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SHARING LOCAL INFORMATION FOR FASTER
SCANNING-WINDOW OBJECT DETECTION

DOCTORAL THESIS
DISERTAČNÍ PRÁCE
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Abstrakt
Ćılem této dizertačńı prace je vylepšit existuj́ıćı detektory objekt̊u pomoćı sd́ıleńı

informace a výpočt̊u mezi bĺızkými pozicemi v obraze. Navrhuje dvě metody,

které jsou založené na Waldově sekvenčńım testu poměrem pravděpodobnost́ı a

algoritmu WaldBoost. Prvńı z nich, Early non-Maxima Suppression, přesunuje

rozhodováńı o potlačeńı nemaximálńıch pozic ze závěrečné fáze do fáze vyhodnocováńı

detektoru, č́ımž zamezuje zbytečným výpočt̊um detektoru v nemaximálńıch pozićıch.

Metoda neighborhood suppression doplňuje existuj́ıćı detektory o schopnost zavrhnout

okolńı pozice v obraze. Navržené metody je možné aplikovat na širokou škálu

detektor̊u. Vyhodnoceńı obou metod dokazuj́ı jejich výrazně vyšš́ı efektivitu v

porovnáńı s detektory, které vyhodnocuj́ı jednotlivé pozice obrazu zvlášť. Dizertace

nav́ıc prezentuje výsledky rozsáhlých experiment̊u, jejichž ćılem bylo vyhodnotit

vlastnosti běžných obrazových př́ıznak̊u v několika detekčńıch úlohách a situaćıch.

Abstract
This thesis aims to improve existing scanning-window object detectors by exploiting

information shared among neighboring image windows. This goal is realized by two

novel methods which are build on the ideas of Wald’s Sequential Probability Ratio

Test and WaldBoost. Early non-Maxima Suppression moves non-maxima suppression

decisions from a post-processing step to an early classification phase in order to

make the decisions as soon as possible and thus avoid normally wasted computations.

Neighborhood suppression enhances existing detectors with an ability to suppress

evaluation at overlapping positions. The proposed methods are applicable to a

wide range of detectors. Experiments show that both methods provide significantly

better speed-precision trade-off compared to state-of-the-art WaldBoost detectors

which process image windows independently. Additionally, the thesis presents results

of extensive experiments which evaluate commonly used image features in several

detection tasks and scenarios.
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Preface

Automatic detection of objects in images is an important task with applications

ranging from face detection in hand-held cameras and cloud-based photo collections

to general scene understanding and human-machine interaction. Development of

practical detectors is a scientific and engineering challenge which combines fields of

image processing, machine learning, and often hardware acceleration.

The range of methods for object detection is wide. One particular class of methods

scans images with a small scanning-window and tries to determine for each of the

windows separately if it contains an object of interest or if it contains background.

These methods rely on fast classifiers to make the decisions and on efficient features

to extract relevant information from the image windows.

Existing scanning-window detectors are fast and precise, able to detect even small

objects in Full HD video in real-time. However, computational resources are still not

sufficient in some situations and precision of detection has to be sacrificed for speed.

One drawback of many scanning-window detectors is that they process each

image window independently even though they overlap and share lot of common

information. In this thesis, I propose to make use of the shared information to

improve existing detectors.

I explore the idea of sharing local information and I refine it into two novel

practical detection methods. The first method augments existing detectors by an

ability to suppress their evaluation at neighboring position in an image. This way,

the detector is evaluated fewer times, saving significant computational effort.

The second method relies on the fact that objects cannot occupy the same

space in an image. If two objects were too close, a detector would not be able to

detect them anyway due to occlusion. This method lets neighboring image positions

compete among themselves. It progressively evaluates small parts of a detector at

the neighboring positions and gradually reject those positions which will not, with

high probability, give the best detection score.
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8 Preface

The proposed methods efficiently use the information shared among neighboring

image positions, and thus push speed-precision envelope of a range of state-of-the-art

detectors. Moreover, the two methods accelerate detection in different parts of an

image. The neighborhood suppression is effective in background areas while the

benefit of letting the detector locally compete improves speed mostly around objects.

Because of that, the methods complement each other very well and should provide

even greater benefits when combined.



CHAPTER 1

Introduction

This thesis focuses on scanning-window object detectors. Specifically, it extends

existing detectors to efficiently utilize information shared among neighboring image

windows. Theory of optimal sequential decision making [142, 124] is extended and

combined with boosting-based detectors resulting in two practical methods which

improve speed of pre-trained detectors by interlinking decisions at neighboring

image windows. Both of the methods, neighborhood suppression and Early non-

Maxima Suppression (EnMS), require only unlabeled images as they, in different

ways, approximate the responses of the original detectors at the cost of a small

and manageable precision reduction. The novel detectors were tested on practical

problems demonstrating significantly improved speed-precision trade-off.

Over the years, many approaches to natural object detection [161] have been

proposed ranging from simple template matching and hand-designed ad-hoc de-

tectors [54, 73] to appearance-based [110, 119, 137, 124, 163, 21, 3] and part-based

detectors [29, 16, 81, 77, 76, 28, 27, 164, 2]. The methods differ in their strengths

and weaknesses; however, the best performing detectors of relatively rigid and visu-

ally distinct objects, especially at lower-resolution, are based on appearance-based

approaches coupled with sliding-window image scanning. Two examples of such

object classes are faces [158] and pedestrians [23].

Appearance-based detectors rely on discriminative and efficient feature extractors

which provide useful information to a classifier deciding between a background class

and one, or possibly more, object classes. In the simplest arrangement, the detection

classifier considers image windows independently one by one [137] – computing

the needed features, evaluating the decision function and outputting a per-window

confidence score. The classifier needs to be evaluated very densely in order not

to miss objects (> 90% overlap of adjacent regions at the same scale [18, 137] is

9



10 Chapter 1: Introduction

typical).

Such scanning-window methods are simple, but computationally expensive due

to the large number of evaluated image windows. Most detectors improve speed by

employing classifiers with an attentional structure [137, 152, 85, 7, 122, 8, 124, 12, 163]

which decide very fast on background areas and spend more time at ambiguous

positions.

Scanning-window detectors inevitably produce multiple positive responses per

object due to combination of the dense scanning grid and their inherent robustness

to small transformations. To get meaningful object positions, the confidence scores

are aggregated by a simple non-maxima suppression [137, 22] or, possibly, by more

elaborate methods, such as mean shift [17]. The non-maxima suppression assumes a

minimum spacing between objects and, in some cases, smoothness of the detector

responses.

The assumptions of the non-maxima suppression as well as the overlap of neigh-

boring image windows can both be exploited to speed-up detection. For example,

features [120, 18, 77] or their components [22] can be computed for the whole image

in a pre-processing step and shared among all classified windows. Recent advances in

convolutional neural networks [25, 128] show that even higher-level parts of classifiers

can be shared. Chum and Zisserman [16] are able to locally optimize object bounding

boxes thanks to the smoothness assumption. Similarly, Lampert et al. [77] find

globally optimal bounding boxes using branch-and-bound search. Some coarse-to-fine

detectors [106] exploit the minimum object distance assumption.

In general, object detectors often balance a speed-precision trade-off. A clever

approximation of a slow detector may lead to a significant speed-up while retaining

similar accuracy [140, 21, 3]. Moreover, the spared computational power can be

utilized by additional features or more complex classifiers, in turn, improving detection

accuracy.

The idea of approximating some aspects of detectors was taken a step further

by Šochman and Matas [126] who proposed to approximate any binary detector as

a whole by a generic WaldBoost detector which was originally proposed for face

detection [124]. In their approach, an existing detector scans unannotated images and

produces training examples for the WaldBoost algorithm which then creates a new

detector the same way as when learning from hand-labeled data. As no annotation is

needed, the approach can be applied even to hand-crafted detectors. Using suitable

features, the authors report high speed-ups for Hessian-Laplace and Kadir-Brady

interest region detectors without noticeable degradation of detection quality.

The methods proposed in this thesis are partly inspired by the detector emulation

work of Šochman and Matas [126]. They are build on top of Sequential Probability

Ratio Test [143, 143] as WaldBoost is, they emulate existing detectors in order to

improve speed, and they only need unlabeled training images. However, the main
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goal in this case is to make use of the fact that decisions at neighboring image

windows are not independent due to the shared image content and the non-maxima

suppression. Moreover, the original detectors are not discarded. Instead, they are

preserved and extended only in a way necessary to handle interactions between the

neighboring image positions.

1.1 Summary of Contributions

This thesis contributes to the state-of-the-art of appearance-based object detection

methods. It explores an idea that existing scanning-window detectors [137, 124,

163, 126] could be improved by exploiting dependencies between neighboring image

windows. The idea is refined into two novel, practical, and in certain aspects

complementary methods which utilize the shared information to improve detectors.

Both methods are demonstrated on specific detectors resulting in two practical

detection algorithms.

The methods are general and are not limited to any specific type of detectors. The

only requirement is that the detectors have to be decomposable into fragments which

provide meaningful discriminative information. Exemplar applications presented in

this thesis are based on soft cascade [124, 8, 12] detectors which satisfy the requirement

very well; however, other detectors, such as detection cascades [137, 59, 152], trees,

and multi-object detectors [30, 86, 65, 129, 58], could be considered as well.

Neighborhood suppression. A detection classifier computed at an image window

extracts information relevant to other overlapping windows. The neighborhood

suppression algorithm (Chapter 6) exploits this fact and trains new classifiers to

reject neighboring image windows provided they contain background with high

confidence. The new classifiers reuse features of an existing detector changing

only the classification function. The neighborhood suppression can be realized with

minimal computational overhead for soft cascades and domain-partitioning weak

classifiers and it can be directly incorporated in existing detection engines requiring

only minor modifications. Neighborhood suppression was originally published in [155].

Early non-maxima suppression (EnMS). Scanning-window object detection

often includes some kind of non-maxima suppression which removes overlapping

detections with non-maximal responses of the detection classifier. Such suppression

decisions are made only after all the classifiers are fully evaluated. EnMS moves

the decision to earlier stages of the classifier in order to stop evaluation of the

classifiers which would, with high confidence, be rejected by the ordinary non-

maxima suppression. Chapter 7 presents the general idea of EnMS together with a

practical version of the algorithm which can be applied to soft cascades. EnMS is

general and can be applied to a wide range of tasks even outside computer vision –
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any task which searches for the highest response of a suitable classifier in a group

of competing objects. Furthermore, EnMS could be modified to handle multiple

classifiers evaluated on a single object. EnMS was originally published in [48].

Additionally, Chapter 4 presents novel evaluation of a number of existing features

with WaldBoost [124] detector on several detection tasks. The evaluated features are

considered in connection with the proposed algorithms in the corresponding chapters.

1.2 Authorship

Although most of the work presented in this thesis is my own, some parts resulted

from a collaboration with my colleagues.

Pavel Zemč́ık contributed to my work by many of his ideas and consultations.

He proposed the first basic principle of neighborhood suppression which I refined into

a practical algorithm and tested in the experiments presented in this thesis. Also,

Pavel Zemč́ık significantly influenced development of Local Rank Patterns and Local

Rank Differences by our consultations.

Adam Herout proposed the initial idea of Early non-Maxima Suppression, and he

helped me with some of the related face localization experiments. I formulated the

Conditioned Sequential Probability Ratio Test, transformed it into a practical Early

non-Maxima Suppression algorithm, implemented experimental tools, and performed

large part of the experiments.

Roman Juránek implemented several parts of the application which I used to

produce most of the experimental results [56]. The parts relevant to experiments in

this thesis are my own work.

1.3 Text Structure

Chapter 2 shortly overviews existing boosted scanning-window detectors and AdaBoost

learning algorithm [33, 34] which is one of the main components of such detectors.

Also, AdaBoost is a building block of WaldBoost [124], neighborhood suppression,

and EnMS. Chapter 3 introduces the idea of sequential decision making which

leads to Sequential Probability Ratio Test [143, 143] and WaldBoost. Chapter 4

presents novel evaluation of a number of existing features used in sliding-window

detectors. Chapter 5 discusses how existing detectors utilize dependencies between

neighboring image windows, thus putting the methods proposed in the next two

chapters into a wider perspective. Neighborhood suppression and EnMS together with

the corresponding experiments and results are presented in Chapter 6 and Chapter 7,

respectively. Chapter 8 discusses the experimental results, properties of the proposed

methods, and possible applications. Finally, Chapter 9 summarizes the ideas and

the findings of this thesis.



CHAPTER 2

Detection with boosted classifiers

The first practical object detector based on boosted classifiers was introduced by Viola

and Jones [137] in 2001. This frontal face detector achieved an amazing real-time

performance by combining computationally efficient image filters with a powerful

learning algorithm, an attentional structure of the classifier, a good training dataset,

and a large amount of training time. This tremendous success encouraged further

research of similar approaches and resulted in great number of modifications [84, 90,

86, 152, 89, 91, 129, 7, 59, 122, 123, 37, 95, 139, 8, 124, 163, 39, 40, 79, 63, 55, 58,

97, 160, 12, 10, 68, 78, 22, 147, 126, 158, 21, 155, 144, 48, 23, 49, 66, 3, 83, 4].

The original detector of Viola and Jones is a standard appearance-based sliding-

window detector which classifies overlapping constant aspect ratio image windows

into background and object classes. A simple non-maxima suppression aggregates

the raw detection scores into meaningful object positions.

The detector forms a rejection cascade (see Figure 2.1) where each stage rejects

approximately half of background windows while retaining almost all faces. A very

low false positive rate can be achieved by chaining multiple such rejection stages

T
1 42 3 4 face foundimage window

T T T

reject window

F F F F

Figure 2.1: The detection cascade [137]. The cascade is composed of a series of
increasingly more complex classifiers which either reject the classified sub-window
as background or pass it to the subsequent stage. An object is detected only if the
corresponding sub-window successfully passes through all of the stages.
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14 Chapter 2: Detection with boosted classifiers

Figure 2.2: [137]Haar-like features used by Viola and Jones in their frontal face
detector [137]. Sums of pixels which lie within the white rectangles are subtracted
from the sums of pixels in the grey rectangles.

A

A A

A+D-B-C

B

C D

Figure 2.3: Integral image makes it possible to sum pixels within any axis-aligned
rectangle by four memory accesses and three additions (subtractions).

without significant increase of computational cost. The computational cost remains

low even for long cascades because only few first stages are evaluated on average –

natural images contain mostly background which is rejected early in the cascade.

Moreover, the classifiers in the early stages tend to be small and efficient as they are

deciding very simple problems. On the other hand, later stages of the cascade can

easily require hundreds of features to decide with the required confidence.

The stages of the Viola and Jones’ detector are weighted sums of weak classifiers

learned by AdaBoost [33, 34]. When the weak classifiers each use only a single feature,

AdaBoost effectively performs greedy forward feature selection and it is able to create

a very compact and fast classifier by picking small highly discriminant set of features

from a large pool of features. Additionally, the greedy iterative nature of AdaBoost

makes it possible to simply terminate the learning when a required detection rate

and false positive rate is achieved.

Haar-like features, used by the detector, were first proposed by Papageoriou et

al. [105] as a part of their general framework for object detection. The features

are build on simple linear filters derived from Haar wavelets [44] which are energy-

normalized to improve robustness to contrast changes. The linear filters are composed

of several positive or negative axis-aligned adjacent rectangles. Viola and Jones

used an immense set of Haar-like features created by shifting and scaling of five

basic feature types from Figure 2.2 in 24-by-24 detection window (the total size of

the feature pool was 180,000). Haar-like features can be computed very fast and in

constant time regardless their size from an intermediate image representation called
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the integral image (see Figure 2.3). The constant time computation of features makes

it possible to scale the detector window instead of scaling the image, accelerating

multi-scale detection.

There is no doubt that Viola and Jones created a functional frontal face detector

for practical applications; however, the detector is more important due to the follow-

up research it initiated then due to its direct use. Since, many authors proposed

changes to the detector aiming to improve its performance in general, or in specific

situations. All parts of the detector have been carefully considered and analyzed.

Several authors pointed out that the rejection cascade is far from optimal, mainly

because it discards all the information accumulated by previous stages when learning

a new stage [152, 7, 122, 124, 8, 12].

Large amount of work has been invested in improving the stage classifiers,

including applications of advanced boosting algorithms [116, 117, 36, 84, 152, 19, 91,

123, 79] and weak learners [10, 106], improvements to the learning process [68], and

even experiments with non-boosting classifiers [148, 95, 47].

Many alternative image features have been proposed [90, 86, 13, 153, 58, 18, 160,

82, 163, 130] varying in their strengths, extracted information, and computational

speed. Some of the proposed features address other domains than gray-scale images

– e.g. motion data [139], depth data [104], or color images [130, 144]. The type of

information most features extract is generally well understood. However; it is usually

not clear what information is suitable for a particular detection task, and selection

of features mostly relies on empirical evidence from subjectively similar detection

tasks. Although some features perform significantly better in some tasks and even

enable detection of some objects, no single type of features is optimal for all types

of objects and situations. Chapter 4 presents more closely several types of features

together with their respective results in real-world detection tasks.

The detector of Viola and Jones is effective only for classes which are visually

compact. If it was to be used to detect multiple object classes or multiple views

of the same object, multiple detector would have to be used [7] and the detection

would become inefficient. Several authors extended the detector to address this

issue. Torralba et al. [129] proposed to learn multi-class detectors by joint boosting

which finds common features that can be shared across the classes. Other proposed

approaches include scalar trees by Fleuret and Geman [30], Li et al.’s pyramid [86],

Jones and Viola’s decision tree [65], and Huang et al.’s Width-First-Search tree [58].

