<thead>
<tr>
<th>vzorky bílé víno</th>
<th>výška píku</th>
<th>vypočtená koncentrace</th>
<th>ručně</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>měření č.1</td>
<td>měření č.2</td>
<td>měření č.3</td>
</tr>
<tr>
<td>SZ</td>
<td>7,6</td>
<td>7,7</td>
<td>7,6</td>
</tr>
<tr>
<td>RR</td>
<td>3,8</td>
<td>3,8</td>
<td>3,8</td>
</tr>
<tr>
<td>TC</td>
<td>9,8</td>
<td>10,1</td>
<td>9,9</td>
</tr>
<tr>
<td>CH</td>
<td>13,9</td>
<td>13,8</td>
<td>13,8</td>
</tr>
<tr>
<td>VZ</td>
<td>1,6</td>
<td>1,6</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Tabulka 4.10.3.2: analýza vzorků červeného vína provedená automatickým analyzátorom a vypočtená koncentrace, srovnání s výsledky ručního stanovení

<table>
<thead>
<tr>
<th>vzorky modré víno</th>
<th>výška píku</th>
<th>vypočtená koncentrace</th>
<th>ručně</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>měření č.1</td>
<td>měření č.2</td>
<td>měření č.3</td>
</tr>
<tr>
<td>MP</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
</tr>
<tr>
<td>CS</td>
<td>11,4</td>
<td>11,4</td>
<td>11,6</td>
</tr>
<tr>
<td>F</td>
<td>2,2</td>
<td>2,2</td>
<td>2,2</td>
</tr>
<tr>
<td>RM</td>
<td>1,8</td>
<td>1,8</td>
<td>1,8</td>
</tr>
</tbody>
</table>
Srovnáním výsledků stanovení koncentrace sacharidů v jednotlivých vínech jednotlivými pracovními postupy bylo zjištěno, že ručním stanovením byla stanovena nepatrně nižší koncentrace sacharidů v analyzovaných vzorcích, než prostřednictvím automatického analyzátoru. Stanovení automatického analyzátoru je tedy přesnější.
5. ZÁVĚR

V literární části této diplomové práce je krátce představen postup výroby vín od lisování až po lahvování. Dále jsou zde zmíněny choroby a vady vín, zdravotní prospěšnost, vývoj produkce až po kontrolní orgány. Také hodnocení vín a validace automatického analyzátoru. Automatický analyzátor byl použit pro srovnání přesnosti měření v případě stejného analytického postupu uskutečněného pomocí analyzátoru a manuálním procesem.

V této diplomové práci byl sledován vývoj čtyř družstevních vín od okamžiku první filtrace, tedy po prvním stočení, přes školení a formování těchto vín až po jejich nahlavování. Postupně byly analytické měřený základní parametry ve vývoji kvality vín vždy po určitým technologickém zásahu vinaře. Při měření byly částečně aplikovány jednoduché běžně používané techniky měření, ostatní parametry byly měřeny analytickými postupy podle návodu do laboratorních cvičení. Analýzy označené EEC No 2676/90 jsou shodné s referenčními metodami platnými v členských státech Evropského společenství.

Sledovaly se změny v chemickém složení jednotlivých druhů vín od okamžiku první filtrace, tedy po prvním stočení, přes školení a formování těchto vín až po jejich nahlavování. Postupně byly analytické měřeny základní parametry ve vývoji kvality vín vždy po určitým technologickém zásahu vinaře. Při měření byly částečně aplikovány jednoduché běžně používané techniky měření, ostatní parametry byly měřeny analytickými postupy podle návodu do laboratorních cvičení. Analýzy označené EEC No 2676/90 jsou shodné s referenčními metodami platnými v členských státech Evropského společenství.

Sledovaly se změny v chemickém složení jednotlivých druhů vín od okamžiku první filtrace, tedy po prvním stočení, přes školení a formování těchto vín až po jejich nahlavování. Postupně byly analytické měřeny základní parametry ve vývoji kvality vín vždy po určitým technologickém zásahu vinaře. Při měření byly částečně aplikovány jednoduché běžně používané techniky měření, ostatní parametry byly měřeny analytickými postupy podle návodu do laboratorních cvičení. Analýzy označené EEC No 2676/90 jsou shodné s referenčními metodami platnými v členských státech Evropského společenství.

