
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
INSTITUTE OF PHYSICAL ENGINEERING

FAKULTA STROJNÍHO INŽENÝRSTVÍ
ÚSTAV FYZIKÁLNÍHO INŽENÝRSTVÍ

ELECTROSTATIC DEFLECTION AND CORRECTION
SYSTEMS

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. VIKTOR BADIN
AUTOR PRÁCE

Brno 2015





BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
INSTITUTE OF PHYSICAL ENGINEERING

FAKULTA STROJNÍHO INŽENÝRSTVÍ
ÚSTAV FYZIKÁLNÍHO INŽENÝRSTVÍ

ELECTROSTATIC DEFLECTION AND CORRECTION
SYSTEMS
ELEKTROSTATICKÉ VYCHYLOVACÍ A KOREKČNÍ SYSTÉMY

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. VIKTOR BADIN
AUTOR PRÁCE

SUPERVISOR Ing. JAKUB ZLÁMAL, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2015





Vysoké učení technické v Brně, Fakulta strojního inženýrství

Ústav fyzikálního inženýrství
Akademický rok: 2014/2015

ZADÁNÍ DIPLOMOVÉ PRÁCE

student(ka): Bc. Viktor Badin

který/která studuje v magisterském navazujícím studijním programu

obor: Fyzikální inženýrství a nanotechnologie (3901T043) 

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a
zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Elektrostatické vychylovací a korekční systémy

v anglickém jazyce:

Electrostatic Deflection and Correction Systems

Stručná charakteristika problematiky úkolu:

Prozkoumat možnosti elektrostatického vychylování a dynamické fokusace.

Cíle diplomové práce:

Určit citlivost dynamické fokusace a stigmování pro ELG s Gaussovským svazkem. Ilustrovat na
příkladu čoček ELG 600 (objektiv a poslední kondenzor), doplněný o elektrostatický vychylovací
systém a jeho porovnání s existujícím magnetickým systémem. Slabá elektrostatická čočka ve
zmenšovacím kondenzoru se může použít pro dynamickou fokusaci (posuv křižiště tak, aby po
vychýlení byla stopa ostrá). Jaká geometrie je nejvhodnější pro tuto čočku, jaká je její účinnost?
Jak funguje dynamický stigmátor a jak ovlivňuje zkreslení vychylovacího systému?

Seznam odborné literatury:
[1] B. Lencová, kandidátská dizertace, Brno 1988
[2] Brodie and J. J. Muray, The Physics of Micro / Nano-Fabrication, Plenum Press, NY 2010



Vedoucí diplomové práce:Ing. Jakub Zlámal, Ph.D. 

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2014115.

V Brně, dne 21. ll. 2014

prof. RNDr. Tomáš Šikola, CSc. 
ředitel ústavu 

doc. Ing. Jaroslav K
děkan 



ABSTRACT
The aim of this master’s thesis is to explore and study the possibilities of dynamic cor-
rection of aberrations in electron-beam lithography systems. For the calculations, the
optical column of the Tesla BS600 series electron-beam writer was used. The thesis
focuses on corrections of the third order field curvature, astigmatism, and distortion
aberrations of the currently used magnetic deflection system and a newly designed elec-
trostatic deflection system and stigmator. The parameters of the two deflection and
correction systems were compared.

KEYWORDS
Electron-beam lithography, aberrations, charged particle optics, dynamic aberration cor-
rection, field curvature, astigmatism, distortion.

ABSTRAKT
Tato diplomová práce se věnuje prozkoumání možností dynamické korekce vad v elek-
tronové litografii. Pro výpočty byl zvolen elektronový litograf Tesla BS600. Práce
se zabývá korekcí vad vychýlení třetího řádu: zklenutí pole, astigmatismu a zkreslení.
Aberace byly spočteny jak pro současný magnetický vychylovací systém, tak pro nově
navržený elektrostatický deflektor a stigmátor. Vlastnosti a vady obou vychylovacích a
korekčních systémů byly porovnány.
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Elektronová litografie, vady zobrazení, optika nabitých částic, dynamická korekce vad,
zklenutí pole, astigmatismus, zkreslení.
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INTRODUCTION

Electron-beam lithography systems have been used extensively in the past decades
in both research and high-end commercial applications. Electron-beam lithography
is one of the few methods allowing nanometer-scale patterning and is therefore es-
sential in many modern fields such as nanotechnology. Direct-write electron-beam
machines have a huge advantage that they can write almost arbitrary patterns with-
out a requiring masks. This makes them a very powerful tool especially in research
fields, prototyping, etc. Their versatility comes at a price — low writing speed for
complex patterns and the write field is limited by electron-optical aberrations. The
small write field needs to be compensated by mechanically moving the patterned
substrate during exposure leading to stitching errors and longer processing times.
The needed high precision translation stages greatly increase the price of lithog-
raphy. The aberrations can never be eliminated completely. They can be usually
lowered by skillful design of the beam optics. Another possibility of lowering aberra-
tions is introducing dynamic correction devices which have aberrations of their own
and can be made to cancel the inherent aberrations of the beam deflection system,
for example. Wider write fields are then possible reducing the overhead in large
scale electron-beam patterning and effectively increasing throughput. Studying the
possibilities of dynamic aberration correction in electron-beam lithography is the
main goal of this thesis.

The first part of the thesis offers an introduction into the physics and mathemat-
ics of charged particle optics as well as some practical aspects of the field such as
lens design are described in chapter 1. The fundamentals of charged particle optics,
such as the paraxial approximation and aberration theory are briefly discussed.

In chapter 2, the historical evolution of electron-beam lithography is described
from the early era of focused electron beams to modern electron-optical concepts ever
challenging the limits in resolution, pattern complexity, and throughput. A short
overview of the possible exposure modes and the patterning process is given as well
as some of the other techniques offering sub-micron or nanometer-scale patterning
are listed.

In chapter 3, the optical column of the Tesla BS600 series electron-beam writer is
described as this machine was chosen as the basis of the aberration correction studies
conducted within the scope of this thesis. The changes necessary for converting the
shaped-beam column into a Gaussian-beam writer are given and the properties of
such a system described.

The goal of this thesis is to study the possibilities of dynamic corrections of field
curvature, astigmatism, and distortion in an electron-beam writer. Chapters 4 and
5 are the core of the thesis, they contain the methods used during the writing of the
thesis and the results obtained. In chapter 4, the current magnetic beam deflection
system and dynamic focusing is studied and complemented with a magnetic stigma-
tor. The optimal excitation of the correction devices is treated, and their ability to
eliminate the field curvature and astigmatism aberrations is evaluated.

In chapter 5, a new electrostatic beam deflection system is designed and opti-
mized. Electrostatic dynamic focus lenses and a dynamic stigmator are also added
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to the model. The optimal properties of these devices are derived and confirmed.
The effect of the additional correctors on the distortion is also discussed.
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1 CHARGED PARTICLE OPTICS
Charged particle optics is a mathematical framework for the calculation of particle
paths in the presence of electrostatic or magnetostatic fields, and for the evaluation
of optical properties of electron and ion lenses. The term optics is used as a beam of
charged particles can be steered by electromagnetic fields in a similar fashion to the
manipulation of light rays with lenses in conventional light optics. This framework is
essential when designing e.g. scanning or transmission electron microscopes (SEM,
TEM), mass and energy filters, and particle accelerators.

The resolution of any imaging microscope is ultimately limited by diffraction and
can never be significantly smaller than the wavelength of the image-forming light.
This realization comes from Ernst Abbe (1870), who also proposed that there might
be a yet undiscovered form of radiation with shorter wavelength than light, that
would enable higher resolution imaging. Shortly after, the electron was discovered,
and Louis de Broglie postulated in 1924 that it can behave as a wave with very
short wavelength when accelerated. The wavelength of an electron with a kinetic
energy above 1 keV is smaller than the radius of a hydrogen atom. Diffraction of
electrons was first observed by Clinton Davisson and Lester Germer who, with their
famous experiment, proved the de Broglie hypothesis and confirmed the wave-like
properties of electrons. It didn’t take long to utilize the short wavelength of electrons
(and ions), and the first electron microscopes became available...

The next sections aim to guide the reader through the most fundamental equa-
tions in particle optics following the footsteps of [1] and [2]. For more thorough
explanation we refer the reader to e.g. [3] or [4]. This thesis is mainly concerned
with electron optics but the same principles apply to ion optics.

1.1 Equation of Motion
The electric field intensity �⃗� and magnetic flux density �⃗� acts on charged particles
with the Lorentz force

𝐹𝐿 = 𝑞(�⃗� + �⃗� × �⃗�), (1.1)

where 𝑞 is the charge of the particle, and �⃗� its velocity. According to Newton’s
second law the force acting on an object is equal to the change of its momentum

d𝑝

d𝑡
= 𝐹𝐿 (1.2)

which, considering that for high-energy electrons relativistic kinematics must be
used, can be written as

d
d𝑡

(𝛾𝑚�⃗�) = 𝑞(�⃗� + �⃗� × �⃗�), (1.3)

𝛾 = 1√︁
1 − 𝑣2

𝑐2

(1.4)

where 𝑚 is the rest mass of the particle and 𝑐 is the speed of light in vacuum. In
particle optics devices, it is advantageous to use an orthogonal coordinate system
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in which the 𝑧 axis is usually coincidental with the optical axis along which the
particles propagate. We are rarely interested in the solution of the equation of
motion (1.3) as a function of time 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡). Instead we aim to
solve the trajectory equation to get 𝑥 = 𝑥(𝑧), 𝑦 = 𝑦(𝑧). For that, let us define the
electrostatic potential Φ so that the potential energy is nonnegative and equal to
the kinetic energy

𝑒Φ = 𝛾𝑚𝑐2 − 𝑚𝑐2, (1.5)

where 𝑒 = |𝑞|. It is common to define the relativistically corrected potential Φ* =
Φ (1 + 𝜀Φ) with a relativistic correction 𝜀 = 𝑒/(2𝑚𝑐2). The Lorentz factor 𝛾 in
equation (1.4) is then equal to 𝛾 = 1 + 2𝜀Φ.

Assuming that the 𝑧-component of the velocity vector �⃗� is always positive we
can write

𝑣 = d𝑧

d𝑡

√︁
1 + 𝑥′2 + 𝑦′2, (1.6)

d𝑧

d𝑡
= 1

𝛾

√︃
2𝑒Φ*

𝑚

1√
1 + 𝑥′2 + 𝑦′2 , (1.7)

where the primes denote differentiation with respect to the 𝑧 coordinate. The equa-
tion of motion (1.3) can be expressed as the so called trajectory equation. In complex
notation 𝑤(𝑧) = 𝑥(𝑧) + i𝑦(𝑧), �̄�(𝑧) = 𝑥(𝑧) − i𝑦(𝑧), it is written as

d
d𝑧

⎛⎝√︃ Φ*

1 + 𝑤′�̄�′ 𝑤′

⎞⎠ = −1
2𝛾

√︃
1 + 𝑤′�̄�′

Φ* 𝐸𝑤 − i𝜂 (𝐵𝑤 − 𝑤′𝐵𝑧) , (1.8)

where 𝑤′(𝑧) = 𝑥′(𝑧) + i𝑦′(𝑧) is the complex slope of the ray 𝑤(𝑧), 𝜂 =
√︁

𝑒/(2𝑚),
𝐸𝑤 = 𝐸𝑥 + i𝐸𝑦 is the electric field intensity, 𝐵𝑤 = 𝐵𝑥 + i𝐵𝑦 is the magnetic flux
density in the plane perpendicular to the 𝑧 axis, and 𝐵𝑧 is the 𝑧-component of the
magnetic field vector.

1.2 Multipole Expansion of the Electromagnetic
Field

In charged particle optics, we rarely encounter time-dependent fields, as in most
cases, the transition time of the particle through the system is much shorter than
the maximum frequency of the field. Hence we can consider the fields stationary.
The beam-guiding electric and magnetic fields are formed by the voltages applied to
the electrodes and by the currents within the coils of the magnets. These boundary
conditions determine the spatial distribution of the fields. In scanning electron-
beam applications, the current density of the beam is usually low enough to justify
neglecting the space-charge effects (an exception is e.g. electron-beam welding or
in the vicinity of electron sources). We assume that only external charges and
currents create the electromagnetic field; adding the stationary condition 𝜕/𝜕𝑡 = 0,
the Maxwell equations adopt a simple form

∇⃗ × �⃗� = 0, ∇⃗ × �⃗� = 0, 𝜀0∇⃗�⃗� = 0, ∇⃗�⃗� = 0, (1.9)
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where 𝜀0 is the permittivity of free space. The first two equations are satisfied if the
fields are expressed as the gradient of a scalar potential

�⃗� = −∇⃗Φ, �⃗� = −∇⃗Ψ. (1.10)

Both the electric potential Φ and the scalar magnetic potential Ψ satisfy the
Laplace equation

∇⃗2Φ = 0, ∇⃗2Ψ = 0. (1.11)

The potentials on the boundary surfaces (electrodes, pole pieces) determine the
solutions of these equations.

In Cartesian coordinates, for systems with a straight axis, the electric potential
Φ can be decomposed into a sum of multipole terms

Φ(𝑤, �̄�, 𝑧) =
∞∑︁

𝑛=1
Φ𝑛 cos

[︁
𝑛(𝜙 − 𝜙𝑛,0)

]︁
(1.12)

corresponding to a Fourier series expansion, where 𝑛 is the multipole component and
𝜙𝑛,0 its initial orientation; Φ𝑛 is not a function of th polar angle 𝜙. In the vicinity
of the optical axis, Φ𝑛 can be expressed as an expansion of the axial potential 𝜑𝑛(𝑧)

Φ𝑛 =
∞∑︁

𝑘=0

(−1)𝑘𝑛!
𝑘!(𝑛 + 𝑘)!

(︂
𝑤�̄�

4

)︂𝑘

ℜ
{︃

�̄�𝑛 𝜕2𝑘𝜑𝑛(𝑧)
𝜕𝑧2𝑘

}︃
. (1.13)

The first few terms of the rotationally symmetric field Φ0, the dipole field Φ1, and
the quadrupole filed Φ2 are as follows:

Φ0(𝑤, �̄�, 𝑧) = 𝜑(𝑧) − 1
4𝑤�̄� 𝜑′′(𝑧) + 1

64𝑤2�̄�2𝜑(4)(𝑧) − · · · (1.14)

Φ1(𝑤, �̄�, 𝑧) = −ℜ {�̄�𝐹1(𝑧)} + 1
8𝑤�̄� ℜ {�̄�𝐹 ′′

1 (𝑧)} − · · · (1.15)

Φ2(𝑤, �̄�, 𝑧) = −ℜ
{︁
�̄�2𝐹2(𝑧)

}︁
+ 1

12𝑤�̄� ℜ
{︁
�̄�2𝐹 ′′

2 (𝑧)
}︁

− · · · (1.16)

where 𝐹1(𝑧) is the axial dipole field, and 𝐹2(𝑧) is the axial quadrupole field.
From equation (1.10) the electric field is

𝐸𝑥 = −𝜕Φ
𝜕𝑥

, 𝐸𝑦 = −𝜕Φ
𝜕𝑦

, 𝐸𝑧 = −𝜕Φ
𝜕𝑧

, 𝐸𝑤 = −2𝜕Φ
𝜕�̄�

. (1.17)

An expansion for the magnetic potential can be found analogously

Ψ𝑛 =
∞∑︁

𝑘=0

(−1)𝑘𝑛!
𝑘!(𝑛 + 𝑘)!

