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Abstrakt

Cilem této dizertacni prace je vylepSit existujici detektory objektti pomoci sdileni
informace a vypoc¢tu mezi blizkymi pozicemi v obraze. Navrhuje dvé metody,
které jsou zalozené na Waldové sekvencnim testu pomérem pravdépodobnosti a
algoritmu WaldBoost. Prvni z nich, Farly non-Mazima Suppression, presunuje
rozhodovani o potlaceni nemaximalnich pozic ze zavérecné faze do faze vyhodnocovani
detektoru, ¢imz zamezuje zbytecnym vypoctum detektoru v nemaximélnich pozicich.
Metoda neighborhood suppression dopliiuje existujici detektory o schopnost zavrhnout
okolni pozice v obraze. Navrzené metody je mozné aplikovat na Sirokou skalu
detektoru. Vyhodnoceni obou metod dokazuji jejich vyrazné vyssi efektivitu v
porovnani s detektory, které vyhodnocuji jednotlivé pozice obrazu zvlast. Dizertace
navic prezentuje vysledky rozsdhlych experimentu, jejichz cilem bylo vyhodnotit

vlastnosti béznych obrazovych ptiznaku v nékolika detekénich tlohach a situacich.

Abstract

This thesis aims to improve existing scanning-window object detectors by exploiting
information shared among neighboring image windows. This goal is realized by two
novel methods which are build on the ideas of Wald’s Sequential Probability Ratio
Test and WaldBoost. Farly non-Mazima Suppression moves non-maxima suppression
decisions from a post-processing step to an early classification phase in order to
make the decisions as soon as possible and thus avoid normally wasted computations.
Neighborhood suppression enhances existing detectors with an ability to suppress
evaluation at overlapping positions. The proposed methods are applicable to a
wide range of detectors. Experiments show that both methods provide significantly
better speed-precision trade-off compared to state-of-the-art WaldBoost detectors
which process image windows independently. Additionally, the thesis presents results
of extensive experiments which evaluate commonly used image features in several

detection tasks and scenarios.
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Preface

Automatic detection of objects in images is an important task with applications
ranging from face detection in hand-held cameras and cloud-based photo collections
to general scene understanding and human-machine interaction. Development of
practical detectors is a scientific and engineering challenge which combines fields of
image processing, machine learning, and often hardware acceleration.

The range of methods for object detection is wide. One particular class of methods
scans images with a small scanning-window and tries to determine for each of the
windows separately if it contains an object of interest or if it contains background.
These methods rely on fast classifiers to make the decisions and on efficient features
to extract relevant information from the image windows.

Existing scanning-window detectors are fast and precise, able to detect even small
objects in Full HD video in real-time. However, computational resources are still not
sufficient in some situations and precision of detection has to be sacrificed for speed.

One drawback of many scanning-window detectors is that they process each
image window independently even though they overlap and share lot of common
information. In this thesis, I propose to make use of the shared information to
improve existing detectors.

I explore the idea of sharing local information and I refine it into two novel
practical detection methods. The first method augments existing detectors by an
ability to suppress their evaluation at neighboring position in an image. This way,
the detector is evaluated fewer times, saving significant computational effort.

The second method relies on the fact that objects cannot occupy the same
space in an image. If two objects were too close, a detector would not be able to
detect them anyway due to occlusion. This method lets neighboring image positions
compete among themselves. It progressively evaluates small parts of a detector at
the neighboring positions and gradually reject those positions which will not, with

high probability, give the best detection score.
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The proposed methods efficiently use the information shared among neighboring
image positions, and thus push speed-precision envelope of a range of state-of-the-art
detectors. Moreover, the two methods accelerate detection in different parts of an
image. The neighborhood suppression is effective in background areas while the
benefit of letting the detector locally compete improves speed mostly around objects.
Because of that, the methods complement each other very well and should provide

even greater benefits when combined.



CHAPTER 1

Introduction

This thesis focuses on scanning-window object detectors. Specifically, it extends
existing detectors to efficiently utilize information shared among neighboring image
windows. Theory of optimal sequential decision making [142, 124] is extended and
combined with boosting-based detectors resulting in two practical methods which
improve speed of pre-trained detectors by interlinking decisions at neighboring
image windows. Both of the methods, neighborhood suppression and Farly non-
Mazima Suppression (EnMS), require only unlabeled images as they, in different
ways, approximate the responses of the original detectors at the cost of a small
and manageable precision reduction. The novel detectors were tested on practical
problems demonstrating significantly improved speed-precision trade-off.

Over the years, many approaches to natural object detection [161] have been
proposed ranging from simple template matching and hand-designed ad-hoc de-
tectors [54, 73] to appearance-based [110, 119, 137, 124, 163, 21, 3] and part-based
detectors [29, 16, 81, 77, 76, 28, 27, 164, 2]. The methods differ in their strengths
and weaknesses; however, the best performing detectors of relatively rigid and visu-
ally distinct objects, especially at lower-resolution, are based on appearance-based
approaches coupled with sliding-window image scanning. Two examples of such
object classes are faces [158] and pedestrians [23].

Appearance-based detectors rely on discriminative and efficient feature extractors
which provide useful information to a classifier deciding between a background class
and one, or possibly more, object classes. In the simplest arrangement, the detection
classifier considers image windows independently one by one [137] — computing
the needed features, evaluating the decision function and outputting a per-window
confidence score. The classifier needs to be evaluated very densely in order not

to miss objects (> 90% overlap of adjacent regions at the same scale [18, 137] is
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typical).

Such scanning-window methods are simple, but computationally expensive due
to the large number of evaluated image windows. Most detectors improve speed by
employing classifiers with an attentional structure [137, 152, 85, 7,122, 8, 124, 12, 163]
which decide very fast on background areas and spend more time at ambiguous

positions.

Scanning-window detectors inevitably produce multiple positive responses per
object due to combination of the dense scanning grid and their inherent robustness
to small transformations. To get meaningful object positions, the confidence scores
are aggregated by a simple non-mazima suppression [137, 22| or, possibly, by more
elaborate methods, such as mean shift [17]. The non-mazima suppression assumes a
minimum spacing between objects and, in some cases, smoothness of the detector

responses.

The assumptions of the non-maxima suppression as well as the overlap of neigh-
boring image windows can both be exploited to speed-up detection. For example,
features [120, 18, 77] or their components [22] can be computed for the whole image
in a pre-processing step and shared among all classified windows. Recent advances in
convolutional neural networks [25, 128] show that even higher-level parts of classifiers
can be shared. Chum and Zisserman [16] are able to locally optimize object bounding
boxes thanks to the smoothness assumption. Similarly, Lampert et al. [77] find
globally optimal bounding boxes using branch-and-bound search. Some coarse-to-fine

detectors [106] exploit the minimum object distance assumption.

In general, object detectors often balance a speed-precision trade-off. A clever
approximation of a slow detector may lead to a significant speed-up while retaining
similar accuracy [140, 21, 3]. Moreover, the spared computational power can be
utilized by additional features or more complex classifiers, in turn, improving detection

accuracy.

The idea of approximating some aspects of detectors was taken a step further
by Sochman and Matas [126] who proposed to approximate any binary detector as
a whole by a generic WaldBoost detector which was originally proposed for face
detection [124]. In their approach, an existing detector scans unannotated images and
produces training examples for the WaldBoost algorithm which then creates a new
detector the same way as when learning from hand-labeled data. As no annotation is
needed, the approach can be applied even to hand-crafted detectors. Using suitable
features, the authors report high speed-ups for Hessian-Laplace and Kadir-Brady

interest region detectors without noticeable degradation of detection quality.

The methods proposed in this thesis are partly inspired by the detector emulation
work of Sochman and Matas [126]. They are build on top of Sequential Probability
Ratio Test [143, 143] as WaldBoost is, they emulate existing detectors in order to

improve speed, and they only need unlabeled training images. However, the main
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goal in this case is to make use of the fact that decisions at neighboring image
windows are not independent due to the shared image content and the non-maxima
suppression. Moreover, the original detectors are not discarded. Instead, they are
preserved and extended only in a way necessary to handle interactions between the

neighboring image positions.

1.1 Summary of Contributions

This thesis contributes to the state-of-the-art of appearance-based object detection
methods. It explores an idea that existing scanning-window detectors [137, 124,
163, 126] could be improved by exploiting dependencies between neighboring image
windows. The idea is refined into two novel, practical, and in certain aspects
complementary methods which utilize the shared information to improve detectors.
Both methods are demonstrated on specific detectors resulting in two practical
detection algorithms.

The methods are general and are not limited to any specific type of detectors. The
only requirement is that the detectors have to be decomposable into fragments which
provide meaningful discriminative information. Exemplar applications presented in
this thesis are based on soft cascade [124, 8, 12] detectors which satisfy the requirement
very well; however, other detectors, such as detection cascades [137, 59, 152], trees,
and multi-object detectors [30, 86, 65, 129, 58], could be considered as well.

Neighborhood suppression. A detection classifier computed at an image window
extracts information relevant to other overlapping windows. The neighborhood
suppression algorithm (Chapter 6) exploits this fact and trains new classifiers to
reject neighboring image windows provided they contain background with high
confidence. The new classifiers reuse features of an existing detector changing
only the classification function. The neighborhood suppression can be realized with
minimal computational overhead for soft cascades and domain-partitioning weak
classifiers and it can be directly incorporated in existing detection engines requiring

only minor modifications. Neighborhood suppression was originally published in [155].

Early non-maxima suppression (EnMS). Scanning-window object detection
often includes some kind of non-mazima suppression which removes overlapping
detections with non-maximal responses of the detection classifier. Such suppression
decisions are made only after all the classifiers are fully evaluated. EnMS moves
the decision to earlier stages of the classifier in order to stop evaluation of the
classifiers which would, with high confidence, be rejected by the ordinary non-
maxima suppression. Chapter 7 presents the general idea of EnMS together with a
practical version of the algorithm which can be applied to soft cascades. EnMS is

general and can be applied to a wide range of tasks even outside computer vision —
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any task which searches for the highest response of a suitable classifier in a group
of competing objects. Furthermore, EnMS could be modified to handle multiple

classifiers evaluated on a single object. EnMS was originally published in [48].

Additionally, Chapter 4 presents novel evaluation of a number of existing features
with WaldBoost [124] detector on several detection tasks. The evaluated features are

considered in connection with the proposed algorithms in the corresponding chapters.

1.2 Authorship

Although most of the work presented in this thesis is my own, some parts resulted
from a collaboration with my colleagues.

Pavel Zemcik contributed to my work by many of his ideas and consultations.
He proposed the first basic principle of neighborhood suppression which I refined into
a practical algorithm and tested in the experiments presented in this thesis. Also,
Pavel Zemcik significantly influenced development of Local Rank Patterns and Local
Rank Differences by our consultations.

Adam Herout proposed the initial idea of Farly non-Mazima Suppression, and he
helped me with some of the related face localization experiments. I formulated the
Conditioned Sequential Probability Ratio Test, transformed it into a practical Early
non-Maxima Suppression algorithm, implemented experimental tools, and performed
large part of the experiments.

Roman Jurdnek implemented several parts of the application which I used to
produce most of the experimental results [56]. The parts relevant to experiments in

this thesis are my own work.