Následovalo jemné čiření Vysinou a před lahvováním prostředkem Ferroplex na stabilizaci proti nežádoucím kovovým zákalům. Před lahvováním je použita membránová filtrace jako prevence proti mikrobiologickým změnám vina. V lahvicích je pak dosířeno tekutou formou síry.

Po filtraci dochází u všech vín k mírnému snížení koncentrace cukru a zároveň k mírnému zvýšení koncentrace ethanolu. Poklesla i hustota. To vše svědčí o mikrobiologické aktivitě, která může probíhat činností kvasinek i bakterií. Koncentrace volného oxidu siřičitého po filtraci a především před lahví, kdy došlo k poklesu, to také umožňuje. Po filtraci, stejně tak jako po čiření došlo k poměrnému snížení koncentrace netěkavých kyselin vlivem vypadnutí vinného kamene, které se projevilo i v poklesu hodnoty extraktu. Ke snížení přispěl i mikrobiologický proces odbourávání kyselin vyznáující se po čiření také vzrůstem těkavých kyselin. K tomu přispělo i částečné provzdušnění vina během jeho technologických úprav. Proces čiření zásadně eliminoval i výskyt termolabilních bílkovin. Před lahví byl u všech vín zjištěn mírný nárůst koncentrace cukru v důsledku doplňování hladiny vina v sudech pro zamezení přístupu vzduchu. V lahvi se již hodnoty nikdy nezměnily, kromě koncentrace všech kyselin a to především netěkavých kyselin. Koncentrace siřičitého se změnila v souladu s jeho přidavkem a v souvislosti s provzdušněním vina, během jeho úprav.

Při stanovení vybraných validačních parametrů bylo zjištěno, že analyzátor je schopen stanovit vyšší koncentrace analyzované látky s větší přesností, což potvrdilo i stanovení opakovaností a přesnosti metody, kdy bylo zjištěno, že soustavná chyba není konstantní ale proporcionální, závislá na obsahu analytu. Výsledek všech analytických měření měl lineární závislost.
6. SEZNAM POUŽITÝCH ZDROJŮ

ISBN 80-7242-039-9

ISBN 80-7169-754-0

ISBN 80-86031-36-5

Vydavatelství Vikend 2001

7. SEZNAM POUŽITÝCH ZKRATKŮ A SYMBOLŮ

VZ Veltlínské zelené
RV Ryzlink vlašský
RB Rulandské bílé
RS Rulandské šedé
IP integrovaná produkce
ES Evropské společenství
RDS relativní směrodatná odchylka
8. SEZNAM PŘÍLOH

Tabulka 9.1
rozdíly ve změně koncentrace kyselin a porovnání se změnou koncentrace SO₂
Tabulka 9.2
Výsledky vybraných stanovení Ryzlink vlašský
Tabulka 9.3
Výsledky vybraných stanovení Veltlínské zelené
Tabulka 9.4
Výsledky vybraných stanovení Rulandské bílé
Tabulka 9.5
Výsledky vybraných stanovení Rulandské šedé

Graf 9.1:
Gravimetrické stanovení koncentrace cukru v jednotlivých vínech
Graf 9.2:
Stanovení alkoholu pyknometricky v jednotlivých vínech
Graf 9.3:
Stanovení všech titrovatelných kyselin v jednotlivých vínech
Graf 9.4:
Stanovení těkavých kyselin modifikovanou metodou
Graf 9.5:
stanovení netěkavých kyselin v jednotlivých vínech podle fáze výroby
Graf 9.6:
stanovení koncentrace SO₂ v jednotlivých vínech podle fáze výroby
Graf 9.7:
stanovení koncentrace SO₂ vázaný
Graf 9.8:
stanovení koncentrace SO₂ volný
Graf 9.9:
Stanovení oxidu siřičitého v jednotlivých vínech podle fáze výroby
9. PŘÍLOHY

Tabulka 9.1 rozdíly ve změně koncentrace těkavých a vázaných kyselin v průběhu jednotlivých stanovení podle stupně výroby vína a porovnání se změnou koncentrace volného a vázaného oxidu sířečitého