Although several implementations of the Viola and Jones’ detector have been

created for Field-programmable Gate Arrays (FPGA) [75, 60, 74, 14] and Graphics

Processing Units (GPU) [94, 62, 46], the design of the original detector was aimed

solely at SISD1 PC platform and it is not guaranteed to be optimal for other

computing platforms with SIMD2 architecture. Especially in the case of FPGAs,

1Single Instruction, Single Data
2Single Instruction, Multiple Data
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the most efficient designs use different features [157]. Alternative features target

GPUs [48] and SIMD CPUs [52] as well. Many state-of-the-art detectors are deployed

on GPUs to achieve competitive speeds [3] at only minor development cost thanks

to modern languages and tools, such as CUDA.

2.1 AdaBoost

In 1995, Freund and Schapire introduced a novel boosting algorithm which they

named AdaBoost [33, 34]. The term boosting refers to a group of ensemble supervised

learning algorithms. The basic idea of these algorithms is to iteratively combine

relatively simple prediction rules (weak classifiers or weak hypotheses) into a very

accurate prediction rule (strong classifier). In most boosting algorithms, the weak

classifiers are linearly combined. For introduction to boosting look at [31, 114].

Boosting has its roots in the PAC (Probably Approximately Correct) machine

learning model [131, 45]. In this framework, the learner’s task is to find – with a

high probability – a bounded approximation of a classification function using only

training samples which are labelled by this particular function. The PAC model

constrains the learning methods in terms of their effectiveness – learning time and

size of training set have to be polynomial-bounded. The question, if a learning

algorithm which performs just slightly better then random guessing in the PAC

model can be boosted into arbitrarily accurate learning algorithm, was first suggested

by Kearns and Valiant [70, 71]. The first polynomial-time boosting algorithms

were introduced in 1990 by Schapire [113] and Freund [32, 33]. However, the early

algorithms suffered from many drawbacks. For example, they needed some prior

knowledge of the accuracies of the weak classifiers and the performance bound of the

final classifier depended only on the accuracy of the least accurate weak classifier.

AdaBoost solved most of these drawback. The significance of AdaBoost is pointed

out by many authors. For example, Huang et al. in 2007 wrote :

Boosting algorithm [34], which linearly combines a series of weak hy-

potheses to yield a superior classifier, has been regarded as one of the

most significant developments in the pattern classification field during

the past decade. [58]

AdaBoost. The AdaBoost algorithm is shown in Figure 1. It takes as an input a

set of labelled examples (x1, y1), . . . , (xm, ym) where xi are the samples and yi are the

corresponding labels from a set of labels Y . For the purpose of this text Y = {−1,+1},
which is different from the originally published version of the AdaBoost algorithm

where Y = {0, 1} [33]. However, the version which is presented here is functionally

equivalent, more common, and it became a basis to derive many later boosting

algorithms.
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Algorithm 1 The AdaBoost algorithm as presented in [31].

Input: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}
Initialize D1(i) = 1

m .
For t = 1, . . . , T :

1. Train weak learner using distribution Dt.

2. Get weak hypothesis ht : X → {−1,+1} with error

εt = Pi∼Dt(ht(xi) 6= yi).

3. Choose αt = 1
2 ln
(
1−εt
εt

)
.

4. Update:

Dt+1(i) =
Dt(i)

Zt
×
{ e−αt if ht(xi) = yi
eαt if ht(xi) 6= yi

=
Dtexp(−αtyiht(xi))

Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).

Output the final hypothesis:

H(x) = sign

(
T∑
t=1

αtht(x)

)
.

AdaBoost calls a given weak learning algorithm repeatedly in a series of iterations

t = 1, . . . , T . In each iteration, the weak learning algorithm is supplied with different

distribution Dt over the set of examples, and its task is to find a hypothesis ht :→ Y
minimizing a classification error with respect to the current distribution Dt

εt = Pi∼Dt(ht(xi) 6= yi). (2.1)

The best weak classifier is then added to the strong classifier with a coefficient αt

determined by the weighted error εt of the weak classifier:

αt =
1

2
ln

(
1− εt
εt

)
. (2.2)

After the weak classifier is selected and the αt coefficient is computed, new

distribution Dt−1 is generated in such way that the weights of the samples which

are correctly classified by ht decrease and weights of the wrongly classified samples

increase:

Dt+1(i) =
Dt exp (−αtyiht(xi))

Zt
. (2.3)

Here, Zt is a normalization factor chosen such that Dt+1 remains a distribution.

Maintaining the distribution Dt is one of the fundamental principles of AdaBoost.
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The weight Dt(i) of sample i reflects how well the sample is classified by all weak

classifiers selected in previous rounds.

The final strong classifier is a linear combination of the selected weak classifiers

H(x) = sign

(
T∑
t=1

αtht(x)

)
. (2.4)

AdaBoost is guaranteed to eventually reach perfect classification on training data

if it is able to find informative weak classifiers (εt < 0.5) [34]. Most weak learners

used in practice always find informative weak hypotheses on finite training sets. The

training error ε is exponentially upper-bounded :

ε ≤
T∏
t=1

√
εt(1− εt) ≤ exp

(
−2

T∑
t=1

(
1

2
− εt

)2
)

(2.5)

AdaBoost can be analyzed in terms of margins which are defined in this case as

the distance of a sample from the decision boundary normalized by the size of the

hypotheses space [31]:

ρi =
yi
∑

t αtht (xi)∑
t αt

(2.6)

It was proven that classifiers with larger margins on training data generalize bet-

ter [108].

AdaBoost was first analysed in the context of margin theory by Schapire at

al. [115]. The analysis provides a generalization bound which is independent of the

number of combined weak hypotheses and which is more consistent with empirical

results than the original generalization bound from [33]. The bound is linked to

margins on training set and it is determined by the training error and an addition

term based on VC-dimension [133] of the strong classifier.

Although AdaBoost was shown to create classifiers with large margins, it was

proven that the margins are not optimal [112]. Boosting algorithms which maximize

margins exist; however, these algorithms are not as practical as AdaBoost and are

not used in object detectors.

Real AdaBoost. Schapire and Singer [116, 117] in 1998 generalized the AdaBoost

algorithm in a way which removed the restriction of the binary weak hypotheses.

The authors call this generalization real AdaBoost and the original version discrete

AdaBoost. The authors show that when the weak hypotheses are allowed to take form

ht :→ R, it is still possible to find the optimal values αt minimizing Zt numerically –

by binary search. More importantly, they show that for domain partitioning weak

hypotheses3 the αt value can be incorporated directly into the weak hypotheses and

3Domain partitioning weak hypotheses assign each sample a value from a finite set of labels.
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the optimal responses of the weak hypotheses are

cj =
1

2
ln

(
W j

+

W j
−

)
, (2.7)

where W j
+ and W j

− are sums of weights of positive and negative samples assigned

to the partition j, respectively. Schapire and Singer also proved that the weak

hypotheses should be ideally created such that they minimize

Zt =
∑
i

Dt(i) exp (−yih(xi)) . (2.8)

Further, the authors suggested to smooth the cj values in case that either W j
+ or

W j
− is very small by

cj =
1

2
ln

(
W j

+ + ε

W j
− + ε

)
, (2.9)

where ε is a small smoothing constant.

The real AdaBoost algorithm is significant, because it provides an efficient way

how to use more complex weak hypotheses which partition the domain space into

more than two partitions. Such domain partitioning weak hypotheses were shown to

be superior to binary weak hypotheses [36, 150, 10].





CHAPTER 3

Sequential analysis in object detection

In object detection using the sliding-window technique, the decision at each image

position can be regarded as a statistical hypothesis test where the null hypothesis states

that the image patch does not contain an object of interest [124]. The alternative

hypothesis is that the patch contains an object of interest.

The idea of defining the object detection task as a statistical hypothesis test may

be counter-intuitive due to the fact that statistical tests are usually used to decide if

an independent sample of a population can be explained by the null-hypothesis or if

the sample provides enough evidence to reject the null-hypothesis in favor of some

alternative hypothesis.

To make the definition of a statistical test more formal, consider X to be a random

variable for which p(x|H0) defines either probability distribution or probability density

consistent with the null-hypothesis. Similarly, let the alternative hypothesis be that

X follows distribution p(x|H1). For N samples xi drawn independently from X , the

most powerful statistical test [142] can be defined as

p(x1, . . . , xN |H1)

p(x1, . . . , xN |H0)
≥ k ≡

∏N
i=1 p(xi|H1)∏N
i=1 p(xi|H0)

≥ k, (3.1)

where k is a constant chosen such that the probability of falsely rejecting the null

hypothesis is reasonably low.

In the sliding-window detection, the statistical test decides a single image region

at a time from which dependent measurements are taken. Consequently, the test

from the left side of 3.1 can be more appropriately written as

p(x|H1)

p(x|H0)
≥ k, (3.2)

21
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were x is now a vector of features extracted from the single image position. In case

the features were independent, the functions p(x|H0) and p(x|H1) could be factorized

into products of marginal distributions of the individual features similarly to the

right side of 3.1. Unfortunately, features describing the same object are generally

not independent, and should be modeled jointly.

A fully joined model p(x|H) would be complex, hard to estimate, and com-

putationally expensive. Practical detectors which utilize probabilistic models of

background and foreground have to make compromises by omitting some of the

dependencies [118, 119].

Sequential statistical test. Motivated by the need for efficient quality control of

military supplies during the Second World War, A. Wald [142] defined a sequential

test of a statistical hypothesis as a procedure which, at any stage of an experiment

where samples are drawn independently and identically distributed from an unknown

distribution, gives a specific rule, for making one of the three decisions: (1) to accept

the null hypothesis, (2) to reject the null hypothesis, (3) to continue the experiment

by making additional observation. A novel idea of the sequential test was that the

number of observations needed to make a decision was not predetermined, rather, the

number of observations was threated as a random variable. This made it possible to

adjust the number of observations to each particular instance of an experiment, and

thus reduce the average number of observations while maintaining the same expected

error level. As is shown in the following text, the ideas of sequential statistical testing

can be adapted in fast detection classifiers which compute and use only so many

features at each image position such that a predetermined error rates are achieved.

3.1 Optimal Sequential Decision Strategy

In the following text, the sequential test is formalized in a way which is suited

for a two-class classification task as opposed to the Wald’s definition [142] for

independent samples drawn from an unknown distribution. The formulation here

follows formulations in [124, 141].

Sequential decision strategy. Let x ∈ X be a vector of measurements xi ∈ Xi
representing an object. The task is to estimate an unknown class y ∈ {−1,+1} asso-

ciated with the object based on the values xi. The sequential test can be formalized

as a sequential decision strategy S : X → {−1,+1} which is a sequence of decision

functions S = S1, S2, . . . Each of the decision functions takes one measurement of

the object, and makes its decision based on the previously obtained measurements

including the new one – formally St : X1×X2× . . .×Xt → {−1,+1, ]}. The decision

strategy terminates when a decision function outputs +1 or −1. The symbol ’]’

defers the decision to the following function St+1.
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Strength of a sequential decision strategy S is characterized by its false negative

rate αS and its false positive rate βS

αS = P (S(x) = −1|y = +1) and βS = P (S(x) = +1|y = −1). (3.3)

Second important characteristic of a sequential decision strategy is its speed which

is expressed as the number of measurements needed to reach a decision. This number

is a random variable and it will be further denoted as NS . The average number of

measurements

T̄S = E [NS ] , (3.4)

depends on the object class. The average number of measurements for the two classes

will be denoted as

T̄S,−1 = E [NS |y = −1] and T̄S,+1 = E [NS |y = +1] . (3.5)

A sequential decision strategy S∗ is considered to be best [142] or evaluation-

time-optimal [141] if it provides the lowest TS∗,−1 and TS∗,+1 compared to any other

decision strategy of equal strength – of those decision strategies that have equal false

negative rate αS and false positive rate βS .

Sequential Probability Ratio Test. A. Wald [142] proposed a Sequential Proba-

bility Ratio Test (SPRT) which for practical purposes can be considered an evaluation-

time-optimal sequential decision strategy. In his own words:

. . . for the so called Sequential Probability Ratio Test . . . both TS,−1 and

TS,+1
1 are very nearly minimized. Thus, for all practical purposes the

Sequential Probability Ratio Test can be considered best. [142]

SPRT is defined as a sequential strategy S∗ where

S∗t (x) =


+1, if Rt(x) ≤ B
−1, if Rt(x) ≥ A
], if B < Rt(x) < A

(3.6)

where Rt(x) is a likelihood-ratio of the two competing hypotheses:

Rt(x) =
p (x1, . . . , xt|y = −1)

p (x1, . . . , xt|y = +1)
. (3.7)

The constraints A and B determine error rates α and β of the test. Fining A

and B to give exactly the required α and β is rather tedious and not suitable for

practical purposes. Instead, Wald [142] suggest A and B to be set to their upper

1The notation here was changed to match notation used in this work.
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and lower bounds, respectively:

A =
1− β
α

, B =
β

1− α
. (3.8)

Setting A and B this way may increase at most one of the resulting error probabilities

α′ and β′. Wald [142] showed that the potential increase of one of the errors is

extremely small.

Note that SPRT does not constrain the conditional class distributions in any

way. In fact, the likelihood-ratios Rt(x) could be even estimated directly without

modeling the class-conditional distribution, e.g. by logistic regression.

3.2 WaldBoost

In order for SPRT to be efficient in a classification task where the measurements

are not independent and identically distributed (non-i.i.d.), the decision functions

(Equation 3.6) have to be evaluated very fast. Ideally, the decision functions should

incorporate the new measurements in a computationally simple way which does not

depend on the number of measurements taken so far. This would be very hard to

achieve if the joined class-conditional densities or the likelihood ratios (Equation 3.7)

would have to be actually estimated. Additionally, the order of measurements matters

in the non-i.i.d. case. The first measurements taken should be those most informative,

as those allow to accumulate enough evidence about the decision problem as early as

possible, thus reducing average number of measurements needed.

Šochman and Matas proposed WaldBoost [124] which avoids computation of

the likelihood ratios by projecting the classified objects to a scalar value using

a discriminatively trained classifier, and by reformulating the decision functions

accordingly in a way which directly thresholds output of the classifier.

The authors suggest to use real AdaBoost [117] as the classifier. AdaBoost is

especially suitable for the task as it can naturally choose and order the measurements

according to their discriminative power (when weak classifiers each use only single

feature, see 2.1). Moreover, the resulting strong classifier is a sum of the weak

classifiers which makes computational cost of incorporating additional measurement

into the classifier’s output constant and independent of the number of previous

measurements.

Decision functions for classification. Let Ht(x) be a real-valued output of a

classifier incorporating features 1, . . . , t, the likelihood ratio Rt (3.7) is reformulated

as

Rt(x) =
p (Ht(x)|y = −1)

p (Ht(x)|y = +1)
. (3.9)
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Assuming2 the likelihood ratio is a monotonic function of Ht(x), the decision functions

(3.6) can be equivalently redefined such that the decision conditions compare the

classifier output instead of the likelihood ratio:

S∗t (x) =


+1, if Ht(x) ≥ θ(t)B
−1, if Ht(x) ≤ θ(t)A
], if θ

(t)
A < Ht(x) < θ

(t)
B

. (3.10)

The thresholds θ
(t)
A and θ

(t)
B have to be estimated on a suitable dataset such that

the conditions are equivalet to the corresponding conditions using Rt(x) (3.6). This

could be achieved by estimating the class-conditional densities p (Ht(x)|y = −1) and

p (Ht(x)|y = +1) by some standard procedure, e.g. histogram, Gaussian Mixture

model, or kernel density estimation. In the original WaldBoost paper [124], the

authors suggest using Parzen window kernel density estimator with the size of a

Gaussian kernel set according to an oversmoothing rule [121]. However, such approach

poses practical problems. Note that the required false negative rate αS and false

positive rate βS are usually low values which makes A a large value and B close to

zero (see Equation 3.8). If a decision function decides 10% of objects as the class −1,

then at most 0.2% (assuming αS = 0.02) of the positive class distribution mass lies

in the decided region. Only 0.2% of positive examples from a training set would be

in the decided region, making density estimation problematic on such small number

of samples.

Šochman [141] suggested to avoid the problems with estimation of p (Ht(x)|y = −1)

and p (Ht(x)|y = +1) by treating Ht(x) as a step function with discontinuities at

θ
(t)
A and θ

(t)
B . Such change transforms the continues density estimation into a discrete

estimation with three bins. As a result, the thresholds should be set as strict as

possible while satisfying [141]:∑
{
x:Ht(x)≤θ(t)A

} p (Ht(x)|y = −1) ≥ A
∑

{
x:Ht(x)≤θ(t)A

} p (Ht(x)|y = +1) (3.11)

respective∑
{
x:Ht(x)≥θ(t)B

} p (Ht(x)|y = −1) ≥ B
∑

{
x:Ht(x)≥θ(t)B

} p (Ht(x)|y = +1) . (3.12)

2The assumption of monotonicity may be partially violated in some cases due to wrong assumptions
about the types of class distributions or due to low representativeness of the training dataset; however,
it generally holds and the deviations do not hamper practical applications of WaldBoost except
for possible decrease in decision speed. In fact, WaldBoost does not require Rt to by monotonic
function of Ht(x) in order to work properly – it just may become less efficient.
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The previous conditions can be rewritten in a more simple form as

p
(
Ht(x) ≤ θ(t)A |y = −1

)
≥ Ap

(
Ht(x) ≤ θ(t)A |y = +1

)
(3.13)

and

p
(
Ht(x) ≥ θ(t)B |y = −1

)
≥ Bp

(
Ht(x) ≥ θ(t)B |y = +1

)
. (3.14)

These constraints are based on the probabilities that a sample of a certain class is

from one of the decided regions. These probabilities are much easier to estimate.