1.3 Text Structure

Chapter 2 shortly overviews existing boosted scanning-window detectors and AdaBoost
learning algorithm [33, 34] which is one of the main components of such detectors.
Also, AdaBoost is a building block of WaldBoost [124], neighborhood suppression,
and EnMS. Chapter 3 introduces the idea of sequential decision making which
leads to Sequential Probability Ratio Test [143, 143] and WaldBoost. Chapter 4
presents novel evaluation of a number of existing features used in sliding-window
detectors. Chapter 5 discusses how existing detectors utilize dependencies between
neighboring image windows, thus putting the methods proposed in the next two
chapters into a wider perspective. Neighborhood suppression and EnMS together with
the corresponding experiments and results are presented in Chapter 6 and Chapter 7,
respectively. Chapter 8 discusses the experimental results, properties of the proposed
methods, and possible applications. Finally, Chapter 9 summarizes the ideas and
the findings of this thesis.



CHAPTER 2

Detection with boosted classifiers

The first practical object detector based on boosted classifiers was introduced by Viola
and Jones [137] in 2001. This frontal face detector achieved an amazing real-time
performance by combining computationally efficient image filters with a powerful
learning algorithm, an attentional structure of the classifier, a good training dataset,
and a large amount of training time. This tremendous success encouraged further
research of similar approaches and resulted in great number of modifications [84, 90,
86, 152, 89, 91, 129, 7, 59, 122, 123, 37, 95, 139, 8, 124, 163, 39, 40, 79, 63, 55, 58,
97, 160, 12, 10, 68, 78, 22, 147, 126, 158, 21, 155, 144, 48, 23, 49, 66, 3, 83, 4].

The original detector of Viola and Jones is a standard appearance-based sliding-
window detector which classifies overlapping constant aspect ratio image windows
into background and object classes. A simple non-maxima suppression aggregates

the raw detection scores into meaningful object positions.
The detector forms a rejection cascade (see Figure 2.1) where each stage rejects
approximately half of background windows while retaining almost all faces. A very

low false positive rate can be achieved by chaining multiple such rejection stages

T T T T
image window m @ G\ 4 face found

T T F T

reject window

Figure 2.1: The detection cascade [137]. The cascade is composed of a series of
increasingly more complex classifiers which either reject the classified sub-window
as background or pass it to the subsequent stage. An object is detected only if the
corresponding sub-window successfully passes through all of the stages.

13
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Figure 2.2: [137]|Haar-like features used by Viola and Jones in their frontal face

detector [137]. Sums of pixels which lie within the white rectangles are subtracted
from the sums of pixels in the grey rectangles.

A+D-B-C

Figure 2.3: Integral image makes it possible to sum pixels within any axis-aligned
rectangle by four memory accesses and three additions (subtractions).

without significant increase of computational cost. The computational cost remains
low even for long cascades because only few first stages are evaluated on average —
natural images contain mostly background which is rejected early in the cascade.
Moreover, the classifiers in the early stages tend to be small and efficient as they are
deciding very simple problems. On the other hand, later stages of the cascade can
easily require hundreds of features to decide with the required confidence.

The stages of the Viola and Jones’ detector are weighted sums of weak classifiers
learned by AdaBoost [33, 34]. When the weak classifiers each use only a single feature,
AdaBoost effectively performs greedy forward feature selection and it is able to create
a very compact and fast classifier by picking small highly discriminant set of features
from a large pool of features. Additionally, the greedy iterative nature of AdaBoost
makes it possible to simply terminate the learning when a required detection rate
and false positive rate is achieved.

Haar-like features, used by the detector, were first proposed by Papageoriou et
al. [105] as a part of their general framework for object detection. The features
are build on simple linear filters derived from Haar wavelets [44] which are energy-
normalized to improve robustness to contrast changes. The linear filters are composed
of several positive or negative axis-aligned adjacent rectangles. Viola and Jones
used an immense set of Haar-like features created by shifting and scaling of five
basic feature types from Figure 2.2 in 24-by-24 detection window (the total size of
the feature pool was 180,000). Haar-like features can be computed very fast and in

constant time regardless their size from an intermediate image representation called
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the integral image (see Figure 2.3). The constant time computation of features makes
it possible to scale the detector window instead of scaling the image, accelerating
multi-scale detection.

There is no doubt that Viola and Jones created a functional frontal face detector
for practical applications; however, the detector is more important due to the follow-
up research it initiated then due to its direct use. Since, many authors proposed
changes to the detector aiming to improve its performance in general, or in specific
situations. All parts of the detector have been carefully considered and analyzed.

Several authors pointed out that the rejection cascade is far from optimal, mainly
because it discards all the information accumulated by previous stages when learning
a new stage [152, 7, 122, 124, 8, 12].

Large amount of work has been invested in improving the stage classifiers,
including applications of advanced boosting algorithms [116, 117, 36, 84, 152, 19, 91,
123, 79] and weak learners [10, 106], improvements to the learning process [68], and
even experiments with non-boosting classifiers [148, 95, 47].

Many alternative image features have been proposed [90, 86, 13, 153, 58, 18, 160,
82, 163, 130] varying in their strengths, extracted information, and computational
speed. Some of the proposed features address other domains than gray-scale images
— e.g. motion data [139], depth data [104], or color images [130, 144]. The type of
information most features extract is generally well understood. However; it is usually
not clear what information is suitable for a particular detection task, and selection
of features mostly relies on empirical evidence from subjectively similar detection
tasks. Although some features perform significantly better in some tasks and even
enable detection of some objects, no single type of features is optimal for all types
of objects and situations. Chapter 4 presents more closely several types of features
together with their respective results in real-world detection tasks.

The detector of Viola and Jones is effective only for classes which are visually
compact. If it was to be used to detect multiple object classes or multiple views
of the same object, multiple detector would have to be used [7] and the detection
would become inefficient. Several authors extended the detector to address this
issue. Torralba et al. [129] proposed to learn multi-class detectors by joint boosting
which finds common features that can be shared across the classes. Other proposed
approaches include scalar trees by Fleuret and Geman [30], Li et al.’s pyramid [86],
Jones and Viola’s decision tree [65], and Huang et al.’s Width-First-Search tree [58].

Although several implementations of the Viola and Jones’ detector have been
created for Field-programmable Gate Arrays (FPGA) [75, 60, 74, 14] and Graphics
Processing Units (GPU) [94, 62, 46], the design of the original detector was aimed
solely at SISD! PC platform and it is not guaranteed to be optimal for other
computing platforms with SIMD? architecture. Especially in the case of FPGAs,

1Single Instruction, Single Data
2Single Instruction, Multiple Data
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the most efficient designs use different features [157]. Alternative features target
GPUs [48] and SIMD CPUs [52] as well. Many state-of-the-art detectors are deployed
on GPUs to achieve competitive speeds [3] at only minor development cost thanks

to modern languages and tools, such as CUDA.

2.1 AdaBoost

In 1995, Freund and Schapire introduced a novel boosting algorithm which they
named AdaBoost [33, 34]. The term boosting refers to a group of ensemble supervised
learning algorithms. The basic idea of these algorithms is to iteratively combine
relatively simple prediction rules (weak classifiers or weak hypotheses) into a very
accurate prediction rule (strong classifier). In most boosting algorithms, the weak
classifiers are linearly combined. For introduction to boosting look at [31, 114].
Boosting has its roots in the PAC (Probably Approzimately Correct) machine
learning model [131, 45]. In this framework, the learner’s task is to find — with a
high probability — a bounded approximation of a classification function using only
training samples which are labelled by this particular function. The PAC model
constrains the learning methods in terms of their effectiveness — learning time and
size of training set have to be polynomial-bounded. The question, if a learning
algorithm which performs just slightly better then random guessing in the PAC
model can be boosted into arbitrarily accurate learning algorithm, was first suggested
by Kearns and Valiant [70, 71]. The first polynomial-time boosting algorithms
were introduced in 1990 by Schapire [113] and Freund [32, 33]. However, the early
algorithms suffered from many drawbacks. For example, they needed some prior
knowledge of the accuracies of the weak classifiers and the performance bound of the
final classifier depended only on the accuracy of the least accurate weak classifier.
AdaBoost solved most of these drawback. The significance of AdaBoost is pointed

out by many authors. For example, Huang et al. in 2007 wrote :

Boosting algorithm [34], which linearly combines a series of weak hy-
potheses to yield a superior classifier, has been regarded as one of the
most significant developments in the pattern classification field during
the past decade. [58]

AdaBoost. The AdaBoost algorithm is shown in Figure 1. It takes as an input a
set of labelled examples (x1,¥1), - - ., (Xm, Ym) where x; are the samples and y; are the
corresponding labels from a set of labels ). For the purpose of this text Y = {—1, +1},
which is different from the originally published version of the AdaBoost algorithm
where ) = {0, 1} [33]. However, the version which is presented here is functionally
equivalent, more common, and it became a basis to derive many later boosting

algorithms.
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Algorithm 1 The AdaBoost algorithm as presented in [31].
Input: (x1,41),. ., (Xm,ym) where x; € X, y; € {—1,+1}
Initialize D; (i) = L.

Fort=1,...,T:

1. Train weak learner using distribution Dj.

2. Get weak hypothesis h; : X — {—1,+1} with error

€t = Piop, (he(x%:) # i)-

3. Choose oy = %ln (17“).

€t

4. Update:

L Dy(i) e”if hy(x;) =y Diexp(—apyihe(x;))
Dyi1(i) = 7 X { et if hy(x;) £y 7

where Z; is a normalization factor (chosen so that Dy will be a distribution).

Output the final hypothesis:

T
H(x) = sign <Z atht(x)> .
t=1

AdaBoost calls a given weak learning algorithm repeatedly in a series of iterations
t=1,...,T. In each iteration, the weak learning algorithm is supplied with different
distribution D; over the set of examples, and its task is to find a hypothesis h; :— )

minimizing a classification error with respect to the current distribution Dy
et = Piop, (he(xi) # yi)- (2.1)

The best weak classifier is then added to the strong classifier with a coefficient oy

determined by the weighted error ¢; of the weak classifier:

1 1—615
= -1 . 2.2
o 5 n( o > (2.2)

After the weak classifier is selected and the «; coefficient is computed, new

distribution D;_1 is generated in such way that the weights of the samples which
are correctly classified by h; decrease and weights of the wrongly classified samples

increase:

Dy exp (—aqyihi(x;))
Zy '

Here, Z; is a normalization factor chosen such that D;y; remains a distribution.

Dy (i) = (2.3)

Maintaining the distribution Dy is one of the fundamental principles of AdaBoost.
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The weight Dy (i) of sample i reflects how well the sample is classified by all weak
classifiers selected in previous rounds.

The final strong classifier is a linear combination of the selected weak classifiers

T
H(x) = sign (Z oztht(x)> . (2.4)
t=1

AdaBoost is guaranteed to eventually reach perfect classification on training data
if it is able to find informative weak classifiers (e; < 0.5) [34]. Most weak learners
used in practice always find informative weak hypotheses on finite training sets. The

training error € is exponentially upper-bounded:

< Ivat-a <on (23 (3o 29

AdaBoost can be analyzed in terms of margins which are defined in this case as
the distance of a sample from the decision boundary normalized by the size of the

hypotheses space [31]:
p; = Yi >y cuhy (%)
D
It was proven that classifiers with larger margins on training data generalize bet-
ter [108].

AdaBoost was first analysed in the context of margin theory by Schapire at

(2.6)

al. [115]. The analysis provides a generalization bound which is independent of the
number of combined weak hypotheses and which is more consistent with empirical
results than the original generalization bound from [33]. The bound is linked to
margins on training set and it is determined by the training error and an addition
term based on VC-dimension [133] of the strong classifier.

