
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE
ÚSTAV AUTOMATIZACE A INFORMATIKY

COLLISION DETECTION IN 3D SPACE
DETEKCE KOLIZE OBJEKTŮ V 3D PROSTORU

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Jan Grulich

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. et Ing. Stanislav Lang

BRNO 2016

Abstrakt

Práce se zabývá detekćı koliźı v 3D simulačńım prostoru. V prvńı části jsou popsány

nejpouž́ıvaněǰśı algoritmy pro detekci, stejně jako některé knihovny hotových řešeńı. Druhá

část práce obsahuje popis testovaćıho softwaru vytvořeného na základě knihovny OpenGL,

včetně popisu d̊uležitých část́ı. V posledńı části práce jsou také prezentovány výsledky

testováńı a porovnáńı vybraných algoritmů na vytvořených testovaćıch úlohách.

Summary

The thesis deals with collision detection in 3D simulation space. In the first part,

the most used algorithms for detection are presented as well as some complete solution

libraries. The second part contains the description of the testing software, which is based

on OpenGL library, including the description of important segments. The final section

presents some testing problems on which the chosen algorithms were tested, results and

method comparison.

Kĺıčová slova

detekce koliźı, Gilbert-Keerthi-Johnson algoritmus, nejmenš́ı konvexńı obálka, OpenGL,

děleńı prostoru, obalová tělesa, hierarchie obalových těles

Keywords

collision detection, Gilbert-Keerthi-Johnson algorithm, convex hull, OpenGL, spatial

partitioning, bounding volumes, bounding volume hierarchies

GRULICH, J. Detekce kolize objekt̊u v 3D prostoru. Brno: Vysoké učeńı technické v Brně,

Fakulta strojńıho inženýrstv́ı, 2016. 68 s. Vedoućı Ing. et Ing. Stanislav Lang.

Prohlašuji, že jsem diplomovou práci Detekce koliźı v 3D prostoru vypracoval samostatně

pod vedeńım Ing. et Ing. Stanislava Langa s použit́ım materiál̊u uvedených v seznamu

literatury

Bc. Jan Grulich

Děkuji vedoućımu diplomové práce Ing. Stanislavu Langovi a odbornému konzul-

tantovi Ing. Václavu Velebovi za odbornou pomoc a cenné rady při psańı této práce.

Dále děkuji spolužák̊um za dobrou atmosféru a vzájemnou pomoc při cestě studiem a

v neposledńı řadě také mé př́ıtelkyni a rodině za podporu a trpělivost.

Bc. Jan Grulich

CONTENTS

Contents

1 The Introduction 11

2 Theoretical Background 13

2.1 Convex objects . 13

2.2 Minkowski sum and difference . 13

2.3 Voronoi regions . 15

2.4 Barycentric coordinates . 16

3 Basic collision detection methods 17

3.1 Bounding Volumes . 17

3.1.1 Spheres . 18

3.1.2 Axis-aligned Bounding Boxes . 20

3.1.3 Oriented Bounding Boxes . 22

3.2 Bounding Volume Hierarchies . 24

3.2.1 AABB trees . 27

3.3 Spatial Partitioning . 28

3.3.1 Grids . 28

3.3.2 Trees . 30

4 Convex hull-based methods 33

4.1 Convex hull algorithm . 33

4.2 Separating axis theorem . 35

4.3 Gilbert-Johnson-Keerthi . 36

4.4 Chung Wang . 39

5 Existiong solutions and libraries 41

5.1 V-HACD . 41

5.2 Bullet . 42

5.3 CGAL . 44

5.4 Other libraries . 45

6 Implementation 47

6.1 C++ . 47

6.2 STL format . 48

6.3 OpenGL . 49

6.3.1 Architecture . 49

6.3.2 Shaders . 50

6.3.3 Transformations . 52

6.4 Program architecture . 53

6.5 Main loop . 53

9

CONTENTS

7 Methods comparison 55

7.1 Collision detection phases . 55

7.2 Simple bounding volumes benchmarks . 56

7.3 Static AABB trees . 58

7.4 Convex Hull and Convex decomposition 59

7.5 GJK benchmark . 61

7.6 Robotic arm practical example . 62

8 Conclusion 65

10

1. THE INTRODUCTION

1. The Introduction
The movement of the robot can be risky operation. As far as the robot can’t distinguish

the neighborhood, there will always be some danger of damaging it due to collisions. The

lowering of the danger can be achieved by simulating the movement by some software,

where the the risk of destroying the device is eliminated. The human eye can easily

distinguish a possible collision, because the object is represented as a whole, but the

computers see objects only as sets of numerical data. The aim of this thesis is presenting

popular methods and algorithms for detecting collisions in 3D space, which can be used

as the detection tool in a simulation software, and also the OpenGL-based simulation

program implemented as visualizer of performed tests.

The overview is divided into three parts. Chapter 3 presents basic algorithms based on

simple geometry and tree structures. Those algorithms are often older than the following

ones. The algorithms running on convex hulls are great compromise between accuracy and

cost of the algorithm and they are presented in chapter 4. There are also some complete

solutions, which can be obtained as libraries or executable application. In chapter 5 those

libraries are presented as well as terms of their usage.

Chapter 6 describes implemented application and the comparison of the chosen algo-

rithms is presented in the last chapter. The direct comparison is difficult, because different

algorithms are designed for different purposes. Due to this limitation, only groups of al-

gorithms are tested if they fulfill given theoretical assumptions.

11

2. THEORETICAL BACKGROUND

2. Theoretical Background
In this chapter, an important mathematical theory, which is used in this thesis, will

be introduced. The thesis is based mainly on 3-dimensional Geometry discipline and the

main goal is to explain some nontrivial mathematical constructions, not giving a complete

overview of disciplines. More details can be found in referenced literature.

2.1. Convex objects

The first, and maybe the most important feature of the object is its convexity. A set S is

convex if and only if every pair (x, y) ∈ S has its connecting line segment contained in S

(fig. 2.1).

Figure 2.1: Convex and non-convex object

This definition is simple and easy to understand, but insufficient. Let S be sphere

in 3-dimensional space. With this definition it is non-convex shape, so a redefinition

is needed for case of two-dimensional surfaces in 3D. These surfaces are convex if the

volumes they define are convex sets. With this definition, the sphere is convex object.

The example of non-convex object can be torus.

2.2. Minkowski sum and difference

In this section two important operations will be described, Minkowski sum and Minkowski

difference. These operations are similar to numerical sum and difference, but operands

are sets instead of numbers. Let S and T be two point sets in Rn and let s and t be the

relevant position vectors to sets S and T . Minkowski sum is also a set marked by S⊕ T

and defined as follows:

S⊕ T = {s + t : s ∈ S, t ∈ T},

where s + t is the vector sum of vectors s and t. The Minkowski sum is illustrated in

figure 2.2

13

2.2. MINKOWSKI SUM AND DIFFERENCE

Figure 2.2: Minkowski sum of two objects

The Minkowski difference definition is similar to sum. The difference S	 T of sets S

and T is defined as follows:

S	 T = {s− t : s ∈ S, t ∈ T}.

The Minkowski difference example is in figure 2.3.

Figure 2.3: Minkowski difference of two objects

Relationship between Minkowski sum and difference can be expressed as S 	 T =

S ⊕ (−T), so both operations are marked as Minkowski sum. The Minkowski difference

can be used for collision detection, when we need to know if two point sets have at least

one point in common. Two point sets S,T collide if and only if Minkowski difference

U = S	 T contains the origin. Above that we can find in U more details. The minimal

distance between S and T is equal to minimal distance between U and the origin and this

feature is used in Gilbert-Johnson-Keerthi algorithm. This fact can be easily proved:

dist(S, T) = min{‖s− t‖ : s ∈ S, t ∈ S} = min{‖u‖ : u ∈ S 	 T}.

14

2. THEORETICAL BACKGROUND

2.3. Voronoi regions

A very important construction used in collision detection tests is Voronoi region. Let S

be set of points in Rn. Voronoi region V ⊆ Rn of P ∈ S is a set of points closer to point

P than to other points in S. For collision detection this theory has to be extended a

little. Modern systems are working with 3D models, which are defined by huge amount of

triangles, so regions defined only on points aren’t sufficient. Let T be d-simplex defined

by n+1 points A1, A2, ..., An+1 in n-D space and let P be point in same space. Voronoi

regions for A1, A2, ..., An+1 can be found, in this case they would be infinite and would

cover whole Rn, so P would be in one region. Scatter Voronoi region is not sufficient,

because minimal distance between T and P doesn’t have to be equal to minimal distance

between P and points A1, A2, ..., An+1. This is the reason why features of polyhedron are

defined. Let a feature of T be one of object’s faces, edges of vertices. Voronoi region of a

feature F is a set of points closer to feature F than to other features of T . The boundary

planes of regions are called Voronoi planes. Voronoi regions of triangle’s features are

presented in figure 2.4 and regions of cube in figure 2.5.

Figure 2.4: Seven Voronoi regions of triangle: the face region(T), three edge

regions(E1, E2, E3) and three vertex regions(V1, V2, V3).

Figure 2.5: Voronoi regions of the cube: edge, face, vertex

15

2.4. BARYCENTRIC COORDINATES

2.4. Barycentric coordinates

To complete chapter it is also necessary to mention barycentric coordinates. These coor-

dinates represent the way to parametrize the space by weighted combinations of known

points. Let R, S be points forming the line segment and let u be vector S−R. Every point

P on the segment can be expressed as R+ tu = R+ t(S−R) = S(1− t) +Rt = Su+Rv,

where u+ v = 1, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1. The example is on figure 2.6.