WaldBoost classifier. The classification functions Ht(x) in WaldBoost are sums

of weak classifiers ht(x) as in real AdaBoost (see Section 2.1). A WaldBoost classifier

is defined by an ordered set of T weak classifiers ht(x), by the corresponding thresholds

θ
(t)
A and θ

(t)
B , and by the final threshold γ which is applied to the full classifier response

HT (x) if a decision is not reached earlier. The final threshold controls operating

point of the WaldBoost classifier only to a small extent – most samples are usually

decided before the final stage.

The classification algorithm is shown in Algorithm 2. It successively applies the

decision functions. Each of the functions computes a response of its weak classifier

ht(x) and adds it to the cumulative result of the previous decision function Ht−1(x) to

obtain Ht(x). Subsequently, the decision conditions using θ
(t)
A and θ

(t)
B are evaluated.

If the decision function does not reach a conclusion, the classification algorithm

continues with the next decision function. Finally, the output of the classifier is

thresholded by γ.

Algorithm 2 WaldBoost classification [141]

Given: ht, θ
(t)
A , θ

(t)
B , and γ for t ∈ {1, . . . , T}

Input: a classified object x
For t = 1, . . . , T :

1. If Ht(x) ≥ θ(t)B , classify x to the class +1 and terminate.

2. If Ht(x) ≤ θ(t)A , classify x to the class −1 and terminate.

end
If Ht(x) > γ, classify x to the class +1, −1 otherwise.

WaldBoost learning for object detection. The complete WaldBoost learning

algorithm is shown in Figure 3. It accepts as an input a large set of training examples

P , desired error rates α and β, and a number of training iterations T . The output is

a sequential decision strategy represented by an ordered set of weak classifiers ht(x),

t ∈ {1, . . . , T} and the corresponding decision thresholds θ
(t)
A and θ

(t)
B . The algorithm

extends real AdaBoost (see Section 2.1) by bootstrapping (or sampling of the training
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set) and by the decision thresholds.

A weak classifier is learned in each iteration of WaldBoost as in real AdaBoost.

It can be selected on a set of examples T sampled from P [68]. The sampled

set T changes in each iteration and the weights have to be computed accordingly.

The decision thresholds are then set such that they satisfy the constraints from

Equation 3.13 and Equation 3.14 on the full training set P which is in turn pruned

by the thresholds.

The bootstrapping is necessary as the training set is pruned very efficiently and

only a small fraction of it remains in later iterations. In order to retain representative

training set in the later iterations, the initial number of examples would have to be

impractically large without the bootstrapping (it would considerably slow down the

learning without measurable impact on the quality of weak hypotheses).

Algorithm 3 WaldBoost learning with bootstrapping. [141]

Input:

� sample pool P = {(x1, y1), . . . , (xN , yN )} ; xi ∈ X , yi ∈ {−1,+1}

� desired final false negative rate α and false positive rate β

� the number of iterations T

Set A = (1−β)
α and B = β

1−α
Initialize data weights w1(xi, yi) = 1

N
For t = 1, . . . , T :

1. Sample training set T = {(x1, y1), . . . , (xm, ym)} from P

2. Find ht(x) by real AdaBoost algorithm on training set T with weights wt and
compute new weights

3. Find decision thresholds θ
(t)
A and θ

(t)
B such that eq. 3.13 and 3.14 hold

4. Throw away samples from P for which Ht(x) ≥ θ(t)B or Ht(x) ≤ θ(t)A

end
Output: Weak classifiers ht(x) and decision thresholds θ

(t)
A and θ

(t)
B





CHAPTER 4

Features and object detection

This chapter overviews basic features used in appearance-based detectors and presents

experimental results of six representative feature types in real-world tasks. The

experiments provide general insights into the behavior of these features in context

of boosted detectors and put results presented throughout this thesis in the context

of state-of-the-art methods. The features, training and evaluation methodology,

datasets, and even some of the detectors from this chapter are further used in EnMS

and neighborhood suppression experiments.

The purpose of features is to extract useful information from data in a computa-

tionally efficient way. Although it is possible to create a classifier directly on the

raw image data, features potentially make the learning task much easier and they

can be highly optimized for speed. Through features, the designer can express his

prior knowledge of data, objects, and desirable invariances. For example, image

features for object detection often reflect frequency properties of images, correlation

of pixels, desire for shift and lighting invariance, or knowledge about distinguishing

attributes of the objects. Although the recent development is shifting towards general

learning methods which do not rely on features, such as deep convolutional neural

networks [25, 128, 80], hand-designed features are still the core building block of

majority of detectors. Many features for scanning-window object detection have been

proposed varying in their strengths and weeknesses. In general, different features

are suitable in different contexts and for different tasks. It is beneficial for anyone

designing a new detector to have an idea what features he can choose from and what

are their properties.

Existing features. Since the frontal face detector of Viola and Jones [137], Haar-

like feautres have been extended to include 45◦ rotated regions by Lienhart and

29



30 Chapter 4: Features and object detection

Maydt [90], and similarly by Jones and Viola [65]. Li et al. [86] extended the

features further by relaxing the strict adjacency of the rectangles composing the

features. Viola et al. [136, 139] further extended Haar-like features to encode motion

information for pedestrian detection.

The variants of Haar-like features are all linear filters which are normalized in

order to improve robustness to illumination changes. Other linear filters used in

object detection include Gabor filters [13], Anisotropic Gaussian filters [97], and

various wavelets [119].

Although the fixed linear functions of predefined filters are designed to fit well

the general frequency properties of images, they are not in any way adapted to

the target detection task. In a response to that, many authors have tried to adapt

linear features to particular tasks using Principal Component Analysis [118], Fisher

Discriminant Analysis [145], recursive nonparametric discriminant analysis [145],

local non-negative matrix factorization [87], local receptive fields [98, 38], neural

networks [24], and other methods [58].

Fröba and Enst [37] aimed to improve illumination invariance with features

based on modified census transform. Similarly, other authors used Local Binary

Patterns [64, 160, 99, 67, 72], Local Rank Patterns [156, 57, 107, 52, 51, 48, 157], and

Locally Assembled Binary features [154] which all discard illumination information.

Another group of successful features is based on regional statistics, such as

histograms. These include local edge orientation histograms [82], Histograms of

Oriented Gradients [18, 163, 39, 55, 78, 24, 127, 3, 4], spectral histogram features [149],

and spatial histograms [159].

4.1 Selected features

The features selected for experiments are only a very small subset of features that

have been proposed for object detection. They do not even represent all existing

feature families. For example, all the selected features form a finite set of functions

from which the boosting algorithm can select by exhaustive search – ignoring adaptive

features which have to be optimized during or before learning to the detection task

at hand, such as local receptive fields [98, 38], PCA, and ICA. Also, domain of

all selected features is gray-scale images. Event though the selection is limited, it

still represents a large fraction of features used in face, body part, and pedestrian

detection. The selected features are summarized in Table 4.1.

The selected features are Haar-like features, Local Binary Patterns (LBP), His-

tograms of Oriented Gradients (HOG), Local Rank Differences (LRD), and Local

Rank Patterns (LRP).

Haar-like features serve as a baseline and reference due to their wide adoption

and long history in object detection. Local Binary Patterns are in many ways
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Haar LBP LRD LRP EHOG

positions all all all all even
scales all all all all even
types 6 basic types 3x3 grid 3x3 grid 3x3 grid rectangular

# features 141,600 8464 304,704 304,704 70,227
# bins 10 256 80 17 10

Table 4.1: Details of features selected for experiments. The numbers of features are
for base resolution of classifiers 24-by-24 pixels.

Figure 4.1: Haar-like features used in experiments. The first five feature shapes are
the same as those used by Viola and Jones [137]. The last center-surround shape
was first used by Lienhart and Maydt [90].

complementary to Haar-like features as they encode very different information. They

are invariant to locally uniform illumination changes as they encode only shape of

intensity surfaces and discard magnitude of changes.

Histograms of Oriented Gradients can not be omitted due to their success in

pedestrian detection and their wide adoption outside the field of boosted detectors.

HOG are locally normalized and invariant to translations of parts within the region

of the feature. They are in between Haar-like features and LBP in terms of what

information they extract – they describe local shape more weakly than LBP and

they still, to an extent, reflect magnitude of local changes.

The previous features, which were all originally designed for serial processing on

CPUs, are further complemented by Local Rank Differences and Local Rank Patterns

which were originally designed specifically for parallel computation platforms, such

as FPGA and GPU. Similarly to LBP, LRP and LRD are invariant to locally

uniform illumination changes, but unlike LBPs, which capture local shape in a single

complex descriptor, LRD and LRP can focus on various aspects of the local shape

independently and describe them in a more compact way.

The sets of features as defined in this section are denoted as Haar, LBP, LRD,

LRP, EHOG, and EHOGS in the further text.

Haar-like features. Haar-like features are simple linear filters derived from Haar

wavelets [44] normalized to improve robustness to illumination changes. The features

were first used by Papageorgiou et al. [105] and were made popular by the frontal

face detector of Viola and Jones [137]. Since, the features were used in many

detectors [152, 138, 95, 151, 59, 122, 123, 124, 8, 19, 98, 12, 10, 126, 155], various

extensions were proposed [90, 84, 86, 65, 136, 139], and efficient detection engines
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Figure 4.2: Local Binary Patterns as defined by Ojala and Pietikäinen [101]. In
a 3-by-3 pixel area, the outer pixels are thresholded by the central value and the
resulting ones and zeros are serialized into an 8-bit code.

using these features were implemented for a wide range of platforms, such as GPU [46,

62, 94] and FPGA [75, 14, 60, 74].

The basic Haar-like features are linear filters composed of several positive or

negative axis-aligned adjacent rectangles. The filters have zero sum and no response

to DC image component which makes them invariant to shifts in gray scale. However,

responses of the filters are not invariant to multiplicative changes caused by varying

illumination intensity. In order to make the features robust to such illumination

changes, the output is typically scaled by an inverse of a local measure of energy,

e.g. standard deviation of pixel values in the analyzed image window [137, 124]. The

Haar-like features provide a normalized measure of a presence of simple shapes, such

as edges, ridges, corners, and blobs.

The set of Haar-like features used in this thesis consists of the six basic types

shown in Figure 4.1 – horizontal and vertical edge, horizontal and vertical line,

diagonal line, and center-surround shape. The prototypes were shifted and scaled

inside a detector area at its base scale to generate the whole feature set. The

features were shifted by one pixel in horizontal and vertical direction, and the sizes

of the rectangular regions were increased by single pixel at a time keeping size of all

rectangles composing the feature the same.

Originally, the Haar-like features were used together with threshold weak hypothe-

ses [137] (also decision stump weak hypotheses). However, later works show that

better results can be achieved with slightly more complex weak hypotheses, such as

small decision trees [9] and piece-wise functions [59]. The weak hypotheses in this

thesis are piece-wise functions where boundaries of the left-most and right-most bins

are set such that each contains 5% of training examples, and the interval in-between

is separated into 8 more bins.

Local Binary Patterns. LBP were originally proposed as a texture analysis oper-

ator [101] which provides information of local image structure invariant to monotonic

changes in gray-scale, and which can be optionally made partially invariant to rota-
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tion [102]. LBP operator was used in many practical applications mostly connected

to static texture analysis [101, 102, 100, 103] and dynamic texture analysis [162].

Other successful applications include face recognition [1, 53] and authentication [109],

facial expression recognition [88], and palm-print identification [146]. In object de-

tection, variants of LBP provide good results with boosted classifiers [160, 147, 155]

and random forests [69]. Efficient detection engines using LBP were designed for

GPU [99, 67], FPGA [72], and SIMD [67] architectures.

LBP create a binary code by thresholding a small circular neighborhood by the

value of its centre (see Figure 4.2). In the original definition of LBP [101] the

neighborhood was a 3-by-3 pixel area and values were taken from centers of the pixels.

Mäenpää and Pietikäinen [93] extended the neighborhood to arbitrary circular shape

with interpolation providing values from sub-pixel positions. The precise circular

shape allows rotational invariant version of LBP which is important in may texture

recognition tasks; however, it is not suitable for object detection as the detectors

themselves are usually not rotational invariant.

Inspired by texture analysis applications of LBP, some object detectors rely on

histograms of LBP responses which provide partial translation invariance. However,

many objects are not defined by textures, but rather, by distinct features and shapes,

and the translational invariance is not needed for rigid objects, such as faces. For use

in boosted object detectors, Zhang et al. [160] proposed Multi-Block LBP (MB-LBP).

The shape of the neighborhood of MB-LBP has the same 3-by-3 shape as the original

LBP [101] (see Figure 4.2). The difference is that MB-LPB can scale independently

in horizontal and vertical direction and the thresholded values are sums of pixel

values inside corresponding grid cells. MB-LBP can be used as domain partitioning

features for real AdaBoost.

The experiments in this thesis use MB-LPB features at all positions of the base

scale of the detectors and at all possible scales. The produced 8-bit codes directly

indicate one of 256 possible partitions in a weak hypothesis.

Histograms of Oriented Gradients. Various versions of Histograms of Oriented

Gradients are widely used as a basis for description of local image patches (e.g. in local

descriptors SIFT, SURF, GLOH, ...). Such descriptors provide state-of-the-art results

in object class recognition [132], semantic class detection [26], wide-baseline stereo,

content-based image retrieval [15], object detection [6, 83], and other tasks. HOG itself

proved to be well suited for part-based object detectors [28, 27] and rigid appearance-

based detectors, especially for pedestrian detection task [18, 17, 163, 55, 22, 144, 3, 4].

Histograms of Oriented Gradients, as the name suggests, locally compute his-

tograms of gradients of image function. The gradients can be computed in any

number of ways, e.g. from unsmoothed partial differences in x and y directions.

The histograms are then created by accumulating magnitudes of the gradients in a
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Figure 4.3: Illustration of dominant orientation of Extended Histograms of Oriented
Gradients (EHOG) by Hou et al. [55]. Each fan represents encoding of dominant
orientations with certain angular selectivity. From left: single orientation bin, merging
two bins, and merging three bins. Taken from [55].

local region into bins corresponding to orientation of the respective gradient. The

exact details of HOG features are not unified and can differ significantly, e.g. in

the assignment of gradients to bins, normalization of histograms, shape of the HOG

regions, arrangement of basic HOG cells into larger blocks.

The HOG descriptor is invariant to translations within its domain and expresses

dominant direction of edges inside the region. As the histograms are usually nor-

malized to unit length [18], HOG provides local shape information rather than

information about magnitude or strength of the shape with respect to the rest of the

image.

The specific type of HOG used in this thesis is closely inspired by the work

of Hou et al. [55], specifically by the Extended Histograms of Oriented Gradients

(EHOG). EHOG compute a histogram of gradients from an image region similarly

to HOG, and normalize it to unit L1 norm. The outputs of EHOG are then the

so-called dominant orientations which sum together up to three adjacent histogram

bin values (see Figure 4.3 for illustration of dominant orientations). Because of the

L1 normalization, the dominant orientations represent relative strength of gradients

in a specific direction with higher or lower angular selectivity depending on how

many bins are summed. The scalar dominant orientations can be used by simple

weak learners the same way as, for example, Haar-like features. Additionally, Hou et

al. propose a heuristic search strategy which is able to find discriminative EHOG

with non-rectangular shapes.

The EHOG features used in this thesis compute gradients by differentiating

neighboring pixels at the base scale of the respective detector. The gradients are

accumulated to the nearest angular bin and the histograms are L1 normalized. The

features are limited to rectangular shapes of any position, size, and aspect ratio,

provided they completely fit inside the detector window, and coordinates and width

and hight of the feature at the base scale of the classifier are even (2601 such

rectangles fit into 24-by-24 detector window).

The scalar dominant orientations are discretized the same way as the responses

of Haar-like features (described above).

The experiments in this thesis differentiate two versions of EHOG, denoted as
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Figure 4.4: Local Rank Differences compute ranks of two local values and subtracts
them.

EHOG and EHOGS, which differ only in the way they allocate gradients to angular

bins. As in the original work of Hou et al. [55], both types use 9 bins; however,

EHOG distinguish polarity of the gradients – the histogram bins cover whole 360◦

circle. On the other hand, the EHOGS features are invariant to intensity inversion,

and the bins cover only 180◦ half-circle similarly to the original features.

Local Rank Differences and Local Rank Patterns. Both LRD [52] and

LRP [57] were designed specifically for parallel computational platforms, such

as FPGAs and GPUs, as an alternative to traditional CPU features. Since, ef-

ficient detection engines using these features were developed for GPU [107, 51, 48],

FPGA [156, 157], and SIMD CPU [52].

LRD and LRP rely on a rank transform of several values extracted form a local

image neighborhood. A proposed practical version, which is used in this thesis, sums

pixels in cells of a 3-by-3 axis-aligned grid (see Figure 4.4. LDR subtract ranks of

two grid cells, while LRP index a 2D lookup table by the two ranks. Considering

the outputs of LRD and LRP are discrete values, they are used directly by weak

hypotheses as in the case of LBP.

The experiments in this thesis use LRD and LRP features at all positions of the

base scale of respective detectors and at all possible scales, resulting in a pool of

304,704 features (8464 unique positions).