Veltlínské zelené

<table>
<thead>
<tr>
<th>VZ</th>
<th>těk. kyseliny (g/l)</th>
<th>volný SO2 (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>po filtraci</td>
<td>- 0,100</td>
<td>po filtraci</td>
</tr>
<tr>
<td>před lahví</td>
<td>+ 0,222</td>
<td>před lahví</td>
</tr>
<tr>
<td>v lahví</td>
<td>- 0,090</td>
<td>v lahví</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>netěkavé kyseliny</th>
<th>vázaný SO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>po filtraci</td>
<td>- 0,113</td>
</tr>
<tr>
<td>před lahví</td>
<td>- 0,104</td>
</tr>
<tr>
<td>v lahví</td>
<td>+ 0,374</td>
</tr>
</tbody>
</table>

Ryzlink vlašský

<table>
<thead>
<tr>
<th>RV</th>
<th>těk. kyseliny (g/l)</th>
<th>volný SO2 (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>po filtraci</td>
<td>- 0,168</td>
<td>po filtraci</td>
</tr>
<tr>
<td>před lahví</td>
<td>+ 0,204</td>
<td>před lahví</td>
</tr>
<tr>
<td>v lahví</td>
<td>- 0,072</td>
<td>v lahví</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>netěkavé kyseliny</th>
<th>vázaný SO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>po filtraci</td>
<td>- 0,505</td>
</tr>
<tr>
<td>před lahví</td>
<td>- 0,455</td>
</tr>
<tr>
<td>v lahví</td>
<td>+ 0,350</td>
</tr>
</tbody>
</table>

Rulandské bílé

<table>
<thead>
<tr>
<th>RB</th>
<th>těk. kyseliny (g/l)</th>
<th>volný SO2 (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>po filtraci</td>
<td>- 0,240</td>
<td>po filtraci</td>
</tr>
<tr>
<td>před lahví</td>
<td>+ 0,240</td>
<td>před lahví</td>
</tr>
<tr>
<td>v lahví</td>
<td>- 0,066</td>
<td>v lahví</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>netěkavé kyseliny</th>
<th>vázaný SO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>po filtraci</td>
<td>- 0,340</td>
</tr>
<tr>
<td>před lahví</td>
<td>- 0,560</td>
</tr>
<tr>
<td>v lahví</td>
<td>+ 0,390</td>
</tr>
</tbody>
</table>

Rulandské šedé

<table>
<thead>
<tr>
<th>RS</th>
<th>těk. kyseliny (g/l)</th>
<th>volný SO2 (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>po filtraci</td>
<td>- 0,180</td>
<td>po filtraci</td>
</tr>
<tr>
<td>před lahví</td>
<td>+ 0,260</td>
<td>před lahví</td>
</tr>
<tr>
<td>v lahví</td>
<td>- 0,054</td>
<td>v lahví</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>netěkavé kyseliny</th>
<th>vázaný SO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>po filtraci</td>
<td>- 0,420</td>
</tr>
<tr>
<td>před lahví</td>
<td>- 0,480</td>
</tr>
<tr>
<td>v lahví</td>
<td>+ 0,340</td>
</tr>
</tbody>
</table>
Tabulka 9.2 Výsledky vybraných stanovení podle norem EEC a směrodatné odchylky