Figure 2.6: Barycentric coordinates of four points on line RS.

16

3. BASIC COLLISION DETECTION METHODS

3. Basic collision detection methods
The most basic method for collision detection may be direct testing of two objects

against each other. In practice that means testing each polygon of first object to each

polygon of the second object. This approach seems to be very expensive as far as each

object consists of thousands of polygons. Above that typical scene consists of many ob-

jects, so complexity can raise even in factorial way. Due to this limitation many advanced

algorithms were developed to reduce complexity and computational time.

3.1. Bounding Volumes

To make tests faster, each object can be bounded by an approximate object, which

is called bounding volume. A Bounding Volume is a simple object, such as sphere or

box, which is easy to describe and its collision detection tests is cheap. Such objects can

contain one or more complex objects, depending on application.

As long as we work with these approximated objects, collisions tests can be inaccurate.

They can detect collisions in situations where objects don’t collide but are very close to

each other. Thus, for every special application, the compromise between accuracy and

cost of the algorithm has to be found.

Every geometric object, which is used as the bounding volume, should satisfy following

properties [7].

• Inexpensive intersection tests

• Tight fitting

• Inexpensive to compute

• Easy to rotate and transform

• Use little memory

Naturally, not all these properties can be well satisfied by one type of bounding objects,

so it is necessary to determine the most suitable one to the application.

Figure 3.1: Bounding volume types [7]

17

3.1. BOUNDING VOLUMES

Figure 3.1 illustrates objects mainly used in intersection tests, which are ordered with

respect to their properties. In the next section these types will be briefly described, except

for the Convex Hull, which is described in chapter 4.

3.1.1. Spheres

The sphere is the simplest commonly used bounding volume. It uses little memory and

its intersection tests are very cheap, but inaccurate. It is necessary to hold only center

position and radius in memory. Important feature is also its rotational invariance, which

makes bounding volume independent of rotation and new position is reached only by

translation.

Intersection test between two spheres is simple. Let A,B be spherical bounding volumes

given by its centers c and radii r. Then the collision detection test testSphere(A,B) is

defined as follows:

Algorithm 1 Sphere-Sphere intersection test

Precondition: A and B are spheres defined by its centers c and radii r

1: function testSphere(A,B)

2: dist ← A.c−B.c
3: sqrDist ← dot(dist, dist)

4: radii ← A.r +B.r

5: sqrRadii ← sqr(radii)

6: if sqrDist ≤ sqrRadii then

7: return True

8: end if

9: return False

10: end function

Figure 3.2: Sphere-sphere collision test

18

3. BASIC COLLISION DETECTION METHODS

The biggest problem of spherical bounding volumes is its fitting. Finding the min-

imal sphere for given point set by brute-force algorithms means to examine all different

combinations of four points and check if all other points fit into the sphere. This al-

gorithm has complexity O(n5) which is inapplicable in practice. That’s the reason why

Welzl’s iterative algorithm was developed. It processes point by point and recomputes

the minimal sphere when necessary. The following pseudocode describes the algorithm,

more details can be found in [3].

Algorithm 2 Minimal sphere recursive computation

Precondition: points, support

1: function minimalSphere(points, support)

2: if size of points = 0 then

3: return sphere based on support points

4: end if

5: i ← random index from points

6: actualMinimalSphere ← minimalSphere(points, support)

7: if actualMinimalSphere contains points[index] then

8: return actualMinimalSphere

9: end if

10: append points[index] to support

11: Erase points[index]

12: return minimalSphere(points, support)

13: end function

Figure 3.3: One iteration of 2D Welzl’s algorithm. Point P is added to circle ki, which

makes circle ki+1

Summary

Asymptotic complexity

creating O(n)

updating O(1)

test O(1)

Memory requirements
center 3 * size of used data type

radius 1 * size of used data type

19

3.1. BOUNDING VOLUMES

3.1.2. Axis-aligned Bounding Boxes

The Axis-aligned bounding box (AABB) is also a type of bounding volume, which has

cheap intersection test and uses little memory. It is six-sided box (in 3D) and each

side facet’s normal is oriented parallely with coordinate system’s axes. The AABB is

represented with its center and vector of halfwidths in all directions.

Let S be set of points in 3-dimensional space. The minimal bounding AABB is com-

puted as follows:

Algorithm 3 AABB computing

Precondition: S is set of 3D points

1: function ComputeAABB(S)

2: Find minimal and maximal value on all axes

3: center ← new 3D point, value in each axis is equal to min+ (max−min)/2

4: hw ← new 3D point, value in each axis is equal to (max−min)/2

5: aabb ← new AABB structure with properties center, hw

6: return aabb

7: end function

The procedure has complexity O(n), due to searching for extreme values on the

axes, but building the AABB can be launched in preprocessing, meaning such complexity

is acceptable. During movement of the object, the AABB has to be recomputed. There

are two basic approaches:

• Creating tight AABB from scratch

• Creating approximate AABB from transformed AABB

A

Bt

φ

Figure 3.4: The box A is translated by vector t and rotated by angle φ. Then, approximate

box B is computed from transformed A

First option is building the AABB using previous algorithm with new vertex coor-

dinates. More common approach is building coarse AABB, which creates approximate

20

3. BASIC COLLISION DETECTION METHODS

box instead of tight one. Such simplification make the intersection test less accurate, but

faster. The procedure, which creates approximate AABB, is defined in following algorithm

and its geometry interpretation in figure 3.4.

Algorithm 4 AABB updating

Precondition: aabb is AABB defined by its center and halfwidths hw, T is translation

vector, R is rotation 3x3 matrix

1: function UpdateAABB(aabb, T,M)

2: B ← new AABB defined by center and hw

3: i ← 0

4: while i < 3 do

5: B.center[i] ← T [i]

6: B.hw[i] ← 0

7: j ← 0

8: while j < 3 do

9: B.center[i] ← B.center[i] +R[i][j] ∗ aabb.center[j]
10: B.hw[i] ← B.hw[i] +R[i][j] ∗ aabb.hw[j]

11: j ← j + 1

12: end while

13: i ← i+ 1

14: end while

15: return B

16: end function

The algorithm runs in constant time O(1), and is the most suitable for real-time

applications. The intersection test between two AABBs is simple and fast. In each axis,

the distance between centers and the sum of halfwidths is compared, and if objects doesn’t

intersect in one axis, they cannot collide.

Algorithm 5 AABB intersection test

Precondition: A,B are AABBs defined by center and hw

1: function TestAABB(A,B)

2: i ← 0

3: while i < 3 do

4: if abs(A.center[i]−B.center[i]) > (A.hw[i] +B.hw[i]) then

5: return False

6: end if

7: i ← i+ 1

8: end while

9: return True

10: end function

21

3.1. BOUNDING VOLUMES

Summary

Asymptotic complexity

creating O(n)

updating
O(1) - approximate

O(n) - accurate

test O(1)

Memory requirements
center 3 * size of used data type

halfwidths 3 * size of used data type

3.1.3. Oriented Bounding Boxes

The Oriented bounding box is also a six-sided box, but there are no restrictions to its

faces. The box is represented similarly as AABB. The structure contains its center and

halfwidths in each axis. Because the OBB can be oriented arbitrary, it’s also necessary

to add three vectors, which describe the local axes.

Let S be set of points. As far as there is countless amount of OBBs, which overlap

the S, some tool for finding the best suitable one is needed. Choosing OBB randomly can

lead to great inaccuracies, as shown in figure 3.5.

Figure 3.5: Difference between well and badly chosen OBB

Computing tight-fitting OBB is harder then it seems. Exact algorithm was presented

by Joseph O’Rourke in 1985, but his algorithm has asymptotical complexity O(n3). This

property makes the algorithm too complex, slow and basically inapplicable. Simpler

algorithms provide approximate solution of finding best-fitting OBB.

Let S be set of points in 3-dimensional space. First part of the algorithm is com-

puting AABB for those points. There are three pairs of points lying on opposite sites of

the box, those farthest apart are selected and vector v between them determines one axis

and dimension of OBB. All other points are projected onto plane perpendicular to vector

v. Then whole procedure repeats, but with lower dimension. On the plane 2-dimensional

AABB is created and again pair of points with the same properties are selected. The sec-

ond axis and dimension of the OBB is determined by this pair of projected points. Third

axis can be computed as cross product of already known axes. Final step is projecting all

22

3. BASIC COLLISION DETECTION METHODS

points into third axis and a pair of farthest points determines third dimension.

The figure 3.6 displays 2D version of the algorithm.

P1

P2

P3

P4
y

x

Figure 3.6: Approximate OBB computation (orange)

Instead of cheap intersection tests mentioned before, testing oriented bounding boxes

is much more difficult and expensive. The test for OBBs intersection uses separating axis

theorem, which is described in section 4.2. Basic principle is, if distance between OBB’s

centers is less then sum of their radii, with respect to some axis, then the boxes collide

(figure 3.7).

D

jD ∗ Aj

A

r2r1

Figure 3.7: OBB itersection test

The inequality describing the problem is

|D ∗ A| > r1 + r2,

where D is vector between centers, A is actual axis and r1, r2 are radii of tested OBBs.

Determining which axes have to be tested is the last step to completing collision test.

There are 15 axes, which need to be checked [6], which means solving 15 inequalities.

Table in [6] contains values, which needs to be substituted into general inequality. If

simple inequality is met, test is terminated and reports objects as non-intersecting. The

23

3.2. BOUNDING VOLUME HIERARCHIES

simplification may be performing only the first six tests (in order given by table in [6]),

while other nine tests determine only 15% of non-intersecting cases.