4.2 Detectors

All detectors in this thesis were created by WaldBoost algorithm [124] presented

in Section 3.2 and their length was 1000 weak classifiers. The particular version of

WaldBoost that was used differs in several aspects from the original version published

by Šochman [124]. It does not use Parzen windows to estimate the probability ratio

of positive and negative class (Equation 3.9) on validation set to find the rejection

thresholds, instead, the rejection thresholds were set on the full training set according

to Equation 3.14.
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Training set sampling. Training sets were sampled in each boosting iteration to

increase speed of weak classifier selection. As Kalal et al. [68] showed, such sampling

can significantly affect quality of detectors and sampling methods with low bias and

variance are preferable. The type of sampling used here was unique weighted sampling

which selects samples with probability equal to their weights, and produces a set of

unique samples with weights proportional to the number of times each particular

sample was selected. If not stated otherwise, weak classifiers were selected on 2500

unique positive and 2500 unique negative samples. The selected weak classifiers were

refined on the whole active training set.

Small random geometric transformations were applied to annotated objects in

order to generate 100,000 examples for each positive training set. Similarly, 100,000

windows were randomly selected for each negative training set from a large set of

images not containing objects of interest. The negative training sets were replenished

as need during WaldBoost training to compensate for rejected background examples.

The collection of background images was large but finite resulting in a finite pool

of examples. When a pool was exhausted due to increasingly smaller false positive

rate of a trained detector, the size of negative training set shrank with each new

rejection threshold. To prevent overfitting, no more early termination thresholds

were set after reaching a minimum negative training set size of 40,000.

Image scanning. The created detectors were tested by scanning images with

position step of 2 pixels at the base resolution of the classifier and with scaling factor

1.2. The position step was increased accordingly to current scanning-window size. The

classifier responses were merged by a non-maxima suppression algorithm presented in

[125]. This algorithm suppresses all non-maximal windows in neighborhoods defined

by minimum window overlap which it approximates by mutual overlap o of circles

inscribed in the rectangular windows:

o =
r

R

(
1− dc

r +R

)
. (4.1)

In the equation R and r are radii of the larger and smaller window, respectively, and

dc is a distance of centers of the rectangles. The overlap approximation is illustrated

in Figure 4.5. Minimum overlap of 0.4 was set in the experiments.
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Figure 4.5: Scanning window overlap approximation for non-maxima suppression.
The graph shows value of overlap o as function of mutual distance. Taken from [125].

4.3 Datasets

In the field of appearance-based object detection, several standard and commonly

used datasets exist, notably, training and testing pedestrian datasets [98, 24, 23]

and testing face datasets [119, 135]. However, these datasets do not cover the whole

range of objects of interest and researchers often use their own proprietary data.

This section describes several standard datasets, as well as several custom datasets,

used in this thesis. Basic properties of all datasets are summarized in Table 4.2.

The base resolution of face and traffic sign detectors is 24-by-24 pixels. Resolution

of eye and pedestrian detectors is 25-by-15 and 18-by-36, respectively, due to the

natural aspect ratio of the objects.

Face detection. Several datasets for testing of face detectors exist. The most

widely adopted is the MIT+CMU face dataset1 [111, 118, 119, 137, 140, 122, 123, 124]

which can be regarded as the main reference dataset in the field (exemplar images

shown in Figure 4.7). The MIT+CMU dataset is relatively small, it consists of

only 137 images and 511 faces, and the images are often of poor quality and small

resolution with visible dithering. Additionally, some of the faces are line-drawings.

Considering the small size of the MIT+CMU dataset and generally high detection

rates achieved on this dataset [137], its usefulness is limited mostly to comparisons

1http://vasc.ri.cmu.edu/idb/html/face/frontal images/

Figure 4.6: Random images from the traffic sign dataset. The top row show images
from training part of the dataset and the bottom row show test images.
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Figure 4.7: Random exemplar images from MIT+CMU dataset.

Figure 4.8: Random exemplar images from GroupPhoto dataset.

Figure 4.9: Random exemplar images from Face training dataset.

Figure 4.10: Random exemplar images from Background dataset.
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Dataset ] imgages ] objects ] positions (×106)

Face training 3168 5398 645
MIT+CMU 137 511 17
GroupPhoto 111 2056 86
Background x x x

Signs training 6000 655 645
Signs testing 735 483 31

XM2VTS 2365 4730 120
BioID 1530 3060 94
PAL 1045 2090 99

Daimler train 6754 15660 980
Daimler test 19338 2368 834

Table 4.2: Information about the datasets used to train and test the detection
classifiers.

among different publications.

In addition the MIT+CMU dataset, face detectors were tested on GroupPhoto

dataset which was gathered by searching for terms group, gang, and team on Google.

2056 faces were hand annotated in the 111 good quality images of this dataset

(examples shown in Figure 4.8).

In contrast to the testing datasets, no standard training dataset of frontal face

detectors has yet been established. Detectors in this thesis were trained on exemplar

faces from a dataset previously used in [124, 57]. This dataset, which will be refered

to as Face training, consists of images uploaded by regular users of the Internet to a

face detector demo. The images were later hand-annotated. The dataset contains

3168 images and 5398 annotated faces.

Background training examples were sampled from 10,000 images which do not

contain faces and which were downloaded from the Internet. This dataset was used in

the same publications as Face training [124, 57] and will be refered to as Background

set.

Eye detection. Eye detectors were trained on XM2VTS 2 [96] database and tested

on PAL3 and BioID4 [61] databases. The BioID dataset contains low-resolution

faces, cluttered background, and some variation in lighting. On the other hand, PAL

dataset contains high-resolution images with constrained pose, simple background,

and constant artificial illumination.

2http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/
3https://pal.utdallas.edu/facedb/
4http://www.bioid.com/downloads/facedb/index.php
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Pedestrian Detection. Daimler Mono Pedestrian Detection Benchmark Dataset5

[24] was used for pedestrian detection task. This dataset defines separate training

and testing sets which were used for the experiments without any modification. The

testing part of the dataset is a sequence of 21,790 video frames captured from a

vehicle during a 27 min drive through urban traffic and as such it contains fully visible

pedestrian as well as partially occluded pedestrian or bicyclists. For this reason,

the dataset distinguishes pedestrians whose detection is mandatory and pedestrians

whose detection is optional. In the original study [24], this distinction was observed

in the evaluation and we follow this practice.

Traffic sign detection. Training and testing data for the traffic sign detection task

was collected by students with consumer digital cameras. The images were collected

on streets of Czech Republic, Belgium, and Greece (examples shown in Figure 4.6).

The set contains images of varying quality, view-point, lighting conditions, and some

of the signs are damaged.

Czech Republic signs were used for training and Belgium and Greece signs were

used for testing.

Additionally, images from Daimler Pedestrian Classification Benchmark Dataset

were added to the testing set as distractors after removing all traffic signs from the

images.

4.4 Detection experiments

This section presents and discusses results of detection experiments with features

from Section 4.1. The experiments include evaluation of detectors of faces, eyes,

pedestrians, and traffic signs. The experiments focused of performance of the features

in three training scenarios: (1) full feature sets and datasets, (2) restricted datasets

and all features, (3) restricted sizes of features and full datasets. Training datasets

were restricted either by using only subset of the training sets, or by using fewer

examples to choose the best weak hypotheses.

Speed-precision trade-off. When designing real-time detectors for practical ap-

plications, a trade-off between precision of detection and speed of the classifier

should be considered. Detectors always operate under some computational constrains

whether they run in hand-held digital cameras or in a data center as a part of an

off-line experiment. Consequently, when comparing detectors, it is not sufficient to

take into account their errors, e.g. in the form of ROC 6 and ignore their speed.

5http://www.gavrila.net/Datasets/Daimler Pedestrian Benchmark D
/Daimler Mono Ped Detection Be/daimler mono ped detection be.html

6ROC stands for Receiver Operating Characteristic. It is created by plotting true positive rate
and false positive rate (or false positives) for various threshold settings.
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Most of the focus of attentional mechanisms which are used in Viola and Jones’ like

detectors provide some way (although usually indirect by controlling the target error

rate) to influence the speed of the detector. This makes it possible to explore the

whole space of speed-precision trade-off, which in turn makes it possible to truly

compare different detectors.

For experiments in this thesis, WaldBoost detectors were trained with five different

target false negative rates (see Section 3.2). Higher values of target false negative

rate result in faster detectors while lower values result in slower detectors. Detectors

created this way cover large range of speeds and allow to compare detectors without

focusing on a particular application which may have strict requirements for speed or,

conversely, strict requirements for detection quality.

Presentation of results. Accuracy of the classifiers is reported as an area above

Receiver Operating Characteristic (ROC) curve which represents the miss rate aver-

aged over a certain range of false alarm rate. This measure will be referred to as AMR

in the further text. Similarly to other integral performance measures (e.g. average

precision), the AMR enables comparison of classifiers when the target application,

and thus the desired operating point, is not known. In the experiments, the miss rate

was averaged over the range 0 to 200 (20,000 for the pedestrian detection task) false

alarms. This range represents useful operating points of most detection applications

for the respective test datasets.

AMR is very similar to detection quality measures used by other authors. For

example, Dollár et al. [20] used log-average miss rate which is exactly the same as

AMR except it averages miss rate over logarithmic false positives per image between

10−2 and 100 7.

Many graphs in this thesis (e.g. Figure 4.11) show relation between AMR and

detection speed which is expressed as average number of weak classifiers (#WC)

computed per image position. The graphs allow to analyze behavior of classifiers

across the whole range of classification speeds. This could be useful, for example,

when selecting features for an application with specific speed or accuracy requirements.

On the other hand, the plots of AMR and #WC are not too convenient for fast

comparisons over the whole speed range. For that purpose Table 4.3 and Table 4.4

summarize the results as ranks of the individual detector types. The ranks were

determined according to subjective assessment of which detectors dominate which in

the corresponding AMR/#WC plots. Average ranks were assigned when the order

was not clear.

7The range of false positive rate which AMR averages is similar
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Figure 4.11: Object detection results. Y-axis: average miss rate (lower is better);
X-axis: average number of weak classifiers evaluated per window (left is faster).
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Haar LBP LRD LRP EHOG EHOGS

MIT+CMU faces 4 1.5 4 1.5 4 6
GrpuPhoto faces 4 2 5 2 2 6

Daimler pedestrians 1.5 1.5 5.5 3.5 3.5 5.5
BioID eyes 3 1 4 2 5 6
PAL eyes 1 2.5 4 2.5 5 6

Signs 4 4 4 4 4 1

average rank 2.92 2.08 4.42 2.58 3.92 5.08

Table 4.3: Features ranked according to their performance in detection tasks shown
in Figure 4.11.

4.4.1 Object Detection

The first series of tests was performed to evaluate the selected feature types (see

Section 4.1) in different detection tasks. The results of this experiment are shown in

Figure 4.11, and Table 4.3 summarizes the results as ranks of the individual features

in the detection tasks.

LBP provide the best results overall. They perform consistently well across the

six detection task except on Signs dataset where EHOGS are significantly better

than all the other features. Second best overall are LRP, then Haar, EHOG, LRD,

and finaly EHOGS.

The most significant perturbation is the best result of EHOGS in the traffic

sign detection task. The most probable explanation of this behavior is that the

invariance to color inversion makes these features very suitable to model silhouette

edges which are the predominant features of the traffic signs when color is not

considered. However, the same effect is not present on the pedestrian detection task

where the distinguishing feature is also the silhouette.

Surprisingly, Haar is better in pedestrian detection than EHOG which is in

contrast to other published results. This could be possibly explained by relatively

low resolution of the detector (18-by-36 pixels). Similarly, Haar gives best results on

the PAL eye detection test set. In this case, a reasonable explanation is that this is

due to clutter-free background in the test images. Further, the Haar-like features

achieve good performance in the pedestrian detection task where they match LBP.

LRP consistently outperform LRD except on traffic sign detection task where

LRD give slightly better results.
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6 9 10 26 31 39 41 46 50 57 65 77 78 95

Viola and Jones [138] 8 - - 76.1 - 88.4 - - - 91.4 - 92.0 - 92.1 92.9
Li and Zhang [85] 18.9 - - 83.6 - 90.2 - - - - - - - - -
Schneiderman [120] - 89.7 - - - - - - 95.7 - - - - - -
Wu et al. [7] - - - 90.1 - - - - - - 94.5 - - - -
Luo [92] - 86.6 - 87.4 - 90.3 - - - 91.1 - - - - -
Bourdev [8] 37 90.9 91.9 - 93.5 - - 94.3 - - - - - - -
Bourdev [8] 25 - - - - 91.7 92.1 - - 92.7 - - 92.9 - -
Brubaker et al. [10] 8 81.7 - 85.8 - 88.8 - - 90.1 90.1 - 90.3 - 90.5 90.9
Brubaker et al. [10] - 89.1 - 89.5 - 91.3 - - 91.9 91.9 - 92.1 - 92.1 92.3
Sochman [141] 3.32 87.4 87.5 88.2 90.3 90.5 90.7 90.7 91.1 91.1 91.3 91.9 92.1 92.1 92.5
Zhang and Viola [12] 14.6 88.8 - 91.7 - 93.2 - - - 94.6 - - - - 95.2
Our LBP 6.84 90.6 92.9 93.3 93.9 93.9 94.1 94.1 94.1 94.3 94.5 94.9 95.3 95.3 95.7
Our LRP 6.23 89.0 90.2 91.0 93.9 94.9 94.9 94.9 94.9 95.1 95.1 95.1 95.5 95.5 95.5
Our Haar 6.98 81.7 84.9 85.1 90.0 90.6 91.0 92.9 93.7 93.7 94.3 94.5 94.7 94.7 95.1

Table 4.4: Results of selected classifiers on the CMU+MIT face dataset. The table shows the detection rates as a function of the number
of false positives. Note the differences in the average number of weak hypotheses computed per scanned position. The results should be
interpreted with caution as different training sets and slightly different evaluation methodologies were used by different authors. The table
extends similar table by Šochman [141].
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Haar LBP LRD LRP

MIT+CMU faces 4 1 3 2
GrpuPhoto faces 4 1 3 2

Daimler pedestrians 2 1 4 3
BioID eyes 4 1 3 2
PAL eyes 3.5 2 3.5 1

Signs 2.5 2.5 2.5 2.5

average rank 3.33 1.42 3.17 2.08

Table 4.5: Features restricted to sizes 1x1, 1x2, 2x1, and 2x2 ranked according to
their performance in detection tasks shown in Figure 4.11.

Comparison to state-of-the-art. In order to put detectors from this thesis

into the context of other state-of-the-art methods, Table 4.4 shows results of the

WaldBoost face detectors used in this thesis together with results of other methods

on the MIT+CMU dataset. The WaldBoost detectors compare favorably to other

methods in terms of both detection rate and speed. The detectors use on average less

than 7 features per image position which is less than the other detectors except the

WaldBoost detector by Šochman [141] which, however, provides much worse detection

rates. Also, the detectors provide best or very good detection rates throughout the

whole range of false positives.

The best results achieved by a cascade of Haar-like features on the Daimler Mono

Pedestrian Detection Benchmark Dataset reported in [24] are approximately 57%

detection rate for 0.1 false alarms per frame and 81% detection rate for 1 false alarm

per frame. Our WaldBoost detector which uses on average 11 Haar-like features per

classified position achieves detection rates 61% and 84% for the same false alarm

rates (even thought the scanning is sparser in this case).

Considering the face and pedestrian detection results, it is reasonable to conclude

that detectors used in this thesis are comparable to other state-of-the-art detectors.

4.4.2 Restricted feature sizes

This experiment evaluates performance of Haar, LBP, LRD, and LRP feature sets

when the size of building blocks of the features is limited to 1-by-1, 1-by-2, 2-by-1,

and 2-by-2 pixels. The building blocks are grid cells in the case of LBP, LRP, and

LRD. In the case of Haar, the building blocks are the rectangular areas which the

features are composed of. This type of size restriction can lead to alternative simple

and efficient ways to compute the features on highly parallel platforms [50] (e.g.

GPU and FPGA). EHOGS and EHOG were not considered in this experiment as

they are not composed of building blocks.

Figure 4.12 shows results of this experiment, and Table 4.3 summarizes the results

as ranks of the individual features in the detection tasks.

The overall ordering of the three best features is LBP, LRP, and LRD. The mutual
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Figure 4.12: Object detection with restricted size of features. The basic building
blocks of features were restricted to sizes 1x1, 1x2, 2x1 and 2x2. Y-axis: average
miss rate (lower is better); X-axis: average number of weak classifiers evaluated per
window (left is faster).
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performance differences of these features are similar to their differences without the

size restriction.

Compared to the other features, the size restriction has much more adverse effect

on Haar, which are now the worst. Although unrestricted Haar shared the first place

with unrestricted LBP in the pedestrian detection task (see Figure 4.11), now it is

significantly worse than LBP. On the PAL dataset, where unrestricted Haar achieved

the best results, the restricted Haar give the worst results together with LRD.

4.4.3 Effect of Training Set Size

Performance of object detectors strongly depends on the quality of training sets. One

of the important characteristics of a training set is its size. Intuitively, one would

expect features that discard more irrelevant information to cope better with smaller

training set sizes as they should be able to generalize better.

To evaluate the ability of features to cope with smaller training sets, I trained

face detectors on progressively fever exemplar faces (from 5000 down to 19 faces).

All of the face detectors were created for target false negative rate 5%.

Results of the experiment are shown in Figure 4.13. As expected, the smaller

sizes of the positive training set result in higher AMR. Also, the detectors get faster

with fewer positive examples. The reason for faster speed is that the classification

task WaldBoost has to solve gets easier with fewer examples (the detector becomes

less general). The detectors would not get faster if validation set was used to select

rejection thresholds (see Section 3.2), however, the detection quality would still

degrade.