RYZLINK VLAŠSKÝ

<table>
<thead>
<tr>
<th>Parametr</th>
<th>před filtrací</th>
<th>po filtraci</th>
<th>před lahví</th>
<th>lahev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hustota vína (g/ml)</td>
<td>0,99065</td>
<td>0,98931</td>
<td>0,98895</td>
<td>0,98890</td>
</tr>
<tr>
<td>RDS %</td>
<td>±0,099</td>
<td>±0,066</td>
<td>±0,0782</td>
<td>±0,056</td>
</tr>
<tr>
<td>Alkohol (obj %)</td>
<td>14,2</td>
<td>14,3</td>
<td>14,1</td>
<td>14,0</td>
</tr>
<tr>
<td>RDS %</td>
<td>±0,148</td>
<td>±0,062</td>
<td>±0,038</td>
<td>±0,063</td>
</tr>
<tr>
<td>Redukující cukry (g/l)</td>
<td>1,7</td>
<td>1,6</td>
<td>1,7</td>
<td>1,7</td>
</tr>
<tr>
<td>RDS %</td>
<td>±0,100</td>
<td>±1,304</td>
<td>±2,436</td>
<td>±0,853</td>
</tr>
<tr>
<td>pH</td>
<td>3,18</td>
<td>3,25</td>
<td>3,24</td>
<td>3,3</td>
</tr>
<tr>
<td>RDS %</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,02</td>
</tr>
<tr>
<td>Titrovaná kyseliny (g/l)</td>
<td>5,55</td>
<td>4,83</td>
<td>4,63</td>
<td>4,89</td>
</tr>
<tr>
<td>RDS %</td>
<td>±0,827</td>
<td>±1,860</td>
<td>±0,00</td>
<td>±1,860</td>
</tr>
<tr>
<td>Těkavé kyseliny (g/l)</td>
<td>0,372</td>
<td>0,204</td>
<td>0,408</td>
<td>0,336</td>
</tr>
<tr>
<td>RDS %</td>
<td>±0,00</td>
<td>±0,067</td>
<td>±0,00</td>
<td>±0,006</td>
</tr>
<tr>
<td>Netěkavé kyseliny (g/l)</td>
<td>5,08</td>
<td>4,57</td>
<td>4,12</td>
<td>4,47</td>
</tr>
<tr>
<td>RDS %</td>
<td>±0,324</td>
<td>±0,657</td>
<td>±0,00</td>
<td>±0,530</td>
</tr>
<tr>
<td>Extrakt veškerý (g/l)</td>
<td>23,2</td>
<td>20,6</td>
<td>18,0</td>
<td>18,0</td>
</tr>
<tr>
<td>RDS %</td>
<td>±0,568</td>
<td>±0,342</td>
<td>±1,340</td>
<td>±1,253</td>
</tr>
<tr>
<td>Extrakt bezcukerný</td>
<td>21,5</td>
<td>19,0</td>
<td>16,3</td>
<td>16,3</td>
</tr>
<tr>
<td>RDS %</td>
<td>±0,438</td>
<td>±0,177</td>
<td>±0,937</td>
<td>±0,980</td>
</tr>
<tr>
<td>Kys. šířičitá veškerá (mg/l)</td>
<td>116,4</td>
<td>144,9</td>
<td>152,5</td>
<td>201,1</td>
</tr>
<tr>
<td>RDS %</td>
<td>±1,096</td>
<td>±1,860</td>
<td>±1,513</td>
<td>±0,670</td>
</tr>
<tr>
<td>Kys. šířičitá volná (mg/l)</td>
<td>17,16</td>
<td>38,13</td>
<td>34,31</td>
<td>43,85</td>
</tr>
<tr>
<td>RDS %</td>
<td>±2,311</td>
<td>±0,00</td>
<td>±1,55</td>
<td>±0,00</td>
</tr>
<tr>
<td>Kys. šířičitá vázaná (mg/l)</td>
<td>99,27</td>
<td>106,77</td>
<td>118,19</td>
<td>157,25</td>
</tr>
<tr>
<td>Bílkoviny</td>
<td>výskyt</td>
<td>výskyt vice</td>
<td>v pořádku</td>
<td>v pořádku</td>
</tr>
<tr>
<td>Vinný kámen</td>
<td>vypadl</td>
<td>vypadl</td>
<td>vypadl</td>
<td>v pořádku</td>
</tr>
</tbody>
</table>
VELTLÍNSKÉ ZELENÉ