Summary

Asymptotic complexity

creating O(n3) - accurate

O(n) - approximate

updating O(1)

test O(1)

Memory requirements
center-halfwidths-

local axes representation
15 * size of used data type

3.2. Bounding Volume Hierarchies

Tests on bounding volumes are much simpler than on original meshes and performance

is improved drastically. Problem is that all pairwise tests are performed at the same time,

regardless of position of tested objects. To overcome this problem, Bounding volume

hierarchies (BVH) are used. This technique divides the space into smaller parts and

separates objects, which have no chance to be intersecting. The example of objects,

which are creating hierarchy, is in figure 3.8. Each box overlaps two smaller boxes and

whole hierarchy can be illustrated as a tree. The corresponding tree is shown on the right.

A

B

C

D

E

F

D

A B

C

E F

Figure 3.8: BVH of six objects

There are some defined properties[14], which BVH should satisfy.

• Tight bounding volumes

• Simple shapes

• Minimal overlap between sibling nodes

• Tree structure

24

3. BASIC COLLISION DETECTION METHODS

• Balanced hierarchy (the example is in figure)

Some of these properties don’t have to be fulfilled exactly, but they should be a

main guide to completing the hierarchy. The optimal tree is built with respect to some

strategy. These strategies are top-down, bottom-up and insertion. Most popular is the

first strategy, top-down. It’s recursive procedure and in each iteration it splits input set of

primitives into two subsets, until stopping criterion is met. These criteria can be number

of objects in tree’s nodes, the volume of the bounding volume or depth of the tree. The

number of objects in single node is mostly one, but can be chosen arbitrary. It also

depends on application and complexity of the objects, because while the BVH is applied

on an object with thousands of primitives and the number of objects in tree’s leaves is

set to one, the depth of that tree will raise rapidly.

Algorithm 6 Top-down construction

Precondition: objects is set of objects or primitives, node is defined by its bounding

volume bv, array of objects obj and left/right descendant ldes, rdes

1: function TopDown(node, objects)

2: node.bv ← bounding volume of objects

3: if size of objects < maximal count of objects per leaf then

4: node.objects ← objects

5: else

6: Split objects into two parts part1, part2

7: TopDown(node.ldes, part1)

8: TopDown(node.rdes, part2)

9: end if

10: end function

When splitting, some primitives (like triangles) can be cut through by that plane.

Two solutions are presented in [7]:

• Cut the primitive into two parts and both parts will represent new primitives. It

prevents children from overlapping, but the total number of primitives can grow.

• Use primitives’s centroid to determine which bounding volume will be assigned to.

That solution doesn’t increase number of primitives, but can cause small overlap of

bounding volumes.

As mentioned, the splitting can be guided by some strategies. The basic splitting

strategies are: [8][14]

• Minimize the sum of the volumes of the children - creates children as tight as possible

• Minimize the largest child - creates children of equal size

• Minimize the intersection area of children

25

3.2. BOUNDING VOLUME HIERARCHIES

• Maximize the separation - decreases cost of intersection test

• Combinations

While trees are built, the collision detection tests can be launched on tree pairs. To

do so, it is necessary to have some rules for descending through the tree, from the top to

the bottom. There are two basic approaches:

• uninformed methods

• informed methods

The uninformed methods use only hierarchy structure to determine next node. It

includes breath-first (BFS) and depth-first searches (DFS). The BFS process nodes grad-

ually, according to their depth from zero to maximal tree depth. All nodes of each depth

are processed before continuing deeper into the tree. Opposite approach is DFS, which

processes node’s descendants before other nodes of the same depth. Both searches are

illustrated in figure 3.9.

Figure 3.9: Breath-first search (left) and depth-first search(right)

Informed methods are more advanced. They examine node data to determine the

next node, while the most popular is best-first search. It holds a queue of nodes and

expands only the best current node (according to given criterion). The expanded children

are added to the queue and the process repeats until stopping criteria are met. Such

search is illustrated in figure 3.10.

3 5 1 8

2 7 4 6

Figure 3.10: Best-first search

26

3. BASIC COLLISION DETECTION METHODS

Last issue is determining a way, by which the tested hierarchies will be tested. That

means finding a rule determining which hierarchy should descend during test. Let A,B

be BVHs. Possible descent rules are[7]:

• Descend A before B (or vice versa) - descent fully into the leaves of the first hierarchy

before descending into the second one. This option is not recommended, while

hierarchy’s root is fully inside other root.

• Descend hierarchies according to its volumes - removes problems of first rule, larger

hierarchy is descended

• Descend both hierarchies simultaneously - doesn’t need any computations like pre-

vious rule, but isn’t so efficient.

• Combinations

Previous rules can be used for building large variety of intersection tests. There

isn’t any best way for designing the test, suitability fully depends on the object shape,

complexity and mutual position as wall as type and quality of bounding volume hierarchy.

Following algorithm describes depth-first search algorithm with ”descend A before B rule”:

Algorithm 7 BVH collision test

Precondition: a, b are BVHs with two descendants ldesc, rdesc

1: function BVHIntersectionTest(a, b)

2: if no overlap between a, b then

3: return False

4: end if

5: if a and b are leaves then

6: return result of some collision test on primitives

7: else

8: if a is not leaf then

9: BVHIntersectionTest(a.ldesc, b)

10: BVHIntersectionTest(a.rdesc, b)

11: else

12: BVHIntersectionTest(a, b.ldesc)

13: BVHIntersectionTest(a, b.rdesc)

14: end if

15: end if

16: end function

3.2.1. AABB trees

The most common and popular BVH type is a binary AABB tree and figure 3.8 shown

exactly this one. For collision detection, two possible concepts exist. A static AABB

27

3.3. SPATIAL PARTITIONING

tree is computed only once and during the process the tree isn’t changing. This concept

is implemented in library CGAL (section 5.3). the process of building a tree is the

same, as described before. More interesting is dynamic AABB tree, which can be used

with moving objects. The most important precondition is balancing the tree as much

as possible. Unbalanced trees can lead to decreasing the performance of computations

performed on the tree. The most expensive operation is updating the tree. As far as all

objects in the scene move, the tree can be either built from scratch or updated by special

algorithm. Building the tree from scratch is rather naive and expensive way to obtain

updated tree.

The same result can be acquired by fat AABB approach. Each object is bounded by

AABB, which is bigger than tight-fitting one. The size is often defined to make object

able to rotate in all direction within the AABB and not smaller than 105% of original size.

In each step, the tight-fitting AABB is checked, if it is still contained in the fat AABB.

If not, the object is removed from the tree and inserted again, represented by updated

AABB.

3.3. Spatial Partitioning

As said before, pairwise testing of polyhedra is expensive. The solution of this prob-

lem, apart from BVH, can be restricting those tests to object, which are close enough.

That is the idea, which was vital for developing Spatial Partitioning. The main idea is

dividing space into smaller regions, meaning two objects can intersect if and only if they

overlap the same region.

3.3.1. Grids

Basic and the most natural option is dividing space with a grid with constant cell

size. Each object in the space is associated with all cells it overlaps and collision between

objects A,B is possible if and only if they are associated with the same cell. Using uni-

formly sized grid is advantageous for two reasons. It is easy to find each cell position just

with indices and also finding neighbouring cells is trivial. The only problem is determin-

ing the cell size, which is the most suitable for each problem. [7] describes four problems,

which are connected with this problem, all of them are in figure 3.11.

Figure 3.11: Problematic cell sizes.

28

3. BASIC COLLISION DETECTION METHODS

• The first picture describes fine grid. This situation results in large number of cells

associated with such large objects. Expensive recomputing of the cells when object

moves and too many intersection tests have to be performed.

• The opposite problem is coarse grid. As can be seen in the second picture, too many

objects are associated with each cell. It results in large amount of pairwise tests

and benefit of spatial partitioning is minimal.

• Another case of problematic grid is in the third picture. The size is well chosen,

but the object is too complex. There should be used some simplistic method like

dividing the object (and then smaller cells) or bounding the object (with reduction

of accuracy).

• The last issue is combination of the first and second ones. This can be solved by

Hierarchical grids

Cells should be large enough to cover the largest objects in any rotation. There

exists n
1
3 rule[7]. The space is divided into k × k × k cells, where k = n

1
3 and n is the

number of objects.

When the suitable cell size is set, the object can overlap only neighboring cells. Let’s

assume all objects are associated with only one cell, which contains object’s AABB’s min-

imal corner. The approach through AABBs helps to design cheap intersection algorithm.

The given algorithm is for 2-dimensional case, but can be easily extended to 3D. Whole

situation can be seen in figure 3.12. In the worst case, the number of tested cells is only

four (eight in 3D), but ideally it can stop after one test for each object.

Algorithm 8 Intersection test of two objects represented by AABB minimal corner

1: function intersectionUniformGrid

2: test representative cell

3: if object overlaps right cell border then

4: test right cell

5: end if

6: if object overlaps lower cell border then

7: test lower cell

8: if object overlaps right cell border then

9: test lower-right cell

10: end if

11: end if

12: end function

29

3.3. SPATIAL PARTITIONING

Figure 3.12: Objects in grid represented by AABB’s minimal corners

3.3.2. Trees

Another approach is creating a space partitioning tree. Firstly the space is divided into

regions and these regions are recursively divided until the stopping criteria are met. The

section describes basic type, octree.

The octree is based on axis-aligned space partitioning. The main feature is that each

node of the tree has eight children, called octants. Two steps of dividing are in figure

3.13.