The results show that AMR degrades at different rates for different features.

Namely, EHOG features cope with very small sizes of training set much better than

the other features. For the smallest training set size, the EHOG features perform

best on both dataset. On the GroupPhoto dataset EHOG gives similar AMR as

Haar, LBP, LRP, and LRD with four times larger training set. The EHOGS features

also seem to cope with the small set sizes better, but their accuracy is significantly

lower compared to the other features for large training set sizes.

4.4.4 Training Set Sampling

As stated in Section 4.2, unique weight sampling selects a subset of training samples

to be used to choose the best image feature in each iteration of WaldBoost. The

sampling significantly reduces training time while retaining performance very similar

to classifiers created using the full training set. The question is, how this sampling

affects different types of features.

To evaluate the effect the training set sampling, face detectors were trained while

sampling 500, 2500, and 5000 examples of both types in each boosting iteration.

Note that, although selection of weak classifiers on 500 examples is by an order of



48 Chapter 4: Features and object detection

MIT+CMU faces

0.08
0.09
0.1

0.2

0.3

0.4

0.1

1 2 3 4 51
#WC

Haar
LBP

LRD
LRP

EHOG
EHOGS

A
M
R

GroupPhoto faces

0.06
0.07
0.08
0.09
0.1

0.2

0.3

0.4

0.5
0.6

0.1

1 2 3 4 5 61
#WC

Haar
LBP

LRD
LRP

EHOG
EHOGS

A
M
R

MIT+CMU faces

0.1

100 1000

# positive examples

Haar
LBP

LRD
LRP

EHOG
EHOGS

A
M

R

GroupPhoto faces

0.1

100 1000

# positive examples

Haar
LBP

LRD
LRP

EHOG
EHOGS

A
M

R

MIT+CMU faces

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

100 1000

#WpositiveWexamples

Haar
LBP

LRD
LRP

EHOG
EHOGS

#
W

C

GroupPhoto faces

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

100 1000

#SpositiveSexamples

Haar
LBP

LRD
LRP

EHOG
EHOGS

#
W

C

Figure 4.13: Effect of the size of training set. Each curve corresponds to single
type of features and points on the line correspond to classifiers trained on different
number of annotated object resulting in different speed and error rates. The numbers
of annotated faces for training are 5000, 2500, 1250, 625, 312, 156, 78, 39, and 19.
Second row shows mean miss rate as a function of training set size. Third row shows
average number of weak classifiers evaluated per window as a function of training set
size.
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magnitude faster than when 5000 examples are used, speed-up of the whole training

process is much lower as a large portion of the training time is spend by bootstrapping

the background examples.

Two different scenarios were considered in this experiment. In one scenario,

features were selected on sampled subsets and predictions of the corresponding weak

classifiers were refined on the whole training set. This is the way previous detectors

were created. In the second scenario, the prediction refinement step was skipped.

Skipping the refinement step should result in more profound performance degradation

with smaller examples.

The results in Figure 4.14 show that the effect of training set sampling in the

considered range is negligible when the weak classifier refinement step is employed.

In case the refinement step is skipped, the performance is significantly degraded

when sampling only 500 examples. Compared to the other features the LRP exhibit

the highest sensitivity to the sub-sampling. On the other hand, Haar and EHOG

cope with the sub-sampling relatively well.
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Figure 4.14: Effect of sub-sampling the training set in each boosting iteration. The
first column corresponds to refinement of weak hypotheses on full training set (not
only its sampled subset), and second column is without this refinement. The rows
are for 500, 2500 and 5000 training samples. The results are shown for face dataset
GroupPhoto. Y-axis: average miss rate (lower is better); X-axis: average number of
weak classifiers evaluated per window (left is faster).
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Information sharing in scanning-window detection

In their basic form, scanning-window detectors process image regions independently

one by one. An advantage of such design is its simplicity which makes it possible to

define the detection task as a standard binary classification that can be solved by

general learning algorithms without any modifications. However, the independent

processing is sub-optimal in terms of computational cost.

A detection task can be regarded as accumulation of evidence and inference of

probable object positions in an image. The range of possible evidence the detection

can rely on is large, e.g. local shape, color, texture, coocurance of local shapes,

self-similarities, position, surrounding objects and surfaces, scene type, author, and

acquisition time and place. Practical detectors are necessarily limited in what

information they are able to work with due to computational constraints, limitations

of available data, and limitations of current human knowledge. Addressing the

computational constraints, detectors should extract the information they are limited

to as efficiently as possible. Unfortunately, such optimality would be very hard to

achieve even for very simple detectors.

Lets consider a WaldBoost detector with LRP features form Chapter 4. The

detector is a majority vote of the LBP features which is dynamically terminated de-

pending on the progress of the voting. The detector can be regarded as optimal when

considering single image position, but it completely ignores overlapping neighboring

positions. Ideally, the features of the detector should be selected according to how

much information they contribute to all surrounding positions, they should update

positions for which it is efficient to do so, and the early terminations should depend

on results of neighboring positions. Even for such limited detector, the resulting

learning algorithm would be complex and, possibly, computationally expensive. Also,

it is often hard to estimate compuational cost of different parts of the detector in a

51
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target hardware platform.

The ways in which existing scanning-window detectors are optimized with respect

to detection window overlap can be divided in two basic groups. Many detectors share

some computations across image windows in the form of image preprocessing [137, 22,

21, 3, 4] and in the form of common features [120, 18, 16, 77, 134, 2, 83] or parts [27].

Even higher level information can be shared as in convolutional networks [25, 128].

The second group includes methods which make local decisions interdependent

in various ways. These methods include detectors which try to minimize the num-

ber of processed image windows by exploiting smoothness of a particular detector

responses [16, 77, 20], and some detectors improve speed by assuming minimum

distance between objects [106, 20] in the same way as non-maxima suppression does.

The rest of this chapter overviews existing detectors which locally share infor-

mation and discusses how the detectors relate to neighborhood suppression and

EnMS.

Computation sharing. Most scanning-window detectors do not process image

windows completely independently. Even the original detector of Viola and Jones [137]

computes an integral image which is shared among all windows and which significantly

improves speed of Haar-like features. Other detectors take the preprocessing idea

further. Notably, Dollár et al. [22] extend the idea of integral images to other

types of information with their integral channel features which compute local sums,

histograms, Haar-features, and their various generalizations using a range of integral

channels. The approach was later extended [21] to approximate feature responses at

nearby scales, and further improved by Benenson et al. [3, 4].

Sharing of features interlinks neighboring positions even further. Such approach

was advocated by Schneiderman [120] as feature-centric computation which computes

several first features densely across a whole image. Similarly, the pedestrian detector

by Dalal and Triggs [18] computes HOG features on a dense grid and uses them as

an input for a linear classifier.

Similarly, most part-based detectors share visual words or parts. Detectors based

on visual words [16, 77, 134, 2, 83] compute the words from independently of the

detection task as a first step similarly to the feature-centric computation. A visual

word represents a local area deemed important by a key-point detector (e.g. SIFT,

SURF, MSER) by few most similar prototypes from a codebook. In its simple

form, the projection to prototypes is a standard vector quatization of real-valued

high-dimensional descriptors of the patches.

Some part-based detectors detect the parts first and infer positions of objects

from responses of the part detectors. For example, Felzenszwalb et al. [27] detect

objects from response maps of discriminatively trained part detectors.
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Smoothness of detector responses. Responses of many detectors are smooth

due to their robustness to small shifts and other transformations. Such smoothness

can be used to infer responses in local neighborhoods or to reason about a whole

group of regions as about a single homogeneous set. The goal of methods which use

the smoothness assumption is usually to minimize the number of windows on which

the detector is evaluated.

Chum and Zisserman [16] use discriminative features to locate likely object

positions which serve as seeds for discrete gradient ascent search for a maximal

responses of a window classifier. Related is also the efficient subwindow search by

Lampert et al. [77] which searches the space of all windows in an image guided by an

upper bound on the classifier response over a set of rectangles. However, the search

can be efficient only if the bound is reasonably tight and computationally efficient,

which is possible only for relatively simple classifiers which have high invariance to

geometrical transformations.

A successful way how to apply the smoothness assumption to fast detectors with

attentional structure is to first scan an image relatively sparsely and then re-scan

the promising regions more densely. Examples of such approaches are by Butko and

Movellan [11] and Gualdi et al. [42, 43].

A promising method was proposed by Dollár et al. [20]. Their excitatory cascades

realize the sparse scanning idea with soft cascades. The authors suggest an algorithm

which sets excitatory thresholds for stages of an existing soft cascade on an unlabeled

set of images such that regions containing positive responses of the original cascade

are missed during the sparse scanning phase only with some small and defined

probability. However; the authors do not claim that the thresholds are set in optimal

way and, in fact, they are clearly sub-optimal.

Non-maxima suppression assumptions. Non-maxima suppression, which is

part of most scanning-window detectors [137, 22, 20], is based on the assumption

that two objects can overlap only to a limited extent. This assumption is valid

for most detectors as they are usually not able to handle severe occlusions anyway.

The assumption allows detectors to merge overlapping responses into a single object

position, which is usually the window with the highest detector response.

The assumption of non-maxima suppression can be used to accelerate detection. If

the final object position is determined only by the window with the highest responses,

responses at neighboring positions are not needed and the detector only has to

determine that they are to be suppressed. This idea was utilized, for example, by

Pedersoli et al. [106] in their coarse-to-fine detector which splits an image into a set

of neighborhoods that can contain only one object and searches the neighborhoods

in greedy recursive coarse-to-fine fashion. First, the object is localized at a coarse

resolution, and the position is further refined at higher resolutions.
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An interesting application of the non-maxima suppression assumption is the

inhibitory cascade by Dollár et al. [20]. The inhibitory cascades evaluate neighboring

image positions in parallel and terminate computation of those windows which will

likely give non-maximal results. The decisions are based on ratios of partial cascade

responses. The authors proposed an algorithm which sets thresholds on the response

ratios for an existing soft cascade using unlabeled images. Although the thresholds

are set such that the inhibitory cascade introduces a small and defined error, the

thresholds are not optimal in terms of decision speed (why inhibitory cascades are

not optimal and how they relate to EnMS is discussed in Chapter 8).

Relations to EnMS and neighborhood suppression. All methods which ac-

celerate detectors by sharing computations of features or by image pre-processing

are orthogonal to neighborhood suppression and EnMS, and could be combined with

the proposed methods for even faster detection.

Many of the methods which strongly rely on smoothness of detector responses

are not applicable to fast detectors with attentional structures, which produce

discontinuous responses due to the early terminations. The local search methods [16]

and the branch-and-bound search by Lampert et al. [77] target relatively slow

detectors which are not the primary focus of neighborhood suppression and EnMS.

The excitatory cascades by Dollár et al. [20] focus on the same detectors as

neighborhood suppression and their underlining idea is similar as well. However,

the excitatory cascades try to select image positions which should be evaluated

and neighborhood suppression, in contrast, selects image positions which should be

skipped.

The coarse-to-fine detector of Pedersoli et al. [106] is in many aspects related to

EnMS, which could, in fact, be applied to a multi-stage coarse-to-fine detector in

order to create a detector with similar behavior. An advantage of EnMS is that it

produces optimal time-to-decision detector for a target localization error.

The inhibitory cascades by Dollár et al. [20] are build exactly on the same idea

as EnMS and the way they process images is very similar. The methods differ only

in the exact form of the conditions which decide when non-maximal windows are to

be rejected, and EnMS, unlike inhibitory cascades, finds thresholds for the decisions

which optimize detection speed.
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Neighborhood suppression

The algorithm proposed in this chapter extends existing appearance-based detectors

with an ability to suppress image positions in the neighborhood of the position being

currently classified. The proposed method is effective and, at the same time, simple

and computationally inexpensive. It learns a new suppression classifier which predicts

the responses of the original detector at neighboring positions. When the predictions

are negative and confident enough, computation of the detector is suppressed at the

respective positions.

The idea of neighborhood suppression is demonstrated in Figure 6.1. While a

detector is deciding an image position, it is, at the same time, trying to reject

neighboring positions. Evaluation of the detector is suppressed at the positions which

get rejected.

The suppression is possible because the neighboring positions share information

due to overlap of the image windows caused by small horizontal and vertical scanning

steps. In order for the neighborhood suppression to be efficient, the detector and the

suppression classifier have to share computation. These reused parts can be image

features in the case of Viola & Jones’ [137] and similar detectors or possibly other

partial computations. The reuse of computation is crucial and, in fact, it is the only

reason why faster detection can be achieved this way. Although the neighborhood

suppression algorithm proposed here considers only sharing of features, the general

idea could be applied to wider range of detectors and in other ways.

The effectiveness of neighborhood suppression relies on the amount of information

shared between neighboring scanned windows – which is clearly high if the windows

overlap closely. However, it is not immediately clear how suitable are the features

of the original detector, as those features were selected specifically for detection of

well aligned centered objects and they are not necessarily suitable for other tasks.

55
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Figure 6.1: Scanning an image in ordinary line-by-line fashion while using neighbor-
hood suppression.

The amount of information provided by the reused features, and consequently the

possible effectiveness of neighborhood suppression, surely varies with different types of

features and objects. Also, the amount of shared information decreases with distance

of the windows.

Efficiency of neighborhood suppression is affected by the fact that detectors with

attentional structure compute on average only few features per window (see Table 4.4),

and the suppression classifiers should use only these features if they are to improve

speed of detection.

Although this chapter considers neighborhood suppresson only for soft cascades [8,

124] (see WaldBoost detector in Algorithm 2), the proposed approach is not limited

to this type of detectors. Neighborhood suppression could be easily extended to

detectors with different attentional structures in a straightforward and trivial way.

The neighborhood suppression creates new suppression classifiers for an existing

soft cascade. The new classifiers are trained by WaldBoost [124] and they reuse

features of the original soft cascade.

The task of learning the suppression classifiers is similar to emulation of existing

detectors by WaldBoost as proposed by Šochman and Matas [125, 126]. Formulating

the neighborhood suppression task as detector emulation makes it possible to use

unlabeled data for training, and it allows the approach to support existing detectors

without any modifications.

6.1 Learning Neighborhood Suppression

This section formally defines a learning algorithm for neighborhood suppression [155].

It first summarizes necessary notation and facts about sequential decision strategies

and WaldBoost previously presented in Section 2.1 and Chapter 3, and then it

presents the novel algorithm which was inspired by the WaldBoost algorithm [124].
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Soft cascade. A soft cascade is a sequential decision strategy with decision functions

St based on a majority vote of weak hypotheses ht : X → R:

HT (x) =
T∑
t=1

ht(x) (6.1)

with corresponding decision thresholds (as discussed in Chapter 3).

For neighborhood suppression, the three-way decision functions from Equa-

tion 3.10) are simplified to two-way decision functions which terminate only for

negative decisions:

St(x) =

{
−1, if Ht(x) ≤ θ(t)

], if θ(t) < Ht(x)
. (6.2)

Although it would be possible to suppress computation of a detector at neighboring

positions which contain an object with high probability as well, most object detectors

include some variant of non-maxima suppression which requires the detector to be

fully computed at the most promising positions in order to obtain optimal location

of the objects (usually a position with the highest response of the detector).

Weak hypotheses used in practical detectors [124, 141] are in vast majority

of cases space partitioning weak hypotheses [117] which internally operate with

disjoint partitions of the object space X . The functions partitioning the object space

f : X → N will be reffered to in the following text simply as features. The space

partitioning weak hypotheses are combinations of such features and a look-up table

function l : N→ R
ht(x) = lt(ft(x)). (6.3)

In the further text, c
(j)
t specifies the real value assigned by lt to the output j of

ft. The c
(j)
t values may be set in many different ways depending on the learning

algorithm used to build the detector. In the case of WaldBoost, c
(j)
t values are set

according to Equation 2.9.

Neighborhood suppression learning algorithm. The task of learning a sup-

pression classifier can be formalized as learning a new soft cascade with a decision

strategy S′ consisting of hypotheses h′t = l′t(ft(x)), which reuse features ft of the

original detector S, and which only differs in the look-up table functions l′t and in

the rejection thresholds θ′(t). The goal of the new decision strategy S′ is to emulate

the original detector at neighboring locations. The whole algorithm for learning

suppression classifiers is summarized in Algorithm 4. The learning algorithm is

closely related to WaldBoost (see Algorithm 3).

The inputs of the algorithm are target false negative rate, existing soft cascade S

and a set of unlabeled images.

The target false negative rate applies to the binary decision of the suppression
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classifier. Total change of false negative rate of the whole final detector will be lower.

This discrepancy is natural and it has two reasons. Neighborhood suppression can

be performed only within a small neighborhood and, as a consequence, a detector

has to be evaluated at many image positions even if all the suppression decisions are

successful. Also, the target false negative rate in Algorithm 4 would be reached only

if the suppression classifier managed to reject all background positions, which it is

not able to do in practice (see Table 6.1) as its decision evidence is limited only to

the features computed by the original detector.

The training set consists of image windows extracted from unlabeled images which

should be close to the target domain of the detector. The image windows represent

positions at which the detector is evaluated. As the task is to predict response of the

original detector S at some other position in neighborhood, corresponding labels for

the learning task are obtained by evaluating the original soft cascade S at an image

position with a particular displacement.