<table>
<thead>
<tr>
<th></th>
<th>před filtrace</th>
<th>po filtraci</th>
<th>před lahví</th>
<th>lahev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hustota vína (g/ml)</td>
<td>0,99167</td>
<td>0,99108</td>
<td>0,99089</td>
<td>0,99080</td>
</tr>
<tr>
<td>RDS % (+/-)</td>
<td>0,044</td>
<td>0,045</td>
<td>0,0069</td>
<td>0,0046</td>
</tr>
<tr>
<td>Alkohol (obj %)</td>
<td>13,7</td>
<td>14,0</td>
<td>13,8</td>
<td>13,6</td>
</tr>
<tr>
<td>RDS % (+/-)</td>
<td>0,112</td>
<td>0,113</td>
<td>0,180</td>
<td>0,054</td>
</tr>
<tr>
<td>Redukující cukry (g/l)</td>
<td>3,8</td>
<td>3,7</td>
<td>3,9</td>
<td>3,9</td>
</tr>
<tr>
<td>RDS % (+/-)</td>
<td>1,607</td>
<td>2,025</td>
<td>2,620</td>
<td>2,875</td>
</tr>
<tr>
<td>pH</td>
<td>3,46</td>
<td>3,46</td>
<td>3,45</td>
<td>3,41</td>
</tr>
<tr>
<td>RDS % (+/-)</td>
<td>0,00</td>
<td>0,02</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>Titrovat. Kyseliny (g/l)</td>
<td>4,2</td>
<td>3,87</td>
<td>4,05</td>
<td>4,30</td>
</tr>
<tr>
<td>RDS % (+/-)</td>
<td>2,318</td>
<td>1,131</td>
<td>0,00</td>
<td>0,529</td>
</tr>
<tr>
<td>Těkavé Kyseliny (g/l)</td>
<td>0,333</td>
<td>0,234</td>
<td>0,456</td>
<td>0,366</td>
</tr>
<tr>
<td>RDS % (+/-)</td>
<td>1,216</td>
<td>1,274</td>
<td>0,00</td>
<td>1,714</td>
</tr>
<tr>
<td>Netěkavé Kyseliny (g/l)</td>
<td>3,69</td>
<td>3,58</td>
<td>3,48</td>
<td>3,85</td>
</tr>
<tr>
<td>RDS % (+/-)</td>
<td>1,130</td>
<td>1,010</td>
<td>0,00</td>
<td>0,890</td>
</tr>
<tr>
<td>Extrakt Veškerý (g/l)</td>
<td>23,2</td>
<td>20,6</td>
<td>20,6</td>
<td>20,6</td>
</tr>
<tr>
<td>RDS % (+/-)</td>
<td>0,431</td>
<td>0,530</td>
<td>0,390</td>
<td>0,600</td>
</tr>
<tr>
<td>Extrakt bezcukerný</td>
<td>19,4</td>
<td>16,9</td>
<td>16,7</td>
<td>16,7</td>
</tr>
<tr>
<td>RDS % (+/-)</td>
<td>0,331</td>
<td>0,692</td>
<td>0,466</td>
<td>0,598</td>
</tr>
<tr>
<td>Kys.šiřičitá veškerá (mg/l)</td>
<td>72,4</td>
<td>102,8</td>
<td>100,2</td>
<td>181,1</td>
</tr>
<tr>
<td>RDS % (+/-)</td>
<td>3,973</td>
<td>1,274</td>
<td>1,208</td>
<td>2,977</td>
</tr>
<tr>
<td>Kys.šiřičitá volná (mg/l)</td>
<td>23,83</td>
<td>43,85</td>
<td>28,25</td>
<td>79,12</td>
</tr>
<tr>
<td>RDS % (+/-)</td>
<td>2,657</td>
<td>0,00</td>
<td>2,815</td>
<td>3,30</td>
</tr>
<tr>
<td>Kys.šiřičitá vázaná (mg/l)</td>
<td>48,61</td>
<td>58,96</td>
<td>71,96</td>
<td>101,99</td>
</tr>
<tr>
<td>Bílkoviny</td>
<td>výskyt</td>
<td>výskyt více</td>
<td>v pořádku</td>
<td>v pořádku</td>
</tr>
<tr>
<td>Vinný kámen</td>
<td>vypadl</td>
<td>vypadl</td>
<td>vypadl</td>
<td>v pořádku</td>
</tr>
</tbody>
</table>
Tabulka 9.4 Výsledky vybraných stanovení podle norem EEC a směrodatné odchylky měření