Although AdaBoost was shown to create classifiers with large margins, it was
proven that the margins are not optimal [112]. Boosting algorithms which maximize
margins exist; however, these algorithms are not as practical as AdaBoost and are

not used in object detectors.

Real AdaBoost. Schapire and Singer [116, 117] in 1998 generalized the AdaBoost
algorithm in a way which removed the restriction of the binary weak hypotheses.
The authors call this generalization real AdaBoost and the original version discrete
AdaBoost. The authors show that when the weak hypotheses are allowed to take form
hy :— R, it is still possible to find the optimal values «; minimizing Z; numerically —
by binary search. More importantly, they show that for domain partitioning weak

hypotheses® the oy value can be incorporated directly into the weak hypotheses and

3Domain partitioning weak hypotheses assign each sample a value from a finite set of labels.
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the optimal responses of the weak hypotheses are

1. (W]

where Wi and WY are sums of weights of positive and negative samples assigned
to the partition j, respectively. Schapire and Singer also proved that the weak

hypotheses should be ideally created such that they minimize

Zy = ZDt(i) exp (—yih(x;)) - (2.8)

Further, the authors suggested to smooth the ¢; values in case that either Wi or

Wi
Y A (2.9)
2 W’ +e¢

W is very small by

where € is a small smoothing constant.

The real AdaBoost algorithm is significant, because it provides an efficient way
how to use more complex weak hypotheses which partition the domain space into
more than two partitions. Such domain partitioning weak hypotheses were shown to

be superior to binary weak hypotheses [36, 150, 10].






CHAPTER 3

Sequential analysis in object detection

In object detection using the sliding-window technique, the decision at each image
position can be regarded as a statistical hypothesis test where the null hypothesis states
that the image patch does not contain an object of interest [124]. The alternative

hypothesis is that the patch contains an object of interest.

The idea of defining the object detection task as a statistical hypothesis test may
be counter-intuitive due to the fact that statistical tests are usually used to decide if
an independent sample of a population can be explained by the null-hypothesis or if
the sample provides enough evidence to reject the null-hypothesis in favor of some
alternative hypothesis.

To make the definition of a statistical test more formal, consider X to be a random
variable for which p(z|Hg) defines either probability distribution or probability density
consistent with the null-hypothesis. Similarly, let the alternative hypothesis be that
X follows distribution p(xz|#H;). For N samples x; drawn independently from X', the

most powerful statistical test [142] can be defined as

[TV, p(i|H1)
Hi]\i1 p(zi|Ho)

where k is a constant chosen such that the probability of falsely rejecting the null

p(x1, ..., on|H1)
p(xlw . .,.’EN‘H())

>k > k, (3.1)

hypothesis is reasonably low.
In the sliding-window detection, the statistical test decides a single image region
at a time from which dependent measurements are taken. Consequently, the test

from the left side of 3.1 can be more appropriately written as

p(x|[H1)
ol k, (3.2)

21
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were X is now a vector of features extracted from the single image position. In case
the features were independent, the functions p(x|Hp) and p(x|H1) could be factorized
into products of marginal distributions of the individual features similarly to the
right side of 3.1. Unfortunately, features describing the same object are generally
not independent, and should be modeled jointly.

A fully joined model p(x|H) would be complex, hard to estimate, and com-
putationally expensive. Practical detectors which utilize probabilistic models of
background and foreground have to make compromises by omitting some of the
dependencies [118, 119].

Sequential statistical test. Motivated by the need for efficient quality control of
military supplies during the Second World War, A. Wald [142] defined a sequential
test of a statistical hypothesis as a procedure which, at any stage of an experiment
where samples are drawn independently and identically distributed from an unknown
distribution, gives a specific rule, for making one of the three decisions: (1) to accept
the null hypothesis, (2) to reject the null hypothesis, (3) to continue the experiment
by making additional observation. A novel idea of the sequential test was that the
number of observations needed to make a decision was not predetermined, rather, the
number of observations was threated as a random variable. This made it possible to
adjust the number of observations to each particular instance of an experiment, and
thus reduce the average number of observations while maintaining the same expected
error level. As is shown in the following text, the ideas of sequential statistical testing
can be adapted in fast detection classifiers which compute and use only so many

features at each image position such that a predetermined error rates are achieved.

3.1 Optimal Sequential Decision Strategy

In the following text, the sequential test is formalized in a way which is suited
for a two-class classification task as opposed to the Wald’s definition [142] for
independent samples drawn from an unknown distribution. The formulation here

follows formulations in [124, 141].

Sequential decision strategy. Let x € X be a vector of measurements z; € X;
representing an object. The task is to estimate an unknown class y € {—1,+1} asso-
ciated with the object based on the values x;. The sequential test can be formalized
as a sequential decision strategy S : X — {—1,+1} which is a sequence of decision
functions S = 51,59, ... Each of the decision functions takes one measurement of
the object, and makes its decision based on the previously obtained measurements
including the new one — formally S; : X1 x Ao x ... x Ay — {—1,+1,4}. The decision
strategy terminates when a decision function outputs +1 or —1. The symbol 'f’

defers the decision to the following function Si;.
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Strength of a sequential decision strategy S is characterized by its false negative

rate ag and its false positive rate Bg
asg=P(S(x)=-1ly=+1) and [g=P(S(x)=+1ly=-1). (3.3)

Second important characteristic of a sequential decision strategy is its speed which
is expressed as the number of measurements needed to reach a decision. This number
is a random variable and it will be further denoted as Ng. The average number of
measurements

Ts = B [Ns], (3.4)

depends on the object class. The average number of measurements for the two classes

will be denoted as
TS,fl = F[Ngly=—1] and TS7+1 = F[Ngly = +1]. (3.5)

A sequential decision strategy S* is considered to be best [142] or evaluation-
time-optimal [141] if it provides the lowest T, —1 and T'sy 1 compared to any other
decision strategy of equal strength — of those decision strategies that have equal false

negative rate ag and false positive rate Bg.

Sequential Probability Ratio Test. A. Wald [142] proposed a Sequential Proba-
bility Ratio Test (SPRT) which for practical purposes can be considered an evaluation-

time-optimal sequential decision strategy. In his own words:

... for the so called Sequential Probability Ratio Test ...both Ts _; and
T57+11 are very nearly minimized. Thus, for all practical purposes the
Sequential Probability Ratio Test can be considered best. [142]

SPRT is defined as a sequential strategy S* where

—|—1, lf Rt(X) § B
Sf(x)=4¢ —1, if By(x)> A (3.6)
f, ifB<R(x)<A

where R;(x) is a likelihood-ratio of the two competing hypotheses:

p(xl,---7$t|y: _1)
p(x1,... ¢y = +1)°

Ri(x) = (3.7)
The constraints A and B determine error rates a and 3 of the test. Fining A
and B to give exactly the required o and f is rather tedious and not suitable for

practical purposes. Instead, Wald [142] suggest A and B to be set to their upper

!The notation here was changed to match notation used in this work.
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and lower bounds, respectively:

(3.8)

Setting A and B this way may increase at most one of the resulting error probabilities
o/ and . Wald [142] showed that the potential increase of one of the errors is

extremely small.

Note that SPRT does not constrain the conditional class distributions in any
way. In fact, the likelihood-ratios R;(x) could be even estimated directly without

modeling the class-conditional distribution, e.g. by logistic regression.

3.2 WaldBoost

In order for SPRT to be efficient in a classification task where the measurements
are not independent and identically distributed (non-i.i.d.), the decision functions
(Equation 3.6) have to be evaluated very fast. Ideally, the decision functions should
incorporate the new measurements in a computationally simple way which does not
depend on the number of measurements taken so far. This would be very hard to
achieve if the joined class-conditional densities or the likelihood ratios (Equation 3.7)
would have to be actually estimated. Additionally, the order of measurements matters
in the non-i.i.d. case. The first measurements taken should be those most informative,
as those allow to accumulate enough evidence about the decision problem as early as

possible, thus reducing average number of measurements needed.

Sochman and Matas proposed WaldBoost [124] which avoids computation of
the likelihood ratios by projecting the classified objects to a scalar value using
a discriminatively trained classifier, and by reformulating the decision functions

accordingly in a way which directly thresholds output of the classifier.
The authors suggest to use real AdaBoost [117] as the classifier. AdaBoost is

especially suitable for the task as it can naturally choose and order the measurements
according to their discriminative power (when weak classifiers each use only single
feature, see 2.1). Moreover, the resulting strong classifier is a sum of the weak
classifiers which makes computational cost of incorporating additional measurement
into the classifier’s output constant and independent of the number of previous

measurements.

Decision functions for classification. Let H;(x) be a real-valued output of a
classifier incorporating features 1, ..., ¢, the likelihood ratio R; (3.7) is reformulated

* p(H(X)y = ~1)
) = (Bl = 1) &
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Assuming? the likelihood ratio is a monotonic function of Hy(x), the decision functions
(3.6) can be equivalently redefined such that the decision conditions compare the

classifier output instead of the likelihood ratio:

+1, if Hy(x) > 0
F(x) =4 —1, if Hy(x) <6 . (3.10)
g, if ij) < Hy(x) < 955?

The thresholds Gg) and Qg) have to be estimated on a suitable dataset such that
the conditions are equivalet to the corresponding conditions using R:(x) (3.6). This
could be achieved by estimating the class-conditional densities p (H;(x)|y = —1) and
p (Hy(x)|y = +1) by some standard procedure, e.g. histogram, Gaussian Mixture
model, or kernel density estimation. In the original WaldBoost paper [124], the
authors suggest using Parzen window kernel density estimator with the size of a
Gaussian kernel set according to an oversmoothing rule [121]. However, such approach
poses practical problems. Note that the required false negative rate ag and false
positive rate B¢ are usually low values which makes A a large value and B close to
zero (see Equation 3.8). If a decision function decides 10% of objects as the class —1,
then at most 0.2% (assuming ag = 0.02) of the positive class distribution mass lies
in the decided region. Only 0.2% of positive examples from a training set would be
in the decided region, making density estimation problematic on such small number

of samples.

Sochman [141] suggested to avoid the problems with estimation of p (Hy(x)|y = —1)
and p (Hy(x)|y = +1) by treating Hy(x) as a step function with discontinuities at
01(;) and Hg). Such change transforms the continues density estimation into a discrete
estimation with three bins. As a result, the thresholds should be set as strict as

possible while satisfying [141]:

Yo pHE=-1) =4 Y pHMXy=+1) (3.11)

{x:Ht(x)SQX)} {X:Ht(x)gef;)}

respective

>, prHXy=-1) =B Y = pHXy=+1). (312

{X:Ht(x)zeg)} {x:Ht(x)ZOg)}

v

2The assumption of monotonicity may be partially violated in some cases due to wrong assumptions
about the types of class distributions or due to low representativeness of the training dataset; however,
it generally holds and the deviations do not hamper practical applications of WaldBoost except
for possible decrease in decision speed. In fact, WaldBoost does not require R; to by monotonic
function of Hy(x) in order to work properly — it just may become less efficient.
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The previous conditions can be rewritten in a more simple form as

p (Ht(x) < oWy = —1) > Ap (Ht(x) < oWy = +1) (3.13)
and
P (Ht(x) > Hg)|y = —1) > Bp (Ht(x) > Hg)]y = —i—l) . (3.14)

These constraints are based on the probabilities that a sample of a certain class is

from one of the decided regions. These probabilities are much easier to estimate.