(︂
𝑤�̄�

4

)︂𝑘

ℜ
{︃

i𝑛�̄�𝑛 𝜕2𝑘𝜑𝑛(𝑧)
𝜕𝑧2𝑘

}︃
. (1.18)

The first terms of the rotationally symmetric, the dipole, and the quadrupole mag-
netic potential are

Ψ0(𝑤, �̄�, 𝑧) = −
∫︁

𝐵(𝑧) d𝑧 + 1
4𝑤�̄� 𝐵′(𝑧) − 1

64𝑤2�̄�2𝐵′′′(𝑧) + · · · (1.19)
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Ψ1(𝑤, �̄�, 𝑧) = ℑ {�̄�𝐷1(𝑧)} − 1
8𝑤�̄� ℑ {�̄�𝐷′′

1(𝑧)} + · · · (1.20)

Ψ2(𝑤, �̄�, 𝑧) = ℜ
{︁
�̄�2𝐷2(𝑧)

}︁
− 1

12𝑤�̄� ℜ
{︁
�̄�2𝐷′′

2(𝑧)
}︁

+ · · · (1.21)

where 𝐵(𝑧) is the rotationally symmetric axial magnetic flux density, 𝐷1(𝑧) is the
axial dipole field, and 𝐷2(𝑧) is the axial quadrupole field.

From equation (1.10) the magnetic field is

𝐵𝑥 = −𝜕Ψ
𝜕𝑥

, 𝐵𝑦 = −𝜕Ψ
𝜕𝑦

, 𝐵𝑧 = −𝜕Ψ
𝜕𝑧

, 𝐵𝑤 = −2𝜕Ψ
𝜕�̄�

(1.22)

1.3 The Paraxial Equation
Substituting the linear terms of the field expansions (1.14)–(1.16) and (1.19)–(1.21)
into the trajectory equation (1.8) yields the paraxial equation

𝜑*1/2𝑤′′ +
(︃

𝛾𝜑′

2𝜑*1/2 − i𝜂𝐵

)︃
𝑤′ +

(︃
𝛾𝜑′′

4𝜑*1/2 − i𝜂
2 𝐵′

)︃
𝑤 +

+
(︃

𝛾𝐹2

𝜑*1/2 + 2𝜂𝐷2

)︃
�̄� = 𝛾𝑈1𝐹1

2𝜑*1/2 + 𝜂𝐼1𝐷1

(1.23)

where 𝐹1 and 𝐷1 are weak normalized dipole fields generated by a unit voltage
and unit current applied to the electrodes and pole pieces of the deflection system.
The dipole fields are then equal to 𝑈1𝐹1 and 𝐼1𝐷1, where 𝑈1 = 𝑈1𝑥 + i𝑈1𝑦 and
𝐼1 = 𝐼1𝑥 + i𝐼1𝑦 are the applied voltage and current.

1.3.1 Round Lenses and Deflection Fields
In systems with only rotationally symmetric and dipole fields (round lenses and
deflectors) the paraxial equation takes the form

𝑤′′ +
(︃

𝛾𝜑′

2𝜑* − i𝑘𝐵

)︃
𝑤′ +

(︃
𝛾𝜑′′

4𝜑* − i𝑘
2 𝐵′

)︃
𝑤 = 𝛾𝑈1𝐹1

2𝜑* + 𝑘𝐼1𝐷1, (1.24)

where 𝑘 = 𝜂/𝜑*1/2. The homogeneous paraxial equation (equation (1.24) with its
right-hand side equal to zero, i.e. no dipole fields present) is usually solved for two
independent rays: the axial ray 𝑤𝑎 and the field ray 𝑤𝑏 with initial values in the
object plane 𝑧 = 𝑧𝑜

𝑤𝑎(𝑧𝑜) = 0, 𝑤′
𝑎(𝑧𝑜) = 1, 𝑤𝑏(𝑧𝑜) = 1, 𝑤′

𝑏(𝑧𝑜) = 02. (1.25)

The particular solutions of the inhomogeneous equation are then found by variating
the parameters of the homogeneous solution. These can be expressed as

𝑤𝑒(𝑧) = − 1
2𝜑*1/2 (𝑧𝑜)

[︃
𝑤𝑎 (𝑧)

∫︁ 𝑧

𝑧𝑜

𝛾𝐹1

𝜑*1/2 �̄�𝑏 d𝜁 − 𝑤𝑏 (𝑧)
∫︁ 𝑧

𝑧𝑜

𝛾𝐹1

𝜑*1/2 �̄�𝑎 d𝜁

]︃
, and (1.26)

2The initial value 𝑤′
𝑏(𝑧𝑜) = 0 holds if no magnetic field is present at the object plane 𝐵(𝑧𝑜) = 0;

in the general case 𝑤′
𝑏(𝑧𝑜) = i𝜂𝐵(𝑧𝑜)

2𝜑*1/2(𝑧𝑜)
.
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𝑤𝑚(𝑧) = 1
𝜑*1/2 (𝑧𝑜)

[︂
𝑤𝑎 (𝑧) 𝜂

∫︁ 𝑧

𝑧𝑜

𝐷1�̄�𝑏 d𝜁 − 𝑤𝑏 (𝑧) 𝜂
∫︁ 𝑧

𝑧𝑜

𝐷1�̄�𝑎 d𝜁
]︂

(1.27)

for electrostatic and magnetic dipole fields, respectively [2].
The general solution of the paraxial equation (1.24) can be written as

𝑤𝑝(𝑧) = 𝛼𝑜𝑤𝑎(𝑧) + 𝛽𝑜𝑤𝑏(𝑧) + 𝐼1𝑤𝑚(𝑧) + 𝑈1𝑤𝑒(𝑧), (1.28)

where 𝛼𝑜 = 𝑤′(𝑧𝑜) is the complex ray slope in the object plane, and 𝛽𝑜 = 𝑤(𝑧𝑜) is
the transverse coordinate of the ray in the object plane. The image plane 𝑧 = 𝑧𝑖 is
located where the axial ray crosses the optical axis 𝑤𝑎(𝑧𝑖) = 0. The magnification of
the system 𝑀 is defined by the field ray in the image 𝑤𝑏(𝑧𝑖) = 𝑀 exp(i𝜃), and the
angular magnification by the axial ray 𝑤′

𝑎(𝑧𝑖) = 𝑀𝑎 exp(i𝜃), where 𝜃 is the rotation
of the meridional plane. The general ray (1.28) can be equivalently given by the ray
properties in the image plane

𝑤𝑝(𝑧) = 𝛼𝑖
𝑤𝑎(𝑧)
𝑤′

𝑎(𝑧𝑖)
+ 𝛽𝑖

𝑤𝑏(𝑧)
𝑤𝑏(𝑧𝑖)

+ 𝛾𝑖
𝑤𝑚(𝑧)
𝑤𝑚(𝑧𝑖)

+ 𝛿𝑖
𝑤𝑒(𝑧)
𝑤𝑒(𝑧𝑖)

, (1.29)

where 𝛼𝑖 is the ray slope in the image plane, 𝛽𝑖 is the size of the image;

𝛾𝑖 = 𝐼1𝑤𝑚(𝑧𝑖), and
𝛿𝑖 = 𝑈1𝑤𝑒(𝑧𝑖)

(1.30)

are the image plane coordinates of the ray deflected by magnetic and electrostatic
deflectors, respectively.

1.3.2 Electrostatic Lens
In case of solely electrostatic round lenses, the paraxial equation (1.24) contains no
imaginary terms; it is equivalent in both directions 𝑥 and 𝑦, and takes the form

𝑟′′ + 𝛾𝜑′

2𝜑* 𝑟′ + 𝛾𝜑′′

4𝜑* 𝑟 = 0 (1.31)

for 𝑟 =
√

𝑤�̄�. By applying the transformation 𝑟(𝑧) = 𝑅(𝑧) [𝜑*(𝑧𝑜)/𝜑*(𝑧)]1/4, equa-
tion (1.31) takes an even simpler form [2]

𝑅′′ + (2 + 𝛾2) 𝜑′2

16𝜑*2 𝑅 = 0. (1.32)

The propagating rays are confined to the meridional plane as there are no lateral
forces acting on them in a purely electrostatic lens configuration. A single real
coordinate 𝑅(𝑧) is sufficient to define the ray.

1.3.3 Magnetic Lens
Assuming only round magnetic lenses, the paraxial equation (1.24) is written as

𝑤′′ − i𝑘𝐵𝑤′ − i𝑘
2 𝐵′𝑤 = 0. (1.33)
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Writing the complex 𝑤(𝑧) in polar form 𝑤(𝑧) = 𝑟(𝑧) exp [i𝜃(𝑧)], we obtain two real
equations [2]

𝑟′′ + 𝑘2𝐵2

𝑟
= 0, 𝜃′ = 𝑘

2𝐵. (1.34)

Rays in magnetic lenses undergo Larmor precession, i.e. the meridional plane rotates
as the ray propagates in the magnetic field by the angle

𝜃(𝑧) = 𝑘

2

∫︁ 𝑧

𝑧𝑜

𝐵(𝜁) d𝜁 (1.35)

creating a rotating coordinate system where the ray is defined by its polar coordinate
𝑟.

1.3.4 Paraxial Properties of Lenses
As the result of neglecting higher order terms in the trajectory equation, the paraxial
equation describes the propagation of particles accurately only in a limited volume
close to the optical axis. Rays further from the optical axis deviate from this ideal
solution. The paraxial or Gaussian approximation was introduced by C. F. Gauss
in light optics. Paraxial behavior enables one to describe the optical properties of
various elements in a simple way by characteristic quantities such as focal length and
principal planes. These can be derived from the paraxial equations (1.32) and (1.34).

1.4 Aberrations
The deviation of real rays from the paraxial approximation can be expressed with
additional terms 𝑃 (𝑧) on the right-hand side of the paraxial equation (1.24). As
opposed to taking the linear terms only as in the paraxial approximation, higher
order terms of 𝑤 and 𝑤′ in the field expansion are included; we will consider terms up
to the third order 𝑃3(𝑧). As not all particles have the same energy, it is advantageous
to include another term, 𝑃𝑐(𝑧), which is proportional to the particle energy deviation
Δ𝜑. With this term included, one can characterize the energy distribution as an
aberration of the paraxial optics. The equation containing these aberrations takes
the form

𝑤′′ +
(︃

𝛾𝜑′

2𝜑* − i𝑘𝐵

)︃
𝑤′ +

(︃
𝛾𝜑′′

4𝜑* − i𝑘
2 𝐵′

)︃
𝑤 = 𝛾𝑈1𝐹1

2𝜑* + 𝑘𝐼1𝐷1 + 𝑃3(𝑧) + 𝑃𝑐(𝑧).

(1.36)

Analogously to the paraxial equation with added dipole fields, one solves equa-
tion (1.36) with the variation of parameters method. The general solution is given
by

𝑤(𝑧) = 𝑤𝑝(𝑧) + Δ𝑤(𝑧), (1.37)

where 𝑤𝑝(𝑧) is the paraxial solution (1.29), and Δ𝑤(𝑧) is the deviation of the tra-
jectory introduced by the additional terms 𝑃 (𝑧).
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1.4.1 Third-order Geometric Aberrations
Let us consider the aberrations introduced by 𝑃3(𝑧) in equation (1.36). These are the
so called third-order geometric aberrations and are the result of including the third-
order terms of 𝑤 of the field expansions in the trajectory equation. Analogously to
light optics, the aberrations of round lenses are: spherical aberration 𝑘𝑆, astigmatism
𝑘𝐴, coma 𝑘𝐿, field curvature 𝑘𝐹 , and distortion 𝑘𝐷. In case of magnetic lenses, the
aberrations 𝑘𝐴, 𝑘𝐿, and 𝑘𝐷 are complex. The deviation of the real ray from the
paraxial trajectory in the image plane due to the geometric aberrations is given by

Δ𝑤(𝑧𝑖) = 𝑘𝑆𝛼2
𝑖 �̄�𝑖 + 𝑘𝐴�̄�𝑖𝛽

2
𝑖 + 𝑘𝐿𝛼𝑖�̄�𝑖𝛽𝑖 + 1

2𝑘𝐿𝛼2
𝑖 𝛽𝑖 + 𝑘𝐹 𝛼𝑖𝛽𝑖𝛽𝑖 + 𝑘𝐷𝛽2

𝑖 𝛽𝑖 (1.38)

expressing the aberration coefficients and ray parameters in the image plane [5].
For dipole deflection fields with equivalent 𝑥 and 𝑦 direction deflection, and with

no hexapole field component, the structure of aberration coefficients takes a similar
form as in the case of round lenses

Δ𝑤(𝑧𝑖) = 𝐾𝑚
𝐴 �̄�𝑖𝛾

2
𝑖 + 𝐾𝑚

𝐿 𝛼𝑖�̄�𝑖𝛾𝑖 + 1
2𝑘𝑚

𝐿 𝛼2
𝑖 𝛾𝑖 + 𝐾𝑚

𝐹 𝛼𝑖𝛾𝑖𝛾𝑖 + 𝐾𝑚
𝐷 𝛾2

𝑖 𝛾𝑖 +

+ 𝐾𝑒
𝐴�̄�𝑖𝛿

2
𝑖 + 𝐾𝑒

𝐿𝛼𝑖�̄�𝑖𝛿𝑖 + 1
2𝑘𝑚

𝐿 𝛼2
𝑖 𝛿𝑖 + 𝐾𝑒

𝐹 𝛼𝑖𝛿𝑖𝛿𝑖 + 𝐾𝑒
𝐷𝛿2

𝑖 𝛿𝑖 +

+ 𝑆𝐴�̄�𝑖𝛾𝑖𝛿𝑖 + 𝑆𝐹 𝛼𝑖𝛾𝑖𝛿𝑖 + 𝑆𝐹 𝛼𝑖𝛾𝑖𝛿𝑖 + 𝐾𝑚
𝐷 𝛾2

𝑖 𝛾𝑖 +
+ 𝑆𝐷1𝛾𝑖𝛿

2
𝑖 + 𝑆𝐷2𝛾𝑖𝛿𝑖𝛿𝑖 + 𝑆𝐷3𝛾𝑖𝛾𝑖𝛿𝑖 + 𝑆𝐷4𝛾

2
𝑖 𝛿𝑖 +

+ 𝜍𝐷1𝛽𝑖𝛾𝑖𝛿𝑖 + 𝜍𝐷2𝛽𝑖𝛾𝑖𝛿𝑖 + 𝜍𝐷3𝛽𝑖𝛾𝑖𝛿𝑖,

(1.39)

where the deflections 𝛾𝑖 and 𝛿𝑖 are defined by equation (1.30), the coefficients 𝐾𝑚 are
the aberrations of the magnetic deflection, 𝐾𝑒 are those of the electrostatic deflec-
tion, 𝑆 are mixed aberrations of combined deflection systems, and 𝜍 are aberrations
related to the finite size of the object [5]. In reality, using a single deflection system
and imaging with a narrow beam, only a single type of aberrations, e.g. 𝐾𝑚, is
nonzero. The image position deviation can be expressed, analogously to the case
of round lenses, using the ray parameters in the object plane with the definitions
𝛾𝑖 = 𝑀 exp(i𝜃)𝛾𝑜 and 𝛿𝑖 = 𝑀 exp(i𝜃)𝛿𝑜.