Figure 3.13: Octree

The root represents entire space and is axis-aligned cube. Children nodes are ac-

quired by dividing the cube in half in all three axes. Each node of the tree has some

attributes. Center of the octree is the point in the middle of the cube (where diagonals

meet). It can be easily computed from parent’s center, if halfwidth of the cube is known.

Octree also holds two arrays. First array contains pointers to children nodes and se-

cond contains pointers to objects, which the node overlaps. Following algorithm describes

recursive building of the octree:

30

3. BASIC COLLISION DETECTION METHODS

Algorithm 9 Octree

Precondition: center is point in center of whole space, hw represents halfwidth of this

space, depth is maximal depth of octree

1: function Octree(center, hw, depth)

2: if depth < 0 then

3: return

4: end if

5: n ← new node with properties center, hw

6: i ← 0

7: while i < 8 do

8: c ← ith children’s center

9: children of n ← Octree(c, 0.5 ∗ hw, depth− 1)

10: i ← i+ 1

11: end while

12: return n

13: end function

When the octree is built, objects can be inserted into. The insertion procedure has

to determine minimal node overlaping whole object’s bounding sphere and link object

to this node. It’s also recursive process, where two options are possible. If the object’s

bounding sphere fits into one of child nodes, whole procedure continues on this specific

node. If the object overlaps more child nodes, then is assigned to actual node. Algorithm

10 presumes object representation as bounding sphere with defined center and radius.

The octree is built by previous algorithm.

In this stage, the octree is built and objects are linked to corresponding nodes. Let’s

remind that each object is linked only with one node. Final procedure searches the octree

and tests possible collisions. While processing a node, linked objects are tested with each

other, as well with objects in descendant nodes. The iterative test uses static array of

ancestors named ancestors, which is common for all iterations.

31

3.3. SPATIAL PARTITIONING

Algorithm 10 Insert object into octree

Precondition: node is root of octree built by previous algorithm, object is defined by

its bounding sphere

1: function InsertToOctree(node, object)

2: fits ← false

3: i ← 0

4: while i < 8 do

5: if object fits into ith actual node’s child then

6: index ← i

7: fits ← true

8: Break

9: end if

10: i ← i+ 1

11: end while

12: if fits == True then

13: InsertToOctree(node’s ith child, object)

14: else

15: add object to node’s object array

16: end if

17: end function

Algorithm 11 Test all collisions inside octree

Precondition: tree is a octree build by previous algorithm, ancestors is empty static

array of (sub)octrees

1: function TestOctree(tree)

2: Add tree to ancestors

3: for i = 0 to size of ancestors do

4: for each object o1 in ancestors[i] do

5: for each object o2 in tree do

6: if o1 is equal to o2 then

7: break

8: end if

9: Perform some collision test between o1 and o2

10: end for

11: end for

12: end for

13: for i = 0 to 8 do

14: TestOctree(tree.children[i])

15: end for

16: end function

32

4. CONVEX HULL-BASED METHODS

4. Convex hull-based methods
The best-suitable objects for fast collision detection are convex objects. They have

important properties which help making fast and robust collision tests. The most impor-

tant property is that local minimum is equal to global minimum, than many well-known,

fast and easy to implement algorithms can be used, such as simple hill-climbing. The

next advantage is existence of plane, which separates two non-intersecting objects. These

properties help to design efficient algorithms to test intersection. In first section the prob-

lem of convexity is discussed and then specific convexity-based methods are described.

These methods are much more accurate then methods mentioned before, they are abso-

lutely general and exact, but precondition of convexity is strongly restrictive. The main

reason is that most objects tested by these algorithms are non-convex, so some way to

overcome this problem is needed. The solution is bounding the object with some convex

polyhedra. This solution was presented before, in chapter Bounding Volumes, but there

will be some difference. Instead of bounding to primitive object, the Convex hull will be

created. Algorithm creating the convex hull is presented in next section. Another app-

roach is dividing object into smaller pieces, which is called Convex decomposition. Some

intersection testing algorithms can be used either on convex and non-convex objects, but

in the first case they will be much faster and it is the most necessary feature when used in

real-time. The example is Gilbert-Johnson-Keerthi algorithm or Chung Wang algorithm.

4.1. Convex hull algorithm

The convex hull is defined as the smallest polyhedron, which encloses given set of points.

The points can be either on surface and in the interior. In this section algorithm, which is

implemented in attached application, is described. The algorithm not only creates convex

hull, but its outputs are also lists of neighbors for each vertex. These lists help making

intersection test faster. The algorithm 12 presents whole computing process, then all

parts will be described in detail.

The first step is building initial tetrahedron from given point set. The simplest solu-

tion is choosing four points randomly, which will work. The problem is the tetrahedron’s

volume. Randomly created tetrahedron doesn’t have to overlap enough points and itera-

tive process can be slower. To make iterative phase faster, the initial tetrahedron should

be as large as possible. The first step is finding minimal and maximal points in each axis.

The most distant pair makes one edge and point most distant to this edge completes the

triangle. The most distant point from this triangle is the last searched vertex.

When the tetrahedron is built, assignment of points is performed. The point is assigned

to face if and only if the face is visible from that point. If more faces can be seen, the

point is assigned randomly. It can be proven, that random assignments don’t effect algo-

rithm’s performance. In figure 4.1 a 2D version of this step is shown. Initial polygon is

represented by xmin, ymin, xmax. Points inside the polygon aren’t assigned, because they

33

4.1. CONVEX HULL ALGORITHM

cannot see sides from outside, so only four points are assigned to side xmin, xmax and

single point to side xmin, ymin.

Algorithm 12 Convex hull

Precondition: S is set of 3D points

1: function createConvexHull(S)

2: Build initial tetrahedron T using four points S

3: Assign each point from S to face of T , which is visible from the point

4: f ← all faces with assigned points

5: while f is not empty do

6: Find farthest assigned point eye from first face of f

7: Find horizon of T visible from eye

8: Add eye to T by connecting all vertices on the horizon with eye

9: Again assign points to faces created in previous step

10: Add faces with some assigned points to end of f

11: Remove first face of f

12: end while

13: end function

xmin

xmax

ymin

ymax

y

x

Figure 4.1: Computing maximal initial polygon

When faces with some assigned points are listed, main iterative loop begins. The

faces are processed one by one, then removed from list and newly created faces are added

to the end of the list (if have assigned points). Let F be face with set of assigned points S.

The farthest point from the face is marked as eye and will be added to actual convex poly-

hedron. In 3D finding polyhedron’s horizon isn’t simple and the implemented application

uses following observation. While looking on the polyhedron from eye, triangular faces

are visible, such as in figure 4.2. Edges lying on the horizon belong to only one triangle,

instead of others, which belong to pair of triangles. Vertices on horizon are connected with

the eye and new faces are contructed. Final step is reassigning point set, which belonged

34

4. CONVEX HULL-BASED METHODS

to processed face. The procedure is the same as assigning in the beginning. Then new

faces with some assigned points are listed to unprocessed faces set.

Figure 4.2: The horizon of polyhedron

4.2. Separating axis theorem

The Separating Axis Theorem (SAT) is a method, which determines intersecting objects.

Basically, it searches for gaps between objects. The analogy is a flashlight shining on two

shapes from different directions, so the shadow appears on the wall behind objects. If

we can find a direction, where the shadows will be separated by gap, the objects are not

intersecting. Figure 4.3 represents two different states. On the left picture the gap doesn’t

exist, but when the direction changes, the gap appears.

Figure 4.3: Flashlight analogy for SAT

Naturally, checking every angle and searching for a gap would be very expensive.

Due to nature of the polygons, only countable amount of angles have to be checked. Those

directions correspond to object faces and whole procedure consists of these steps:

35

4.3. GILBERT-JOHNSON-KEERTHI

Algorithm 13 SAT

1: function SAT intersection test(A,B)

2: s ← all facets of A

3: while s not empty do

4: t ← first facet of s

5: axis ← normal vector of t

6: Project both objects onto the axis

7: if Projections don’t intersect then

8: return False

9: end if

10: end while

11: return True

12: end function

The SAT has strong restriction on convex objects. Figure 4.4 shows a situation,

when nonintersecting objects can be marked as intersecting due to violating convexity

condition. In that case, convex hulls of objects are tested implicitly.

Figure 4.4: Convex and non-convex objects in SAT intersection test

4.3. Gilbert-Johnson-Keerthi

The Gilbert-Johnson-Keerthi (GJK) algorithm was developed for quick intersection

tests, which will return not only true/false, but also minimal distance between tested

objects. The main goal si computing their Minkowski difference and find its point of min-

imum norm P (point closest to origin). If P is origin itself, the objects are surely inter-

secting, and in other case distance between the objects is equal to ‖P‖. However, explicit

computing of Minkowski difference is expensive operation, so algorithm uses simplex-

based implicit computations. It computes only the difference points by support mapping

function. A support mapping function sA(d) computes point from object A, which is the

most extreme in direction d. Then, for Minkowski difference C = A 	 B the function is

defined as follows:

sA	B(d) = sA(d)− sB(−d)

36

4. CONVEX HULL-BASED METHODS

The algorithm uses one more finding known as Carathéodory’s theorem. It says that each

point from convex object ∈ Rn can be expressed as up to n + 1 points, so the algorithm

needs to keep only those points in the worst case (four in 3D). If the simplex contains the

origin, the objects are intersecting and algorithm stops, otherwise new simplex, containing

points closer to origin, is computed. Whole algorithm is described in following procedure

and figure 4.5.