RULANDSKÉ BÍLÉ

<table>
<thead>
<tr>
<th></th>
<th>před filtrací</th>
<th>po filtraci</th>
<th>před lahví</th>
<th>lahev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hustota vína (g/ml)</td>
<td>0,99116</td>
<td>0,99063</td>
<td>0,98909</td>
<td>0,98900</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,067</td>
<td>0,063</td>
<td>1,193</td>
<td>0,017</td>
</tr>
<tr>
<td>Alkohol (obj %)</td>
<td>14,8</td>
<td>14,9</td>
<td>14,6</td>
<td>14,4</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,084</td>
<td>0,106</td>
<td>0,073</td>
<td>0,019</td>
</tr>
<tr>
<td>Redukující cukry (g/l)</td>
<td>3,6</td>
<td>3,5</td>
<td>3,7</td>
<td>3,7</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>1,092</td>
<td>2,50</td>
<td>1,612</td>
<td>3,305</td>
</tr>
<tr>
<td>pH</td>
<td>3,51</td>
<td>3,53</td>
<td>3,57</td>
<td>3,41</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Titrovat. Kyseliny (g/l)</td>
<td>4,5</td>
<td>3,86</td>
<td>3,60</td>
<td>3,91</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,507</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Těkavé Kyseliny (g/l)</td>
<td>0,474</td>
<td>0,234</td>
<td>0,474</td>
<td>0,408</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>1,790</td>
<td>2,626</td>
<td>1,790</td>
<td>0,00</td>
</tr>
<tr>
<td>Netěkavé Kyseliny (g/l)</td>
<td>3,91</td>
<td>3,57</td>
<td>3,01</td>
<td>3,4</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,780</td>
<td>1,200</td>
<td>0,870</td>
<td>0,00</td>
</tr>
<tr>
<td>Extrakt Veškerý (g/l)</td>
<td>25,8</td>
<td>23,2</td>
<td>20,6</td>
<td>20,6</td>
</tr>
<tr>
<td>Extrakt bez cukerný</td>
<td>22,2</td>
<td>19,7</td>
<td>16,9</td>
<td>16,9</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,137</td>
<td>1,010</td>
<td>0,462</td>
<td>2,729</td>
</tr>
<tr>
<td>Kys.sirůčitá veškerá (mg/l)</td>
<td>81,5</td>
<td>113,11</td>
<td>122,01</td>
<td>239,74</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,827</td>
<td>3,23</td>
<td>2,643</td>
<td>1,079</td>
</tr>
<tr>
<td>Kys.sirůčitá volná (mg/l)</td>
<td>17,16</td>
<td>32,72</td>
<td>32,89</td>
<td>93,41</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,00</td>
<td>2,104</td>
<td>3,516</td>
<td>2,886</td>
</tr>
<tr>
<td>Kys.sirůčitá vázaná (mg/l)</td>
<td>64,34</td>
<td>80,39</td>
<td>89,12</td>
<td>146,33</td>
</tr>
<tr>
<td>Bílkoviny</td>
<td>vypadl</td>
<td>vypadl</td>
<td>vypadl</td>
<td>v pořádku</td>
</tr>
<tr>
<td>Vinný kámen</td>
<td>vypadl</td>
<td>vypadl</td>
<td>vypadl</td>
<td>v pořádku</td>
</tr>
<tr>
<td></td>
<td>před filtrací</td>
<td>po filtraci</td>
<td>před lahví</td>
<td>lahev</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Hustota vína (g/ml)</td>
<td>0,99185</td>
<td>0,99129</td>
<td>0,99056</td>
<td>0,9906</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,088</td>
<td>0,078</td>
<td>0,033</td>
<td>0,025</td>
</tr>
<tr>
<td>Alkohol (obj %)</td>
<td>13,9</td>
<td>14,1</td>
<td>13,9</td>
<td>13,9</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,079</td>
<td>0,050</td>
<td>0,017</td>
<td>0,232</td>
</tr>
<tr>
<td>Redukující cukry (g/l)</td>
<td>6,6</td>
<td>6,5</td>
<td>6,9</td>
<td>6,9</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,905</td>
<td>1,728</td>
<td>2,183</td>
<td>1,283</td>
</tr>
<tr>
<td>pH</td>
<td>3,41</td>
<td>3,43</td>
<td>3,46</td>
<td>3,43</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Titrovan. Kyseliny (g/l)</td>
<td>4,66</td>
<td>4,02</td>
<td>3,86</td>
<td>4,14</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,975</td>
<td>2,413</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Těkavé Kyseliny (g/l)</td>
<td>0,36</td>
<td>0,18</td>
<td>0,44</td>
<td>0,39</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,00</td>
<td>0,00</td>
<td>3,822</td>
<td>0,00</td>
</tr>
<tr>
<td>Netěkavé Kyseliny (g/l)</td>
<td>4,21</td>
<td>3,79</td>
<td>3,31</td>
<td>3,65</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,324</td>
<td>0,925</td>
<td>1,540</td>
<td>0,00</td>
</tr>
<tr>
<td>Extrakt veškerý (g/l)</td>
<td>25,8</td>
<td>23,2</td>
<td>23,2</td>
<td>23,2</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,234</td>
<td>0,792</td>
<td>1,450</td>
<td>0,672</td>
</tr>
<tr>
<td>Extrakt bezcukerný</td>
<td>18,4</td>
<td>16,7</td>
<td>16,3</td>
<td>16,3</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,289</td>
<td>0,869</td>
<td>1,098</td>
<td>0,546</td>
</tr>
<tr>
<td>Kys. siřičitá veškerá (mg/l)</td>
<td>90,9</td>
<td>118,67</td>
<td>120,3</td>
<td>197,5</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,00</td>
<td>0,568</td>
<td>0,697</td>
<td>1,937</td>
</tr>
<tr>
<td>Kys. siřičitá volná (mg/l)</td>
<td>20,97</td>
<td>40,03</td>
<td>30,03</td>
<td>57,19</td>
</tr>
<tr>
<td>RDS % (±)</td>
<td>0,00</td>
<td>2,715</td>
<td>3,104</td>
<td>0,00</td>
</tr>
<tr>
<td>Kys. siřičitá vázaná (mg/l)</td>
<td>69,94</td>
<td>78,64</td>
<td>90,24</td>
<td>140,3</td>
</tr>
<tr>
<td>Bílkoviny</td>
<td>výskyt</td>
<td>málo</td>
<td>v pořádku</td>
<td>v pořádku</td>
</tr>
<tr>
<td>Vinný kámen</td>
<td>vypadl</td>
<td>vypadl</td>
<td>vypadl</td>
<td>v pořádku</td>
</tr>
</tbody>
</table>
Graf 9.1: Gravimetrické stanovení koncentrace cukru v jednotlivých vínech podle fáze výroby