The algorithm proceeds in iterations in which it consecutively creates new weak

hypotheses for the suppression classifier – it sets values of the look-up table l′t and of

the early termination threshold θ′(t) for feature ft of the original detector S. The look-

up table values are set according to real AdaBoost (Equation 2.9). The termination

threshold θ′(t) is set as in WaldBoost (Equation 3.13). As the algorithm does not

have to select an optimal weak hypothesis from a large pool of available features

(which is generally the most time consuming step in WaldBoost), the learning of the

suppression classifiers is very fast.

The training set is pruned twice in each iteration. First, examples rejected by

the new suppression classifier must be removed from the training set. In addition,

examples rejected by the original detector S must be removed as well. This corre-

sponds to the behavior during image scanning when only those features which are

needed by the original detector to make decision are computed.

Multiple suppressions. Suppression classifiers learned by Algorithm 4 aim to

suppress only a single image position. This limitation is not inherent to this approach,

in fact, multiple neighboring position can be suppressed by single classifier, and

Algorithm 4 can be easily extended to learn such classifiers. This behavior can

be achieved by setting labels of the training samples to −1 only when the original

detector rejects all of the considered positions.

In addition, multiple suppression classifiers focusing on different parts of a

neighborhood can be combined.
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Algorithm 4 Neighborhood suppression learning algorithm based on WaldBoost as
published in [155].

Input:

� original soft cascade S defined by features ft, corresponding weak hypotheses
ht(x), and rejection thresholds θ(t)

� training set P = {(x1, y1) . . . , (xm, ym)},xi ∈ X , yi ∈ {−1,+1}, where the
labels yi are obtained by evaluating the original soft cascade S at an image posi-
tion with particular displacement with respect to the position of corresponding
xi in an respective image

� desired miss rate α

Output:

� look-up table functions l′t and early termination thresholds θ′(t) of the new
suppression classifier

Initialize sample weight distribution D1(i) = 1
m

for t = 1, . . . , T

1. estimate new l′t using ft such that

c
(j)
t = −1

2
ln

(
Pi∼D(ft(xi) = j|yi = +1)

Pi∼D(ft(xi) = j|yi = −1)

)
2. add l′t to the suppression classifier

H ′t(x) =
t∑

r=1

l′r(fr(x))

3. find optimal threshold θ′(t) satisfying Equation 3.13

4. remove training set samples for which Ht(x) ≤ θ(t)

5. remove training set samples for which H ′t(x) ≤ θ′(t)

6. update the training set weight distribution

Dt+1(i) ∝ exp(−yiH ′t(xi))
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6.2 Neighborhood suppression in real-time detection

Adding the ability to suppress neighbors to existing detector engines requires only

slight modifications which may, however, introduce some computational and storage

overhead. Although the computational overhead is small and may not affect detection

speed on some architectures at all (e.g. on SIMD architectures, and on wide-register

architectures), it should be considered.

Starting from an existing implementation of a soft cascade detector, one has to

expand it to be able to perform the new table lookups l′t, update accumulators of the

suppression classifiers, perform threshold tests on the accumulators, and maintain a

list of the suppressed positions.

The prediction values of a suppression classifier have to be loaded from memory

in addition to the prediction values of the original detector. Fortunately, the lookup

tables lt and l′t are always indexed by the same value corresponding to an output

of the same feature ft(x). This coordinated access pattern allows the lookup tables

to be merged into a single table with double size of entries. Assuming suitable

memory architecture, the two values can be retrieved at the same cost in a single

memory access. On a standard PC, the memory access cost will remain the same

for up to 16 bytes long entries when no cache misses are considered (assuming

proper memory alignment). In standard situation, the 16 bytes can accommodate

4 classifiers (four 32-bit floating point values). Additionally, previous work [156]

indicates that the look-up table values can be quantized down to 8-bit values without

significant performance degradation. Such quantization would increase the number

of classifiers which can fit into a 128-bit register to 16.

The prediction values have to be accumulated and the accumulated values

compared to thresholds. This can be done in parallel with no additional cost on SIMD

architectures, such as MMX/SSE/AVX instruction set extensions of contemporary

PC processors. Using the AVX instruction set, which supports 256-bit registers, eight

32-bit accumulators can be handled in parallel.

On systems with wide enough data words but no SIMD support, the implemen-

tation can be similar as on a SIMD architecture. All the accumulators may be

packed into a single long integer accumulator manually as long as the accumulators

do not overflow. The non-overflow condition can be easily fulfilled as the maximum

possible value of each portion of the register can be calculated in advance from values

contained in the look-up tables.

The suppression itself can be handled by a binary mask covering positions to be

scanned. Some positions in such mask would be marked as suppressed and would

be excluded from further processing. The image scanning pattern can remain the

same as in ordinary scanning-window approach, even though it restricts the positions

which can be suppressed to those which are to the right and bottom of the currently
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classified position1 (see Figure 6.1). Possibly, more efficient scanning strategies may

be developed.

6.3 Neighborhood suppression experiments

I tested the neighborhood suppression on frontal face detection and eye detection

tasks. In both tasks, two separate test image sets were used - one with less constrained

poses and lower quality images and one with easier poses and good quality images.

All the datasets are described in more detail in Section 4.3.

Face detection experiments were performed on MIT+CMU frontal face dataset

and on GroupPhoto dataset. From these two, MIT+CMU contains lower quality

images. GroupPhoto contains good quality group shots with close to frontal faces.

Eye detection experiments were performed on XM2VTS database and on BioID

database. XM2VTS is much easier compared to BioID as it contains clutter-free

backgrounds. The datasets are described in Section 4.3. Suppression classifiers were

trained on a large set of unannotated images containing faces.

The tests were performed with four types of image features: Haar, LBP, LRD,

and LRP (see Section 4.1 for definitions of these feature sets). The base WaldBoost

detectors were created and evaluated as described in Section 4.2.

Effect of neighborhood suppression. The first experiment focuses on the gen-

eral effect of neighborhood suppression using a single classifier to suppress single

positions and using twelve such classifiers to suppress twelve different relative posi-

tions in the neighborhood. The resulting effects were measured in terms of relative

speed-up of detection and relative change in average detection rate 2. The tests were

performed with moderately fast base detectors (4.5 - 6 features per position) and

moderate target false negative rate of the suppression classifiers (α = 0.05).

Results of the experiment are shown in Table 6.1 and Figure 6.2. The results

indicate large differences between individual feature types. While the average number

of weak hypotheses computed per position was reduced with twelve suppressed

positions down to 30% for LBP and 40% for LRP, only 55% suppression was

achieved for LRD and 65% for Haar. This can be explained by generally higher

descriptive power of LBP and LRP features – it is reasonable to expect that they

capture lot of information which is not directly relevant to their primary detection

task. In general, the average detection rate degraded only slightly – by no more than

1% in all cases except for twelve suppressed positions with LBP on MIT+CMU and

BioID and with LRP on BioID.

1Assuming standard scanning order from left to right and from top to bottom.
2Average detection rate equals to 1 - AMR. AMR is defined in Section 4.4.
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Haar LBP LRD LRP
dataset value single 12 single 12 single 12 single 12

BioID
ROCA(%) -0.02 0.07 -0.48 -3.44 -0.16 -1.08 -0.24 -2.04

Time 0.96 0.68 0.78 0.33 0.92 0.54 0.82 0.37

PAL
ROCA(%) -0.00 -0.39 -0.08 -0.21 -0.09 -0.85 -0.05 -0.44

Time 0.96 0.71 0.77 0.31 0.91 0.51 0.82 0.36

CMU
ROCA(%) -0.03 -0.36 -0.27 -1.92 -0.02 -0.49 -0.08 0.01

Time 0.93 0.62 0.74 0.31 0.93 0.62 0.87 0.47

Group
ROCA(%) -0.04 -0.54 -0.21 -1.02 -0.02 -0.27 -0.06 -0.65

Time 0.93 0.60 0.73 0.29 0.93 0.60 0.87 0.45

Table 6.1: The effect of neighborhood suppression for different features and datasets.
ROCA(%) is the percentage difference between average detection rate without and
with neighborhood suppression. Time represents an average number of features com-
puted per position relative to the original detector without neighborhood suppression.

”
single“ stands for suppressing single position.

”
12“ stands for suppressing twelve

positions with twelve suppression classifiers. Target miss rate of the suppression
classifiers was 5 % and speed of the original detectors 4.5 - 6 features per position.
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Figure 6.2: The ROC curves on MIT+CMU dataset without suppression (full line)
and with 12 suppression classifiers (dashed line). Target miss rate α of the suppression
classifiers is 5 %.
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Figure 6.3: Reduction of detection time represented as average number of features
computed per position relative to the original detector (y-axis) when suppressing
single positions in different horizontal distance from the classified position (x-axis).
Target error of the suppression classifiers is 5 %.
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Figure 6.4: Reduction of detection time represented as average number of features
computed per position relative to the original detector (y-axis) when suppressing
multiple positions on single image line by single classifier. x-axis is the number of
suppressed positions. Target error of the suppression classifiers is 5 %.

Suppression distance. This experiment evaluates changes in suppression ability

with distance form the evaluated position. Figure 6.3 shows that suppression ability

decreases relatively slowly with distance and large neighborhood of radius at least 10

pixels can be suppressed for the tested LBP and LRP classifiers.

Suppressing multiple positions. As mentioned before, single suppression classi-

fier can suppress larger area than just a single position. Relation between speed-up

and size of the area suppressed by a single classifier is shown in Figure 6.4. The

results show that larger area increases speed compared to suppressing single positions.

However, the speedup is not directly proportional to the area size as the suppres-

sion task becomes harder with higher number of suppressed positions. Multiple

suppression classifiers would always achieve higher speed-up than a single classifier

suppressing the same positions. In practical application, the optimal number of

suppression classifiers would be determined by the induced computational overhead

on the respective platform.
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Speed-precision trade-off. If neighborhood suppression is to be useful, it has to

provide higher speed than the simple detector for the same precision of detection.

To validate this, I have trained number of WaldBoost detectors with different speeds

(in terms of average number of features computed per position) for each feature type.

Then, I learned three suppression classifiers with α set to 0.01, 0.05, and 0.2 for each

of the WaldBoost detectors. The corresponding speeds and detection rates of the

detectors are shown in Figure 6.5. Even thought only a single suppression classifier of

a single position is used in this case for each of the detectors, the results clearly show

that higher speed for the same detection rate can be reached by using neighborhood

suppression.
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Figure 6.5: Speed-up achieved by suppressing single position for different speeds
of the original detector and different target false negative rates α. Neighborhood
suppression detectors achieve better speed-precision trade-off. Each line represents
results for different α for three original detectors of different speed. X-axis is the
speed of classifier in number of weak hypotheses evaluated on average per single
scanned position (left is faster). Y-axis is average miss rate (lower is more accurate).
Better detectors are closer to the left-bottom corner. On the left are results of eye
detection on PAL dataset and on the right are results of frontal face detection on
GroupPhoto dataset.





CHAPTER 7

Early non-Maxima Suppression

Non-maxima suppression is an important part of most scanning-window detectors [141,

137, 158]. It aggregates per-window responses of a detector into probable object

positions, and it suppresses multiple detections of the same object. Non-maxima

suppression usually operates locally in a small neighborhood defined by a range of

positions, scales, rotations, aspect ratios, and possibly other transformations. In such

neighborhood, only the highest response of the classifier which is above a specific

threshold is kept and all lower responses are suppressed. As the suppressed responses

have no influence on the final detections, there is no need to compute them, and

it should be possible to terminate computation of the detector at such positions as

soon as it is certain they will, in fact, be suppressed. Such early terminations would

improve speed without any changes to detection results.

The main idea of Early non-Maxima Suppression (EnMS) is to merge existing

focus-of-attention approaches with non-maxima suppression, and take the non-

maxima suppression decisions from the post-processing step to the classification

phase itself. Such shift of the non-maxima suppression decisions could reduce

unnecessary computations with only low overhead and could significantly increase

detection speed.

The EnMS algorithm proposed in this chapter is formalized as a sequential

decision strategy and it builds upon the Sequential Probability Ratio Test [142] and

WaldBoost [124] which optimize time-to-decision for a certain target error level. It

creates a new sequential decision strategy based on an existing soft cascade detector

by replacing all its rejection thresholds with variable thresholds which depend on

tentative results of the detector in neighboring positions. The proposed algorithm

does not require labeled training data, it only needs an existing detector and a set of

images similar to the target domain of the detector.

67
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The benefit of EnMS in the context of object detection may be only moderate

since the sizes of non-maxima suppression neighborhoods are relatively small in

such applications. Also, individual windows inside the non-maxima suppression

neighborhood and the corresponding detector responses tend to be correlated [12, 39,

41, 20]. In other applications, such as object localization and tracking by detection,

where the size of the neighborhood is larger, the benefit of EnMS should be much

greater (as is demonstrated by the results in Section 7.4).

Although EnMS was primarily motivated by object detection, it is applicable in

various other pattern classification tasks where the magnitude of classifier response

is significant and the classifier can be divided into separate steps.

7.1 Dynamics of boosted classifiers

Potential benefit of an EnMS strategy strongly depends on dynamics of the detector

for which it should be created. In essence, EnMS should work better when tentative

results of the classifier are more correlated with its final decision – strong correlations

allow to better anticipate the final decision.

In detectors created by WaldBoost and similar algorithms based on boosting

(see Section 2.1 and Section 3.2), the correlations should indeed be strong. Such

claim can be rationalized by considering that boosting algorithms produce viable

classifiers in any iteration and that the weak hypotheses of boosted classifiers should

be in general sorted by their discriminative power [117]. Also, existing publications

support such claim [12, 20].

In order to asses the dynamics of boosted detectors, the following text presents

analysis of a real AdaBoost [117] face detector composed of 1000 weak hypothesis

based on LRD features (see Section 4.1). The classifier was learned on Face training

dataset (se Section 4.3) and on 400,000 background examples. The large set of

negative examples allowed the classifier to achieve very low false positive rate similar

to classifiers with attentional structure, such as soft cascades.

The detector was run on a large set of images while collecting probability distribu-

tions p (H(x) |Ht(x)) of the final classifier response H(x) conditioned by intermediate

value Ht(x) at stages t = 200 and t = 500. The distributions are show in Figure 7.1.

They are close to normal distributions and well separated even for t = 200.
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Figure 7.1: Distributions p (H(x) |Ht(x)) of classification results H(x) conditioned
on eight different values of intermediate tentative results Ht(x) (shown as small
crosses). It can be clearly seen that the relative order of final classifier responses
can be estimated with high probability even in early stages of the classifier. Taken
from [48].
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7.2 Coming to Early non-Maxima Suppression

The goal of EnMS is to find, with minimal computational effort, a sample xbest

from a set of samples X0 = {xi}Ni=1 for which the response of a classifier H(x) is the

highest – ∀xi ∈ X : H(xbest) ≥ H(xi).

The search can be speeded up by evaluating the classifier simultaneously for all

samples xi and by terminating some of them based on comparisons of their tentative

results Ht(xi).

In theory, it is possible get exact results even with the early suppression by making

the early termination decisions only when they can not cause errors. Although such

EnMS would give exactly the same quality of detection as the original classifier, the

speed-up would be low. In order for EnMS to be effective, it has to be allowed to

make occasional errors. The errors have to be low and controlled, otherwise detection

quality could degrade.

In a case when only two samples are considered, the error caused by rejecting

sample x2 in favor of x1 can be expressed as an integral of probabilities of all cases

when the decision is wrong:

εt(x1,x2) = p (H(x1) < H(x2) |Ht(x1), Ht(x2))

=
∫∞
ξ=−∞ p (H(x1) = ξ |Ht(x1))(∫∞

ζ=ξ p (H(x2) = ζ |Ht(x2)) dζ
)
dξ

(7.1)

This error is computed using the conditional probabilities p (H(x) |Ht(x)) shown in

Figure 7.1.

The two sample error can be extended to larger sets of samples. When a set

of samples L is rejected in favor of another set of samples C, the expected error

becomes:

ε̄(C,L) = 1−
∏
∀xL∈L

(
1−

∏
∀xC∈C ε(xC ,xL)

)
. (7.2)

Although the error caused by an EnMS decision can be computed, a question

remains how to select the two sets of samples L and C. Considering that the

probability that a sample is xbest increases with the value of Ht(x), it is reasonable

to expect that a threshold on Ht(x) would provide a good selection criteria for the

sets L and C. However, the threshold can not be static, instead it should depend on

the competing samples.

The following text describes how to choose the pruning thresholds for each stage

of a classifier such that the combined error of the pruning would not exceed some

specified value and the highest possible speedup would be achieved at the same time.
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7.3 Conditioned SPRT and EnMS

The previous text showed how to estimate error of a single EnMS decision. Using

such error estimate, it would be possible to create an EnMS decision rule for a single

classfier stage Ht(x) with a required degree of confidence based on statistics of the

classifier on an unlabelled image set. However, the EnMS strategy should make

multiple decisions at multiple stages of the classifier in order to be effective. This

section presents a method which automatically constructs such EnMS strategy for a

given classifier and a target error rate.

EnMS can be formalized as a two-class sequential decision problem where the first

class contains samples xbest which get the highest response of the whole classifier,

and the second class contains all the other samples. When formalized in this way,

the task is to create an optimal strategy which would decide at each stage of the

sequential classifier for each sample from a competing set: (1) whether to reject it, (2)

whether to accept it as the best sample, (3) or if this problem cannot be decided yet

with high enough confidence and further information is needed. Such strategy would

compute one stage of the classifier at a time and make the decision simultaneously

for each of the competing samples.

The following EnMS algorithm is an extension of SPRT (see Chapter 3) and it

utilizes the WaldBoost’s projection trick for dependent measurements.