Algorithm 14 Gilbert-Keerthi-Johnson algorithm

Precondition: A,B - convex hulls of two objects

1: function GJK(A,B)

2: Initialize the simplex set S from A	B
3: Find point P closest to origin

4: If P is equal to origin, stop the test and return TRUE

5: Remove points ∈ S, which are not necessary for expressing P

6: Compute M = sA	B(−P), where −P is vector (~0− P)

7: If P is more extremal (or equal) than M in direction −P , stop the test and return

FALSE

8: Add M to simplex set S and go to line 3

9: end function

Figure 4.5: GJK algorithm

Let initial simplex S be {A}. Point closest to origin is A, so support mapping func-

tion searches in direction −A and finds point B. B is added to simplex and procedure

continues. New point of minimal norm is C and sA	B(−C) = D. D is added to S. Point

of minimal norm on triangle ABD is E, so it is not necessary to hold point A in mem-

ory and S is reduced to {B,D}. Support mapping function discovers there is no more

extremal point in direction −E than E itself, so the algorithm returns false. Minimal

distance between objects is then equal to ‖E‖.

As said before, GJK algorithm can also be used on non-convex objects and the algo-

rithm process will be exactly the same with one exception. The support mapping function

has to find the most extreme point in given direction d. The rate of ”extremeness” can be

37

4.3. GILBERT-JOHNSON-KEERTHI

measured as a dot product (P ∗d), where P is a given point and d search direction. When

this function runs on non-convex object, all its vertices have to be tested to find the most

extreme one. Time complexity is O(n), linear, which is unsuitable for real-time opera-

tions as far as the objects consist of thousands vertices and the test has to be performed

many times per second. That’s why convexity is essential for real-time applications. If

the object is defined by vertices lying on convex hull and each vertex knows its neighbors,

whole procedure can be handled by simple hill climbing. The largest issue of hill climbing,

jamming in local minimum, is impossible due to convex hull’s properties.

Searching for extreme vertices can be improved by adding some artificial edges, as

shown in figure 4.6. Each vertex will have more neighbors to test, but convergence to

resulting vertex will be much faster. The situation in the figure 4.6 describes searching in

direction d from initial point A. Basic approach is to test all five vertices on the way to

the most extreme point. If artificial edge e is added, only three points need to be tested

and the process speeds up.

Figure 4.6: Faster hill climbing

The last issue is searching for point of minimal norm Pmin in simplex, which means

point on the simplex closest to origin. As far as the simplex can consist of up to four

points (in 3D), different test have to be performed. Let S be simplex and |S| = n, then

following cases have to be considered:

• n = 1 : trivial case, point itself has minimal norm

• n = 2 : simplex is a line segment. Pmin can be one of outer points. This point

remains in simplex set, the second one is erased. If Pmin is some point between

outer points, both outer points remain in simplex set.

• n = 3 : simplex is a triangle. There are three possible cases. If Pmin is one of the

vertices, this vertex remains in the simplex set and others are erased. If Pmin lies

on a line segment, points representing the segment remain in the simplex set. If

Pminlies inside the triangle, no point is erased.

• n = 4 : simplex is a tetrahedron. The situation is similar to previous with one

difference. If Pmin lies on the face of the tetrahedron, only points representing

this face remain is the simplex set and no point is erased if Pmin lies inside the

tetrahedron (not on surface). In that case is also Pmin equal to origin.

38

4. CONVEX HULL-BASED METHODS

4.4. Chung Wang

The Chung Wang algorithm was designed for testing pairs of polyhedra. It consists

of two subalgorithms. The first one searches for separating vector in iterations, starting

from some randomly chosen vector, called candidate vector. In each iteration the vector

is updated and tested if the non-intersecting criterion is met. The second subalgorithm

checks intersection criterion and stops the first algorithm if criterion is met.

The main algorithm computes new possible separating vector si and a point of each object,

which is the most extreme in given way. Like the GJK, this algorithm uses support

function, defined above, for obtaining those points. Then the comparison of points leads

to possible no intersection report.

Algorithm 15 Chung-Wang algorithm, main loop[7]

Precondition: A,B - convex hulls of two objects

1: function CW(A,B)

2: s0 ← random candidate vector

3: i ← 0

4: Point ai ← supportFunction(A, si)

5: Point bi ← supportFunction(B, −si)

6: if (ai ∗ si) < (bi ∗ −si) then

7: return False

8: end if

9: ri ← (ai − bi)/‖ai − bi‖
10: si+1 ← si − 2(ri ∗ si)ri
11: Go to line 4.

12: end function

39

4.4. CHUNG WANG

40

5. EXISTIONG SOLUTIONS AND LIBRARIES

5. Existiong solutions and libraries

5.1. V-HACD

Possible solution of approximate convex decomposition has been presented in [11] in

2009. It uses hierarchical segmentation approach and the dual graph. Let S be a mesh in

IR3, ψ = {v1, v2, ..., vV } its vertices and θ = {t1, t2, ..., tT} the set of its triangles, where V

is number of vertices and T number of triangles. Then the dual graph S∗ of the mesh S

is graph satisfying these two conditions:

• vertices of S∗ correspond to triangles θ of S

• edge between two vertices of S∗ exists if and only if corresponding triangles share

an edge

The main phase of the algorithm is applying half-edge collapse[11] operation. The process

is presented in figure 5.1. If applied to an edge (x, y), all incident edges to y are connected

to x and y is removed.

Figure 5.1: Half-edge collapse operation

To determine which vertices should be processed in each iteration, it is necessary to

define concavity C(S) of a mesh S. The concavity indicates how far the object is from its

ideal convex hull, which has a concavity zero. In V-HACD it is defined as follows:

C(S) = arg maxM∈S‖M − P (M)‖,

where the point M lies on convex hull of S and P (M) is its projection on convex hull

in direction of normal vector.

It is also necessary to guide the process by cost function, which takes into account

concavity and aspect ratio of pair of triangles. The pair with the lowest cost function is

processed in each iteration. For detailed mathematical description please visit [11]. The

work of the algorithm is described in figure 5.2.

41

5.2. BULLET

Figure 5.2: V-HACD output[10]

The libraries can be downloaded from [10] in 2.0 version under BSD license. Until

now the libraries have been used in different applications:

• Unreal Engine 4

• Leadwerks

• 3DEXCITE

• DBPro

5.2. Bullet

Bullet Physics is a complete solution for use in games and robotic simulations under

ZLib license which makes library free for commercial use. The library is written in open

source C++ code for use on all platforms. It contains methods for discrete and continuous

collision detection on both convex and non-convex objects, soft and rigid body dynamics.

Although the library is a complex solution, only needed parts can be used, such as collision

detection algorithms. Whole architecture of the library is presented in figure 5.3.

42

5. EXISTIONG SOLUTIONS AND LIBRARIES

Figure 5.3: Bullet Physics library architecture[2]

Bullet library can choose from large amount of collision objects to provide best per-

formance and quality. It is also possible to add own shapes that suit special purpose. In

Bullet’s manuals, the diagram is presented, which can help choosing the shape.

Figure 5.4: Shapes diagram[2]

There are many different collision tests prepared for different situations. This leads

to rapid increase of performance, while only the most suitable tests are launched. The

following table represents choosing specific test.

43

5.3. CGAL

Figure 5.5: Table for determining launched test[2]

The library can be downloaded from the webpage and built by CMake. Also whole

detailed documentation as well as quickstart documentation can be found in [2].

5.3. CGAL

Next important library is CGAL (The Computational Geometry Algorithms Library).

It provides huge spectrum of efficient geometric algorithms as C++ libraries in different

packages.

• Arithmetic and Algebra

• Convex Hull algorithms

• Triangulations

• Mesh Generation

• Interpolation

• and many other [5]

CGAL also contains package for intersection and distance computing using AABB

hierarchy structure. The main component is class AABB tree, which represents con-

structed tree from input data. In library’s documentation benchmarks can be find and

will be shown in the last chapter.

The library is provided with dual licensing- open source (LGPL/GPL) and commercial

one for companies and is used in large variety of interests: urban modeling, astronomy,

computer graphics, image processing or games.

44

5. EXISTIONG SOLUTIONS AND LIBRARIES

5.4. Other libraries

On the internet, many libraries can be found, but there are often some issues. Those

libraries were created about a decade ago and are not maintained and updated anymore.

Also adding them into project created in modern IDEs can cause problems and they can

be substituted by libraries mentioned before.

Those libraries are:

• ColDet3D (or Claudette)

• OZCollide

• OPCODE

• V-Clip

• V-COLLIDE

45

5.4. OTHER LIBRARIES

46

6. IMPLEMENTATION

6. Implementation
One part of this master’s thesis is implementation of chosen algorithms. The aim of

this part is to make own code, which can be used to make new libraries without limitations

like licenses. The program is written in C++ language, with the help of OpenGL library,

which is described in next section.

The program should satisfy following conditions:

• Input data will be represented as STL files

• The resulting program can be used in real time applications

• Output will be only TRUE/FALSE (intersecting/ not intersecting)

Let’s go briefly through these conditions. The program doesn’t have to be able to read

all possible data files, but is dedicated only to SLT files. Using the program in real time

applications predetermines used algorithms. As many operations as possible should be

done in preprocessing (during data loading) to make real-time part of the program quicker.

In practice that means doing operations like removing redundant data or creating needed

structures (bounding objects, convex hulls etc.). The discussion about suitable algorithms

is in separated section. The boolean output of the program makes real time part quicker,

because it’s not necessary to compute exact distance between objects, which is the most

expensive operation.

6.1. C++

The instrument for creating the program is C++ programming language developed

by Bjarne Stroustrup. It is imperative, generic, object oriented and compiled language,

which has been developed for large variety of problems. It is direct successor of C language

(C++ means incremented C). In present it is one of the most popular languages utilized

with application software, client-server applications, embedded firmware or drivers.