Although not being a third-order aberration, it is important to note the effect
of defocus on the image position as this is often used to lower the impact of the
mentioned aberrations. In the observation plane 𝑧obs in a small distance Δ𝑧 =
𝑧obs − 𝑧𝑖 from the Gaussian plane (paraxial image plane) 𝑧𝑖 the ray position is given
by

𝑤(𝑧obs) = 𝑤(𝑧𝑖) + Δ𝑧

(︃
𝛼𝑖 + 𝛾′

𝑖 + 𝛿′
𝑖 + 𝛽𝑖

𝑓𝑖

)︃
, (1.40)

where 𝛾′
𝑖 and 𝛿′

𝑖 are the slopes of the deflected trajectories in the image plane, and
𝑓𝑖 is the focal length of the lens [5].

Spherical Aberration

The spherical aberration is the only aberration that does have an effect even if the
object is situated at the optical axis. If the beam is limited by a circular aperture,
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the spherical aberration broadens the Gaussian image point into a disk with radius
𝑟𝑠 = 𝑘𝑆𝛼3

𝑖,max, where 𝛼𝑖,max is the maximum aperture angle in the image plane. The
spherical aberration is the result of the lens’s focusing power increasing with off-axis
distance. The index of refraction is related to the field potential which must satisfy
the Laplace equation. Since the charges and currents generating the field are far
from the axis, the potential Φ must inherently increase with radial distance [3]. This
leads to an always positive spherical aberration for both electrostatic and magnetic
lenses as proved by Scherzer in 19362 [6]. Rays passing through the lens further from
the axis are therefore always focused more strongly than paraxial rays as shown in
figure 1.1. One finds that placing the detecting plane closer to the lens (negative
defocus) the spot size is considerably smaller down to the disk of least confusion.

Astigmatism and Field Curvature

Astigmatism and field curvature are closely associated aberrations. These aber-
rations arise when imaging off-axis objects with incident rays striking the optical
system at an angle. Astigmatism is the phenomenon where a lens has different fo-
cusing power in the 𝑥 and 𝑦 directions. Two line images are formed at different
image surfaces as shown in figure 1.2. The spot at the Gaussian image plane is
elliptical. It is possible to find an ideal surface between the astigmatic images where
the image of a point object is a disk of minimal size. This ideal surface is curved,
hence the name of the aberration — field curvature. The field curvature of round
electron lenses is, as in the case of spherical aberration, always positive.

The field curvature of deflection systems can be compensated dynamically by
lowering the focusing power of the lens proportionally to the square of the deflection

2Scherzer’s theorem holds for rotationally symmetric, static, space-charge-free, dioptric lenses.
By abandoning one or more of these criteria, it is possible to design lenses with negative spherical
aberration.

𝑧

Object plane Disk of least
confusion

Gaussian
image plane

Figure 1.1: Positive spherical aberration of an electron lens. Rays further from the
axis are focused more strongly than paraxial rays. The resulting image of a point
object is a finite disk. According to [3].
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𝛾𝑖𝛾𝑖. The deflection astigmatism can be corrected by introducing a quadrupole field
(stigmator) proportional to 𝛾2

𝑖 . The dynamic correction of these aberrations is the
main goal of this thesis and will be discussed in chapters 4 and 5.

Coma

Coma results in off-axis point objects appearing to have a tail like a comet. Coma is
defined as a variation of magnification over the entrance pupil. Coma is characterized
by linear shift of the image (coma length 𝑘𝐿) and the broadening of the image of
a point into a disk (coma radius 𝑘𝐿/2). These two effects occur simultaneously
creating the characteristic comet-like shape as shown in figure 1.3.

Distortion

All previously discussed aberrations depend on the aperture radius. If the aperture
is small enough so that the system does not exhibit these aberrations, one aberra-
tion still remains — distortion. In Gaussian optics, the magnification is constant
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Figure 1.2: The effect of astigmatism and field curvature. Astigmatism forms two
line images of a point object at different image surfaces 𝑆 and 𝑇 . Field curvature
causes that the optimal surface 𝐷 between the two astigmatic images is curved.
From [1].
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Image

Figure 1.3: Coma results in an off-axis point object appearing to have a tail like
a comet. Coma is defined as a variation of magnification over the entrance pupil.
According to [7].

regardless of the object size. In real systems, however, the magnification is a func-
tion of off-axial distance of the ray. Two possibilities arise: in barrel distortion the
magnification decreases with distance from the optical axis, whereas in pincushion
distortion the magnification increases. The names of these aberrations are evident
from the shape of the image of a rectangular grid as can be seen in figure 1.4. The
nature of distortion depends on the position of the aperture.

The distortion of deflection systems shifts the image of the axial point object in
the image plane. This can be compensated by superimposing a small correction onto
the deflection signal. The compensation of deflection distortion will be addressed in
chapter 5.

1.4.2 Chromatic Aberrations
Chromatic aberrations are a consequence of the finite energy distribution of beam
electrons. The index of refraction is a function of the electron energy. Electrons with
different initial energy will therefore follow different trajectories, and the image of
a point object becomes a disk with finite dimensions. The chromatic aberration
of an electron lens is shown if figure 1.5. Compared to light optics, the energy
distribution of electrons ΔΦ/Φ in charged particle applications is relatively narrow,
typically around 10−6 – 10−4. Chromatic aberrations are divided into axial chromatic
aberration and chromatic distortion. As in the case of the spherical aberration, the
axial chromatic aberration cannot be eliminated by skillful design.

The ray position deviation in the image plane due to first-order chromatic aber-
rations is given by

Δ𝑤(𝑧𝑖) = (𝑘𝑥𝛼𝑖 + 𝑘𝑇 𝛽𝑖 + 𝐾𝑚
𝑇 𝛾𝑖 + 𝐾𝑒

𝑇 𝛿𝑖)
ΔΦ
Φ* , (1.41)
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Barrel distortion

Pincushion distortion

Figure 1.4: Distortion of the image of a rectangular grid. The magnification of the
system is a decreasing or increasing function of off-axial distance of the ray resulting
in barrel- or pincushion distortion, respectively. The nature of distortion depends
on the position of the aperture. According to [1].

where 𝑘𝑥𝑖 is the axial chromatic aberration of round lenses, 𝑘𝑇 𝑖 is the chromatic
distortion of round lenses, and 𝐾𝑇 𝑖 is the deflection chromatic aberration; all aber-
ration coefficients and ray parameters are given with respect to the image plane
𝑧𝑖.

The chromatic aberrations can be lowered by employing a monochromator which
filters the energy distribution of the electrons. The disadvantage of this solution is
that it decreases the beam current. Another method of compensating chromatic
aberrations is to introduce multipole fields which can have negative chromatic aber-
ration.

1.4.3 Other Aberrations

Several other aberrations affect the performance of an electron-beam device. These
will not be considered in this thesis as they are negligibly small in our studies;
however we give a short description of the most important ones.

25



Image plane

Φ* + ΔΦ

Φ*

Φ* − ΔΦ

Figure 1.5: Axial chromatic aberration of an electron lens. Electrons with higher en-
ergy are focused less strongly than electrons with lower energies. As a consequence,
the image of a point object is a finite-size disk. According to [3].

Space Charge

Beam particles interact with each other via their electromagnetic field. In case of an
electron beam the electrostatic repulsion between electrons causes broadening of the
beam. This is most noticeable in regions with high current density and low particle
energy. In most scanning electron-beam applications the effect of space charge is
negligible; it needs to be taken into consideration in the vicinity of electron sources,
however.

Diffraction

Diffraction is the result of the wave-like nature of electrons. Electrons diffract on
apertures causing image blur; here the principles of geometrical optics can no longer
be applied. According to the de Broglie theorem, particles with momentum 𝑝 have
a wavelength

𝜆 = ℎ

𝑝
, (1.42)

where ℎ = 6.63 × 10−34 Js is the Planck constant. Imaging with electrons of wave-
length 𝜆 creates a diffraction pattern in the image plane characterized by the Airy
function. The highest intensity disk at the center of the Airy pattern has a diameter

𝑑 = 1.22𝜆

𝛼
, (1.43)

where 𝛼 is the aperture angle. To limit the effects of diffraction in charged particle
optics, greater aperture angles are preferred, whereas e.g. the spherical aberration
is proportional to the (cube of the) aperture angle. An optimal aperture angle can
be found in all applications after evaluating all contributing aberrations.

Parasitic Aberrations

In practice, imperfections in construction and misalignment of electron-optical el-
ements will always disturb the ideal shape and symmetry. These effects generate
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additional aberrations known as parasitic aberrations. The perturbation of the ideal
system by the imperfections is small, and therefore can be treated using perturba-
tion theory. The most known parasitic aberration is the axial astigmatism which is
caused by the ellipticity of lenses generating a weak quadrupole field. This is rou-
tinely canceled in electron microscopes by introducing a stigmator which produces
its own quadrupole field [8].

1.5 Optical Elements

1.5.1 Electron Gun
The electron gun incorporates the emitter (cathode) and the acceleration stage.
Particles are emitted from very small thermionic, Schottky, or field-emission cath-
odes; they are then accelerated and focused by a strong electrostatic field to energies
on the order of 10–100 keV in electron microscopy applications. From an electron-
beam system design point of view, the most important parameters of the gun are: 1)
brightness 𝛽, defined as the current passing through unit area into a solid (aperture)
angle; and 2) the initial energy spread Δ𝐸 of the electrons.

In thermionic emission, electrons from the Fermi level of the cathode can over-
come the work function by thermionic excitation. These cathodes operate at 1400–
2000 K depending on their material [9]. Most commonly W or LaB6 cathodes are
used. Thermionic emission guns offer a brightness around 1010 [Am−2sr−1] and the
beam energy spread is 1.5 eV [10].

In a Schottky-type emitter, the work function is decreased by a strong electric
field at the tip of the cathode. The work function us usually further lowered by
coating the tip. Schottky cathodes are operated at temperatures around 1800 K.
The brightness of Schottky emitters is 5×1012 [Am−2sr−1], and their energy spread
is 0.3–1 eV [10].

Field emission occurs when the electrical field around the cathode tip decreases
the width of the potential barrier to a few nanometers. The electrons from the Fermi
level can penetrate this barrier by the tunneling effect. Field emission guns require
ultra-high vacuum, otherwise the tip is rapidly destroyed by residual atmosphere
ion bombardment. Field emission guns can operate at room temperature but often
work at 1000–1500 K to avoid adsorption. The lower cathode temperature results
in lower energy spread Δ𝐸 ≈ 0.3 eV. The brightness of field emission guns is 1011–
1013 [Am−2sr−1].

For further information on electron guns we refer the reader to [9]. A thorough
characterization of electron guns was performed by Horak in his bachelor’s thesis
[10].

1.5.2 Round Lenses
Round lenses generate a rotationally symmetric electrostatic or magnetic field which
focuses the electron beam. These lenses have cylindrical bores and are precisely
arranged on a common axis.
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Electrostatic lenses

Electrostatic lenses consist of several charged electrodes which produce the focusing
field. They can be divided by the number of electrodes they use according to [11].
Aperture The simplest electrostatic lens with a focusing effect is an aperture di-

viding two regions with different electrostatic potential. The aperture acts as
a converging lens for electrons entering the region with higher potential, and
as a diverging lens for electrons entering the lower potential region.

Immersion lens An electrostatic immersion lens can be created by two cylindrical
electrodes with different potential. Much like in the aperture lens case, the
immersion lens can be converging or diverging.

Unipotential lens The most commonly used electrostatic lens is the unipotential
or einzel lens. The lens consists of three circular or cylindrical electrodes. In
symmetric unipotential lenses, the shape and the applied potential to the outer
electrodes is equal. The object and image region are on the same potential
in this case, and the focusing power of the lens is adjusted by the potential
applied to the center electrode — hence the name. Unipotential lenses are
always converging, and can be operated in accelerating or decelerating mode
defined by the potential of the central electrode relative to the outer electrodes.
The focusing effect of the unipotential lens can be seen in figure 1.6, from
which it is evident that an accelerating lens has lower aberrations. In practice,
however, decelerating mode is commonly preferred for finer tuning and to avoid
breakdown discharges between electrodes.

Zoom lenses Zoom lenses use four or more electrodes to achieve adjustable mag-
nification for a given object and image position.

For a more detailed description of electron lenses, their use and properties we refer
the reader to [11].

Magnetic lenses

As in case of electrostatic fields, an axially symmetric magnetic field has a focusing
effect on charged particles. Magnetic lenses offer higher focusing power and lower
aberrations than their electrostatic counterparts for electron energies used in elec-
tron microscopy. Another important note is that charged particles undergo Larmor
precession in an axial magnetic field, thus the beam rotates in a magnetic lens. In
order to maximize the focusing effect, the coil is surrounded by a magnetic casing
allowing the field to reach the optical axis only via a small region — gap — between
carefully designed pole pieces. A simple design of a magnetic objective lens is shown
in figure 1.7. For a detailed treatment of magnetic lens design, we refer to the reader
to [12] or [13].

1.5.3 Deflectors
Deflectors produce a dipole field to deflect the particle beam off-axis. Electrostatic
or magnetic dipole fields can be both used, while magnetic deflectors offer stronger
deflection force and lower aberrations in general. If potential of the deflector is anti-
symmetrical around the optical axis in the 𝑥 and symmetrical in the perpendicular 𝑦
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1 V 0.145 V 1 V

1 V 5.910 V 1 V

Figure 1.6: Electrode arrangement of a unipotential electrostatic lens. The ray
traces show that the lens is converging in decelerating and accelerating voltage
modes. The Gaussian image of the entering parallel beam is in the right-hand
electrode plane; rays being focused more strongly is the result of spherical aberration
which is noticeably higher in the decelerating mode. From [11].

Figure 1.7: A simple design of a magnetic objective lens around the optical axis
depicting the coil (crosshatch) inside the casing (section lines). The gap is formed
by the pole pieces in the opening of the casing. From [12].
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direction, the quadrupole and octupole field components vanish, leaving the hexapole
field the first non-zero multipole [14]. Important aspects of deflector design are high
homogeneity of the dipole field around the optical axis (at least up to the deflected
beam off-axis distance), and that they do not produce a hexapole field.

Electrostatic deflectors in charged particle microscopy are made of cylindrical
electrodes. While satisfying the equivalent 𝑥 and 𝑦 direction deflection condition,
equisectored 8-electrode deflectors or non-equisectored 20-electrode deflectors can
be used; these are shown schematically in figure 1.8. With appropriate choice of
voltage on the electrodes, the hexapole field component vanishes. For this, the 8-
electrode systems needs two voltage supplies, while only one is sufficient for the
20-electrode system. However, twenty electrodes pose a considerable challenge in
the manufacturing process.

Magnetic deflectors can be made of toroidal or saddle coils as shown in figure 1.9.
A high frequency magnetic deflector induces eddy currents in nearby conductors,
such as lens casing, pole pieces, etc., greatly limiting its performance. This can be
compensated by enclosing the deflector in another set of deflection coils with opposite
excitation which partially cancel the outer magnetic field [14]. Appropriate design
of coil geometry allows nullifying the hexapole field.