WaldBoost classifier. The classification functions Hy(x) in WaldBoost are sums
of weak classifiers h;(x) as in real AdaBoost (see Section 2.1). A WaldBoost classifier
is defined by an ordered set of T weak classifiers hy(x), by the corresponding thresholds
6D and 6, and by the final threshold ~ which is applied to the full classifier response
Hyp(x) if a decision is not reached earlier. The final threshold controls operating
point of the WaldBoost classifier only to a small extent — most samples are usually
decided before the final stage.

The classification algorithm is shown in Algorithm 2. It successively applies the
decision functions. Each of the functions computes a response of its weak classifier
hi(x) and adds it to the cumulative result of the previous decision function H;_(x) to
obtain Hy(x). Subsequently, the decision conditions using HS) and Hg) are evaluated.
If the decision function does not reach a conclusion, the classification algorithm

continues with the next decision function. Finally, the output of the classifier is
thresholded by ~.

Algorithm 2 WaldBoost classification [141]

Given: hy, QS), Og), and v for t € {1,...,T}
Input: a classified object x
Fort=1,...,T:

1. If Hy(x) > Hg), classify x to the class +1 and terminate.

2. If Hy(x) < GS), classify x to the class —1 and terminate.

end
If Hy(x) > , classify x to the class +1, —1 otherwise.

WaldBoost learning for object detection. The complete WaldBoost learning
algorithm is shown in Figure 3. It accepts as an input a large set of training examples
P, desired error rates « and 3, and a number of training iterations 7. The output is
a sequential decision strategy represented by an ordered set of weak classifiers h;(z),
t € {1,...,T} and the corresponding decision thresholds 91(:) and Og). The algorithm
extends real AdaBoost (see Section 2.1) by bootstrapping (or sampling of the training
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set) and by the decision thresholds.

A weak classifier is learned in each iteration of WaldBoost as in real AdaBoost.
It can be selected on a set of examples 7 sampled from P [68]. The sampled
set T changes in each iteration and the weights have to be computed accordingly.
The decision thresholds are then set such that they satisfy the constraints from
Equation 3.13 and Equation 3.14 on the full training set P which is in turn pruned
by the thresholds.

The bootstrapping is necessary as the training set is pruned very efficiently and
only a small fraction of it remains in later iterations. In order to retain representative
training set in the later iterations, the initial number of examples would have to be
impractically large without the bootstrapping (it would considerably slow down the

learning without measurable impact on the quality of weak hypotheses).

Algorithm 3 WaldBoost learning with bootstrapping. [141]
Input:

b Sample pOOI P = {(X1>y1)7 SRR (XNny)} (X € vaz € {_17 +1}
o desired final false negative rate o and false positive rate
e the number of iterations T

SetA:(l_’B) and B = -2

et 1-a
Initialize data weights wi(x;,y;) = %
Fort=1,...,T:
1. Sample training set 7 = {(x1,y1),- - -, (Xm, Ym)} from P

2. Find hy(x) by real AdaBoost algorithm on training set 7 with weights w; and
compute new weights

3. Find decision thresholds 91(:) and Gg) such that eq. 3.13 and 3.14 hold
4. Throw away samples from P for which Hy(x) > Hg) or Hy(x) < Gg)

end
Output: Weak classifiers h;(z) and decision thresholds 01(:) and Qg)







CHAPTER 4

Features and object detection

This chapter overviews basic features used in appearance-based detectors and presents
experimental results of six representative feature types in real-world tasks. The
experiments provide general insights into the behavior of these features in context
of boosted detectors and put results presented throughout this thesis in the context
of state-of-the-art methods. The features, training and evaluation methodology,
datasets, and even some of the detectors from this chapter are further used in EnMS
and neighborhood suppression experiments.

The purpose of features is to extract useful information from data in a computa-
tionally efficient way. Although it is possible to create a classifier directly on the
raw image data, features potentially make the learning task much easier and they
can be highly optimized for speed. Through features, the designer can express his
prior knowledge of data, objects, and desirable invariances. For example, image
features for object detection often reflect frequency properties of images, correlation
of pixels, desire for shift and lighting invariance, or knowledge about distinguishing
attributes of the objects. Although the recent development is shifting towards general
learning methods which do not rely on features, such as deep convolutional neural
networks [25, 128, 80], hand-designed features are still the core building block of
majority of detectors. Many features for scanning-window object detection have been
proposed varying in their strengths and weeknesses. In general, different features
are suitable in different contexts and for different tasks. It is beneficial for anyone
designing a new detector to have an idea what features he can choose from and what

are their properties.

Existing features. Since the frontal face detector of Viola and Jones [137], Haar-

like feautres have been extended to include 45° rotated regions by Lienhart and

29
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Maydt [90], and similarly by Jones and Viola [65]. Li et al. [86] extended the
features further by relaxing the strict adjacency of the rectangles composing the
features. Viola et al. [136, 139] further extended Haar-like features to encode motion
information for pedestrian detection.

The variants of Haar-like features are all linear filters which are normalized in
order to improve robustness to illumination changes. Other linear filters used in
object detection include Gabor filters [13], Anisotropic Gaussian filters [97], and
various wavelets [119].

Although the fixed linear functions of predefined filters are designed to fit well
the general frequency properties of images, they are not in any way adapted to
the target detection task. In a response to that, many authors have tried to adapt
linear features to particular tasks using Principal Component Analysis [118], Fisher
Discriminant Analysis [145], recursive nonparametric discriminant analysis [145],
local non-negative matriz factorization [87], local receptive fields [98, 38], neural
networks [24], and other methods [58].

Froba and Enst [37] aimed to improve illumination invariance with features
based on modified census transform. Similarly, other authors used Local Binary
Patterns [64, 160, 99, 67, 72], Local Rank Patterns [156, 57, 107, 52, 51, 48, 157], and
Locally Assembled Binary features [154] which all discard illumination information.

Another group of successful features is based on regional statistics, such as
histograms. These include local edge orientation histograms [82], Histograms of
Oriented Gradients [18, 163, 39, 55, 78, 24, 127, 3, 4], spectral histogram features [149],
and spatial histograms [159].

4.1 Selected features

The features selected for experiments are only a very small subset of features that
have been proposed for object detection. They do not even represent all existing
feature families. For example, all the selected features form a finite set of functions
from which the boosting algorithm can select by exhaustive search — ignoring adaptive
features which have to be optimized during or before learning to the detection task
at hand, such as local receptive fields [98, 38], PCA, and ICA. Also, domain of
all selected features is gray-scale images. Event though the selection is limited, it
still represents a large fraction of features used in face, body part, and pedestrian
detection. The selected features are summarized in Table 4.1.

The selected features are Haar-like features, Local Binary Patterns (LBP), His-
tograms of Oriented Gradients (HOG), Local Rank Differences (LRD), and Local
Rank Patterns (LRP).

Haar-like features serve as a baseline and reference due to their wide adoption

and long history in object detection. Local Binary Patterns are in many ways
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| Haar LBP LRD LRP EHOG
positions all all all all even
scales all all all all even
types 6 basic types 3x3 grid 3x3 grid 3x3 grid rectangular
# features 141,600 8464 304,704 304,704 70,227
# bins 10 256 80 17 10

Table 4.1: Details of features selected for experiments. The numbers of features are
for base resolution of classifiers 24-by-24 pixels.

i Bl B Jed® M

Figure 4.1: Haar-like features used in experiments. The first five feature shapes are
the same as those used by Viola and Jones [137]. The last center-surround shape
was first used by Lienhart and Maydt [90].

complementary to Haar-like features as they encode very different information. They
are invariant to locally uniform illumination changes as they encode only shape of
intensity surfaces and discard magnitude of changes.

Histograms of Oriented Gradients can not be omitted due to their success in
pedestrian detection and their wide adoption outside the field of boosted detectors.
HOG are locally normalized and invariant to translations of parts within the region
of the feature. They are in between Haar-like features and LBP in terms of what
information they extract — they describe local shape more weakly than LBP and
they still, to an extent, reflect magnitude of local changes.

The previous features, which were all originally designed for serial processing on
CPUs, are further complemented by Local Rank Differences and Local Rank Patterns
which were originally designed specifically for parallel computation platforms, such
as FPGA and GPU. Similarly to LBP, LRP and LRD are invariant to locally
uniform illumination changes, but unlike LBPs, which capture local shape in a single
complex descriptor, LRD and LRP can focus on various aspects of the local shape
independently and describe them in a more compact way.

The sets of features as defined in this section are denoted as Haar, LBP, LRD,
LRP, FHOG, and EHOGS in the further text.

Haar-like features. Haar-like features are simple linear filters derived from Haar
wavelets [44] normalized to improve robustness to illumination changes. The features
were first used by Papageorgiou et al. [105] and were made popular by the frontal
face detector of Viola and Jones [137]. Since, the features were used in many
detectors [152, 138, 95, 151, 59, 122, 123, 124, 8, 19, 98, 12, 10, 126, 155], various
extensions were proposed [90, 84, 86, 65, 136, 139], and efficient detection engines
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Figure 4.2: Local Binary Patterns as defined by Ojala and Pietikdinen [101]. In
a 3-by-3 pixel area, the outer pixels are thresholded by the central value and the
resulting ones and zeros are serialized into an 8-bit code.

using these features were implemented for a wide range of platforms, such as GPU [46,
62, 94] and FPGA [75, 14, 60, 74].

The basic Haar-like features are linear filters composed of several positive or
negative axis-aligned adjacent rectangles. The filters have zero sum and no response
to DC image component which makes them invariant to shifts in gray scale. However,
responses of the filters are not invariant to multiplicative changes caused by varying
illumination intensity. In order to make the features robust to such illumination
changes, the output is typically scaled by an inverse of a local measure of energy,
e.g. standard deviation of pixel values in the analyzed image window [137, 124]. The
Haar-like features provide a normalized measure of a presence of simple shapes, such
as edges, ridges, corners, and blobs.

The set of Haar-like features used in this thesis consists of the six basic types
shown in Figure 4.1 — horizontal and vertical edge, horizontal and vertical line,
diagonal line, and center-surround shape. The prototypes were shifted and scaled
inside a detector area at its base scale to generate the whole feature set. The
features were shifted by one pixel in horizontal and vertical direction, and the sizes
of the rectangular regions were increased by single pixel at a time keeping size of all
rectangles composing the feature the same.

Originally, the Haar-like features were used together with threshold weak hypothe-
ses [137] (also decision stump weak hypotheses). However, later works show that
better results can be achieved with slightly more complex weak hypotheses, such as
small decision trees [9] and piece-wise functions [59]. The weak hypotheses in this
thesis are piece-wise functions where boundaries of the left-most and right-most bins
are set such that each contains 5% of training examples, and the interval in-between

is separated into 8 more bins.

Local Binary Patterns. LBP were originally proposed as a texture analysis oper-
ator [101] which provides information of local image structure invariant to monotonic

changes in gray-scale, and which can be optionally made partially invariant to rota-
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tion [102]. LBP operator was used in many practical applications mostly connected
to static texture analysis [101, 102, 100, 103] and dynamic texture analysis [162].
Other successful applications include face recognition [1, 53] and authentication [109],
facial expression recognition [88], and palm-print identification [146]. In object de-
tection, variants of LBP provide good results with boosted classifiers [160, 147, 155]
and random forests [69]. Efficient detection engines using LBP were designed for
GPU [99, 67], FPGA [72], and SIMD [67] architectures.