The STD library is the set of classes and functions, which are part of the C++ standard

itself, and are declared in std namespace. The library contains many types of containers,

objects, functions to work with those objects or streams.

Drawing the data through OpenGL is quite complex problem without using other libraries

so next library is GLFW. It provides basic methods, like creating a window with OpenGL

context, event handling (key, mouse or joystick issues). It can be downloaded from [4] as

source codes of pre-compiled binaries. It is recommended to compile the library manually,

because pre-compiled libraries don’t have to work properly on some operating systems.

The GLEW (OpenGL Extension Wrangler Library) is the last library, which can simplify

working with OpenGL. The OpenGL standard is implemented on the graphic card by

its manufacturer. Without GLEW, a developer has to retrieve the location of needed

functions himself, which is a lot of additional work. The GLEW solves that issue and

makes programming more simple and clear. The library can be downloaded from [15].

47

6.2. STL FORMAT

6.2. STL format

The data input of program should be .stl (Stereolitography) file. STL files carry the data

as surface geometry of objects without any additional information like color or texture.

There are two types of STL file - binary and ASCII, while binary file is more common. In

both types the file carry unstructured triangulated surface by three vertices and normal

per each simple triangle. All these object must be described in three-dimensional space

and the values must be positive.

Naturally, a ASCII STL file has strict structure[13]:

solid name

(foreach triangle)

facet normal nxnynz

outer loop

vertex v1xv1yv1z

vertex v2xv2yv2z

vertex v3xv3yv3z

endloop

endfacet

endsolid name

Numbers vi and ni are floating-point numbers in format sign-mantissa-e-sign-exponent,

for example 5.680200e-006 and vi ≥ 0.

More common type of STL file is binary STL file, which structure is as follows[13]:

UINT8[80] - describtion

UINT32 - number of triangles

(foreach triangle)

REAL32[3] - normal vector

REAL32[3] - vertex

REAL32[3] - vertex

REAL32[3] - vertex

UINT16 - attribute byte count

After writing the last triangle, the file ends. The attribute byte count is zero in standard

STL format, because no additional information is added and most of the software cannot

use it. The representation of REAL32 numbers is defined by IEEE floating-point number.

48

6. IMPLEMENTATION

6.3. OpenGL

OpenGL is a standard developed and maintained by Khronos Group. It specifies graphics

API and contains large variety of functions, which can manipulate graphics processing

unit (GPU). The goal is to achieve hardware-accelerated rendering. In following sections,

important features of OpenGL will be described, as well as representing C++ code.

6.3.1. Architecture

Rendering of objects through OpenGL is quite a complex procedure, which contains

many steps. The object data are stored in computer memory and OpenGL uses the

rendering pipeline to display those data on the screen. The pipeline is shown in figure

6.1.

Vertex Specification

Vertex Shader

Tessellation

Geometry Shader

Vertex PostProcessing

Primitive Assembly

Rasterization

Fragment Shader

Per-Sample Operations

Figure 6.1: OpenGL pipeline

It is not necessary to handle all those steps, they are mainly launched by OpenGL

itself. The programmable steps are: Vertex Shader, Tessellation, Geometry Shader and

Fragment Shader, while vertex and fragment shaders are compulsory and two remaining

steps are voluntary. In [12], the description of steps is presented:

• Vertex Specification prepares the list of vertices, which will be send to the pipeline.

The vertices are clustered into primitives, which are triangles, lines and points. In

later steps, those primitives will create a whole complex object. Raw data are stored

in Vertex Buffer Objects (VBO), which provide methods for uploading data to the

GPU. The VBOs often contain huge variety of vertex features, like position, normal,

texture coordinates or color. For distinguish issues there are Vertex Array Objects

(VAO), which define data for each vertex in the VBO.

• The vertex shader computes final coordinates of the vertices. The input of vertex

shader are basically vertices in its local coordinates. Shader can make computations,

like placing the vertex into world coordinates. More details, as well as minimal

vertex shader, are presented in next section.

49

6.3. OPENGL

• The tessellation is a process of dividing vertex data into smaller primitives. For

example, the square can be tessellated into two triangles and in that step, the

dividing is performed and new vertex properties are computed.

• The geometry shader is responsible for creating the objects (triangles, lines...) from

simple vertices. The output is a set of primitives.

• The most important part of Vertex post-processing is clipping of objects. Clipping

cuts objects, which are on border of visible space, to fit into the space. Moreover

the step contains preprocessing to primitive assembly and rasterization.

• During primitive assembly face culling is performed. It prevents non-visible primi-

tives to be rendered. The example is rendering of the cube. Only up to three faces

are visible, so others are hidden and there is no need to render them.

• The rasterization process is cutting the primitives into fragments. The fragment

basically represents simple pixel and contains its position and another data, which

are necessary in following steps.

• Second arbitrary shader is fragment shader. During this step, the color value for

each pixel is computed. The fragment shader will be also described in following

section.

• The last piece of the pipeline, per-sample operations, contain many user-activated

tests, color blending and writing to the framebuffer.

6.3.2. Shaders

In previous section, shaders were presented. As mentioned, different types can be used

depending on step in the OpenGL pipeline. Shaders are subprograms, which changes

input data in some way, written in the GLSL (OpenGL Shading Language). GLSL is

C-like language designed for vector and matrix arithmetic. Typical shader has following

structure:

#ve r s i on

in type var name

in type var name

out type out var name

void main ()

{
out var name = something

}

Keywords in and out represent input and output variables. Communication be-

tween shaders is performed only through variables, so when output/input variable names

50

6. IMPLEMENTATION

match between two consecutive shaders, the variable is passed between them. GLSL has

common data types like other C-like languages - bool, int, uint, float and double. For

shading purposes there are also data types vector and matrix.

The vertex shader recomputes the local coordinates of vertices into world’s coordinates.

Whole shader is simple:

#ve r s i on 330 core

layout (l o c a t i o n = 0) in vec3 po s i t i o n ;

uniform mat4 f i na lMat r i x ;

void main ()

{
g l P o s i t i o n = f i na lMat r i x ∗ vec4 (po s i t i on , 1 . 0 f) ;

}

The layout and location number represent data stored in VAO. Uniform is the way

to pass data from program to shader. They are (in C++ meaning) static, so they are

global for whole shader program (containing all shaders) and remain set until updated.

In that case, transformation matrix is passed. gl Position is output variable of vertex

shader and its value is gained by simple matrix-vector multiplication.

The fragment shader takes a fragment as input. The fragment is defined by two coordi-

nates on the screen and one coordinate as depth. In this step, the color of the fragment

is computed. It can be done by input RGBA vector, uniform passed from the program

or by input texture position vector. The following fragment shader sets the color with

respect to given RGB vector.

#ve r s i on 330 core

out vec4 c o l o r ;

uniform vec3 f i n a lCo l o r ;

void main ()

{
c o l o r = vec4 (f i na lCo l o r , 1 . 0 f) ;

}

The output variable color represent final color of the fragment. The fragment shader

is also place, where lighting of the scene is implemented. The attached program uses

Phong lighting model, which consist of ambient, diffuse and specular lighting. The objects

in real world aren’t absolutely dark even in night. There is always some weak light, so first

component cares about setting constant color. The most significant component is diffuse

lighting, which represents amount of impacted light. While the object face’s normal is

directed more to the light source, the color becames more bright. Finally, the specular

component adds bright spot, which appears on shiny objects.

51

6.3. OPENGL

6.3.3. Transformations

If the object is meant to be dynamic, that it’s necessary to use transformation matrices.

Only three types of transformations are needed and any movement can be described - scale,

translation and rotation. Those transformations are described by matrix, which can be

chained as needed.

• Scaling a vector means multiplying its coordinates by number. Uniform scaling

keeps vector’s direction and formula S1 = S2 = S3 is satisfied. The scaling of vector

(x, y, z) is defined as:
S1 0 0 0

0 S2 0 0

0 0 S3 0

0 0 0 1

x

y

z

1

 =

S1 ∗ x
S2 ∗ y
S3 ∗ z

1

• The translating is simple sum of vectors, of moving the point by some vector. Let

(x, y, z) be point in 3D space. Translating the point by vector (T1, T2, T3) is defined

as:
1 0 0 T1
0 1 0 T2
0 0 1 T3
0 0 0 1

x

y

z

1

 =

T1 + x

T2 + y

T3 + z

1

• The most difficult is rotation. Let θ be angle representing rotating along the x, y

or z axis. The matrices are different according to given axis. Following equations

represent rotating of point (x, y, z) along axes.
1 0 0 0

0 cosθ −sinθ 0

0 sinθ cosθ 0

0 0 0 1

x

y

z

1

 =

x

cosθ ∗ y − sinθ ∗ z
sinθ ∗ y + cosθ ∗ z

1

cosθ 0 sinθ 0

0 0 0 0

−sinθ 0 cosθ 0

0 0 0 1

x

y

z

1

 =

cosθ ∗ x+ sinθ ∗ z

y

−sinθ ∗ x+ cosθ ∗ z
1

cosθ −sinθ 0 0

sinθ cosθ 0 0

0 0 0 0

0 0 0 1

x

y

z

1

 =

cosθ ∗ x− sinθ ∗ y
sinθ ∗ x+ cosθ ∗ y

z

1

52

6. IMPLEMENTATION

6.4. Program architecture

The implementation was created in Visual Studio 2015 and is based on object-oriented

programming. It contains following classes:

Class name Class description

Camera Processes keyboard and mouse input and computes camera properties[9]

Shader Represents shader program containing vertex and fragment shader[9]

AABB Axis-aligned bounding box class

OBB Oriented bounding box class

Sphere Sphere class

TestAABB Contains static method for testing two AABBs

TestOBB Contains static method for testing two OBBs

TestSphere Contains static method for testing two spheres

TestManager
Determines which testing method should be launched on pairs

determined by testing matrix

ConvexHull
Computes convex hull of input set of points. Returns set of points

lying on the convex hull and their neighbors

GJK
Tests intersection of two convex hulls by Gilbert-Johnson-Keerthi

iterative algorithm

Vertex Represents 3D vertex structure with needed operators

Model
Contains object’s drawing data, testing data, bounding volumes

and convex hull

DataRepairer
Converts raw STL triangular data into set of unique vertices

and corresponding indices

6.5. Main loop

The function main is in file Source.cpp. It contains the game loop, which recomputes the

objects data and redraw OpenGL window. The run of main function can be represented

by following diagram.