1.5.4 Stigmators

Stigmators produce a quadrupole field and are used mainly to compensate the axial
astigmatism. They can also be used to compensate deflection astigmatism, as will be
discussed in chapters 4 and 5. As in case of deflectors, stigmators can be electrostatic
or magnetic. In fact, it is possible to produce an independent quadrupole field
using an 8-electrode deflection system. Figure 1.10 shows how a quadrupole field of
arbitrary orientation can be produced using an 8-electrode stigmator. Figure 1.11
shows the creation of an arbitrarily oriented quadrupole using saddle coils.
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Figure 1.8: Electrodes of two 8-electrode equisectored deflector (a) and (b), and a
non-equisectored 20-electrode deflector (c) deflecting in the 𝑥 direction. For 𝑘 =√

2 − 1 and 𝑙 =
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2/2, as well as in (c), the hexapole field vanishes. From [14].
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Figure 1.9: Toroidal and tapered saddle magnetic deflector coils deflecting in the 𝑥
direction. The hexapole field component vanishes for 2𝜙𝑐 = 60°. According to [15].

Deflection field curvature (Fig. 1(a)) is caused by the focusing force on the electrons varying with deflection distance, the
focusing force being stronger at larger deflection distances. For primary field curvature, the locus of the focal point is a
paraboloid, and the beam shape at the Gaussian image plane is a circular disk of confusion. Deflection astigmatism (Fig. 1(b)) is
caused by the focusing force on the electrons varying with azimuth angle in the aperture plane, with the difference between the
forces in the different directions increasing as the square of the deflection distance. The effect (Fig. 1(b)) is a circular disk of
confusion at the Gaussian image plane, surrounded by two mutually perpendicular line foci.

The expressions for deflection field curvature and deflection astigmatism2 are as shown below:

Primary deflection field curvature: (1)
Primary deflection astigmatism: (2)

where s, = s+is is the complex ray slope at the image plane, w =x+ iy is the complex deflection distance at the image plane,
and and are the complex conjugates of s1 and w. (Physically speaking, the absolute magnitude of 5,represents the beam
half angle a, while the absolute magnitude ofw, corresponds to the deflection distance D.)

To correct deflection field curvature, defocusing forces must be dynamically applied to the deflected electrons. This is usually
accomplished by placing a dynamic focus coil inside the main lens and applying a time-varying current to it, in opposition to the
main lens current, to weaken the focusing field. The required dynamic focus current, I, is proportional to the square of the
deflection distance (D2 =w,).

To correct deflection astigmatism, a quadrupole field is required, which applies different forces in the different orthogonal
directions. The quadrupole field is created by an electrostatic or magnetic element with four electrodes or coils. Two quadrupole
elements, oriented at 45° to each other, are used, to enable both the strength and orientation of the quadrupole field to be varied.
Such an arrangement is called au octopole stigmator. By applying suitable voltages or currents to the electrodes or coils of the
stigmator, the quadrupole field can always be made to have the correct strength and orientation for exactly correcting the
primary deflection astigmatism. The voltages or currents required are proportional to the square of the deflection distance D.

3. ELECTROSTATIC AND MAGNETIC STIGMATORS

3.1. Electrostatic stigmaiors

Fig. 2 shows an electrostatic octopole stigmator. Fig. 2(a) shows unit electrode potentials (± 1 volt) for creating a quadrupole
field with axes in the x andy directions. Fig. 2(b) shows unit potentials (± 1 volt) for creating a quadrupole field with axes (p,q),
at 45° to the (x,y) axes. Fig. 2(c) shows the general case, with an arbitrary pair of voltages, V, and Vb, for creating a quadrupole
field with any required strength and orientation.
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Fig. 2. An electrostatic octopole stigmator, showing electrode potentials, and a physical rotation of the stigmator.
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(a) (b) (c) (d)

Figure 1.10: An electrostatic 8-electrode stigmator. The unit voltages applied to the
electrodes of stigmator (a) create a quadrupole field with (𝑥, 𝑦) axes. A 45°-rotated
quadrupole field with (𝑝, 𝑞) axes is created by applying the unit potentials shown
in (b). A quadrupole field of arbitrary orientation (c) can be created as a linear
combination of (a) and (b). Alternatively the stigmator may be physically rotated
by an angle 𝜒. From [16].

Fig. 3. Magnetic octopole stigmators. (a) - (d) Toroidal type. (e) - (h) Saddle type.

For a stigmator with arbitrary coil currents, J and 4, and an arbitrary physical rotation angle of the stigmator (Fig. 3(d) or
3(h)), the magnetic stigmator field can be derived in a similar manner to the electrostatic case. By defining complex variables:

= 'a + 11,5 = i0e2, 10 = J'a + 1,52, = tan1('b/1a)' D2(z) = d2(z)e2lX

the z and w components of the magnetic stigmator field can be expressed as follows:

B,, =2,u0-
=

2iID2W_!(3I,DiwW2 (9)

B = . = ..(IDW2

4. NUMERICAL COMPUTATION OF STIGMATOR FIELDS

From the above electrostatic and magnetic potential expressions Eqs. (4) and (8), the quadrupole fields of stigmators can be
expressed in terms of the axial electrostatic and magnetic stigmator field functions, f(z) and d2(z). The techniques used
previously for computing axial electrostatic and magnetic deflection field functions7'8 can be adapted, with minor modifications,
to compute the axial stigmator field functions. A set of programs has been developed to compute the electrostatic and magnetic
stigmator fields using the finite element method (for both electrostatic and magnetic stigmators), the charge density method (for
electrostatic stigmators) and the Biot-Savart law (for magnetic stigmators in free space).

'Li. Computation ofmagneiic stigmator fields

When magnetic stigmators are in free space regions, the stigmator fields can be calculated analytically using the Biot-Savart law,
in a similar way to that used for computing magnetic deflection fields.8 The analytic formulae for computing the stigmator field
function d2(z) for both toroidal stigmators and saddle stigmators are given in Eqs. (10) and (11) respectively.
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Figure 1.11: A magnetic saddle-coil stigmator. The unit current in the saddle coils
(a) produces a quadrupole field with (𝑥, 𝑦) axes. A 45°-rotated quadrupole field with
(𝑝, 𝑞) axes is created by applying the unit current shown in (b). A quadrupole field
of arbitrary orientation (c) can be created as a linear combination of (a) and (b).
Alternatively the stigmator may be physically rotated by an angle 𝜒. From [16].
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1.6 Computer-aided Design
To design an electron-optical system, it is essential to be able to predict its at-
tributes: the paraxial properties and the aberration coefficients. A fast method is
needed to evaluate the effect of the shape and position of the optical elements on the
performance of the system. The amount of calculations involved makes it necessary
to use computer tools in modern charged particle optics applications. Software for
the design of electron microscopes and lithography systems has become commer-
cially available. In principle, two options are available: 1) ray tracing and 2) solving
the paraxial equation and evaluating the aberration coefficients. In microscopy,
aberrations theory is used to a great extent as it provides a set of coefficients to
characterize and compare optical elements and systems.

In this thesis, EOD (Electron Optical Design [17]) is used for the design and
evaluation of the electron-beam lithography system properties. The software pack-
age offers a design environment, field calculation using the finite element method,
ray tracing, and evaluation of paraxial properties and aberrations.
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2 DIRECT-WRITE ELECTRON-BEAM
LITHOGRAPHY

Electron-beam lithography (EBL) is a technique for creating extremely fine patterns
using a focused electron beam. The term “direct-write” refers to the beam scanning
across the surface drawing custom shapes as opposed to mask-writing. The surface
is coated with an electron-sensitive layer called a resist which changes its structure
when exposed to the beam of electrons. Patterns of sub-10 nm resolution can be
created this way making EBL a requirement for modern electronics and integrated
circuit fabrication. The main features of direct-write electron-beam lithography are

1. High resolution, almost to the atomic level. A feature size of 2 nm and 8 nm
half-pitch (half the distance between identical features) has been reported by
Manfrinato et al. [18].

2. High flexibility. There are almost no restrictions for the pattern to be gener-
ated as it is a maskless technique, and EBL is compatible with a great variety
of materials.

3. Low speed. Compared to projection techniques, direct-write EBL is one or
more orders of magnitude slower.

4. High price. Commercially available EBL machines are very costly with price
tags ranging up to several million dollars.

2.1 Evolution of Electron-Beam Lithography

Writing miniature features with an electron beam was proposed in 1959 by Richard
Feynman in his famous address to the American Physical Society titled “There’s
Plenty of Room at the Bottom” [19]. Feynman suggested using a setup similar to
the scanning electron microscope to “write the entire 24 volumes of the Encyclopedia
Britannica on a head of a pin” [20]. Feynman also foresaw — since the direct
modification of metal surfaces with an electron beam would be inefficient — the
subsequent discovery of the electron beam resist.

Research along these lines started soon after. In the early 60s electron beams were
used to deposit hydrocarbon and silicone from gas phase. Creating high resolution
metal lines was demonstrated in the mid 60s using a scanning electron beam with
a mask and a photodetector. This method allowed fabrication of 60–80 nm wide
aluminum lines [21].

In 1966, IBM researchers demonstrated a lithography tool similar to today’s sys-
tems. It consisted of an electron column, a motorized x-y stage, a digital deflection
with pattern data stored on magnetic tape, and secondary electron imaging. The
instrument could expose photoresists on e.g. silicon wafers. Another group at IBM
created a bipolar transistor working at 2 GHz using EBL [22].

Within a few years, the common polymer polymethylmethacrylate (PMMA) was
discovered to have optimal properties as a high resolution electron sensitive resist
[23]. This was a huge step forward in EBL as previously used photoresists produced
much worse results. PMMA allowed the use of a new technique — lift-off. It is
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remarkable, that despite the plethora of technological advancements in electron-
beam lithography, PMMA is still widely used as resist nowadays. When exposed
to the electron beam, the large molecules of PMMA (10 000–1 100 000 molecular
weight) are broken into smaller pieces. These can then be selectively washed away
in a solvent developer creating the needed pattern.

In the 1970s, electron-beam lithography systems were in rapid development.
Commercially available PMMA was investigated and lines as narrow as 45 nm were
fabricated at Hughes Research Labs [24]. Similar research was also ongoing at IBM,
Westinghouse, University of California Berkeley, and Texas Instruments. Conven-
tional tungsten filament cathodes were replaced by lanthanum hexaboride (LaB6)
which provided higher brightness. Laser interferometers began to be used for fine
stage motion control. In order to increase throughput Pfeiffer at IBM developed a
shaped beam system [25] which exposed an adjustable spot of the resist simultane-
ously as opposed to pixel-by-pixel exposure of the previous Gaussian beam tools.
During this time shaped beam techniques were also independently developed by Carl
Zeiss Jena in former East Germany [26].

By the 1980’s, specialized lithography systems were commercially available. Wolf
showed that aberrations considerably limit the achievable spot size when the beam
is deflected off-axis. As opposed to previous EBL systems which used modified scan-
ning electron microscopes (offering high resolution over a field size of 5 µm), these
lithography instruments sacrificed ultra-high resolution in order to offer millimeter-
sized fields. Researchers also investigated nanometer scale fabrication. They were
able to reproduce the resolution of the primary beam by directly dissociating metal
fluoride which is insensitive to secondary electrons. Similar resolution was also
demonstrated with PMMA resist.

Although these experiments demonstrated the ultimate line-width resolution of
electron-beam lithography, many issues were still present and it was very difficult
to retain these properties uniformly over large fields. The systems also required lot
of user interaction and tweaking; focusing and stigmation of the beam had to be
manually adjusted by the operator, fluctuations were hard to correct.

In 1985 JEOL released their JBX5DIIU combining the needs of a lithography
system such as pattern generation, 2.5 nm precision deflection, interferometric stage
motion control and a bright LaB6 electron gun emitting a 50 keV beam. The product
was able to write ∼25 nm structures across an 80 µm field. It was also in the early
80s that research on electron-beam lithography began in Brno at the Institute of
Scientific Instruments, Czech Academy of Sciences (then Czechoslovak Academy of
Sciences) [14]. A shaped beam system was developed and marketed as the Tesla
BS600 series.

In the early 1990s, IBM changed their chip design from bipolar transistors to
CMOS-based reducing the required part numbers by several orders of magnitude
[26]. This made direct-write electron-beam systems unnecessary and impractical
ending the first and only era of large-scale industrial application direct wafer expo-
sure EBL. Bell Laboratories invented SCALPEL in the 1990s solving several prob-
lems of projection EBL thus making it feasible [27]. By scattering electrons in the
mask as opposed to absorbing them, the active layer of the mask could be made
very thin (∼100 nm) which also ensured thermal stability. A similar approach was
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taken by Nikon in cooperation with IBM who developed PREVAIL [28]. In addition
to a scattering mask PREVAIL uses variable axis lens to dynamically correct for
off-axis aberrations while scanning the beam. LaB6 electron sources were replaced
by thermal field emitters made of tungsten coated with zirconium oxide; these pro-
duce very small, bright, stable sources with minimal electron energy spread. Hitachi
developed a cell projection lithography system capable of exposing an array of com-
plicated cell patterns in one shot [29]. Here, a cell aperture is selected from the
set of available shapes by a deflector, and a variable shaped beam is produced by
shaping deflector. Exposing variable shaped and size features in one shot led to
an increase in throughput of 1–2 orders of magnitude in the production of quarter
micron memories and application specific integrated circuits. In the meantime the
semiconductor industry has moved to optical lithography and did not adapt these
techniques.

Current research in Europe, the US, and Japan focuses on maskless lithography
(ML2) projects [30]. These aim for massively parallel projection of pixels. The sep-
aration of electrons into several beamlets reduces the beam blur caused by Coulomb
interactions between the electrons and allows much higher total currents exposing
wafers faster. The proposed systems use 64 to several million beamlets but these
projects are in early phases and the demonstrated performance is orders of magni-
tude below the stated goals.

2.2 Electron-beam Lithography Exposure Meth-
ods

Writing directly with an electron beam inherently leads to low writing speeds as all
“pixels” of the pattern need to be written by the beam one by one. The simplest
lithography systems employing the principles of scanning microscopes scan the sub-
strate with a very narrow Gaussian beam to achieve small feature size with sharp
edges as shown in figure 2.1a. Small beam size here results in lengthy exposure
times.

The lithography process can be sped up considerably using shaped beams which
write much larger areas during a single shot. This is illustrated in figure 2.1b–c.
Here the electron source illuminates a square aperture which acts as the object to
be demagnified. Further increase in throughput can be achieved by using an aperture
of the same shape as the written pattern (figure 2.1d). Another approach is to use
many parallel point beams to write the pattern in a single shot (figure 2.1e).

2.3 The Patterning Process
Two methods are used for nanometer-scale EBL pattern generation. The first (fig-
ure 2.2) involves spin coating the substrate with a suitable electron resist, such as
PMMA. After the electron-beam exposure, the exposed parts of the resist are chem-
ically removed. A metal layer (commonly gold) is deposited on the sample, after
which it is submerged in a suitable solvent to remove the unexposed resist together
with the unneeded metal layer; this process is referred to as lift-off. A several hour

35



96 Shots 6 Shots 3 Shots
(a) Point Beam (b) Fixed Shaped Beam (c) Variable Shaped Beam

1 Shot 96 Shots at 1 Exposure
(d) Cell Projection (e) Multiple Parallel Beams

Figure 2.1: Comparison of electron-beam lithography exposure methods. Using
a conventional point beam, 96 shots are required to write the illustrated pattern.
Using a fixed shaped beam reduces the exposure to six shots while a variable shaped
beam system only needs 3 shots. A cell projection system can write the pattern in
a single shot. Multiple beam systems use several beams parallel beams to write all
96 shots of the pattern at the same time. From [31].

acetone bath is commonly used to dissolve unexposed PMMA. The sample is then
cleaned of the PMMA contamination in an ultrasonic cleaner. After the lift-off, the
metal layer only remains attached to the substrate in places where it was deposited
directly onto it. PMMA in this case acts as a positive resist.