Graf 9.2: Stanovení alkoholu pyknometricky v jednotlivých vínech podle fáze výroby
Graf 9.3: Stanovení veškerých titrovatelných kyselin v jednotlivých vínech podle fází výroby

Graf 9.4: Stanovení těkavých kyselin modifikovanou metodou
Graf 9.5: stanovení netěkavých kyselin v jednotlivých vínech podle fáze výroby

Graf 9.6: stanovení koncentrace SO2 v jednotlivých vínech podle fáze výroby

SO2 veškerý
Graf 9.7: stanovení koncentrace SO2 v jednotlivých vínech podle fáze výroby

SO2 vázaný

Graf 9.8: stanovení koncentrace SO2 v jednotlivých vínech podle fáze výroby

SO2 volný
Graf 9.9: Stanovení oxidu siřičitého v jednotlivých vínech podle fáze výroby

Veltlinské zelené

Ryzlink vlašský
Rulandské bílé

Rulandské šedé
Tabulka 9.10: výška píku naměřená při analýze jednotlivých standardů měřených automatickým analyzátorem ŠKALAR

<table>
<thead>
<tr>
<th>standardy koncentrace glukosy (g.L⁻¹)</th>
<th>výška píku</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>měření č.1</td>
</tr>
<tr>
<td>1</td>
<td>3,7</td>
</tr>
<tr>
<td>2</td>
<td>6,9</td>
</tr>
<tr>
<td>3</td>
<td>10,4</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>17,5</td>
</tr>
<tr>
<td>8</td>
<td>9,35</td>
</tr>
<tr>
<td>12</td>
<td>12,8</td>
</tr>
<tr>
<td>16</td>
<td>15,2</td>
</tr>
<tr>
<td>20</td>
<td>17,7</td>
</tr>
</tbody>
</table>

Graf 4.10.4: záznam výsledku analýzy automatickým analyzátorem
standardy 1- 6 g.L⁻¹ sacharosy, nastavení zapisovače 50mV

Graf 4.10.5: záznam výsledku analýzy automatickým analyzátorem
Analýza 4 vzorků červeného vína