53

6.5. MAIN LOOP

Figure 6.2: Main loop of the program

54

7. METHODS COMPARISON

7. Methods comparison
In this final chapter, the previously mentioned methods will be placed into collision

detection paradigm. Evidently all those methods are not suitable for the same detection

level. Those levels are presented in first section and then some tests are presented. The

tests are launched on following computer: IntelCore i3-3110M 2.40GHz, 4.00GB RAM,

Intel HD Graphics 4000, Windows 10. The time measuring is issue while the non-realtime

operating system is running due to system’s scheduling. It can be solved by launching

the application with Diagnostic tool, which is part of the Visual Studio. The diagnostic

tool measures time and CPU/GPU usage only when the application runs and even gives

values for each running function separately.

7.1. Collision detection phases

The collision detection is normally divided into three consecutive parts. Each part can

be easily skipped, but the performance of such algorithm will be lower. Each part reduces

searching space, while more accurate and expensive tests are launched. The phases are:

• Broad phase - The phase determines which objects will be tested. The basic

approach is testing each object against every object in world, so let n be number of

objects in world. Then (n2−n)/2 tests have to be performed, which leads to O(n2)

complexity and such complexity is (under the term of high number of objects)

inappropriate for real-time applications. Due to this fact, some more advanced

algorithms has to be used, which determines, which pairs should be tested, and

ignores objects too far from other objects. The tests themselves aren’t performed

yet. Algorithms, which are suitable for broad phase, are mainly based on spatial

partitioning, presented in section 3.3.

• Mid phase - While potential colliding pairs are determined, the basic tests are

performed. Mid phase still doesn’t say, if the pair of objects is colliding, but only

excludes pairs, which aren’t. The test should be fast and more accurate then previ-

ous phase. The simple bounding volume is the most used method for catching the

false positives. The simple bounding volumes are described in section 3.1 with its

presumed asymptotically and memory complexities. The mid phase and the broad

phase are often connected in one algorithm. The spatial partitioning methods, pre-

sented in section 3.3 fulfill this connection, while it is working with axis-aligned

bounding boxes as approximation of objects.

• Narrow phase - The narrow phase performs the most expensive and the most

accurate methods for determining the collision. In some applications the result

of previous phase is sufficient and the narrow phase is skipped. Naturally, more

exact detection leads to more expensive test. The methods can be divided into two

groups - applied on static and moving objects. In static case, the best method is

bounding volume hierarchy, presented in 3.2. The implementation of hierarchy is in

55

7.2. SIMPLE BOUNDING VOLUMES BENCHMARKS

CGAL library, as Axis-aligned bounding box tree, but all simple bounding volume

hierarchies (Sphere trees, Oriented bounding box trees) can be used. Moving objects

are more likely to be represented as convex objects.

7.2. Simple bounding volumes benchmarks

In section 3.1 some basic bounding volumes were presented. They belong to second

phase and their task is removing the part of nonintersecting pairs of objects and the test

should be as fast as possible. In this section the benchmark for bounding volumes is

presented as well as reached output for each volume. The benchmark:

• The scene contains two objects A,B bounded by given volume

• The positions of object’s center c are random, but fixed for all tests

• The number of steps n has the same conditions

• The object B is static, A is translating towards the B, colliding it and then moving

apart in same direction. Let d be distance between object’s centers. Then the

translation vector ti in step i is defined as ti = 2∗i∗(cB−cA)/n, where i = 1, 2, ..., n.

• The rotation is random and fixed

B

A

0

N

Figure 7.1: Benchmark with N steps for spherical bounding volume

The test with same objects and same fixed parameters is performed with each bound-

ing volume. Following outputs are measured: total time, average test time, rate of positive

tests and memory requirements. Interesting properties would be also build time and re-

computation time, but those operations are really fast and cannot be accurately measured

on non-real-time operating system. The recomputation time is mentioned only in AABB

test table, because only in this case the time is significant.

The tests are performed on two pairs of objects O1, O2 and O3, O4, the objects consist

of different number of triangles and have different shape.

56

7. METHODS COMPARISON

Object Number of triangles

O1 12874

O2 25864

O3 12602

O4 4948

The tests are launched with following properties:

• N = 20000

• The object A stays in default coordinates, object B is translated by (0.8, 0.8, -0.8).

• The rotation is same for both objects and is given by 0.08◦ along each axis in each

step.

Sphere Objects O1, O2 Objects O3, O4

total time[ms] 9890 11242

avg. test time[µs] 4.35 4.32

rate of positives [%] 42.15 21.38

memory[byte] 28 28

OBB

total time[ms] 10612 10408

avg. test time[µs] 4.6 5

rate of positives [%] 24.86 15.09

memory[byte] 108 108

AABB

total time[ms] 10339 9727

avg. test time[µs] 3.75 4.1

rate of positives [%] 51.11 18.81

memory[byte] 42 42

recompute[µs] 1.75 1.2

The data were measured as expected. The sphere and axis-aligned bounding box have

quick tests, but the fitting is worse. That leads to higher rate of positives. The oriented

bounding box test returns the lowest rate of positives while both pairs are tested, but the

tests itself is more expensive. Simple bounding volumes are rarely used as only detecting

structure, but are used, as mentioned in previous chapters, with other algorithms. When

they are used in some tree structure like an octree or a hierarchy, the most important

property is the cost of the detecting algorithm. On the other side, when they are used as

first test before more expensive one (e.g. convex hull-based methods), then the accuracy

is the main parameter for lowering the count of launching the expensive test.

57

7.3. STATIC AABB TREES

7.3. Static AABB trees

A part of the CGAL library is collision detection through static AABB tree structure.

The input is a set of geometric data, they are converted to primitives and then a hierarchy

is build. Leaves of the tree are 3D triangles of original object, so the collision detection

is exact. The structure is suitable also for moving objects, but the AABB tree has to

be recomputed every time the object moves. In [1] some benchmarks are performed with

presented measured values. The tested object is the knot model (figure 7.2), defined by

different numbers of triangles.

Figure 7.2: The knot model [1]

• Construction[1]

Triangles Construction [ms]

14400 156

57600 328

230400 1141

921600 4813

• Memory consumption of a AABB tree[1]

Triangles Memory [MB]

18400 1.1

102400 6.33

1022400 59.56

1822400 108.34

• Intersections[1] - the hierarchy is tested by following queries, numbers in the table

represent number of queries performed per second.

Function Segment Ray Line Plane

AABB tree::do intersect() 187868 185649 206096 377969

AABB tree::number of intersected primitives() 64389 52943 54559 7906

AABB tree::all intersections() 46507 38471 36374 2644

58

7. METHODS COMPARISON

The first function returns true, if the query intersect any primitive. An exact number

of primitives, which are intersecting, is returned by the second function and finally list of

those intersecting pairs is returned by third function.

The AABB tree implemented in CGAL is very powerful tool for exact collision detection,

which is illustrated by huge number of intersecting tests per second. The weakness is

the usage in the scene with many randomly moving objects, because the trees have to be

recomputed or build from scratch. The weakness can be solved by lowering the accuracy

and performing convex hull-based methods.

7.4. Convex Hull and Convex decomposition

The aim of this thesis is on methods, which can be used in real-time application with

moving objects. Moving objects are mostly represented by convex objects, which are well

suitable for fast intersection tests. The main issue is that objects mostly aren’t convex,

but very complex with large concavity(in sense of 5.1). Methods for overcoming this issue

were presented in 4.1 and 5.1. It cannot be said, which method is better, it depends on

models and their representation. Complex models can be represented by several STL files,

each file representing significant part. In that case can be simple convex hull algorithm,

performed on each part, sufficient. The problem appears while the whole complex model

is represented by single file. Such model is shown in figure 7.3, representing nanosuit from

game Crysis (displayed by Windows 3D Builder).

Figure 7.3: Original model of nanosuit, downloaded from [9]

Creating single convex hull leads to quite inaccurate model, because minimal convex

hull encloses, except of the model, huge amount of empty space. In that case considering

convex decomposition is in place, which is presented in section 5.1. The V-HACD creates

only approximate decomposition, so the output model has slightly bigger volume than

59

7.4. CONVEX HULL AND CONVEX DECOMPOSITION

original model, but the difference is almost unnoticeable. Also there is possible concavity,

which can be problem for support mapping function in GJK algorithm, while using hill

climbing algorithm. To make decomposed parts reliable, for each of them is created

simple convex hull to ensure the output will be cleanly convex. The figure 7.4 shows

the nanosuit model as simple convex hull and set of decomposed parts. The precision

difference is significant. On the other side, computational time and number of pairwise

tests increase, so finding the best compromise for a given application is essential.