In the second method (figure 2.3), a coherent metal layer is deposited directly
on the substrate. The sample is then spin coated with a negative electron resist.
After the exposure and development steps, the remaining resist serves as a mask for
chemical etching or ion beam sputtering. These remove the unneeded metal areas
(and usually disturb the substrate surface). The exposed resist can then be removed
chemically leaving only the metallic pattern.

2.4 Competing Techniques
In addition to direct-write EBL and projection EBL discussed in the previous sec-
tions, several other techniques allow sub-micron or nanometer scale pattern fabrica-
tion.

Nanoimprint lithography (NIL) creates a pattern by mechanical deformation of
imprint resist. The main benefit of NIL is its simplicity; there is no need for complex
optics or radiation sources with a nanoimprint tool leading to a low cost. Sub 10-
nm structures have been manufactured using NIL. The disadvantages of this method
include defects caused by trapped air bubbles, non-optimal adhesion between stamp
and resist, template wear, etc. [33]
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Figure 2.2: The steps of the electron-beam patterning process using lift-off. Accord-
ing to [32].
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Figure 2.3: The steps of the electron-beam patterning process using chemical etching
or ion sputtering. According to [32].
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Photolithography (ultra-violet lithography UVL, extreme ultra-violet lithogra-
phy EUVL) are light projection techniques with very high throughput. UVL is
extensively used in the electronics industry nowadays for creating complex inte-
grated circuits such as computer processors and memory chips. Variations of UVL
such as immersion lithography and multiple patterning are used to overcome diffrac-
tion limits (193 nm wavelength UV light is currently used to manufacture 14 nm
half-pitch processors [34]). EUVL is expected to enable even smaller feature sizes
in the near future by using a 13.5 nm wavelength light source [35].

X-ray lithography is a projection method using X-rays to transfer a geometric
pattern to a light-sensitive resist. Having wavelengths below 1 nm, X-rays overcome
the diffraction limits of optical lithography. X-ray lithography is usually operated
without magnification or with a slight demagnification offering a resolution around
10 nm [36].
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3 TESLA BS600 LITHOGRAPHY SYSTEM
The optical column of the Tesla BS600 electron-beam lithography system was cho-
sen to explore and study the possibilities of dynamic corrections of field curvature,
astigmatism, and distortion. The system was designed in Brno at the Institute of
Scientific Instruments (ISI) nearly 30 years ago. Today only a handful of these de-
vices remain; one of them is still installed at ISI and still used for research at the
time of writing this thesis. The litograph has been upgraded several times during
the past decades, these upgrades mainly addressed the quickly aging control sys-
tem and electronics; the optical elements have remained the same. The following
paragraphs briefly summarize the features of the BS600 electron-beam writer.

3.1 Electron-beam Writer Description
As mentioned in section 2.1, research on electron-beam lithography in Brno began
in the early 1980s at ISI. This research lead to the development of a lithography
system marketed by former company Tesla as the BS600 series. The writer uses a
15 keV variable sized rectangular beam with a spot size of 50–6300 nm. The spot
size is adjustable in this interval independently in both directions with a step size
of 50 nm.

The optical column of the BS600 is illustrated in figure 3.1a. The column begins
with a field emission electron gun operated in the Schottky regime. The cathode is
made of a 100 µm diameter monocrystalline tungsten wire with the [100] crystallo-
graphic orientation parallel to its axis. The tip is activated with ZrO to lower the
work function thus increasing emission current. The cathode is heated by adjustable
current to its operating temperature around 1500 K.

The emitted electrons are accelerated toward the extractor electrode with an
acceleration potential of 15 kV (the extractor being grounded). The emission current
can be adjusted by applying a small negative voltage to the suppressor electrode
which is located between the cathode and the extractor. The optimal total emission
current is of the order of 10 µA.

After accelerating the beam to the nominal 15 keV energy, a magnetic condenser
lens C1 creates the image of the virtual source at the crossover. This is where the
beam shaping system is located. As shown in figure 3.1b, the beam first passes
through the first square aperture cutting two edges in the beam. The converging
beam forms a crossover and then passes through the second square aperture cutting
the remaining two edges and creating the rectangular beam which is focused on the
substrate. The square apertures are located 17 mm above and below the crossover.
A set of electrostatic deflector plates around the beam crossover enables deflecting
the beam slightly off-axis. The downstream aperture then cuts the beam to a smaller
size which is linearly translated to a smaller spot size on the substrate. The spot
size can be independently changed in both 𝑥 and 𝑦 directions this way with a step
of 50 nm (at the substrate). The deflection system is also used as a beam blanker
— by rapidly applying a high voltage pulse to the deflection system, the beam is
completely intercepted by the lower aperture and does not expose the electron resist.
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(a) BS600 optical column (b) Shaping system

Figure 3.1: Schematic view of the BS600’s optical column (a) showing the electron
emission cathode and acceleration electrodes, the four magnetic lenses C1, C2, C3,
OL, and the shaping and deflection system. A close-up of the beam shaping system
located between C1 and C2 is shown in (b). Features not to scale. From the BS601
service manual [37].

The rectangular beam, passing through three magnetic lenses creates the image
of the square apertures on the substrate. These are two condenser lenses C2 and
C3, and the objective lens OL.

The objective lens bore houses a two-stage magnetic deflection system. Two
stages deflecting the beam in opposite directions are used to minimize deflection
aberrations. Both stages use a set of two toroidal coils per deflection direction (𝑥 and
𝑦) per stage. The scanning speed is greatly limited by eddy currents in the casing of
the objective when high-frequency deflection signals are applied. To lower the eddy
currents, another set of toroidal coils is wound around the deflection system. The
current in these coils is the same magnitude as the deflection current signal, flowing
in the opposite direction, thus their magnetic field cancels the field of the inner
coils. The lower magnetic field around the whole deflection system induces smaller
eddy currents in the magnetic objective casing and this allows higher deflection
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frequencies.
The deflected beam is focused on the substrate by the objective lens. Using

the nominal excitation, the lenses form the demagnified image of the beam shaping
square apertures on the sample located at the working distance around 40 mm1 with
a magnification of 0.05.

In addition to the mentioned coils and deflectors there are several other optical
elements to correct parasitic aberrations introduced by imperfect machining and as-
sembly. Inside condensers C1 and C2 there is a quadrupole stigmator to compensate
axial astigmatism and a centering coil to compensate the tilt of the magnetic lenses
with respect to the optical axis. Inside the objective lens, just below the deflec-
tion system, a pair of coils is installed which provide dynamic focusing capabilities.
Dynamic focusing will be discussed in detail in chapter 4.

To maintain a high enough mean free path of the electron beam, the litograph is
operated in vacuum. The vacuum vessel encloses the electron gun, the optical axis of
the litograph, and the sample. The lowest pressure (ultra-high vacuum, ∼10−6 Pa)
is in the electron gun area to ensure its correct operation. This is achieved by using
four ion pumps. The magnetic lenses and the deflection system are located outside
of the vacuum. The excitation current of all lenses except C1 is around 100–200 mA
and these do not require active cooling. The condenser C1 requires a higher current
(about 1.8 A) thus needs to be cooled at all times during operation.

3.2 Electron-optical Description
As part of this thesis, a computer model of the BS600 series writer was created in
EOD (Electron Optical Design [17]). All components (lenses, deflectors, etc.) were
modeled in different input files with at least 300 thousand mesh points in the 2D
𝑟 −𝑧 mesh. Only the optical column from the shaping system downward to the
sample was considered. The electron gun and the condenser C1 was not included in
the model; it was assumed that these form a crossover at 𝑧 = −381 mm. The beam
shaping apertures are then at 𝑧 = −398 mm and 𝑧 = −364 mm. In the shaped beam
mode these apertures are the objects to be imaged on the substrate (ideally both
in the same image plane with equal magnification), while the crossover needs to be
imaged close to the object focal point of the objective lens to ensure homogeneous
illumination of the sample placed at 𝑧 = 40 mm.

Several possible combinations of lens excitation exist which provide an acceptable
beam path; axial ray trajectories of three well-defined modes starting at the crossover
are shown in figure 3.2. In mode 1, the axial ray is parallel to the optical axis
between the condenser C3 and the objective lens OL. In mode 2, the axial ray
is parallel to the axis after leaving the field of OL. The axial ray ray in mode 3
transverses the objective in such way that its slope remains unchanged. In all of
these three modes, the image of the beam shaping apertures is formed at 𝑧 ≈ 40 mm,
about 0.15 mm apart from each other. In any mode, the apertures are imaged with
the same magnification (less then one percent difference), the magnification varies

1The working distance WD is the distance between the end of the objective lens downstream
pole piece and the substrate surface where the beam is focused.
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between 0.044 and 0.066 across the modes. Mode 1 seems the most suitable, as
here the demagnification of the apertures can be adjusted by only changing the
excitation of C3, and independently the working distance can be modified by tuning
the objective excitation. Recently, a new feature has been implemented offering
a higher demagnification setting producing a smaller spot while retaining beam
current [38]. This was achieved by changing the excitation of C3 in mode 1.

3.3 Gaussian spot
According to the thesis assignment, Gaussian-beam lithography systems were to
be studied. When writing with a Gaussian beam, the crossover is imaged on the
sample (as opposed to imaging the shaping apertures in case of shaped beams). It
is possible to convert the BS600 into a Gaussian-beam system simply by turning
off the condenser C2 and leaving the excitation of C3 and OL unchanged. Now
the second image of the crossover at 𝑧𝑜 = −381 mm is formed at 𝑧𝑖 = 40 mm.
With the original C3 excitation of 650 At, the first object of the crossover lies at
−151.39 mm. To simplify further calculations, the excitation of C3 has been slightly
adjusted to 618.8 At so that the image is formed at 𝑧 = −150 mm. Since modern
electron microscopes and lithography systems use much shorter working distances
(WD) than the original 40 mm, the WD has been reduced to 5 mm by increasing
the excitation of the objective to 1312.55 At. Even at the 60% higher excitation the
lens shows no signs of saturation, and the axial flux density is still a linear function
of excitation.

Figure 3.2: Axial rays starting at the crossover (blue cross, 𝑧 = −381 mm) with unit
initial angle in three possible modes of the BS600. In all three modes, the image of
the beam shaping apertures is formed on the sample at 𝑧 ≈ 40 mm, about 0.15 mm
apart from each other.
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The new WD value 5 mm was chosen to achieve similar capabilities as the Tescan
MIRA and LYRA series electron microscopes which are used for lithographic appli-
cations at the Institute of Physical Engineering, FME, BUT. These microscopes use
a Gaussian beam and offer spot sizes down to ∼3 nm with a beam current around
200–250 pA. These spot properties can be retained within a ∼ 150×150 µm2 field.
The commercial lithography system Raith 150 Two offers similar spot parameters,
a slightly larger write field of 250×250 µm2 at the expense of beam current which
is limited to around 25 pA.

By lowering the working distance, the uncorrectable aberrations, such as the
spherical and chromatic aberration, become smaller. On the other hand, e.g. field
curvature increases with decreasing working distance but this can be dynamically
corrected as will be shown in the following chapters. The spherical and chromatic
aberration of the 5 mm WD setup are 24.5 mm and 23.7 mm, respectively (expressed
at the image plane).

The optimal aperture angle can be calculated by minimizing the probe size for
the given constraints such as beam current and aberrations. According to Reimer
[9], the probe diameter 𝑑𝑝 can be expressed as the function of the aperture angle 𝛼𝑝

𝑑2
𝑝 = 𝑑2

0 + 𝑑2
𝑑 + 𝑑2

𝑠 + 𝑑2
𝑐 (3.1)

𝑑2
𝑝 =

[︃
4𝐼𝑝

𝜋2𝛽
+ (0.6𝜆)2

]︃
𝛼−2

𝑝 + 1
4𝑘2

𝑆𝛼6
𝑝 +

(︃
𝑘𝑥

Δ𝐸

𝐸

)︃2

𝛼2
𝑝, (3.2)

where 𝑑0 is the probe diameter due the probe current 𝐼𝑝 and gun brightness 𝛽, 𝑑𝑑

is the probe diameter due to diffraction of electrons with a wavelength 𝜆, 𝑑𝑠 and 𝑑𝑐

are the probe diameters due to the spherical 𝑘𝑆 and the chromatic 𝑘𝑥 aberrations.
The function (3.2) is plotted in figure 3.3 for typical properties of a Schottky emitter
𝛽 = 5×1012 [Am−2sr−1] and Δ𝐸 = 0.4 eV; the probe current is 250 pA, and the
beam energy is 15 keV. Minimizing the function (3.2) yields the optimal aperture
angle

𝛼opt = 4.5 mrad (3.3)

in the image plane corresponding to a 𝑑𝑝 = 4.6 nm spot. Dividing by the angular
magnification 67.8, the optimal aperture angle in the object plane at 𝑧𝑜 = −381 mm
is 𝛼opt,𝑜 = 66.3 µrad. This value will be used for evaluation of the properties and
aberrations of the EBL system.

3.4 Properties of the Gaussian-spot Mode
The meridional coordinate 𝑟 of the principal rays 𝑤𝑎 and 𝑤𝑏 (as defined in equa-
tion (1.25)) in the converted Gaussian-mode lithography column are shown in fig-
ure 3.4. The condenser C3 and objective OL forms the image of the crossover at
𝑧𝑜 = −381 mm on the substrate at the working distance 𝑧𝑖 = 5 mm. The crossover
diameter assumed to be 100 nm. C3 and OL are both asymmetrical magnetic lenses
with iron casing and pole pieces. Their properties are summarized in table 3.1. The
paraxial properties of the imaging system can be found in table 3.2.
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Figure 3.3: Probe size vs. aperture angle. The contribution of the 24.5 mm spherical
and 23.7 mm chromatic aberration, the Schottky gun energy spread 0.4 eV and
brightness 5×1012 [Am−2sr−1] forming the 250 pA beam, the diffraction of the 15 keV
electrons, as well as the net probe size is shown. The probe size was calculated
according to equation (3.2). The optimal aperture angle is 4.5 mrad.
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Figure 3.4: The lithography column in the Gaussian-beam mode with the axial flux
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(×, 𝑧𝑜 = −381 mm) is imaged onto the sample at 𝑧𝑖 = 5 mm (smaller ×) by the
condenser C3 and objective OL.
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Table 3.1: Excitation properties of the condenser C3 and objective OL in the
Gaussian-spot 5 mm working distance mode.

C3 OL
Number of turns [ ] 5000 3700
Current [mA] 124 355
Excitation [A-turns] 618.8 1312.6
Axial field maximum [mT] 103 42.6
Field maximum position [mm] -165 -10.7
Field width [mm] 7.5 38.2
Object focus 𝑧 [mm] -179.0 -35.3
Image focus 𝑧 [mm] -151.0 -0.054
Focal length [mm] 14.2 24.1

Table 3.2: Paraxial properties of the lithography column in the Gaussian-spot mode.