Conditioned SPRT. The classification task in the case of EnMS is specific in that

the goal is to use information from a set of competing samples to guide the decisions

about any of the individual samples. Unfortunately, the original SPRT cannot

accommodate such sharing of information and has to be extended. The resulting

Conditioned Sequential Probability Ratio Test (CSPRT) allows the decision to be

conditioned by an arbitrary function over additional data. In CSPRT, the decision

functions when combined with the projection trick of WaldBoost (see Equation 3.10)

become:

S∗t (x, zt) =


+1, if Ht(x) > θ

(t)
B (zt)

−1, if Ht(x) < θ
(t)
A (zt)

], if θ
(t)
A (zt) ≤ Ht(x) ≤ θ(t)B (zt)

(7.3)

where zt ∈ Z is some additional conditioning data and the thresholds on the classifier

response θ
(t)
B : Z → R and θ

(t)
A : Z → R are now functions of this additional data.

The likelihood-ratio from Equation 3.9, which is used to estimate optimal θ
(t)
B (zt)

and θ
(t)
A (zt), becomes

Rt =
p (Ht(x)|zt, y = −1)

p (Ht(x)|zt, y = +1)
. (7.4)

The conditioning parameter zt is not constrained to any particular form. It could

be scalar or a vector, continuous or discrete. The main considerations which should

guide the decision about the form of zt and the functional forms of θ
(t)
B (zt) and
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θ
(t)
A (zt) should be what information can be exploited to create the strategy faster and

if the two threshold functions can be reliably estimated on limited data given the

particular form of zt. Generally, the more information zt encodes, the less reliably

the likelihood-ratio Rt is estimated with the same amount of data. For example,

the amount of needed data increases exponentially with the dimensionality of zt

according to the curse of dimensionality [5] if no additional structural constraints

are imposed.

CSPRT for EnMS. As stated above, the goal of EnMS is to find the sample xbest

with maximal response of classifier H(x) (the champion) among a set of competing

samples X based on the intermediate result of the classifier Ht(x). Whether a

classifier response for a sample is maximal or not depends highly on the other

competing samples. Considering this, it is reasonable to make zt a function of X .

As shown in Section 7.1, Ht(x) becomes very good (and very likely the best)

indicator of the final value of H(x) with increasing t. With this in mind, zt should

obviously be a function of Ht(x) of all samples from X and should indicate the prob-

able highest value of H(x), ∀x ∈ X . When the strategy is evaluated synchronously

in parallel for all samples from X , such information can be extracted by:

zt = max
x∈Xt−1

(Ht(x)), (7.5)

where Xt−1 is a set of samples still not decided by the previous decision function

St−1.

Further, the two threshold functions have to be chosen appropriately. Similarly

to WaldBoost, it is not practical for EnMS to make positive decisions – it should only

reject samples. Such behavior is satisfied by setting the corresponding thresholds

θ
(t)
B (zt) = +∞. (7.6)

A reasonable form of the negative threshold θ
(t)
A (zt) is

θ
(t)
A (zt) = zt − λt, (7.7)

where λt can be interpreted as a handicap of the leading sample. With this choice of

θ
(t)
A (zt), the condition for rejecting samples as losers from Equation 7.3 becomes

Ht(x) < zt − λt. (7.8)

The term handicap for λt is appropriate as samples are “disqualified” from the rest

of the competition if their value of Ht(x) is lower than that of the leading sample

with this handicap.

Although this choice of the threshold function is very simple, it performs well
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Algorithm 5 Learn algorithm for EnMS strategy as published in [48].

Input: classifier H(x) consisting of T stages Ht(x); training sets of samples{
X (k)
0

}N
k=1

; target false negative rate α

Output: EnMS handicaps {λt}tmax
t=1

1: find champions x
(k)
best = arg max

x∈X (k)
0

(H(x))

2: count losers Lall =
∑
k

∥∥∥X (k)
0 \

{
x
(k)
best

}∥∥∥
3: for each stage t = 1 to T do

4: find all z
(k)
t = max

x∈X (k)
t−1

(Ht(x))

5: λt = min λ̃t, such that α
Lkilled(λ̃t)

Lall
>
Ckilled(λ̃t)

N
,

where the number of killed losers Lkilled(λ̃t) =

Lall −
∑N

k=1

∥∥∥{x
∣∣∣Ht(x) > zt − λ̃t,x ∈ X (k)

t−1 \
{

x
(k)
best

}}∥∥∥
and where the number of killed champions Ckilled(λ̃t) =

N −
∑N

k=1

∥∥∥{x
∣∣∣Ht(x) > zt − λ̃t,x ∈ X (k)

t−1 ∩
{

x
(k)
best

}}∥∥∥
6: prune sample sets

X (k)
t = X (k)

t−1 \
{

x
∣∣∣Ht(x) < z

(k)
t − λt,x ∈ X

(k)
t−1

}
7: end for

and the optimal handicap can be reliably estimated using relatively small amount of

data. Also, preliminary experiments have shown that more complex functions follow

this simple form very closely when their parameters are estimated.

Learning Early non-Maxima Suppression. The process of learning an EnMS

strategy is depicted in Algorithm 5. The algorithm uses the specific choices of zt and

θ
(t)
A (zt) from the previous text, but it could be easily modified for other choices.

The inputs of the algorithm are the training sets of samples
{
X (k)
0

}N
k=1

, the target

false negative rate α of the strategy, and a classifier H(x) for which the EnMS strategy

should be created. The classifier must provide real-valued responses and must be

evaluated in stages Ht(x) where each subsequent stage gives better estimate of the

final decision. These conditions are satisfied by most real-time scanning-windown

object detectors [137, 120, 124, 141, 39, 41, 8, 9, 12, 58]. The individual training sets

X (k)
0 each represent one competing set of samples (e.g. local image neighborhood in

object detection).

The algorithm outputs the EnMS parameters, in this case the handicaps λt for

each stage (Equation (7.7)).

In the first step of the algorithm, the champions x
(k)
best (there is one champion in

each set of competing samples, all the rest of the samples are losers) are found in

each set of competing samples X (k)
0 . This requires the whole classifier H(x) to be

evaluated on all samples and thus presents the most computationally expensive part
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Algorithm 6 Execute EnMS

Input: classifier H(x) consisting of tT stages Ht(x) with corresponding handicaps
λt, and a set of competing samples X0

Output: XT
1: for each stage t = 1 to T do

2: z
(k)
t = max

x∈Xt−1

(Ht(x))

3: prune sample sets

Xt = Xt−1 \
{

x
∣∣∣Ht(x) < z

(k)
t − λt,x ∈ Xt−1

}
4: end for

H (x)t

zt

p(H (x), z  | y=+1)t t

p(H (x), z  | y=-1)t t

H (x) = z - λ t t t

Figure 7.2: This figure shows the decision line of EnMS for single stage t together
with illustrative distributions of tentative classifier responses of champions (y = +1)
and losers (y = −1). The slope of the decision line is fixed to 45◦ and only its
position, which is controlled by αt, is adjusted during learning. Note that zt is not a
property of a specific sample, but it depends on a whole set of competing samples.

of the algorithm. However, this step can be executed only once for a classifier and

stored for multiple uses. It is also possible that the classifier already contains some

form of focus-of-attention, in which case the search for overall champions should

not require too much computation time. Additionally, all losers should be counted

during the scanning for champions. The total number of losers Lall is later needed

when estimating the parameters of the EnMS strategy.

After the initial steps, the algorithm proceeds in iterations t = 1 . . . T . In each of

the iterations, a single decision function is estimated starting from the first stage of

the classifier.

The iterations consist of three steps. In Step 4, the conditioning parameters

z
(k)
t (see Eq. (7.5)), which are the “best responses so far”, are found for all the

training sets of competing samples. Then, the only parameter of the stage decision

function λt (from Equation 7.7) is estimated and, finally, the individual sets of

competing samples are pruned by the newly estimated EnMS decision function (from

Equation 7.8). Note that the gradual pruning of the sets of samples significantly

reduces computational time of later iterations.

The parameter λt should be set such that the condition imposed by the threshold
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(Equation 7.8) rejects only samples for which the likelihood-ratio Rt (Equation 7.4)

satisfies

Rt(x, zt) ≥
1

α
, i.e.

αp (Ht(x) |zt, y = −1) > p (Ht(x) |zt, y = +1) ,
(7.9)

which comes Equation 3.8 when β = 0. The condition is equivalent to

αp (Ht(x), zt |y = −1) > p (Ht(x), zt |y = +1) . (7.10)

The two probability distributions from previous equations can be visualized

as two-dimensional functions of Ht(x) and zt, and the condition imposed by the

threshold λt is a separating line in this plane with 45◦ slope (see Figure 7.2). The

condition divides the samples into two disjoint sets, which can be used to reformulate

the constraint from Equation 7.10 in terms of these two sets as is done in WaldBoost

(see Equation 3.13):

αp (Ht(x) < zt − λt |y = −1) > p (Ht(x) < zt − λt |y = +1) , (7.11)

which is already expressed in terms of λt. The handicap λt should be set as low as

possible while still satisfying this constraint. In experiments presented in this thesis,

the optimal values of λt were found by an exhaustive search in a discretized space of

possible values λ̃t.

In the algorithm, the constraint on λ̃t becomes

α
Lkilled(λ̃t)

Lall
>
Ckilled(λ̃t)

N
, (7.12)

where Ckilled(λ̃t) gives the total number of killed champions xbest from all training

sets of competing samples for a given handicap λ̃t, and Lkilled(λ̃) gives the number

of killed losers. These sets include the champions and losers killed in all previous

stages (1 to t− 1) and those that would be rejected at stage t if the handicap was λ̃t.

Lall is the total number of losers in the original input sets and N is the number of

champions.

The two functions Ckilled(λ̃t) and Lkilled(λ̃t) can be both implemented as accu-

mulators for discrete values of λ̃t. Such accumulators can be filled sequentially in a

single pass over the individual sets of competing samples which can be processed

separately and in parallel. This “stream” processing reduces memory requirements

to an insignificant amount.

In the case that the stream processing is not an option (e.g. the amount of data

per sample is too large), it is possible to estimate λt in the early iterations on a

smaller part of the available training data. Such approach requires that Lall and N

are updated correctly.
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EnMS decision algorithm. The algorithm of applying EnMS strategy on a set

of samples is described in Algorithm 6. It is essentially the pruning mechanism

presented already in the EnMS learning algorithm. An important feature of EnMS

is that it diverges very little from the standard classifier runtime: only the “best

so far” response must be found after each stage of the classifier and then each

instance’s response is compared to a calculated threshold (as in the case of most

other focus-of-attention strategies). Although this kind of synchronization could

be undesirable on some parallel architectures, it requires only minimal additional

computation and modern parallel architectures (e.g. CUDA) support constant-time

voting operations, such as finding the maximal value among concurrent threads.

7.4 EnMS in face localization

The following text presents EnMS experiments on a face localization task. The

experiments aim to asses how effective EnMS is compared to attentional detectors

which process image windows independently.

The input classifier used in the experiments was a monolithic real AdaBoost face

detector composed of 1000 weak classifiers based on LRD features. It is the same

classifier as was used to gather the conditional distributions in Section 7.1.

EnMS strategies were learned on a separate training set of unlabelled images

(described further) and the strategies were then applied to a separate testing set.

Several error rates were measured and are reported in the tables of results:

� “=X” – rate of images where the EnMS strategy rejected the ultimate champion

xbest, i.e. xbest 6∈ XT ,

� “>X–2” – rate of images where the found best sample’s score was different

from H(xbest) by more than 2, i.e. max
x∈XT

H(x) < H(xbest)− 2,

� “>X–6” – similarly, max
x∈XT

H(x) < H(xbest)− 6,

� “>2” – rate of images where the reported best sample’s score was below 2, i.e.

the reported maximum was not a face.

“=X” is the true error of the sequential decision strategy and it should ideally

correspond to the target false negative rate α. For the classifier used as input, image

windows well aligned on objects give H(x) around 40–60, so decision errors which

comply the “>X–2” or “>X–6” condition are still well usable for most applications.

WaldBoost detector as a baseline reference. The main question concerning

the proposed EnMS approach is what is the real benefit of the additional informa-

tion shared by the competing samples compared to traditional focus-of-attention

mechanisms which do not share such information. To estimate this, we compared the



EnMS in face localization 77

EnMS to WaldBoost [124] face detector with the same properties as the monolithic

classifier.

Although the WaldBoost classifier does not directly aim to emulate the monolithic

classifier, its task is the same. Also the experiments show that for small target false

negative rate α, the WaldBoost classifier achieves minimal error rate with respect to

the monolithic classifier. Moreover, this or similar approach would probably be used

today when optimizing object localization for speed. All of the WaldBoost detectors

created for different target false negative error rate rejected on average 99.99% of

image windows.

In detail, the baseline WaldBoost face localization works as follows:

1. run WaldBoost detector on images and record non-rejected regions,

2. in the set of the non-rejected regions, find the one with the highest response of

the monolithic classifier,

3. the error of this solution is the rate of images when the sample with the highest

response (by the monolithic classifier) was rejected by the WaldBoost detector;

the other error classes (“=X”, “>X–2”, “>X–6” and “>2”) are evaluated

similarly as in the case of EnMS from the responses of the monolithic classifier

on the set of the detections reported by the fast detector.

Responses of the monolithic classifier and of the WaldBoost detector need not to

be comparable. Therefore, the magnitude of response of the WaldBoost detector is

not regarded at all in the comparisons. The experiments measure only the rate of

cases when the sample with the highest response of the monolithic classifier is early

rejected by the WaldBoost detector.

Dataset A The Dataset A consists of images with a dominant face in them which

were collected from several sources: BioID dataset [61], XM2VTS dataset [96], and

Internet search for images with “dominant face” in them. The images were re-scaled

such that their width and high would not exceed 150 pixels. The training set contains

3780 images, the test set 1975 images.

EnMS results on the Dataset A are presented in Table 7.1 and graphically in

Figure 7.3. Table 7.2 shows results of the WaldBoost reference. Figure 7.4 compares

EnMS to the baseline.

In practice, the error rate “=X” is not necessarily the most important. Error rates

“>X–2” and “>X–6” are much lower and for some applications can be acceptable.

It is up to the application which one of them should be considered as the error of

EnMS.

The benefit of the additional information used by EnMS is clear from the results.

The speed-up thus gained is about 2× higher compared to the approach of first

detecting the objects and then suppressing the non-maxima values (see Figure 7.4) –
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target average % error
% error α speed-up “=X” “>X–2” “>X–6” “>2”

1.00 205.4 2.48 1.27 0.35 0.00
2.00 305.0 3.70 2.08 0.66 0.00
3.00 333.6 4.71 2.58 1.01 0.00
4.00 367.3 6.08 3.85 1.42 0.00
5.00 439.8 7.24 4.91 2.23 0.00
6.00 454.2 8.96 6.08 2.89 0.05
7.00 474.7 10.23 7.14 3.44 0.05
8.00 488.5 11.70 8.41 4.35 0.10
9.00 500.5 13.01 9.27 5.16 0.25
10.00 519.9 15.39 11.34 6.28 0.51

Table 7.1: EnMS results on Dataset A. Target error is the target false negative
rate (in %) set for the training process, speed-up is averaged over the testing
dataset, 4 error rates (in %) are actually measured on the testing set: “=X” is
the fraction of images when the maxima reported by the EnMS was different from
the real maxima, “>X-2” and “>X-6” are the fractions of images when the maxima
reported was different from the real maxima by more than 2 and 6 respectively, “>2”
is the fraction of images where the reported maximal value was below 2 (practically
a non-face).

WB average % error
α speed-up “=X” “>X–2” “>X–6” “>2”

0.02 58.4 1.37 1.01 0.20 0.00
0.05 105.6 3.04 2.08 0.76 0.00
0.10 183.3 7.14 5.06 2.43 0.10
0.20 310.1 16.41 12.46 7.24 0.30

Table 7.2: Baseline WaldBoost results on Dataset A. The table is structured identically
as Table 7.1.

which can be regarded as the state-of-the-art solution. This is true for all the error

types “=X”, “>X–2”, “>X–6” and “>2”.

Dataset B The Dataset B was created from images from group “portraits” (training

set) and “just faces“ (test set) from server flicker.com. In the images, near-frontal

faces were semi-automatically annotated. A total of 84,251 faces were annotated

in the training set and 6704 in the test set. The images were then rescaled so that

the size of faces was 50-by-50 pixels. Further, the images were cut to a defined size

with the faces centered in the middle. The sizes were 70-by-70, 85-by-85, 100-by-100,

120-by-120, and 150-by-150 pixels resulting in five versions of the testing set. The

size of training images was 100-by-100 pixels.

Results of EnMS on Dataset B with 100-by-100 testing images are given in

Table 7.3 and graphically in Figure 7.5 – the figure contains results of the WaldBoost

baseline as well. Note that performance on Dataset B is notably worse than on
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Figure 7.3: EnMS results on Dataset A – see table 7.1 for numerical values.
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Figure 7.4: Comparison of EnMS and WaldBoost baseline on Dataset A.

Dataset A. The extent of the performance drop is similar for the EnMS and for the

WaldBoost baseline, and it can easily be explained by higher difficulty of images

in this dataset – it contains more cluttered background, non-frontal faces, partially

occluded faces, etc. Also, the performance of EnMS is negatively influenced by the

smaller size of testing images in this experiment compared to Dataset A (150-by-150

pixels). Still, the performance of EnMS is approximately twice as good as the

WaldBoost baseline.