LBP create a binary code by thresholding a small circular neighborhood by the
value of its centre (see Figure 4.2). In the original definition of LBP [101] the
neighborhood was a 3-by-3 pixel area and values were taken from centers of the pixels.
Méenpaa and Pietikéinen [93] extended the neighborhood to arbitrary circular shape
with interpolation providing values from sub-pixel positions. The precise circular
shape allows rotational invariant version of LBP which is important in may texture
recognition tasks; however, it is not suitable for object detection as the detectors
themselves are usually not rotational invariant.

Inspired by texture analysis applications of LBP, some object detectors rely on
histograms of LBP responses which provide partial translation invariance. However,
many objects are not defined by textures, but rather, by distinct features and shapes,
and the translational invariance is not needed for rigid objects, such as faces. For use
in boosted object detectors, Zhang et al. [160] proposed Multi-Block LBP (MB-LBP).
The shape of the neighborhood of MB-LBP has the same 3-by-3 shape as the original
LBP [101] (see Figure 4.2). The difference is that MB-LPB can scale independently
in horizontal and vertical direction and the thresholded values are sums of pizel
values inside corresponding grid cells. MB-LBP can be used as domain partitioning
features for real AdaBoost.

The experiments in this thesis use MB-LPB features at all positions of the base
scale of the detectors and at all possible scales. The produced 8-bit codes directly

indicate one of 256 possible partitions in a weak hypothesis.

Histograms of Oriented Gradients. Various versions of Histograms of Oriented
Gradients are widely used as a basis for description of local image patches (e.g. in local
descriptors SIFT, SURF, GLOH, ...). Such descriptors provide state-of-the-art results
in object class recognition [132], semantic class detection [26], wide-baseline stereo,
content-based image retrieval [15], object detection [6, 83], and other tasks. HOG itself
proved to be well suited for part-based object detectors [28, 27] and rigid appearance-
based detectors, especially for pedestrian detection task [18, 17, 163, 55, 22, 144, 3, 4].

Histograms of Oriented Gradients, as the name suggests, locally compute his-
tograms of gradients of image function. The gradients can be computed in any
number of ways, e.g. from unsmoothed partial differences in x and y directions.

The histograms are then created by accumulating magnitudes of the gradients in a
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Figure 4.3: Illustration of dominant orientation of Extended Histograms of Oriented
Gradients (EHOG) by Hou et al. [55]. Each fan represents encoding of dominant
orientations with certain angular selectivity. From left: single orientation bin, merging
two bins, and merging three bins. Taken from [55].

local region into bins corresponding to orientation of the respective gradient. The
exact details of HOG features are not unified and can differ significantly, e.g. in
the assignment of gradients to bins, normalization of histograms, shape of the HOG
regions, arrangement of basic HOG cells into larger blocks.

The HOG descriptor is invariant to translations within its domain and expresses
dominant direction of edges inside the region. As the histograms are usually nor-
malized to unit length [18], HOG provides local shape information rather than
information about magnitude or strength of the shape with respect to the rest of the
image.

The specific type of HOG used in this thesis is closely inspired by the work
of Hou et al. [55], specifically by the Eztended Histograms of Oriented Gradients
(EHOG). EHOG compute a histogram of gradients from an image region similarly
to HOG, and normalize it to unit L1 norm. The outputs of EHOG are then the
so-called dominant orientations which sum together up to three adjacent histogram
bin values (see Figure 4.3 for illustration of dominant orientations). Because of the
L1 normalization, the dominant orientations represent relative strength of gradients
in a specific direction with higher or lower angular selectivity depending on how
many bins are summed. The scalar dominant orientations can be used by simple
weak learners the same way as, for example, Haar-like features. Additionally, Hou et
al. propose a heuristic search strategy which is able to find discriminative EHOG
with non-rectangular shapes.

The EHOG features used in this thesis compute gradients by differentiating
neighboring pixels at the base scale of the respective detector. The gradients are
accumulated to the nearest angular bin and the histograms are L1 normalized. The
features are limited to rectangular shapes of any position, size, and aspect ratio,
provided they completely fit inside the detector window, and coordinates and width
and hight of the feature at the base scale of the classifier are even (2601 such
rectangles fit into 24-by-24 detector window).

The scalar dominant orientations are discretized the same way as the responses
of Haar-like features (described above).

The experiments in this thesis differentiate two versions of EHOG, denoted as
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Figure 4.4: Local Rank Differences compute ranks of two local values and subtracts
them.

EHOG and FHOGS, which differ only in the way they allocate gradients to angular
bins. As in the original work of Hou et al. [55], both types use 9 bins; however,
EHOG distinguish polarity of the gradients — the histogram bins cover whole 360°
circle. On the other hand, the FHOGS features are invariant to intensity inversion,

and the bins cover only 180° half-circle similarly to the original features.

Local Rank Differences and Local Rank Patterns. Both LRD [52] and
LRP [57] were designed specifically for parallel computational platforms, such
as FPGAs and GPUs, as an alternative to traditional CPU features. Since, ef-

ficient detection engines using these features were developed for GPU [107, 51, 48],
FPGA [156, 157], and SIMD CPU [52].

LRD and LRP rely on a rank transform of several values extracted form a local
image neighborhood. A proposed practical version, which is used in this thesis, sums
pixels in cells of a 3-by-3 axis-aligned grid (see Figure 4.4. LDR subtract ranks of
two grid cells, while LRP index a 2D lookup table by the two ranks. Considering
the outputs of LRD and LRP are discrete values, they are used directly by weak
hypotheses as in the case of LBP.

The experiments in this thesis use LRD and LRP features at all positions of the

base scale of respective detectors and at all possible scales, resulting in a pool of
304,704 features (8464 unique positions).

4.2 Detectors

All detectors in this thesis were created by WaldBoost algorithm [124] presented
in Section 3.2 and their length was 1000 weak classifiers. The particular version of
WaldBoost that was used differs in several aspects from the original version published
by Sochman [124]. Tt does not use Parzen windows to estimate the probability ratio
of positive and negative class (Equation 3.9) on validation set to find the rejection
thresholds, instead, the rejection thresholds were set on the full training set according
to Equation 3.14.
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Training set sampling. Training sets were sampled in each boosting iteration to
increase speed of weak classifier selection. As Kalal et al. [68] showed, such sampling
can significantly affect quality of detectors and sampling methods with low bias and
variance are preferable. The type of sampling used here was unique weighted sampling
which selects samples with probability equal to their weights, and produces a set of
unique samples with weights proportional to the number of times each particular
sample was selected. If not stated otherwise, weak classifiers were selected on 2500
unique positive and 2500 unique negative samples. The selected weak classifiers were
refined on the whole active training set.

Small random geometric transformations were applied to annotated objects in
order to generate 100,000 examples for each positive training set. Similarly, 100,000
windows were randomly selected for each negative training set from a large set of
images not containing objects of interest. The negative training sets were replenished
as need during WaldBoost training to compensate for rejected background examples.
The collection of background images was large but finite resulting in a finite pool
of examples. When a pool was exhausted due to increasingly smaller false positive
rate of a trained detector, the size of negative training set shrank with each new
rejection threshold. To prevent overfitting, no more early termination thresholds

were set after reaching a minimum negative training set size of 40,000.

Image scanning. The created detectors were tested by scanning images with
position step of 2 pixels at the base resolution of the classifier and with scaling factor
1.2. The position step was increased accordingly to current scanning-window size. The
classifier responses were merged by a non-maxima suppression algorithm presented in
[125]. This algorithm suppresses all non-maximal windows in neighborhoods defined
by minimum window overlap which it approximates by mutual overlap o of circles

inscribed in the rectangular windows:

o:;%(l—rjl:R). (4.1)

In the equation R and r are radii of the larger and smaller window, respectively, and

d. is a distance of centers of the rectangles. The overlap approximation is illustrated

in Figure 4.5. Minimum overlap of 0.4 was set in the experiments.
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Figure 4.5: Scanning window overlap approximation for non-maxima suppression.
The graph shows value of overlap o as function of mutual distance. Taken from [125].

4.3 Datasets

In the field of appearance-based object detection, several standard and commonly
used datasets exist, notably, training and testing pedestrian datasets [98, 24, 23]
and testing face datasets [119, 135]. However, these datasets do not cover the whole
range of objects of interest and researchers often use their own proprietary data.
This section describes several standard datasets, as well as several custom datasets,
used in this thesis. Basic properties of all datasets are summarized in Table 4.2.
The base resolution of face and traffic sign detectors is 24-by-24 pixels. Resolution
of eye and pedestrian detectors is 25-by-15 and 18-by-36, respectively, due to the

natural aspect ratio of the objects.

Face detection. Several datasets for testing of face detectors exist. The most
widely adopted is the MIT+CMU face dataset! [111, 118, 119, 137, 140, 122, 123, 124]
which can be regarded as the main reference dataset in the field (exemplar images
shown in Figure 4.7). The MIT+CMU dataset is relatively small, it consists of
only 137 images and 511 faces, and the images are often of poor quality and small
resolution with visible dithering. Additionally, some of the faces are line-drawings.
Considering the small size of the MIT+CMU dataset and generally high detection

rates achieved on this dataset [137], its usefulness is limited mostly to comparisons

"http://vasc.ri.cmu.edu/idb/html/face/frontal_images,/

Figure 4.6: Random images from the traffic sign dataset. The top row show images
from training part of the dataset and the bottom row show test images.
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Figure 4.10: Random exemplar images from Background dataset.
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Dataset ‘ # imgages f objects # positions (x10)
Face training 3168 5398 645
MIT+CMU 137 511 17
GroupPhoto 111 2056 86
Background X X b
Signs training 6000 655 645
Signs testing 735 483 31
XM2VTS 2365 4730 120
BiolD 1530 3060 94
PAL 1045 2090 99
Daimler train 6754 15660 980
Daimler test 19338 2368 834

Table 4.2: Information about the datasets used to train and test the detection
classifiers.

among different publications.

In addition the MIT+CMU dataset, face detectors were tested on GroupPhoto
dataset which was gathered by searching for terms group, gang, and team on Google.
2056 faces were hand annotated in the 111 good quality images of this dataset

(examples shown in Figure 4.8).

In contrast to the testing datasets, no standard training dataset of frontal face
detectors has yet been established. Detectors in this thesis were trained on exemplar
faces from a dataset previously used in [124, 57]. This dataset, which will be refered
to as Face training, consists of images uploaded by regular users of the Internet to a
face detector demo. The images were later hand-annotated. The dataset contains

3168 images and 5398 annotated faces.

Background training examples were sampled from 10,000 images which do not
contain faces and which were downloaded from the Internet. This dataset was used in
the same publications as Face training [124, 57] and will be refered to as Background

set.

Eye detection. Eye detectors were trained on XM2VTS? [96] database and tested
on PAL? and BioID* [61] databases. The BiolD dataset contains low-resolution
faces, cluttered background, and some variation in lighting. On the other hand, PAL
dataset contains high-resolution images with constrained pose, simple background,

and constant artificial illumination.

Zhttp://www.ee.surrey.ac.uk/CVSSP /xm2vtsdb/
3https://pal.utdallas.edu/facedb/
“http://www.bioid.com/downloads/facedb/index.php
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Pedestrian Detection. Daimler Mono Pedestrian Detection Benchmark Dataset®
[24] was used for pedestrian detection task. This dataset defines separate training
and testing sets which were used for the experiments without any modification. The
testing part of the dataset is a sequence of 21,790 video frames captured from a
vehicle during a 27 min drive through urban traffic and as such it contains fully visible
pedestrian as well as partially occluded pedestrian or bicyclists. For this reason,
the dataset distinguishes pedestrians whose detection is mandatory and pedestrians
whose detection is optional. In the original study [24], this distinction was observed

in the evaluation and we follow this practice.