Object Image #1 Image #2
(crossover) (spot)

Position [mm] −381 −150 5
Transverse size [nm] 100 7.02 1.47
Aperture angle [mrad] 0.0663 0.945 4.5
Magnification [ ] 1 −0.0702 0.0147
Angular magnification [ ] 1 −14.24 67.8
Beam rotation [rad] 0 0.926 2.88
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4 MAGNETIC DEFLECTION AND CORREC-
TION

Currently, all optical elements of the BS600 series electron-beam writer installed at
ISI are magnetic with the exception of the shaping system which uses electrostatic
deflection fields. The magnetic lenses, deflection system, stigmators, dynamic focus
and centering coils were the obvious choice at the time of the design as high-speed
electronics were not available. In addition, magnetic optical elements generally
have lower aberrations and act on the electron beam with stronger force than their
electrostatic counterparts. This chapter describes the currently used optics of the
lithography system modified to produce a narrow Gaussian spot. Special treatment
is given to the dynamic correction of field curvature and astigmatism as per the
thesis assignment.

4.1 Magnetic Deflection
As described in section 3.1, the BS600 series writer uses a dual-stage magnetic
deflector utilizing toroidal coils. Additionally another set of coils is wound around
the deflection system to minimize eddy current induction in the objective casing.
The deflection system has been modeled in EOD according to the available technical
drawings and documentation as shown in figure 4.1. The upper deflectors are wound
7.75 turns, and the lower deflectors 16 turns. The toroidal coils form the optimal
angle 60° to eliminate the hexapole field.

The main advantage of a dual-stage deflection system is that a selected aberration
can be nullified and the other aberrations considerably decreased. The two possible
options are nullifying either the deflection coma or chromatic aberration [14]. Elimi-
nating both aberrations simultaneously is only possible using a three-stage deflector.
As both aberrations are complex, eliminating them involves rotating the deflection
stages with respect to each other, as well as finding the optimal excitation ratio. The
rotation of the stages has not been found in the available documentation, and the
provided excitation ratio does not seem to have optimal aberrations; additionally
the objective excitation has been altered. Therefore, the ideal parameters of the
deflection stages to eliminate coma have been calculated using the simple formula
derived from (1.39)

𝐾𝐿,𝑢 𝛾𝑢 + 𝑚𝑒𝑖𝜙𝐾𝐿,𝑙 𝛾𝑙 = 0, (4.1)

where 𝐾𝐿,𝑢 and 𝛾𝑢 are the coma and deflection of the upper deflector, 𝐾𝐿,𝑙 and 𝛾𝑙

are the coma and deflection of the lower deflector, 𝑚 is the excitation ratio and 𝜙
is the rotation of the lower deflection stage. Equation (4.1) has a solution for any
arbitrary dual-stage deflection. An analogous equation can be used to eliminate the
chromatic aberration. Eliminating coma is usually preferable as it decreases other
third-order aberrations as well [39]. The zero-coma condition was chosen in our case
as well yielding the optimal excitation and rotation of the lower deflector

𝑚 = 0.932, 𝜙 = −2.31 rad. (4.2)
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Figure 4.1: Dual-stage magnetic deflection using toroidal coils (green crosshatch)
inside the objective lens (blue section lines). Dynamic focus coils (red crosshatch)
and an added stigmator (purple) is also shown. The axial field is shown for all
components in their color. The OL axial flux density is scaled 2×, the dipole fields
of the deflectors for unit current excitation are scaled 500×, the dynamic focus field
for unit current excitation is scaled 50×, and the stigmator field is scaled 10×.

In order to deflect the beam in the 𝑥 direction, both stages have been rotated by
2.20 rad. The same set of coils has been added and rotated by 𝜋/2 rad which deflects
the beam in the 𝑦 direction. The aberration coefficients of the deflection system are
summarized in table 4.1.

Table 4.1: Aberration coefficients of the magnetic deflection system related to the
image plane.

Coma 𝐾𝑚
𝐿 [ ] 6.29×10−5 − 5.42×10−5 i

Field curvature 𝐾𝑚
𝐹 [1/mm] 2.16×10−2

Astigmatism 𝐾𝑚
𝐴 [1/mm] 1.34×10−2 − 2.75×10−3 i

Distortion 𝐾𝑚
𝐷 [1/mm2] −3.25×10−4 − 6.24×10−4 i

Chromatic 𝐾𝑚
𝑇 [ ] 1.49×10−1 − 1.09×10−1 i
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4.2 Dynamic Correction of Field Curvature
The field curvature of the deflection system can be compensated by introducing a
dynamic focus coil with excitation proportional to the square of the deflection

𝐼DF ∝ 𝛾𝑖𝛾𝑖. (4.3)

According to the technical documentation, two dynamic focus coils are already im-
plemented inside the objective lens, below the lower deflection stage as can be seen
in figure 4.1; the upper coil has 17 turns and the lower 22 turns excited in the op-
posite direction. These produce an additional magnetic field superimposed on the
objective lens field. The newly introduced field effectively lowers the focusing power
of the objective, shifting the curvature plane 𝐷 in figure 1.2 to the right so that
the image is formed on the sample. Two possible methods have been worked out
to calculate the optimal excitation of the dynamic focus coils. They involve: 1)
using the Optics–Focus module of EOD, and 2) calculating the field curvature of
the dynamic focus lens using aberration theory.

4.2.1 Focusing with EOD
The Optics–Focus module of EOD can be used to calculate the optimal field magni-
tude and thus excitation of a lens so that it forms the image at a specified location.
The field curvature is somewhat equivalent to a defocus changing with radial dis-
tance. The optimal defocus Δ𝑧 is related to the field curvature coefficient 𝐾𝑚

𝐹 as

Δ𝑧 = 𝑧𝑖 − 𝑧𝑖,Gaussian = 𝐾𝐹 𝛾𝑖𝛾𝑖, (4.4)

where 𝛾𝑖 is the deflected ray position at the image plane. The 𝑧𝑖 image plane is then
used as the Focus module input. EOD calculates the magnitude of the dynamic
focus field for the set deflection. For a 𝛾𝑖 = 0.1 mm deflection, the optimal defocus
and field magnitude 𝑚 is

Δ𝑧 = 216.4 nm, 𝑚 = 0.001121. (4.5)

As the excitation of the dynamic focus coil in EOD is set to the number of turns, the
value of 𝑚 corresponds directly to the optimal excitation current 𝐼0.1 = 1.121 mA.
Using (4.3), the excitation current of the dynamic focus coil can be calculated for
arbitrary deflection

𝐼DF [A] = 1
0.12 𝐼0.1 [A] 𝛾𝑖𝛾𝑖 [mm] = 0.1121 𝛾𝑖𝛾𝑖 [mm]. (4.6)

Introducing the dynamic focus coil can slightly change the field curvature of the
system which is used to determine the defocus. In this case, the optimal defocus and
excitation can be recalculated from the new field curvature. In reality, the change
of field curvature was always negligible.
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4.2.2 Aberration Theory
The previous method relies on the advanced optimization feature of EOD which
might not be available for all systems. Zhu et al. had derived the optimal dynamic
correction excitation currents for shaped beam lithography systems in [16]. Their
calculation uses the non-relativistic approximation. Inspired by this paper, the
relativistically correct relations have been derived using aberration theory.

In the paraxial equation (1.24) we set 𝐹1 = 𝐷1 = 0. The original axial magnetic
flux density 𝐵0 is modified by the introduced dynamic focus field 𝐵𝑐 to 𝐵 = 𝐵0 +𝐵𝑐.
The paraxial equation is then written as

𝑤′′ +
(︃

𝛾𝜑′

2𝜑* − i𝑘𝐵0

)︃
𝑤′ +

(︃
𝛾𝜑′′

4𝜑* − i𝑘
2 𝐵′

0

)︃
𝑤 = 𝑃,

𝑃 = i𝑘𝐵𝑐𝑤
′ + i𝑘

2 𝐵′
𝑐𝑤.

(4.7)

Setting the right-hand side of (4.7) zero, the homogeneous solutions are the paraxial
trajectories 𝑤𝑎 and 𝑤𝑏. The additional terms on the right-hand size of equation (4.7)
can be treated using the variation of parameters method, not unlike the derivation
of aberrations in chapter 1. The particular solution is

𝑤𝑝 = 𝑎(𝑧)𝑤𝑎 + 𝑏(𝑧)𝑤𝑏. (4.8)

𝑎(𝑧) and 𝑏(𝑧) can be expressed as

𝑎(𝑧) = 1
𝑊

∫︁ 𝑧

𝑧𝑜

𝑃�̄�𝑏

√
Φ* d𝜁, 𝑏(𝑧) = − 1

𝑊

∫︁ 𝑧

𝑧𝑜

𝑃�̄�𝑎

√
Φ* d𝜁, (4.9)

where 𝑊 =
√︁

Φ*(𝑧𝑜) =
√︁

Φ*(𝑧𝑖) 𝑀𝑀𝑎 is the Wronskian. The general solution
is 𝑤 = 𝛼𝑜𝑤𝑎 + 𝛽𝑜𝑤𝑏 + 𝑎(𝑧)𝑤𝑎 + 𝑏(𝑧)𝑤𝑏, and the ray position difference from the
homogeneous solution in the object plane is given by the only nonzero term

Δ𝑤(𝑧𝑖) = −𝑤𝑏(𝑧𝑖)
𝑊

∫︁ 𝑧𝑖

𝑧𝑜

𝑃�̄�𝑎

√
Φ* d𝑧, (4.10)

as 𝑤𝑎(𝑧𝑖) = 0. The field curvature is proportional to 𝛼𝑜, therefore we substitute the
trajectory 𝑤 = 𝛼𝑜𝑤𝑎 into the term 𝑃 of equation (4.10). Using 𝑤𝑏(𝑧𝑖) = 𝑀 exp(i𝜃),
the position difference Δ𝑤 can then be expressed using object-related aberration
coefficients as

Δ𝑤(𝑧𝑖) = 𝑀𝑒i𝜃𝑘DF
𝐹 𝑜 𝛼𝑜𝛾𝑜𝛾𝑜 = −𝛼𝑜𝑀𝑒i𝜃

𝑊

∫︁ 𝑧𝑖

𝑧𝑜

(︃
i𝑘𝐵𝑐𝑤

′
𝑎 + i𝑘

2 𝐵′
𝑐𝑤𝑎

)︃
�̄�𝑎

√
Φ* d𝑧, (4.11)

from which it is evident that the field curvature of the dynamic focus coil 𝑘DF
𝐹 𝑜 is

𝑘DF
𝐹 𝑜 = − 1

𝛾𝑜𝛾𝑜𝑊

∫︁ 𝑧𝑖

𝑧𝑜

(︃
i𝑘𝐵𝑐𝑤

′
𝑎 + i𝑘

2 𝐵′
𝑐𝑤𝑎

)︃
�̄�𝑎

√
Φ* d𝑧. (4.12)

To compensate the field curvature 𝐾𝑚
𝐹 𝑜 of the deflectors, the net ray shift of the two

curvatures needs to be zero

𝑚𝑀𝑒i𝜃𝑘DF
𝐹 𝑜 𝛼𝑜𝛾𝑜𝛾𝑜 + 𝑀𝑒i𝜃𝐾𝑚

𝐹 𝑜𝛼𝑜𝛾𝑜𝛾𝑜 = 0, (4.13)
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where 𝑚 is the magnitude of the unit-current dynamic focus coil field. The zero net
field curvature condition is then

𝑚 = −𝐾𝑚
𝐹 𝑜

𝑘DF
𝐹 𝑜

. (4.14)

Writing 𝑘𝑓 = 𝑘DF
𝐹 𝑜 𝛾𝑜𝛾𝑜, where 𝑘𝑓 is not a function of 𝛾𝑜, it is evident that the dynamic

focus field magnitude is proportional to the square of the deflection

𝑚 = −𝐾𝑚
𝐹 𝑜

𝑘𝑓

𝛾𝑜𝛾𝑜. (4.15)

In order to calculate the field curvature of the dynamic focus coil, the 𝑤𝑎 trajec-
tory and the axial flux density were exported from the EOD model with a 0.01 mm
step. Equation (4.12) was numerically integrated in MATLAB using the trape-
zoidal rule. The primed terms were calculated by differentiating the cubic spline
interpolation. The resulting field curvature for a unit-current excitation is

𝑘DF
𝐹 𝑜 𝛾𝑜𝛾𝑜 = −888.2 mm, or (4.16)

𝑘DF
𝐹 𝑜 𝛾𝑖𝛾𝑖 = −0.193 mm (4.17)

The deflection field curvature expressed in the object plane is equal to the image
curvature in the image plane 𝐾𝑚

𝐹 𝑜 = 𝐾𝑚
𝐹 = 0.0216 mm−1; the optimal magnitude of

the dynamic focus field is then

𝐼DF [A] = 𝑚 = 2.431×10−5 𝛾𝑜𝛾𝑜 [mm], or (4.18)
𝐼DF [A] = 0.1119 𝛾𝑖𝛾𝑖 [mm]. (4.19)

Again, 𝑚 is equal to the excitation current 𝐼DF in amperes.

Comparison
The optimal excitation current of the dynamic focus coil was calculated with two
different approaches. Calculating the optimal defocus and focusing the beam slightly
further using EOD’s Optics–Focus module, the optimal current is

𝐼DF [A] = 0.1121 𝛾𝑖𝛾𝑖 [mm]. (4.20)

Deriving the additional field curvature of the dynamic focus coil using aberration
theory resulted in the optimal current expressed as

𝐼DF [A] = 0.1119 𝛾𝑖𝛾𝑖 [mm]. (4.21)

The two methods yield a different optimal excitation by 2h which is a good
agreement considering the great amount of numerical calculations involved.

Modifying the axial flux density of the objective lens by the addition of the dy-
namic focus coils influence the paraxial properties of the system. Important aspects
are how well the magnification is preserved, and how the beam rotation (meridional
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plane rotation) changes. Figure 4.2 shows how the dynamic focus coil affects these
properties. The effects are quadratic and can be described by

Δ𝜃 [mrad] = −1.10 𝛾𝑖𝛾𝑖 [mm], (4.22)
𝛿𝑀 [h] = 1.68 𝛾𝑖𝛾𝑖 [mm]. (4.23)

The change in magnification is less than 1h for the considered write fields and can
be neglected. However, as the dynamic focus coils are below the deflection stage, the
deflected beam rotates around the optical axis differently by the additional dynamic
focus field. This results in additional deflection distortion — a transverse shift of
the deflected spot in the image plane. The shift is approximately equal to

Δ𝑤(𝑧𝑖) = 𝛾𝑖𝛾𝑖

(︁
𝑒iΔ𝜃 − 1

)︁
, (4.24)

|Δ𝑤(𝑧𝑖)| = 𝛾𝑖𝛾𝑖 |Δ𝜃| . (4.25)

For 500 µm deflection, the spot is shifted by |Δ𝑤(𝑧𝑖)| ≈ 70 nm.