Figure 7.4: Simple convex hull (left) and decomposed hulls (right)

Creating the convex hull is quite expensive operation with worst-case complexity

O(n2), but as far as it is done in data preprocessing stage, it’s not an issue. Still, the

process should be as quick as possible. The worst case is while all points of the object lie

on convex hull, such as sphere. In that case, the points are added one by one to the hull

and the time complexity grows. Following table contains data measured on eight different

objects, displayed below . First column represents original number of unique vertices. On

each object, the convex hull algorithm is used, which leads to geometrical simplification

and lowering the number of vertices (second column). Third detail is computational time

and last column contains percentage of saved memory.

60

7. METHODS COMPARISON

object vertices convex hull vertices creation time [ms] memory saving [%]

1 6423 690 39 89.25735638

2 12928 506 29 96.08601485

3 5801 294 11 94.93190829

4 8370 348 15 95.84229391

5 1027 232 5 77.40993184

6 6302 580 35 90.79657252

7 2466 264 7 89.29440389

8 732 202 8 72.40437158

9 5000 5000 2135 0

Only low correlation between original number of vertices and computational time

or memory savings results from the table. The reason is, that those values depend mainly

on object geometry and number of vertices has only small influence. It can be only said,

that objects with dominant spherical shape will have worse statistics than, for example,

cubic shaped ones. It is proven by object 9, which is the sphere with 5000 vertices

randomly generated on sphere’s surface. All its vertices lie on the convex hull, there is no

simplification or points erasing, so memory saving is 0%. The test performed on simple

and decomposed object is presented in the next section.

7.5. GJK benchmark

In this section, two cases will be tested:

• The same movement as defined in 6.2

• Traversal through simple convex hull and through decomposed hulls.

The first test will be performed with the same properties and pairs of objects and

only third collision detection phase will be launched. Measured values are: total time,

average test time, rate of positives and average recompute time. The memory issue is

already presented in previous section.

GJK Objects O1, O2 Objects O3, O4

total time[ms] 20238 25296

avg. test time[µs] 18.05 19.65

rate of positives [%] 14.27 18.45

recompute[µs] 32.2 33.95

Measured values verify theoretical assumptions. The rate of returned positives is lower

then while using simple bounding volume so the test is more accurate, but it is balanced

by the duration.

The second test with GJK algorithm is two-phase test (OBB + GJK). The scene contains

the complex object and ten small boxes moving around. The test is performed between

the object and boxes, boxes aren’t tested each other. The loop runs 20,000 times and

61

7.6. ROBOTIC ARM PRACTICAL EXAMPLE

collision between object and any box is tested. The test is launched twice, the first table

represents simple complex object, the second one represents decomposed objects into 21

pieces. The measured values are: total time, average test time, models loading time and

rate of the positives.

OBB + GJK Single object Decomposed object

total time[ms] 26595 29250

avg. testing time [µs] 3.4 8.39

model loading time [ms] 3289 1678

rate of positives[%] 7.8 4.9

7.6. Robotic arm practical example

The practical example of algorithm usage may be movement of robotic arm in space with

some obstacles. The collision detection starts by second phase, where objects are approxi-

mately tested by OBB test and when this test reports collision, the GJK test is performed.

Objects, which passed through OBB test but not through GJK test are colored green.

These objects don’t collide, but are really close so green color can be considered as war-

ning. While the GJK test is reporting intersection, the objects are colored red. The arm

consists of seven objects, while first object is defined in world’s coordinates and others in

coordinate space of previous object. The obstacles are represented by cubes, which are

rotating among near point.

Figure 7.5: Robotic arm moving in space with obstacles

The testing scene was launched in the loop with 20.000 steps. The best illustration of

program’s effectiveness is following table. It contains diagnostic data of chosen functions,

62

7. METHODS COMPARISON

where the CPU usage percentage is shown. The value represents only usage in program,

not whole operating system.

Function CPU[%] CPU[ms] Description

main 92.4 17685 main function of the program

glfwSwapBuffers 40.8 7823 swaps the front and the back buffers (GPU)

glfwPollEvents 19.51 3741
events processing (keyboard input,

mouse move, window size changed etc.)

test 7.33 1405 tests data, stores outputs

Model 1.84 353
loads model and creates all additional structures

(bounding volumes, convex hull)

recomputeTestingData 0.39 74 recomputes data needed for performing the test

The Model constructor is launched only once, the rest of the functions are launched

in the loop, so presented data have to be divided by 20.000 to get average time of one

function call.

63

8. CONCLUSION

8. Conclusion
The thesis presents the most used algorithms in collision detection field. The first

part of the thesis is cleanly theoretical and contains descriptions of algorithms. For

better understanding all partial algorithms are presented as pseudocodes. In the chapter

”Mathematical background” overview of necessary mathematical apparatus is presented,

mainly the Minkowski difference and convexity of objects. The overview itself is divided

into two parts. The first part describes methods based on simple geometrical objects

(sphere, axis-aligned bounding box, oriented bounding box) and tree structures(octrees,

bounding box hierarchies) and the second one methods based on convex hulls(Gilbert-

Keerthi-Johnson, Chung-Wang, Separating axis test). The problem of creating the convex

hull is also discussed and own version of algorithm, creating the hull, is presented in

chapter ”Convex-hull based methods”.

In the practical part of the thesis the simulation software was created, based on C++

programming language and OpenGL library. The first group of tested structures are the

simple bounding volumes: sphere, axis-aligned bounding box and oriented bounding box.

The results shows, that the duration of the test is almost same for all bounding volumes

(units of microseconds), but the rates of positive tests vary.

The convex hull algorithm work with worst case complexity O(n2), but the complexity

is mainly theoretical. It becomes O(n2) only if all object’s vertices lie on their convex

hull. The table in 7.4 shows, that ordinary objects have great memory savings, the share

of vertices lying on the convex hull can only be about 4% and the build time is measured

in units of milliseconds.

The GJK algorithm is tested in section 7.5 by two ways. The first test is a comparison

to the simple bounding volumes and the results show expected values. The test is the most

accurate, but also the most expensive. The traversal of a cube through complex object

is tested by combined OBB and GJK algorithm. The OBB represents a broad phase test

and determines when the expensive GJK test is launched. The object is represented as a

whole and as decomposed convex parts.

The final test contains a robotic arm moving in the space with obstacles, which are

represented as cubes. The aim is determining percentage usage of the CPU by testing

procedure. The results shows, that only 7.33% of CPU performance, assigned for the

application, was used for testing the objects.

65

66

BIBLIOGRAPHY

Bibliography
[1] 3D Fast Intersection and Distance Computation (AABB Tree). cgal.org. [online]. [cit.

2016-05-24]. Available at: http://doc.cgal.org/latest/AABB tree/

[2] Bullet User Manual and API documentation. BULLET PHYSICS. [on-

line]. [cit. 2016-05-24]. Available at: http:bulletphysics.orgmediawiki-

1.5.8index.phpBullet User Manual and API documentation

[3] CAPENS, Nicolas. FLIPCODE.COM. Smallest Enclos-

ing Spheres. [online]. [cit. 2016-05-24]. Available at:

http://www.flipcode.com/archives/Smallest Enclosing Spheres.shtml

[4] Documentation. GLFW. [online]. [cit. 2016-05-24]. Available at:

http://www.glfw.org/documentation.html

[5] Documentation. The Computational Geometry Algorithms Library. [online]. [cit.

2016-05-24]. Available at: http://www.cgal.org/documentation.html

[6] EBERLY, David. Geometric tools. Dynamic Collision Detection us-

ing Oriented Bounding Boxes. [online]. [cit. 2016-05-24]. Available at:

https://www.geometrictools.com/Documentation/DynamicCollisionDetection.pdf

[7] ERICSON, Christer. Real-time collision detection. Boston: Elsevier, c2005. ISBN

1558607323.

[8] KLOSOWSKI James T., Martin Held, Joseph S.B. Mitchell, Henry

Sowizral, and Karel Zikan. . Efficient Collision Detection Us-

ing Bounding Volume Hierarchies of k-DOPs. [online]. [cit. 2016-

05-24]. Available at: http://cdn.intechopen.com/pdfs/34468/InTech-

Bounding volume hierarchies for collision detection.pdf

[9] Learn OpenGL. [online]. [cit. 2016-05-24]. Available at:

http://www.learnopengl.com/

[10] MAMOU, Khaled. GitHub. [online]. [cit. 2016-05-24]. Available at:

https://github.com/kmammou/v-hacd

[11] MAMOU, Khaled and Faouzi Ghorbel. . A simple and efficient approach for 3D

mesh approximate convex decomposition. [online]. [cit. 2016-05-24]. Available at:

http://www.khaledmammou.com/AllPublications/icip2009.pdf

[12] Rendering Pipeline Overview. OpenGL.org. [online]. [cit. 2016-05-24]. Available at:

https://www.opengl.org/wiki/Rendering Pipeline Overview

67

BIBLIOGRAPHY

[13] STL (file format). Wikipedia: the free encyclopedia [online]. San Fran-

cisco (CA): Wikimedia Foundation, 2001- [cit. 2016-05-24]. Available at:

https://en.wikipedia.org/wiki/STL (file format)

[14] SULAIMAN, Hamzah Asyrani and Abdullah Bade. INTECH. Bound-

ing Volume Hierarchies for Collision Detection. [online]. [cit. 2016-

05-24]. Available at: http://cdn.intechopen.com/pdfs/34468/InTech-

Bounding volume hierarchies for collision detection.pdf

[15] The OpenGL Extension Wrangler Library. [online]. [cit. 2016-05-24]. Available at:

http://glew.sourceforge.net/

68