Effect of neighborhood size. As stated in the previous text, the testing images

of Dataset B were cropped to five different sizes 70-by-70, 85-by-85, 100-by-100,

120-by-120, and 150-by-150 pixels. The size of faces is the same in all the versions,

so they only differ in the amount of background clutter they contain. EnMS should

be more effective on larger images as the larger images contain more competing
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target average % error
% error speed-up “=X” “>X–2” “>X–6” “>2”

1.00 103.3 3.07 1.48 0.31 0.03
2.00 119.4 4.77 2.31 0.60 0.06
3.00 136.5 6.01 3.18 0.84 0.06
4.00 152.7 6.80 3.76 1.24 0.06
5.00 165.0 8.86 5.06 1.67 0.09
6.00 175.4 10.10 5.95 2.09 0.16
7.00 198.8 12.86 7.97 3.06 0.19
8.00 215.5 15.32 9.83 3.65 0.31
9.00 222.4 15.16 9.80 3.85 0.31
10.00 236.3 17.99 11.99 4.79 0.39
12.00 257.8 16.38 11.22 4.95 0.39
14.00 264.6 16.77 12.28 5.85 0.51
16.00 330.6 29.52 22.24 10.99 1.18

Table 7.3: EnMS results on Dataset B with image size 100-by-100 pixels. The table
is structured identically as Table 7.1.

windows. To asses this relation, EnMS strategy learned on the training set (all

samples 100-by-100) was executed on the five different test sets (see Figure 7.6 for

results). Note that the average speed-up of EnMS increases with the number of

competing samples. The speed-up is roughly 2× higher on 150-by-150 images than

on 70-by-70 images.
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Figure 7.5: Comparison of EnMS and WaldBoost baseline on Dataset B with image
size 100-by-100 pixels.
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CHAPTER 8

Discussion

The experimental results of neighborhood suppression (Section 6.3) and of EnMS

(Section 7.4) indicate that both methods effectively share information between

neighboring image positions, and that they are both able to improve detectors which

process image windows independently. EnMS achieved roughly 2× speed-up at same

error level compared to WaldBoost in face localization on small images. Neighborhood

suppression improved speed of face detectors up to 3× at the expense of only minor

reduction of detection rates (average detection rate was reduced in most cases no

more than by 2%). The results show that both neighborhood suppression and EnMS

provides better speed-precision trade-off compaterd to WaldBoost baseline.

The improvements in speed are impressive considering that the baseline WaldBoost

detectors are already very fast – the fastest ones compute as few as two features per

image window. Neighborhood suppression was able to reduce the average number of

computed features per window down to single feature in some of the experiments.

From the nature of EnMS, its performance should not depend on specific properties

of the detector it is based on, such as which features it uses, as long as the detector

conforms to the basic requirements of the method. On the contrary, behavior of

neighborhood suppression depends strongly on the type of features(see Table 6.1,

Figure 6.3, and Figure 6.4). The suppression is much more effective with features

which encode rich information (LBP) and it provides only mediocre benefit for simple

features, such as Haar-like features. A reasonable explanation is that the simple

features provide information specific to the original detection task they were selected

for and not much else. The richer features, on the other hand, encode much more

information beyond that for which they were selected.

The experiments in this thesis measured speed as a number of features computed

per image window. Such measure ignores computational overhead of neighborhood

83
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suppression and EnMS. The overhead would lower speed improvements in real

applications. However, the proposed algorithms are simple, and it is reasonable to

expect they would be computationally efficient on existing platforms and the induced

overhead would be small. Computational overhead of EnMS could be reduced to

almost zero by making the suppression decisions only for small number of stages (as

is done by Dollár et al. [20]). Efficient implementation of neighborhood suppression

is discussed in Section 6.2.

8.1 Neighborhood suppression.

Although neighborhood suppression aims to improve speed of an existing detector by

sacrificing precision in a controlled way, it, in fact, provides better speed-precision

trade-off as does EnMS (as shown in Figure 6.5). Combination of neighborhood

suppression with a slow and more precise detector achieves on average better detection

accuracy compared to WaldBoost detector with the same speed.

A downside of the neighborhood suppression as described in this thesis is that it

does not provide a mechanism how to create a detector from scratch with specific error

or speed. The two stage process which improves existing detectors has its benefits,

but the only way an optimal neighborhood suppression detector with a specific error

rate can be created this way is to try to learn multiple neighborhood suppressions

for multiple detectors and select the best combination. Such approach would be

tedious and time-consuming. In order to be able to create optimal detectors with

specific error, the neighborhood suppression should be integrated with the detector

learning algorithm. While such integration is certainly possible, it may require

significant changes of existing learning tools to be able to work with dependencies

between training image windows. Alternatively, neighborhood suppression could

update rejection thresholds of the original detector while learning the suppression

classifiers. Such approach would be similar to the combination of a soft cascade

and excitatory cascade of Dollár et al. [20] and may provide good compromise with

respect to complexity of training.

Although the neighborhood suppression effectively utilizes information shared in

neighborhoods, it is not optimal. The evidence gathered at neighboring locations is

only used to potentially reject image windows. Such behavior is similar to multi-stage

detectors, such as the rejection cascade of Viola and Jones [137], which discard

evidence between its stages. As shown by Sochman [122] and others [152, 7], it is

possible to connect stages of such detectors. Similarly, it should be possible to use

the evidence extracted from neighboring locations as a starting point for decision

at current image location. However, the interconnection of neighboring detectors

presents specific challenges as the amount of evidence gathered in the neighborhood

depends on the image content and on possible local interactions in such detection
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process.

8.2 Early non-Maxima Suppression

The task that EnMS solves is the same as the one addressed by efficient subwindow

search by Lampert et al. [77] and by the inhibitory cascades of Dollár et al. [20].

It is also similar to the taks of recursive coarse-to-fine localization by Pedersoli et

al. [106]. The problem which these methods solve is to find an image window with

the highest response of a detector in a set of windows.

Unlike EnMS, the efficient subwindow search is guaranteed to always find the

optimal window, but it can only be applied to simple detectors for which an efficient

upper bound on detector response exists. Although EnMS is, in a way, constrained

with respect to what classifiers it can be applied to as well, it can support classifiers

of arbitrary complexity and strength.

The recursive coarse-to-fine localization is an ad-hoc process which, unlike EnMS,

does not provide any indications of what is the error caused by the coarse-to-fine

structure of the detector. In fact, EnMS could be applied to a multi-stage coarse-

to-fine detector which would result in a detector with similar behavior, but with

controlled error and optimal computational complexity for the target error and

detector structure.

The closest competitors of EnMS are the inhibitory cascades of Dollár et al. [20]

which let positions with strong tentative detector responses suppress other positions

in a local neighborhood in almost exactly the same way as EnMS. Both methods

enhance existing detectors, have similar requirements on the detectors, and require

only unlabeled images as training data. Inhibitory cascades and EnMS differ in two

aspects: (1) exact functional form of suppression conditions, (2) method for choosing

suppression thresholds. As the following text argues, the choices made by Dollár et

al. in inhibitory cascades are not optimal in contrast to EnMS. Considering that

both methods have the same computational overhed, EnMS should be considered

superior.

Unlike EnMS, inhibitory cascades base their decisions on the ratio of tentative

results – a window x with competing neighbors X gets suppressed if

Ht(x)

Ht(xmax)
< θt, (8.1)

where xmax = arg maxx∈X Ht(x). Although this condition makes certain intuitive

sense at the first sight, it becomes less reasonable when the underlying meaning of

Ht(x) is considered.

The value of Ht(x) can be directly linked to a logarithm of a-posterior probability
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ratio of the two corresponding classes [35]:

lim
T→∞

HT (x) =
1

2
log

p(y = +1|x)

p(y = −1|x)
. (8.2)

The limit can be further rewritten using Bayes formula [124] to:

lim
T→∞

HT (x) = −1

2
logRT (x) +

1

2
log

P (+1)

P (−1)

= −1

2
log

p(x|y = −1)

p(x|y = +1)
+

1

2
log

P (+1)

P (−1)

(8.3)

Even though the limit is defined for infinitely long detectors, it can be safely used

for certain reasoning about shorter detectors as well.

The limit can be substituted into the condition used by inhibitory cascades

(Equation 8.1), resulting in:

p(xmax|y=−1)
p(xmax|y=+1)

√
p(x|y = −1)

p(x|y = +1)
> eθt . (8.4)

Seeing the condition in this form makes it clear that it does not have any clear or

meaningful interpretation.

On the other hand, the condition used by EnMS (Equation 7.8), which can be

rewritten as

Ht(x)−Ht(xmax) < λt, (8.5)

can be similarly expressed by substituting the limit from Equation 8.3 as

log
p(x|y = +1)

p(x|y = −1)
− log

p(xmax|y = +1)

p(xmax|y = −1)
<

1

2
λt. (8.6)

As the log-likelihood ratios can be understood as confidence levels, the EnMS condition

can be interpreted as: Reject x if it is at least by 1
2λt less likely to contain an object

than xmax. The condition does not depend on the classifier’s confidence for the two

individual windows, only on the difference of confidence. This is a necessary property

for the condition to work the same way in regions which certainly contain an object

as well as in regions which are ambiguous.

The second difference between EnMS and inhibitory cascades is that Dollár at al.

set the thresholds such that the decisions in all stages induce the same constant error.

Such approach does not take into account that the errors are traded off by different

speed-up in the different stages. Generally, the computational savings by rejections

in early stages are much greater per window compared to rejections in late stages as

larger part of the classifier remains to be computed. EnMS takes these differences

into account and produces optimal time-to-decision detector for the target error.

The benefits of EnMS, and any other similar strategy, depend on the number of
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competing image windows (see Figure 7.6). The larger the set is, the higher speed-ups

can be achieved. This is not a problem in face localization or tracking by detection,

but it may limit the benefits in purely detection tasks. The sizes of non-maxima

suppression neighborhoods in practical object detection applications are similar to the

face localization on images 70-by-70 (considering maximum object overlap of 50%).

While EnMS still outperforms WaldBoost detectors on such neighborhoods, it should

be extended to include fixed rejection thresholds in order to guaranteed to outperform

basic sliding-window detectors regardless the neighborhood size. Such extension

would be similar to the combination of a soft cascade and an inhibitory cascade in

[20].

EnMS as presented in this thesis is learned to find the optimal image window

in local neighborhood with certain probability. This requirement fits the standard

non-maxima suppression approaches. In some applications, the requirement could

be extended to find n-best image windows with certain probability. EnMS could by

adapted for such tasks by changing definition of training sets.

8.3 Comparison of EnMS and neighborhood suppres-

sion

Although both EnMS and neighborhood suppression were demonstrated on simple

boosted (or WaldBoost) detectors, the approaches can be directly applied to other

detectors with similar structure which are composed of stages. These include all

detectors with attentional structure [110, 137, 90, 136, 152, 59, 95, 37, 122, 7, 124, 12].

Monolithic detectors [18] would have to be split into meaningful parts first.

Neighborhood suppression and EnMS are, in a certain sense, complementary and

most powerful in different situations. Neighborhood suppression does not assume

anything beyond what is required for existing scanning-window detectors, it behaves as

a standard scanning-window detector and it can process image positions sequentially.

In essence, it just extends existing attentional structures by an early rejection stage

which extracts information from neighboring positions and which is very cheap as it

relies on features which would be computed anyway by the neighboring classifiers.

The fact that a detector with neighborhood suppression behaves as a standard detector

with attentional structure implies that the suppression can not help at regions which

are likely to contain objects of interest. Although the suppression stage can rely on

richer information in ambiguous regions, as the original detector tends to compute

more features there, it is unreasonable to expect that the neighborhood suppression

would be able to reject windows which the original detector itself is unable to reject.

A reasonable conclusion is that neighborhood suppression may have lower effect in

images which contain many objects of interest.

EnMS, on the other hand, diverges from the standard scanning window procedure
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and assumes that only the locally maximal position are of interest. It is inherently

parallel and requires all image positions to be evaluated concurrently. EnMS should

remain effective even in regions which are likely to contain an object of interest as

it adapts to the image content. The only requirement for EnMS to be effective is

that the competing regions differ in how likely they contain an object. In fact, it

is reasonable to expect that EnMS would improve a detector with fixed rejection

thresholds mostly in ambiguous regions where the fixed thresholds are not effective.

Neighborhood suppression is closely linked with object detection as it explicitly

relies on topological relations. On the other hand, EnMS can be directly applied on

any task, even outside computer vision, which uses classifiers and which is interested

in finding the highest response in a set of candidates.



CHAPTER 9

Conclusions

This thesis studied scanning-window detectors and, especially, how such detectors

can be improved by sharing local information and by interlinking decisions at

neighboring positions. This general idea resulted in two novel methods, neighborhood

suppression and Early non-Maxima Suppression, which improve existing scanning-

window detectors by utilizing the information shared between neighboring image

positions. The methods provide higher speed (up to 2× faster in experiments) at the

same detection rates or conversely better detection rates at the same speed compared

to detectors which process image windows independently.

Both methods were developed into practical algorithms which can be used in real

world applications with minimum changes to existing detection engines on various

platforms including highly parallel environments, such as FPGA and GPU. Especially,

EnMS matches the nature of highly parallel platforms well, as it requires a high

number of competing hypotheses to be computed concurrently in parallel. The novel

methods have potential to improve object detectors in a wide range of applications

from embedded devices and smart cameras to high-throughput GPU clusters in

cloud-based photo galleries and surveillance systems.

The novel algorithms are build upon Sequential Probability Ratio Test [142] and

WaldBoost [124] which optimize time-to-decision for a certain target error level. These

ideas were directly used in neighborhood suppression and extended into Conditioned

Sequential Probability Ratio Test for EnMS.

Although both neighborhood suppression and EnMS were tested on boosted

detectors with simple image features and soft-cascade attentional structure, they are

not in any way limited to these detectors. Neighborhood suppression can be directly

applied to any detector which can be decomposed into smaller predictive functions

(such as features in boosted classifiers). EnMS requires the original detector to be
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composed of stages which give progressively more confident predictions of the final

decision. Also, EnMS, being inspired by non-maxima suppression, finds only the

region with the highest response of the detector in a local group of competing regions.

Although the requirements of EnMS are stricter, it can be applied to wider range of

tasks even outside computer vision – any task which searches for the highest response

of a suitable classifier in a group of competing objects.

Experimental results show that neighborhood suppression is able to use information

from neighboring positions effectively to suppress evaluation of a detector; however,

the same information could be potentially used even more effectively as initial

evidence by the detector. Such tight integration should be further explored as it

could lead to significant speed-up without any degradation of detection quality.

EnMS as presented in this thesis becomes less effective on small neighborhoods,

such as those used by non-maxima suppression in face detection. To ensure competi-

tiveness of EnMS in such situations, it should be extended by adding WaldBoost-style

fixed rejection thresholds. Adding such thresholds does not presents any difficulties;

however, an algorithm which sets both types of thresholds in a unified way such that

the speed is optimized for specific target error rate should be developed.

Ideally, EnMS should be combined with neighborhood suppression or with a

method similar to the excitatory cascade of Dollár et al. [20]. Such combination

would benefit from the complementary strengths of the methods and it could result

in very fast detectors.

In addition to the novel algorithms, the thesis presented comprehensive experi-

ments which compared common types of features in several detection tasks. These

experimental results show that WaldBoost detectors with Local Binary Patterns give

consistently good result across a wide range of detection tasks.
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Features for Rapid Object Detection. In Proceedings of International Conference

on Computer Vision and Graphics 2008, Lecture Notes in Computer Science,

pages 1–12, 2008.

[58] C Huang, H Z Ai, Y Li, and S H Lao. High-Performance Rotation Invariant

Multiview Face Detection. PAMI, 29(4):671–686, 2007.

[59] Chang Huang, Haizhou Ai, Bo Wu, and Shihong Lao. Boosting Nested Cascade

Detector for Multi-View Face Detection. In ICPR ’04: Proceedings of the

Pattern Recognition, 17th International Conference on (ICPR’04) Volume 2,

pages 415–418, Washington, DC, USA, 2004. IEEE Computer Society.

[60] Chen Huang and Frank Vahid. Scalable object detection accelerators on

FPGAs using custom design space exploration. In 2011 IEEE 9th Symposium

on Application Specific Processors (SASP), pages 115–121. IEEE, June 2011.

[61] Oliver Jesorsky, Klaus J Kirchberg, and Robert Frischholz. Robust Face

Detection Using the Hausdorff Distance. In AVBPA ’01: Proceedings of the

Third International Conference on Audio- and Video-Based Biometric Person

Authentication, pages 90–95, London, UK, 2001. Springer-Verlag.

[62] Haipeng Jia, Yunquan Zhang, Weiyan Wang, and Jianliang Xu. Accelerating

Viola-Jones Facce Detection Algorithm on GPUs. In 2012 IEEE 14th Inter-

national Conference on High Performance Computing and Communication &

2012 IEEE 9th International Conference on Embedded Software and Systems,

pages 396–403. IEEE, June 2012.

[63] Hui-Xing Jia and Yu-Jin Zhang. Fast Human Detection by Boosting Histograms

of Oriented Gradients. In Fourth International Conference on Image and

Graphics (ICIG 2007), pages 683–688. IEEE, August 2007.

[64] Hongliang Jin, Qingshan Liu, Hanqing Lu, and Xiaofeng Tong. Face Detection

Using Improved LBP under Bayesian Framework. In Third International

Conference on Image and Graphics (ICIG’04), pages 306–309. IEEE, December

2004.



Bibliography 97

[65] Michael Jones and Paul Viola. Fast multi-view face Detection. Technical report,

Mitsubishi Electric Research Laboratories, 2003.
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