4.3 Dynamic Correction of Astigmatism
The astigmatism of the deflection system can be compensated by introducing a
dynamic stigmator with excitation proportional to the square of the deflection

𝐼st ∝ 𝛾2
𝑖 . (4.26)

The stigmators present in BS600 (in C1 and C2) cannot be used to eliminate the
astigmatism with realistic current magnitude. A new stigmator was therefore in-
troduced in the optical column, just before the upper deflection stage as shown in
figure 4.1. In accordance with [40], the stigmator has 200-turns saddle coils in 20°
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Figure 4.2: The effect of the dynamic focus coil on the rotation of the beam and the
magnification.
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angle creating a quadrupole field as shown in figure 1.11. The practical excitation
current limit for such a stigmator is around 50 mA [40]. The saddle coils are 13 mm
long and are wound on a cylinder with a 7 mm radius; their quadrupole field 𝐷2
has a maximum axial field of 1.46 mT/mm for unit excitation current located at
𝑧 = −121.5 mm. The field width is 13.5 mm.

Again, two possible ways have been worked out to calculate the astigmatism of
the dynamic stigmator, and to determine its optimal excitation and rotation. The
first method relies on calculating the astigmatism by fitting the spot of a ray-traced
beam. In the second method, the introduced astigmatism was calculated using
aberration theory.

4.3.1 Fit
One possible way of determining the astigmatism of the newly introduced stigmator
is using ray-tracing and fitting. Several particles are traced from the crossover at
𝑧𝑜 = −381 mm . The initial angle of these particles was tangential to the edge
of a circular aperture, |𝛼𝑜| = 𝑖/𝑛 𝛼max, where 𝛼max is the optimal-probe-diameter
aperture angle 66.3 µrad calculated in 3.3, 𝑖 = 1, 2, . . . , 𝑛, and 𝑛 was set to 5. The
image of such rays form in the aperture plane before the lenses is 5 circles. After
passing through the lenses and the stigmator, the rays form ellipses in image plane 𝑧𝑖.
The shape of the ellipses is determined by the spherical aberration and astigmatism
of the system. Knowing the initial parameters of the rays and the paraxial properties
of the system, the aberrations forming the shapes of the ellipses can be calculated
using a least-squares fit method. The ray tracing was performed in EOD, and the
fitting in MATLAB.

The axial astigmatism calculated from the fit for unit-current excitation of the
stigmator is

𝑘fit
𝐴 = 1.783×104 − 5.348×103 i mm (4.27)

with a standard deviation of 15 + 15i mm. To eliminate the deflection astigmatism,
the contributions of the two astigmatisms need to cancel each other

𝑚𝑀𝑒𝑖𝜃𝑘fit
𝐴𝑜�̄�𝑜 + 𝑀𝑒𝑖𝜃𝐾𝑚

𝐴𝑜�̄�𝑜𝛾
2
𝑜 = 0, (4.28)

where 𝑚 is the complex magnitude of the quadrupole field. Solving for 𝑚 one gets

𝑚 = −𝐾𝑚
𝐴𝑜

𝑘fit
𝐴𝑜

𝛾2
𝑜 (4.29)

𝑚 = (7.33×10−7 + 6.58×10−8 i) 𝛾2
𝑜 [mm] (4.30)

𝑚 = (2.76×10−3 + 1.97×10−3 i) 𝛾2
𝑖 [mm]. (4.31)

The astigmatism expressed in the object and image planes is equal 𝐾𝑚
𝐴 = 𝐾𝑚

𝐴 . It
is evident, that the dynamic stigmator quadrupole field needs to be rotated with
changing deflection 𝛾. The quadrupole field can be arbitrarily rotated by superim-
posing two stigmators rotated 45° as described in 1.11. For the sake of simplicity,
only the physical rotation of the stigmator has been implemented in the EOD model.
The real field magnitude 𝜇 and the rotation of the stigmator field 𝜒 is given by

𝜇 = |𝑚|, 𝜒 = arg(𝑚)/2. (4.32)
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The factor 1/2 is the consequence of the fact that a rotation of the stigmator by 𝜒
rotates the quadrupole field 𝐷2 by 2𝜒; 𝐷*

2 = 𝐷2 exp(2i𝜒) [16].

4.3.2 Aberration Theory
While ray tracing in the previous method offers a simple solution, it is much more
elegant to derive the astigmatism introduced by the addition of the dynamic stig-
mator. The validity of both methods can then be confirmed if the results are the
same.

The steps of the derivation are very much the same as in case of the field curvature
calculation in section 4.2.2. The term 𝑃 appearing on the right-hand side of the
paraxial equation (4.7) in this case is

𝑃 = −
(︂

2𝑘𝐷2 + 𝛾

Φ* 𝐹2

)︂
�̄�𝑜�̄�𝑎, (4.33)

where 𝐷2 is the quadrupole field of the magnetic stigmator, and 𝐹2 is the elec-
tric quadrupole field (not present in this case). The ray position shift due to the
introduced astigmatism in the image plane is

Δ𝑤(𝑧𝑖) = 𝑀𝑒i𝜃𝑘st
𝐴𝑜�̄�𝑜𝛾

2
𝑜 = �̄�𝑜𝑀𝑒i𝜃

𝑊

∫︁ 𝑧𝑖

𝑧𝑜

(︂
2𝑘𝐷2 + 𝛾

Φ* 𝐹2

)︂
�̄�2

𝑎

√
Φ* d𝑧. (4.34)

The stigmator astigmatism is then equal to

𝑘st
𝐴𝑜 = 1

𝛾2
𝑜𝑊

∫︁ 𝑧𝑖

𝑧𝑜

(︂
2𝑘𝐷2 + 𝛾

Φ* 𝐹2

)︂
�̄�2

𝑎

√
Φ* d𝑧. (4.35)

To eliminate the net astigmatism, the sum of the deflection and the stigmator astig-
matism must be zero

𝑚𝑀𝑒i𝜃𝑘st
𝐴𝑜�̄�𝑜𝛾

2
𝑜 + 𝑀𝑒i𝜃𝐾𝑚

𝐴𝑜�̄�𝑜𝛾
2
𝑜 = 0, (4.36)

where 𝑚 is the complex magnitude of the quadrupole field which is equal to the
excitation current in amperes. Solving for 𝑚

𝑚 = −𝐾𝑚
𝐴𝑜

𝑘st
𝐴𝑜

. (4.37)

Writing 𝑘𝑎 = 𝑘st
𝐴𝑜𝛾

2
𝑜 , where 𝑘𝑎 is not a function of 𝛾𝑜, it is evident that the stigmator

field magnitude is proportional to the square of the deflection

𝑚 = −𝐾𝑚
𝐴𝑜

𝑘𝑎

𝛾2
𝑜 . (4.38)

The calculation of 𝑘st
𝐴𝑜 was performed using the same method as in section 4.2.2.

The resulting astigmatism for a unit-current excitation is

𝑘st
𝐴𝑜𝛾

2
𝑜 = −4.630×103 − 1.537×104 i mm, or (4.39)

𝑘st
𝐴𝑜𝛾

2
𝑖 = −1.572 + 3.113i mm. (4.40)
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The optimal (complex) excitation of the dynamic stigmator is then

𝑚 =
(︁
−7.732×10−8 + 8.495×10−7 i

)︁
𝛾2

𝑜 [mm], or (4.41)

𝑚 =
(︁
−2.436×10−3 + 3.079×10−3 i

)︁
𝛾2

𝑖 [mm], (4.42)

The real excitation magnitude and the physical rotation of the stigmator can then
be calculated as

𝜇 = |𝑚|, 𝜒 = arg(𝑚)/2 − 𝜋/4. (4.43)

The field of the dynamic stigmator calculated by EOD is not in the basic direction
as is assumed by the calculation, the stigmator therefore needs to be rotated by
additional −𝜋/4 rad. The (real) excitation current of the rotated stigmator in
amperes is then equal to 𝜇.

Comparison
The optimal excitation current and rotation of the dynamic stigmator was calculated
with using two different methods. The first method relies on calculating the stig-
mator’s astigmatism by fitting the spot image formed by the introduced quadrupole
field. The fitted value was then compared with the deflection astigmatism to get
the optimal complex magnitude of the stigmator field

𝑚 = (2.76×10−3 + 1.97×10−3 i) 𝛾2
𝑖 [mm]. (4.44)

The real field magnitude 𝜇 (which is equal to the excitation current 𝐼st in amperes),
and the rotation of the stigmator 𝜒 can be written as

𝐼st [A] = 𝜇 = |𝑚|, 𝜒 = arg(𝑚)/2. (4.45)

For a 0.1 mm deflection in the x direction these formulas yield

𝐼st [A] = 𝜇 = 33.9×10−6, 𝜒 = −1.261 rad𝐼st [A] = 𝜇 = 33.9×10−6, 𝜒 = −1.261 rad𝐼st [A] = 𝜇 = 33.9×10−6, 𝜒 = −1.261 rad. (4.46)

Deriving the additional astigmatism of the dynamic stigmator using aberration
theory resulted in the optimal complex field magnitude expressed as

𝑚 =
(︁
−2.436×10−3 + 3.079×10−3 i

)︁
𝛾2

𝑖 [mm], (4.47)

The excitation current 𝐼st, and the rotation of the stigmator 𝜒 is then

𝐼st [A] = 𝜇 = |𝑚|, 𝜒 = arg(𝑚)/2 − 𝜋/4. (4.48)

For a 0.1 mm deflection in the x direction these formulas yield

𝐼st [A] = 𝜇 = 39.3×10−6, 𝜒 = −1.261 rad𝐼st [A] = 𝜇 = 39.3×10−6, 𝜒 = −1.261 rad𝐼st [A] = 𝜇 = 39.3×10−6, 𝜒 = −1.261 rad. (4.49)

The excitation current of the stigmator calculated by the two methods differs
by 14% while the optimal stigmator rotation is different by no more than 1h.The
derived stigmator excitation produces a circular spot while the fitting method’s
result is slightly elliptical. It can be therefore concluded that the usage of the fitting
method is questionable and the treatment using aberration theory is justified and
provides more accurate results.
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4.4 Dynamic Correction of Distortion
The deflection distortion and the distortion introduced by the additional dynamic
focus and dynamic stigmator fields has no effect on spot size; the spot is merely
shifted in the image plane. As the compensation of these distortions is, in princi-
ple, the same as using electrostatic deflection and correctors, it will be treated in
chapter 5.

4.5 The Corrected System
The optimal excitation of the dynamic focus coils and the dynamic stigmator has
been derived. Here, their influence on the spot calculated by ray tracing is dis-
cussed. The sequence of pictures in figure 4.3 illustrates how the 0.1 mm deflected
spot changes after applying the optimal dynamic corrections. As expected, the field
curvature correction reduces the spot size in the sample plane and the astigmatism
correction eliminates its ellipticity. Furthermore, after applying the dynamic stig-
mator field, the spot remains circular in all planes close to the substrate as shown
in figure 4.4. The spot is larger behind the sample plane than before due to the
spherical aberration.

The effect of deflection magnitude on beam spot properties has been studied and
is summarized in table 4.2. The spot remains circular with unchanged diameter up
to about 500 µm deflection. After, its size increases and becomes elliptical. If a 17%
increase in diameter and a slight ellipticity is accepted, the beam can be deflected
up to 700 µm corresponding to a 1×1 mm2 write field. At greater deflections the
spots of different energies are laterally shifted by chromatic aberration; at 700 µm
deflection, the shift is 1.8 nm.

Figure 4.5 shows the geometrical spot after correction of the field curvature,
astigmatism, and distortion for the nominal energy 𝐸0 = 15 keV and for energies
𝐸0 − 𝑑𝐸/2 and 𝐸0 + 𝑑𝐸/2, where 𝑑𝐸 = 0.4 eV. In reality, the current density is
concentrated around the center of the spot, its effective size is closer to the nominal
energy spot.

Table 4.2: The effect of deflection on spot size after dynamic corrections. The spot
diameter was calculated for nominal beam energy.

Deflection Write Major Minor Diameter
field diameter diameter increase

[µm] [µm2] [nm] [nm] %
0 N/A 4.4 N/A 0

100 140x140 4.4 N/A 0
200 280x280 4.4 N/A 0
300 420x420 4.4 N/A 0
500 700x700 4.6 N/A 4
700 1000x1000 5.5 4.8 17
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Figure 4.3: Change in 0.1 mm deflected spot size and shape after applying the
dynamic focus to eliminate field curvature and the dynamic stigmation to eliminate
deflection astigmatism. The ellipses correspond to 5 equidistant initial angles up to
the optimal aperture angle 𝛼opt. The dynamic focus decreases the spot size in the
sample plane, and the astigmatism correction compensates its ellipticity. Dynamic
correction of distortion is not applied here.

4.6 Summary

In this chapter, the dynamic correction of the field curvature and astigmatism of
the current toroidal magnetic dual-stage deflection system was treated using several
methods. The BS600 electron-beam writer already has two dynamic focus coils
inside the objective lens, just below the lower deflection stage, as shown in figure 4.1.
A magnetic stigmator was added to the setup above the upper deflection stage. The
stigmator is composed of 200-turn saddle coils at a distance of 7 mm from the
optical axis, and its quadrupole field has a maximum at 𝑧 = −121.5 mm. The
optimal excitation current of the stigmator for 0.1 mm deflection is on the order
of microamperes, the number of turns can therefore be reduced to for example 5.
Then, the optimal current is several milliamperes.

In order to calculate the optimal excitation of the dynamic correction devices.
their influence on the aberrations was evaluated for unit-current excitation. The op-
timal excitation was then calculated so that the newly introduced field compensates
the aberrations of the magnetic deflectors. Two methods have been worked out for
the determining the optimal excitations for both field curvature and astigmatism
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Figure 4.4: Dynamically corrected 0.1 mm deflected spot in planes 0.1 µm before
and after the sample plane. The astigmatism correction completely eliminates the
spot ellipticity.
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Figure 4.5: The effect of chromatic aberration illustrated on a 0.1 mm deflected
beam of energies close to the nominal energy 15 keV. The energy spread 𝑑𝐸 is
0.4 eV. The field curvature, astigmatism, and distortion are corrected. The circles
correspond to 5 equidistant initial ray angles up to the optimal aperture angle 𝛼opt.
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correction.
The dynamic corrections have been applied in the EOD model of the lithography

system, and their functionality has been confirmed by calculating the spot properties
before and after the corrections. Images of the spots can be found in the previous
sections. It was found that the beam retains its circularity and its diameter remains
around 4.6 nm up to 500 µm deflection. Deflecting 700 µm, the spot becomes slightly
elliptical and its diameter increases by 17%.
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5 ELECTROSTATIC DEFLECTION AND COR-
RECTION

The main goals of this thesis was to design an electrostatic deflection system and
compare its properties to the current magnetic deflectors. The magnetic electron
lenses C3 and OL of the BS600 series electron-beam writer remain unchanged. In
this chapter a new electrostatic deflection system is designed, and the dynamic cor-
rection of its field curvature, astigmatism, and distortion using electrostatic devices
is studied and compared with the magnetic system described in chapter 4.

5.1 Electrostatic Deflection
When designing the electrostatic system, the constraints such as the inner bore
diameter of the objective lens had to be taken into account. Dual stage deflectors
offer a lower aberrations [41], so only these were considered. In the end, the chosen
approach was to stay as close to the dimensions of the original magnetic deflectors
as possible so that their properties and aberrations can be compared. An important
aspect of the electrostatic deflector design is that the applied voltages must not allow
breakdown discharges between the electrodes. Several breakdown mechanisms exist
and the breakdown voltages have been extensively studied. In high vacuum used
in electron microscopy, at pressures around 10−4–10−2 Pa the breakdown voltage
between parallel plates was measured by Ilić et al. [42] to be about 45 kV/mm. In
electron microscopy, usually much lower voltages are used; the limit in this thesis
was set 10 times lower.