Traffic sign detection. Training and testing data for the traffic sign detection task
was collected by students with consumer digital cameras. The images were collected
on streets of Czech Republic, Belgium, and Greece (examples shown in Figure 4.6).
The set contains images of varying quality, view-point, lighting conditions, and some
of the signs are damaged.

Czech Republic signs were used for training and Belgium and Greece signs were
used for testing.

Additionally, images from Daimler Pedestrian Classification Benchmark Dataset
were added to the testing set as distractors after removing all traffic signs from the

images.

4.4 Detection experiments

This section presents and discusses results of detection experiments with features
from Section 4.1. The experiments include evaluation of detectors of faces, eyes,
pedestrians, and traffic signs. The experiments focused of performance of the features
in three training scenarios: (1) full feature sets and datasets, (2) restricted datasets
and all features, (3) restricted sizes of features and full datasets. Training datasets
were restricted either by using only subset of the training sets, or by using fewer

examples to choose the best weak hypotheses.

Speed-precision trade-off. When designing real-time detectors for practical ap-
plications, a trade-off between precision of detection and speed of the classifier
should be considered. Detectors always operate under some computational constrains
whether they run in hand-held digital cameras or in a data center as a part of an
off-line experiment. Consequently, when comparing detectors, it is not sufficient to

take into account their errors, e.g. in the form of ROC ¢ and ignore their speed.

http://www.gavrila.net /Datasets/Daimler_Pedestrian_Benchmark D
/Daimler_Mono_Ped__Detection_Be/daimler_mono_ped__detection_be.html

SROC stands for Receiver Operating Characteristic. It is created by plotting true positive rate
and false positive rate (or false positives) for various threshold settings.
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Most of the focus of attentional mechanisms which are used in Viola and Jones’ like
detectors provide some way (although usually indirect by controlling the target error
rate) to influence the speed of the detector. This makes it possible to explore the
whole space of speed-precision trade-off, which in turn makes it possible to truly

compare different detectors.

For experiments in this thesis, WaldBoost detectors were trained with five different
target false negative rates (see Section 3.2). Higher values of target false negative
rate result in faster detectors while lower values result in slower detectors. Detectors
created this way cover large range of speeds and allow to compare detectors without
focusing on a particular application which may have strict requirements for speed or,

conversely, strict requirements for detection quality.

Presentation of results. Accuracy of the classifiers is reported as an area above
Receiver Operating Characteristic (ROC) curve which represents the miss rate aver-
aged over a certain range of false alarm rate. This measure will be referred to as AMR
in the further text. Similarly to other integral performance measures (e.g. average
precision), the AMR enables comparison of classifiers when the target application,
and thus the desired operating point, is not known. In the experiments, the miss rate
was averaged over the range 0 to 200 (20,000 for the pedestrian detection task) false
alarms. This range represents useful operating points of most detection applications

for the respective test datasets.

AMR is very similar to detection quality measures used by other authors. For
example, Dollar et al. [20] used log-average miss rate which is exactly the same as

AMR except it averages miss rate over logarithmic false positives per image between
1072 and 100 7.

Many graphs in this thesis (e.g. Figure 4.11) show relation between AMR and
detection speed which is expressed as average number of weak classifiers (#WC)
computed per image position. The graphs allow to analyze behavior of classifiers
across the whole range of classification speeds. This could be useful, for example,
when selecting features for an application with specific speed or accuracy requirements.
On the other hand, the plots of AMR and #WC are not too convenient for fast
comparisons over the whole speed range. For that purpose Table 4.3 and Table 4.4
summarize the results as ranks of the individual detector types. The ranks were
determined according to subjective assessment of which detectors dominate which in
the corresponding AMR/#WC plots. Average ranks were assigned when the order

was not clear.

"The range of false positive rate which AMR. averages is similar
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Figure 4.11: Object detection results. Y-axis: average miss rate (lower is better);
X-axis: average number of weak classifiers evaluated per window (left is faster).
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Haar LBP LRD LRP EHOG EHOGS

MIT+CMU faces 4 1.5 4 1.5 4 6
GrpuPhoto faces 4 2 5 2 2 6
Daimler pedestrians | 1.5 1.5 5.5 3.5 3.5 5.5

BiolD eyes 3 1 4 2 5 6

PAL eyes 1 2.5 4 2.5 5 6

Signs 4 4 4 4 4 1
average rank 2.92 2.08 4.42 258 3.92 5.08

Table 4.3: Features ranked according to their performance in detection tasks shown
in Figure 4.11.

4.4.1 Object Detection

The first series of tests was performed to evaluate the selected feature types (see
Section 4.1) in different detection tasks. The results of this experiment are shown in
Figure 4.11, and Table 4.3 summarizes the results as ranks of the individual features
in the detection tasks.

LBP provide the best results overall. They perform consistently well across the
six detection task except on Signs dataset where EHOGS are significantly better
than all the other features. Second best overall are LRP, then Haar, FHOG, LRD,
and finaly FHOGS.

The most significant perturbation is the best result of EHOGS in the traffic
sign detection task. The most probable explanation of this behavior is that the
invariance to color inversion makes these features very suitable to model silhouette
edges which are the predominant features of the traffic signs when color is not
considered. However, the same effect is not present on the pedestrian detection task
where the distinguishing feature is also the silhouette.

Surprisingly, Haar is better in pedestrian detection than FHOG which is in
contrast to other published results. This could be possibly explained by relatively
low resolution of the detector (18-by-36 pixels). Similarly, Haar gives best results on
the PAL eye detection test set. In this case, a reasonable explanation is that this is
due to clutter-free background in the test images. Further, the Haar-like features
achieve good performance in the pedestrian detection task where they match LBP.

LRP consistently outperform LRD except on traffic sign detection task where
LRD give slightly better results.



False Positives
Detector WOl 6 9 10 26 31 30 41 46 50 57 65 77 78 95
Viola and Jones [138] | 8 - - 76.1 - 88.4 - - - 914 - 920 - 921 929
Li and Zhang [85] 18.9 - - 836 - 90.2 - - - - - - - - -
Schneiderman [120] - 89.7 - - - - - - 95.7 - - - - - -
Wu et al. [7] - - - 90.1 - - - - - - 945 - - - -
Luo [92] ; 8.6 - 874 - 903 - ; S99l - - o :
Bourdev [§] 37 90.9 919 - 93.5 - - 94.3 - - - - - - -
Bourdev [§] 25 - ~ 917 921 - ~927 - - 929 - -
Brubaker et al. [10] 8 81.7 - 85.8 - 88.8 - - 90.1 90.1 - 90.3 - 90.5 90.9
Brubaker et al. [10] - 89.1 - 89.5 - 91.3 - - 91.9 91.9 - 92.1 - 92.1 923
Sochman [141] 3.32 | 874 875 88.2 90.3 90.5 90.7 90.7 91.1 91.1 91.3 919 921 92.1 925
Zhang and Viola [12] | 14.6 | 88.8 - 91.7 - 93.2 - - - 946 - - - - 95.2
Our LBP 6.84 | 90.6 929 93.3 93.9 939 941 941 941 943 945 949 953 953 95.7
Our LRP 6.23 | 89.0 90.2 91.0 93.9 949 94.9 94.9 949 951 951 951 955 955 95.5
Our Haar 6.98 | 81.7 84.9 85.1 90.0 90.6 91.0 929 93.7 93.7 943 945 947 947 95.1

Table 4.4: Results of selected classifiers on the CMU+MIT face dataset. The table shows the detection rates as a function of the number
of false positives. Note the differences in the average number of weak hypotheses computed per scanned position. The results should be
interpreted with caution as different training sets and slightly different evaluation methodologies were used by different authors. The table
extends similar table by Sochman [141].
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Haar LBP LRD LRP

MIT+CMU faces 4 1 3 2
GrpuPhoto faces 4 1 3 2
Daimler pedestrians | 2 1 4 3
BiolD eyes 4 1 3 2
PAL eyes 3.5 2 3.5 1
Signs 2.5 2.5 2.5 2.5
average rank 3.33 1.42 3.17 2.08

Table 4.5: Features restricted to sizes 1x1, 1x2, 2x1, and 2x2 ranked according to
their performance in detection tasks shown in Figure 4.11.

Comparison to state-of-the-art. In order to put detectors from this thesis
into the context of other state-of-the-art methods, Table 4.4 shows results of the
WaldBoost face detectors used in this thesis together with results of other methods
on the MIT+CMU dataset. The WaldBoost detectors compare favorably to other
methods in terms of both detection rate and speed. The detectors use on average less
than 7 features per image position which is less than the other detectors except the
WaldBoost detector by Sochman [141] which, however, provides much worse detection
rates. Also, the detectors provide best or very good detection rates throughout the
whole range of false positives.

The best results achieved by a cascade of Haar-like features on the Daimler Mono
Pedestrian Detection Benchmark Dataset reported in [24] are approximately 57%
detection rate for 0.1 false alarms per frame and 81% detection rate for 1 false alarm
per frame. Our WaldBoost detector which uses on average 11 Haar-like features per
classified position achieves detection rates 61% and 84% for the same false alarm
rates (even thought the scanning is sparser in this case).

Considering the face and pedestrian detection results, it is reasonable to conclude

that detectors used in this thesis are comparable to other state-of-the-art detectors.

4.4.2 Restricted feature sizes

This experiment evaluates performance of Haar, LBP, LRD, and LRP feature sets
when the size of building blocks of the features is limited to 1-by-1, 1-by-2, 2-by-1,
and 2-by-2 pixels. The building blocks are grid cells in the case of LBP, LRP, and
LRD. In the case of Haar, the building blocks are the rectangular areas which the
features are composed of. This type of size restriction can lead to alternative simple
and efficient ways to compute the features on highly parallel platforms [50] (e.g.
GPU and FPGA). FHOGS and EHOG were not considered in this experiment as
they are not composed of building blocks.

Figure 4.12 shows results of this experiment, and Table 4.3 summarizes the results
as ranks of the individual features in the detection tasks.

The overall ordering of the three best features is LBP, LRP, and LRD. The mutual
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Figure 4.12: Object detection with restricted size of features. The basic building
blocks of features were restricted to sizes 1x1, 1x2, 2x1 and 2x2. Y-axis: average
miss rate (lower is better); X-axis: average number of weak classifiers evaluated per
window (left is faster).
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performance differences of these features are similar to their differences without the
size restriction.

Compared to the other features, the size restriction has much more adverse effect
on Haar, which are now the worst. Although unrestricted Haar shared the first place
with unrestricted LBP in the pedestrian detection task (see Figure 4.11), now it is
significantly worse than LBP. On the PAL dataset, where unrestricted Haar achieved
the best results, the restricted Haar give the worst results together with LRD.

4.4.3 Effect of Training Set Size

Performance of object detectors strongly depends on the quality of training sets. One
of the important characteristics of a training set is its size. Intuitively, one would
expect features that discard more irrelevant information to cope better with smaller
training set sizes as they should be able to generalize better.

To evaluate the ability of features to cope with smaller training sets, I trained
face detectors on progressively fever exemplar faces (from 5000 down to 19 faces).
All of the face detectors were created for target false negative rate 5%.

Results of the experiment are shown in Figure 4.13. As expected, the smaller
sizes of the positive training set result in higher AMR. Also, the detectors get faster
with fewer positive examples. The reason for faster speed is that the classification
task WaldBoost has to solve gets easier with fewer examples (the detector becomes
less general). The detectors would not get faster if validation set was used to select
rejection thresholds (see Section 3.2), however, the detection quality would still
degrade.

The results show that AMR degrades at different rates for different features.
Namely, FHOG features cope with very small sizes of training set much better than
the other features. For the smallest training set size, the FHOG features perform
best on both dataset. On the GroupPhoto dataset FHOG gives similar AMR as
Haar, LBP, LRP, and LRD with four times larger training set. The FHOGS features
also seem to cope with the small set sizes better, but their accuracy is significantly

lower compared to the other features for large training set sizes.

4.4.4 Training Set Sampling

As stated in Section 4.2, unique weight sampling selects a subset of training samples
to be used to choose the best image feature in each iteration of WaldBoost. The
sampling significantly reduces training time while retaining performance very similar
to classifiers created using the full training set. The question is, how this sampling
affects different types of features.

To evaluate the effect the training set sampling, face detectors were trained while
sampling 500, 2500, and 5000 examples of both types in each boosting iteration.

Note that, although selection of weak classifiers on 500 examples is by an order of
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Figure 4.13: Effect of the size of training set. Each curve corresponds to single
type of features and points on the line correspond to classifiers trained on different
number of annotated object resulting in different speed and error rates. The numbers
of annotated faces for training are 5000, 2500, 1250, 625, 312, 156, 78, 39, and 19.
Second row shows mean miss rate as a function of training set size. Third row shows
average number of weak classifiers evaluated per window as a function of training set
size.
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magnitude faster than when 5000 examples are used, speed-up of the whole training
process is much lower as a large portion of the training time is spend by bootstrapping
the background examples.

Two different scenarios were considered in this experiment. In one scenario,
features were selected on sampled subsets and predictions of the corresponding weak
classifiers were refined on the whole training set. This is the way previous detectors
were created. In the second scenario, the prediction refinement step was skipped.
Skipping the refinement step should result in more profound performance degradation
with smaller examples.

The results in Figure 4.14 show that the effect of training set sampling in the
considered range is negligible when the weak classifier refinement step is employed.
In case the refinement step is skipped, the performance is significantly degraded
when sampling only 500 examples. Compared to the other features the LRP exhibit
the highest sensitivity to the sub-sampling. On the other hand, Haar and EFHOG

cope with the sub-sampling relatively well.
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Figure 4.14: Effect of sub-sampling the training set in each boosting iteration. The
first column corresponds to refinement of weak hypotheses on full training set (not
only its sampled subset), and second column is without this refinement. The rows
are for 500, 2500 and 5000 training samples. The results are shown for face dataset
GroupPhoto. Y-axis: average miss rate (lower is better); X-axis: average number of
weak classifiers evaluated per window (left is faster).
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Information sharing in scanning-window detection

In their basic form, scanning-window detectors process image regions independently
one by one. An advantage of such design is its simplicity which makes it possible to
define the detection task as a standard binary classification that can be solved by
general learning algorithms without any modifications. However, the independent
processing is sub-optimal in terms of computational cost.

A detection task can be regarded as accumulation of evidence and inference of
probable object positions in an image. The range of possible evidence the detection
can rely on is large, e.g. local shape, color, texture, coocurance of local shapes,
self-similarities, position, surrounding objects and surfaces, scene type, author, and
acquisition time and place. Practical detectors are necessarily limited in what
information they are able to work with due to computational constraints, limitations
of available data, and limitations of current human knowledge. Addressing the
computational constraints, detectors should extract the information they are limited
to as efficiently as possible. Unfortunately, such optimality would be very hard to
achieve even for very simple detectors.

Lets consider a WaldBoost detector with LRP features form Chapter 4. The
detector is a majority vote of the LBP features which is dynamically terminated de-
pending on the progress of the voting. The detector can be regarded as optimal when
considering single image position, but it completely ignores overlapping neighboring
positions. Ideally, the features of the detector should be selected according to how
much information they contribute to all surrounding positions, they should update
positions for which it is efficient to do so, and the early terminations should depend
on results of neighboring positions. Even for such limited detector, the resulting
learning algorithm would be complex and, possibly, computationally expensive. Also,

it is often hard to estimate compuational cost of different parts of the detector in a

o1
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target hardware platform.

The ways in which existing scanning-window detectors are optimized with respect
to detection window overlap can be divided in two basic groups. Many detectors share
some computations across image windows in the form of image preprocessing [137, 22,
21, 3, 4] and in the form of common features [120, 18, 16, 77, 134, 2, 83] or parts [27].

Even higher level information can be shared as in convolutional networks [25, 128].

The second group includes methods which make local decisions interdependent
in various ways. These methods include detectors which try to minimize the num-
ber of processed image windows by exploiting smoothness of a particular detector
responses [16, 77, 20|, and some detectors improve speed by assuming minimum

distance between objects [106, 20] in the same way as non-maxima suppression does.

The rest of this chapter overviews existing detectors which locally share infor-

mation and discusses how the detectors relate to meighborhood suppression and

EnMS.

Computation sharing. Most scanning-window detectors do not process image
windows completely independently. Even the original detector of Viola and Jones [137]
computes an integral image which is shared among all windows and which significantly
improves speed of Haar-like features. Other detectors take the preprocessing idea
further. Notably, Dollar et al. [22] extend the idea of integral images to other
types of information with their integral channel features which compute local sums,
histograms, Haar-features, and their various generalizations using a range of integral
channels. The approach was later extended [21] to approximate feature responses at

nearby scales, and further improved by Benenson et al. [3, 4].

Sharing of features interlinks neighboring positions even further. Such approach
was advocated by Schneiderman [120] as feature-centric computation which computes
several first features densely across a whole image. Similarly, the pedestrian detector
by Dalal and Triggs [18] computes HOG features on a dense grid and uses them as

an input for a linear classifier.

Similarly, most part-based detectors share visual words or parts. Detectors based
on visual words [16, 77, 134, 2, 83] compute the words from independently of the
detection task as a first step similarly to the feature-centric computation. A visual
word represents a local area deemed important by a key-point detector (e.g. SIFT,
SURF, MSER) by few most similar prototypes from a codebook. In its simple
form, the projection to prototypes is a standard wvector quatization of real-valued

high-dimensional descriptors of the patches.

Some part-based detectors detect the parts first and infer positions of objects
from responses of the part detectors. For example, Felzenszwalb et al. [27] detect

objects from response maps of discriminatively trained part detectors.
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Smoothness of detector responses. Responses of many detectors are smooth
due to their robustness to small shifts and other transformations. Such smoothness
can be used to infer responses in local neighborhoods or to reason about a whole
group of regions as about a single homogeneous set. The goal of methods which use
the smoothness assumption is usually to minimize the number of windows on which

the detector is evaluated.

Chum and Zisserman [16] use discriminative features to locate likely object
positions which serve as seeds for discrete gradient ascent search for a maximal
responses of a window classifier. Related is also the efficient subwindow search by
Lampert et al. [77] which searches the space of all windows in an image guided by an
upper bound on the classifier response over a set of rectangles. However, the search
can be efficient only if the bound is reasonably tight and computationally efficient,
which is possible only for relatively simple classifiers which have high invariance to
geometrical transformations.

A successful way how to apply the smoothness assumption to fast detectors with
attentional structure is to first scan an image relatively sparsely and then re-scan
the promising regions more densely. Examples of such approaches are by Butko and
Movellan [11] and Gualdi et al. [42, 43].

A promising method was proposed by Dolldr et al. [20]. Their ezcitatory cascades
realize the sparse scanning idea with soft cascades. The authors suggest an algorithm
which sets excitatory thresholds for stages of an existing soft cascade on an unlabeled
set of images such that regions containing positive responses of the original cascade
are missed during the sparse scanning phase only with some small and defined
probability. However; the authors do not claim that the thresholds are set in optimal

way and, in fact, they are clearly sub-optimal.

Non-maxima suppression assumptions. Non-maxima suppression, which is
part of most scanning-window detectors [137, 22, 20], is based on the assumption
that two objects can overlap only to a limited extent. This assumption is valid
for most detectors as they are usually not able to handle severe occlusions anyway.
The assumption allows detectors to merge overlapping responses into a single object
position, which is usually the window with the highest detector response.

The assumption of non-maxima suppression can be used to accelerate detection. If
the final object position is determined only by the window with the highest responses,
responses at neighboring positions are not needed and the detector only has to
determine that they are to be suppressed. This idea was utilized, for example, by
Pedersoli et al. [106] in their coarse-to-fine detector which splits an image into a set
of neighborhoods that can contain only one object and searches the neighborhoods
in greedy recursive coarse-to-fine fashion. First, the object is localized at a coarse

resolution, and the position is further refined at higher resolutions.
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An interesting application of the non-maxima suppression assumption is the
inhibitory cascade by Dollar et al. [20]. The inhibitory cascades evaluate neighboring
image positions in parallel and terminate computation of those windows which will
likely give non-maximal results. The decisions are based on ratios of partial cascade
responses. The authors proposed an algorithm which sets thresholds on the response
ratios for an existing soft cascade using unlabeled images. Although the thresholds
are set such that the inhibitory cascade introduces a small and defined error, the
thresholds are not optimal in terms of decision speed (why inhibitory cascades are

not optimal and how they relate to EnMS is discussed in Chapter 8).

Relations to EnMS and neighborhood suppression. All methods which ac-
celerate detectors by sharing computations of features or by image pre-processing
are orthogonal to neighborhood suppression and EnMS, and could be combined with
the proposed methods for even faster detection.

Many of the methods which strongly rely on smoothness of detector responses
are not applicable to fast detectors with attentional structures, which produce
discontinuous responses due to the early terminations. The local search methods [16]
and the branch-and-bound search by Lampert et al. [77] target relatively slow
detectors which are not the primary focus of neighborhood suppression and EnMS.

The excitatory cascades by Dollar et al. [20] focus on the same detectors as
neighborhood suppression and their underlining idea is similar as well. However,
the excitatory cascades try to select image positions which should be evaluated
and neighborhood suppression, in contrast, selects image positions which should be
skipped.

The coarse-to-fine detector of Pedersoli et al. [106] is in many aspects related to
EnMS, which could, in fact, be applied to a multi-stage coarse-to-fine detector in
order to create a detector with similar behavior. An advantage of EnMS is that it
produces optimal time-to-decision detector for a target localization error.

The inhibitory cascades by Dollar et al. [20] are build exactly on the same idea
as EnMS and the way they process images is very similar. The methods differ only
in the exact form of the conditions which decide when non-maximal windows are to
be rejected, and EnMS, unlike inhibitory cascades, finds thresholds for the decisions

which optimize detection speed.
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Neighborhood suppression

The algorithm proposed in this chapter extends existing appearance-based detectors
with an ability to suppress image positions in the neighborhood of the position being
currently classified. The proposed method is effective and, at the same time, simple
and computationally inexpensive. It learns a new suppression classifier which predicts
the responses of the original detector at neighboring positions. When the predictions
are negative and confident enough, computation of the detector is suppressed at the
respective positions.

The idea of neighborhood suppression is demonstrated in Figure 6.1. While a
detector is deciding an image position, it is, at the same time, trying to reject
neighboring positions. Evaluation of the detector is suppressed at the positions which
get rejected.

The suppression is possible because the neighboring positions share information
due to overlap of the image windows caused by small horizontal and vertical scanning
steps. In order for the neighborhood suppression to be efficient, the detector and the
suppression classifier have to share computation. These reused parts can be image
features in the case of Viola & Jones’ [137] and similar detectors or possibly other
partial computations. The reuse of computation is crucial and, in fact, it is the only
reason why faster detection can be achieved this way. Although the neighborhood
suppression algorithm proposed here considers only sharing of features, the general
idea could be applied to wider range of detectors and in other ways.

The effectiveness of neighborhood suppression relies on the amount of information
shared between neighboring scanned windows — which is clearly high if the windows
overlap closely. However, it is not immediately clear how suitable are the features
of the original detector, as those features were selected specifically for detection of

well aligned centered objects and they are not necessarily suitable for other tasks.

95



56 Chapter 6: Neighborhood suppression
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Figure 6.1: Scanning an image in ordinary line-by-line fashion while using neighbor-
hood suppression.

The amount of information provided by the reused features, and consequently the
possible effectiveness of neighborhood suppression, surely varies with different types of
features and objects. Also, the amount of shared information decreases with distance
of the windows.

Efficiency of neighborhood suppression is affected by the fact that detectors with
attentional structure compute on average only few features per window (see Table 4.4),
and the suppression classifiers should use only these features if they are to improve
speed of detection.

Although this chapter considers neighborhood suppresson only for soft cascades [8,
124] (see WaldBoost detector in Algorithm 2), the proposed approach is not limited
to this type of detectors. Neighborhood suppression could be easily extended to
detectors with different attentional structures in a straightforward and trivial way.

The neighborhood suppression creates new suppression classifiers for an existing
soft cascade. The new classifiers are trained by WaldBoost [124] and they reuse
features of the original soft cascade.

The task of learning the suppression classifiers is similar to emulation of existing
detectors by WaldBoost as proposed by Sochman and Matas [125, 126]. Formulating
the neighborhood suppression task as detector emulation makes it possible to use
unlabeled data for training, and it allows the approach to support existing detectors

without any modifications.

6.1 Learning Neighborhood Suppression

This section formally defines a learning algorithm for neighborhood suppression [155].
It first summarizes necessary notation and facts about sequential decision strategies
and WaldBoost previously presented in Section 2.1 and Chapter 3, and then it
presents the novel algorithm which was inspired by the WaldBoost algorithm [124].
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Soft cascade. A soft cascade is a sequential decision strategy with decision functions

S; based on a majority vote of weak hypotheses hy : X — R:

T
Hy(x) =) hu(x) (6.1)
t=1
with corresponding decision thresholds (as discussed in Chapter 3).

For neighborhood suppression, the three-way decision functions from Equa-

tion 3.10) are simplified to two-way decision functions which terminate only for

=1, i Hy(x) <00
M@_{m if 00 < Hy(x) (6.2)

negative decisions:

Although it would be possible to suppress computation of a detector at neighboring
positions which contain an object with high probability as well, most object detectors
include some variant of non-maxima suppression which requires the detector to be
fully computed at the most promising positions in order to obtain optimal location
of the objects (usually a position with the highest response of the detector).

Weak hypotheses used in practical detectors [124, 141] are in vast majority
of cases space partitioning weak hypotheses [117] which internally operate with
disjoint partitions of the object space X'. The functions partitioning the object space
f X = N will be reffered to in the following text simply as features. The space
partitioning weak hypotheses are combinations of such features and a look-up table
function | : N = R

hi(x) = li(fi(x))- (6.3)

In the further text, cgj ) specifies the real value assigned by [; to the output j of
ft. The cgj ) values may be set in many different ways depending on the learning
algorithm used to build the detector. In the case of WaldBoost, cgj ) values are set

according to Equation 2.9.

Neighborhood suppression learning algorithm. The task of learning a sup-
pression classifier can be formalized as learning a new soft cascade with a decision
strategy S’ consisting of hypotheses h} = I;(f;(x)), which reuse features f; of the
original detector S, and which only differs in the look-up table functions I; and in
the rejection thresholds (). The goal of the new decision strategy S’ is to emulate
the original detector at neighboring locations. The whole algorithm for learning
suppression classifiers is summarized in Algorithm 4. The learning algorithm is
closely related to WaldBoost (see Algorithm 3).

The inputs of the algorithm are target false negative rate, existing soft cascade S
and a set of unlabeled images.

The target false negative rate applies to the binary decision of the suppression
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classifier. Total change of false negative rate of the whole final detector will be lower.
This discrepancy is natural and it has two reasons. Neighborhood suppression can
be performed only within a small neighborhood and, as a consequence, a detector
has to be evaluated at many image positions even if all the suppression decisions are
successful. Also, the target false negative rate in Algorithm 4 would be reached only
if the suppression classifier managed to reject all background positions, which it is
not able to do in practice (see Table 6.1) as its decision evidence is limited only to
the features computed by the original detector.

The training set consists of image windows extracted from unlabeled images which
should be close to the target domain of the detector. The image windows represent
positions at which the detector is evaluated. As the task is to predict response of the
original detector S at some other position in neighborhood, corresponding labels for
the learning task are obtained by evaluating the original soft cascade S at an image
position with a particular displacement.

The algorithm proceeds in iterations in which it consecutively creates new weak
hypotheses for the suppression classifier — it sets values of the look-up table I} and of
the early termination threshold #’(!) for feature f; of the original detector S. The look-
up table values are set according to real AdaBoost (Equation 2.9). The termination
threshold 6’®) is set as in WaldBoost (Equation 3.13). As the algorithm does not
have to select an optimal weak hypothesis from a large pool of available features
(which is generally the most time consuming step in WaldBoost), the learning of the
suppression classifiers is very fast.

The training set is pruned twice in each iteration. First, examples rejected by
the new suppression classifier must be removed from the training set. In addition,
examples rejected by the original detector S must be removed as well. This corre-
sponds to the behavior during image scanning when only those features which are

needed by the original detector to make decision are computed.

Multiple suppressions. Suppression classifiers learned by Algorithm 4 aim to
suppress only a single image position. This limitation is not inherent to this approach,
in fact, multiple neighboring position can be suppressed by single classifier, and
Algorithm 4 can be easily extended to learn such classifiers. This behavior can
be achieved by setting labels of the training samples to —1 only when the original
detector rejects all of the considered positions.

In addition, multiple suppression classifiers focusing on different parts of a

neighborhood can be combined.
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Algorithm 4 Neighborhood suppression learning algorithm based on WaldBoost as
published in [155].
Input:

¢ original soft cascade S defined by features f;, corresponding weak hypotheses
hi(x), and rejection thresholds 6(*)

e training set P = {(x1,91) .-, Xm,¥m)},xi € X,y; € {—1,+1}, where the
labels y; are obtained by evaluating the original soft cascade S at an image posi-
tion with particular displacement with respect to the position of corresponding
X; in an respective image

e desired miss rate «
Output:

e look-up table functions I, and early termination thresholds 8’®) of the new
suppression classifier

Initialize sample weight distribution Dy (i) = L
fort=1,....T

1. estimate new [; using f; such that

t ? Pip(fi(xi) = jlyi = —1)

2. add I} to the suppression classifier

Hi(x) =) 1 (fr(x)
r=1

3. find optimal threshold §’*) satisfying Equation 3.13
4. remove training set samples for which H;(x) < )
5. remove training set samples for which H/(x) < §'(*)

6. update the training set weight distribution

Di11(1) o< exp(—yiHy(x;))
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6.2 Neighborhood suppression in real-time detection

Adding the ability to suppress neighbors to existing detector engines requires only
slight modifications which may, however, introduce some computational and storage
overhead. Although the computational overhead is small and may not affect detection
speed on some architectures at all (e.g. on SIMD architectures, and on wide-register

architectures), it should be considered.

Starting from an existing implementation of a soft cascade detector, one has to
expand it to be able to perform the new table lookups lj, update accumulators of the
suppression classifiers, perform threshold tests on the accumulators, and maintain a

list of the suppressed positions.

The prediction values of a suppression classifier have to be loaded from memory
in addition to the prediction values of the original detector. Fortunately, the lookup
tables ; and [j are always indexed by the same value corresponding to an output
of the same feature f;(x). This coordinated access pattern allows the lookup tables
to be merged into a single table with double size of entries. Assuming suitable
memory architecture, the two values can be retrieved at the same cost in a single
memory access. On a standard PC, the memory access cost will remain the same
for up to 16 bytes long entries when no cache misses are considered (assuming
proper memory alignment). In standard situation, the 16 bytes can accommodate
4 classifiers (four 32-bit floating point values). Additionally, previous work [156]
indicates that the look-up table values can be quantized down to 8-bit values without
significant performance degradation. Such quantization would increase the number

of classifiers which can fit into a 128-bit register to 16.

The prediction values have to be accumulated and the accumulated values
compared to thresholds. This can be done in parallel with no additional cost on SIMD
architectures, such as MMX/SSE/AVX instruction set extensions of contemporary
PC processors. Using the AVX instruction set, which supports 256-bit registers, eight

32-bit accumulators can be handled in parallel.

On systems with wide enough data words but no SIMD support, the implemen-
tation can be similar as on a SIMD architecture. All the accumulators may be
packed into a single long integer accumulator manually as long as the accumulators
do not overflow. The non-overflow condition can be easily fulfilled as the maximum
possible value of each portion of the register can be calculated in advance from values

contained in the look-up tables.

The suppression itself can be handled by a binary mask covering positions to be
scanned. Some positions in such mask would be marked as suppressed and would
be excluded from further processing. The image scanning pattern can remain the
same as in ordinary scanning-window approach, even though it restricts the positions

which can be suppressed to those which are to the right and bottom of the currently
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classified position! (see Figure 6.1). Possibly, more efficient scanning strategies may

be developed.

6.3 Neighborhood suppression experiments

I tested the neighborhood suppression on frontal face detection and eye detection
tasks. In both tasks, two separate test image sets were used - one with less constrained
poses and lower quality images and one with easier poses and good quality images.
All the datasets are described in more detail in Section 4.3.

Face detection experiments were performed on MIT+CMU frontal face dataset
and on GroupPhoto dataset. From these two, MIT+CMU contains lower quality
images. GroupPhoto contains good quality group shots with close to frontal faces.
Eye detection experiments were performed on XM2VTS database and on BiolD
database. XM2VTS is much easier compared to BiolD as it contains clutter-free
backgrounds. The datasets are described in Section 4.3. Suppression classifiers were

trained on a large set of unannotated images containing faces.

The tests were performed with four types of image features: Haar, LBP, LRD,
and LRP (see Section 4.1 for definitions of these feature sets). The base WaldBoost

detectors were created and evaluated as described in Section 4.2.

Effect of neighborhood suppression. The first experiment focuses on the gen-
eral effect of neighborhood suppression using a single classifier to suppress single
positions and using twelve such classifiers to suppress twelve different relative posi-
tions in the neighborhood. The resulting effects were measured in terms of relative
speed-up of detection and relative change in average detection rate 2. The tests were
performed with moderately fast base detectors (4.5 - 6 features per position) and

moderate target false negative rate of the suppression classifiers (o = 0.05).

Results of the experiment are shown in Table 6.1 and Figure 6.2. The results
indicate large differences between individual feature types. While the average number
of weak hypotheses computed per position was reduced with twelve suppressed
positions down to 30% for LBP and 40% for LRP, only 55% suppression was
achieved for LRD and 65% for Haar. This can be explained by generally higher
descriptive power of LBP and LRP features — it is reasonable to expect that they
capture lot of information which is not directly relevant to their primary detection
task. In general, the average detection rate degraded only slightly — by no more than
1% in all cases except for twelve suppressed positions with LBP on MIT+CMU and
BiolD and with LRP on BiolD.

! Assuming standard scanning order from left to right and from top to bott