As shown in figure 1.8, electrostatic deflectors are usually made of cylindrical
equisectored or non-equisectored electrodes. It is important that the deflectors do
not produce higher order multipole fields. The most typical design uses 8 electrodes.
Non-equisectored 20-electrode deflectors offer higher dipole field homogeneity [43]
but involve much more effort to machine and align the electrodes precisely. Therefore
only 8-electrode deflectors were considered. Another important aspect is the num-
ber of voltage supplies needed per deflection direction. To eliminate the hexapole
field, 8-electrode deflectors use two voltages per deflection direction while in a non-
equisectored 20-electrode deflection system a single voltage supply is sufficient as
shown in figure 1.8. Dual stage systems can be designed such way that a single
voltage supply is connected to both stages, this was also taken into account during
the design.

Within equisectored 8-electrode deflection systems, the design of figure 1.8(a)
was preferred over 1.8(b) as the produced dipole field per unit voltage is about
10% stronger [14]. The designed deflection electrodes are 35° wide and have a 10°
separation. To compensate the lower deflection force of electrostatic deflectors, the
electrodes were placed closer to the optical axis than the original magnetic deflection
coils; at a radial distance of 4 mm. The whole dual stage deflection system is enclosed
in metallic casing at ground potential. It limits the deflection field width so that
nearby components do not influence each other, and can be also useful for installing
the deflectors in the objective lens bore.
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The lower deflector stage takes the place of the current lower magnetic stage
and has approximately the same length, 45 mm. The separation between the stages
and the length of the upper stage is the result of an optimization process. The
goal was to eliminate the deflection coma using a single voltage supply for the two
stages. The optimal voltage and rotation of the upper stage of an initial design
was calculated according to equation (4.1). The two parameters were adjusted in
the EOD model, the new field was calculated, and a sufficient design was found
iteratively. The deflection coma was lowered to 𝑘𝑒

𝐿 = −4.25×10−5 + 3.45×10−5 i
this way. The optimal stage separation and upper stage length is 7.5 mm and
5 mm, respectively, as can be seen in figure 5.1. The rotation of the upper stage
with respect to the lower stage is −0.708 rad. To deflect only in the 𝑥 direction,
both stages have been additionally rotated by 1.44 rad. The deflection sensitivity
is 6.666 µm/V allowing 1 mm deflection with a relatively low voltage of 150 V.
The aberrations of the designed deflector are summarized in table 5.1. At this
point it can be said that the aberrations of the electrostatic deflector are not that
much different than the original magnetic listed in table 4.1. The field curvature,
distortion, and the chromatic aberration are slightly higher here; of these, only the
chromatic aberration is not compensable dynamically. The designed electrostatic
deflection system inside the OL bore is shown in figure 5.1. Mainly electron-optical
properties of the deflector design were considered; machining and installation aspects
have not been addressed. The construction considerations involved in the design of
electrostatic deflectors is thoroughly described in Vlček’s dissertation dealing with
the design of a Wien-filter [44].

Table 5.1: Aberration coefficients of the electrostatic deflection system related to
the image plane.

Coma 𝐾𝑒
𝐿 [ ] −4.25×10−5 − 3.45×10−5 i

Field curvature 𝐾𝑒
𝐹 [1/mm] 6.82×10−2

Astigmatism 𝐾𝑒
𝐴 [1/mm] 3.78×10−2 − 1.28×10−3 i

Distortion 𝐾𝑒
𝐷 [1/mm2] 8.89×10−5 − 5.81×10−4 i

Chromatic 𝐾𝑒
𝑇 [ ] 4.87×10−1 + 5.18×10−2 i

5.2 Dynamic Correction of Field Curvature
The compensation of the deflection field curvature can be accomplished either by
lowering the objective lens focusing power dynamically (directly lowering the OL
excitation current or introducing a small diverging lens inside the OL), or adjusting
the position of the object imaged by the OL — the beam crossover at 𝑧 = −150 mm.
Dynamically adjusting the focusing power (excitation current) of the objective lens
is not feasible at deflection frequencies, and introducing an electrostatic lens inside
the OL field would considerably change the beam rotation due to the changing
electron energy inside the magnetic field; these two possibilities have therefore not
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Figure 5.1: The designed electrostatic dual-stage deflector electrodes (green
crosshatch) and their casing (blue section lines) inside the objective lens bore. The
proposed stigmator is also shown (purple crosshatch). The axial field of the deflector
stages (green, scaled 0.1×), the stigmator (purple, scaled 0.3×) and the objective
lens (blue, scaled 2×) are plotted as well as the deflected trajectory 𝑤𝑒 (black dotted
line) scaled to 50 mm deflection.

been studied. The other option is moving the crossover further from the OL towards
the electron gun. Several possibilities arise here:

I A diverging lens inserted between the crossover and the objective lens moves
the apparent position of the crossover further.

II The objective lens focusing power may be lowered permanently so that the
beam is focused behind the sample. A converging lens inserted between the
crossover and the OL would then provide the additional focusing. In this case,
the dynamic focus lens would be turned off when writing at the write-field
edge and turned on when writing near the optical axis.

III A converging lens before the crossover would move it so that the beam is
ultimately focused behind the sample with the optimal defocus. Here, two
possibilities were studied: dynamic focus lens inside the condenser C3 and
before C3.
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To study these options, a simple unipotential lens has been designed and placed
at the appropriate position. The lens model as well as its axial potential for unit
voltage on the central electrode are shown in figure 5.2 left. The positions I, II, IIIa,
and IIIb are illustrated in figure 5.3.
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Figure 5.2: Electrostatic lens models used for dynamic focusing: a generic unipoten-
tial lens (left; axial potential scaled 5×) and a unipotential lens inside the condenser
gap (right axial potential scaled 25×).
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Figure 5.3: Locations of the dynamic focus lenses considered for field curvature
correction. Black crosses denote the positions of the crossovers.
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I Diverging Lens
At first, the unipotential lens was placed between the crossover (𝑧 = −150 mm)
and the objective lens; at 𝑧 = −140 mm. Having a very high potential ratio of the
electrodes, it is possible to construct a unipotential diverging lens. The method using
EOD’s Optics–Focus module was used as described in section 4.2.1 to estimate the
optimal potential on the central electrode. The outer electrodes were on the beam
potential (15 kV). For a 100 µm deflection (Δ𝑧 = 216.4 nm defocus), the optimal
potential for the central electrode was found to be 382 kV in accelerating mode,
and -1.61 kV in decelerating mode. In decelerating mode, the beam energy drops
to around 50 V at the center of the lens. The spherical aberration of the system
increases twice in accelerating mode and 20 times in decelerating mode. The very
high voltage requirements render using a diverging lens for dynamic focusing not
feasible.

II Lowering the OL Focusing Power
Another possibility for dynamic focusing is to set a maximum write field and lower
the objective lens excitation so that it focuses the beam on the sample at the edge
of the write field. Now, for smaller deflections the beam is focused behind the
sample which can be compensated by introducing a weak converging lens between
the crossover at 𝑧 = −150 mm and the OL. The same unipotential lens as in option
I was used here, placed at 𝑧 = −140 mm. The Optics–Focus method described
in section 4.2.1 can be employed to calculate the optimal potential of the focusing
electrode of the dynamic focus lens. The optimal voltage has also been derived using
aberration theory in section 5.2.1.

III Converging Lens Before the Crossover
The object being imaged by the OL — the beam crossover — can be moved further
towards C3 by a converging lens placed before the crossover. There isn’t enough
space between the condenser C3 casing and the crossover at 𝑧 = −150 mm to place
an additional lens. The remaining options are (a) designing a lens directly inside
the C3 gap or (b) placing the lens in before C3 (either inside the magnetic lens bore
or before it).

In case (a), the overlapping electrostatic and magnetic field of the two lenses
causes additional beam rotation but since this happens before the deflectors where
the beam is axial and circular, it has no effect on the beam spot in the image
plane. This solution would affect the spot if the shaped beam were to be used;
the rectangular spot would be tilted due to the extra rotation. A weak converging
unipotential lens was designed simply by inserting an electrode inside the magnetic
lens gap utilizing the pole pieces of C3 as the outer electrodes. The lens and its
axial potential for unit voltage on the central electrode is shown in figure 5.2 right.

In case (b), the converging lens used in options I and II is placed between the
crossover at 𝑧𝑜 = −381 mm and the condenser. It decreases the axial ray slope
and thus its transverse velocity before the ray enters the C3 field. As the focusing
magnetic force of the condenser is proportional to the transverse electron velocity,
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the smaller-slope ray is focused less. It was found that the lower focusing power of
the magnetic lens dominates over the effect of the converging lens. A lens in front of
the condenser cannot move the crossover in the negative 𝑧 direction and therefore
cannot provide dynamic focusing. A possible solution is to increase the excitation
of the condenser so that the crossover is moved to the left of -150 mm and the image
is formed at the sample plane for a nonzero deflection. The dynamic focus coil can
then be used to provide the additional focusing for smaller deflections, much like
in option II. The optimal field magnitude of the dynamic focus lens is calculated
analogously.

5.2.1 Aberration Theory
To eliminate the field curvature of the system, the field curvature of the introduced
dynamic focus lens needs to be calculated. Similarly to section 4.2.2, the additional
field curvature of the lens was derived using aberration theory. Here, focusing and
potentially overlapping electric and magnetic fields have been taken into account.
In the paraxial equation (1.24), we set 𝐹1 = 𝐷1 = 0 and write 𝜑 = 𝜑0 + 𝜑𝑐, where
𝜑0 is the axial potential of the system without the dynamic focus lens and 𝜑𝑐 is the
axial potential change introduced by the dynamic focus field. The relativistically
corrected potential is then

𝜑* = 𝜑*
0

(︃
1 + 𝜑*

𝑐

𝜑*
0

)︃
. (5.1)

For small correction potentials, the paraxial equation terms including 𝜑* can be
approximated by the first order Taylor-series expansion terms

1
𝜑* = 1

𝜑*
0

− 𝜑*
𝑐

𝜑*2
0

, (5.2)

1√
𝜑* = 1√

𝜑*
0

(︃
1 − 𝜑*

𝑐

2𝜑*
0

)︃
. (5.3)

Substituting these terms into the paraxial equation and arranging the terms con-
taining the correction potential 𝜑*

𝑐 on the right-hand side we get

𝑤′′ +
(︃

𝛾𝜑′
0

2𝜑*
0

− i𝜂𝐵

𝜑*2
0

)︃
𝑤′ +

(︃
𝛾𝜑′′

0
4𝜑*

0
− i𝜂𝐵′

2𝜑*2
0

)︃
𝑤 = 𝑄1𝑤

′ + 𝑄2𝑤, (5.4)

𝑄1 = 𝛾𝜑′
0

2𝜑*2
0

𝜑*
𝑐 − 𝛾

2𝜑*
0
𝜑′

𝑐 − i𝜂𝐵

2𝜑
*3/2
0

𝜑*
𝑐 , (5.5)

𝑄2 = 𝛾𝜑′′
0

4𝜑*2
0

𝜑*
𝑐 − 𝛾

4𝜑*
0
𝜑′′

𝑐 − i𝜂𝐵′

4𝜑
*3/2
0

𝜑*
𝑐 , (5.6)

where we used the approximations (𝜑′
0 + 𝜑′

𝑐) 𝜑*
𝑐 ≈ 𝜑′

0𝜑
*
𝑐 and (𝜑′′

0 + 𝜑′′
𝑐 ) 𝜑*

𝑐 ≈ 𝜑′′
0𝜑*

𝑐 .
The homogeneous equation is the paraxial equation for the original 𝜑0 potential and
its solutions are the 𝑤𝑎 and 𝑤𝑏 rays. The non-homogeneous equation can be solved
using the variation of parameters method. The ray position shift of the particular
solution in the image plane is

Δ𝑤(𝑧𝑖) = 𝑀𝑒i𝜃

𝑊

∫︁ 𝑧𝑖

𝑧𝑜

− (𝑄1𝑤
′
𝑎 + 𝑄2𝑤𝑎) �̄�𝑎

√︁
𝜑*

0 d𝑧. (5.7)
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Attributing Δ𝑤 to the field curvature 𝑀𝑒i𝜃𝑘DF
𝐹 𝑜 𝛼0𝛿𝑜𝛿𝑜, we substitute 𝑤 = 𝛼𝑜𝑤𝑎,

𝑤′ = 𝛼𝑜𝑤
′
𝑎 into 𝑄1 and 𝑄2. The field curvature is then

𝑘DF
𝐹 𝑜 = − 1

𝛿𝑜𝛿𝑜𝑊

∫︁ 𝑧𝑖

𝑧𝑜

(𝑄1𝑤
′ + 𝑄2𝑤) �̄�𝑎

√︁
𝜑*

0 d𝑧. (5.8)

Using the approximations

𝛾 = 1 + 2𝜀𝜑0

(︃
1 + 𝜑𝑐

𝜑0

)︃
≈ 1 + 2𝜀𝜑0,

𝜑*
𝑐 = (1 + 𝜀𝜑𝑐)𝜑𝑐 ≈ 𝜑𝑐

(5.9)

it is easily seen that the dynamic focus lens field curvature 𝑘DF
𝐹 𝑜 is a linear function

of the correction field magnitude. To eliminate the deflection field curvature 𝐾𝑒
𝐹 𝑜,

the magnitude 𝑚 of the dynamic focus field needs to satisfy

𝑚 = −𝐾𝑒
𝐹 𝑜

𝑘DF
𝐹 𝑜

. (5.10)

As in case of magnetic dynamic focus coil, the correction field magnitude is propor-
tional to the square of the deflection

𝑚 = −𝐾𝑒
𝐹 𝑜

𝑘𝑓

𝛿𝑜𝛿𝑜, (5.11)

where 𝑘𝑓 = 𝑘DF
𝐹 𝑜 𝛿𝑜𝛿𝑜 is not a function of 𝛿𝑜.

Field curvature correction using the in-gap lens (option IIIa)

The optimal voltage of the dynamic focus lens inside the condenser gap (IIIa) was
calculated using the dervid formulas. Integrating the expression (5.8) numerically,
the field curvature 𝑘DF

𝐹 𝑜 for unit voltage is

𝑘DF
𝐹 𝑜 𝛿𝑜𝛿𝑜 = −6.803×10−2 mm−1. (5.12)

The optimal magnitude of the dynamic focus field is equal to the voltage in volts

𝑈DF [V] = 𝑚 = 1.002 𝛿𝑜𝛿𝑜, (5.13)
𝑈DF [V] = 4.611×103 𝛿𝑖𝛿𝑖. (5.14)

The central electrode potential has to be set at 15 kV + 𝑈DF, for the correction of a
0.1 mm deflected ray’s field curvature it is 15 046.1 V. This dynamic focus lens can
only work in accelerating mode. In decelerating mode, the velocity of beam electrons
decreases and so does the magnetic focusing Lorentz force. The condenser’s lower
focusing power dominates over the extra focus of the dynamic focus lens. The
crossover is therefore shifted in the wrong direction, towards the objective.
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Field curvature correction using the defocused objective (option II)

The decrease of the objective lens focusing power causing a shift of the image plane
Δ𝑧𝑓 is related to the maximum deflection 𝛿max

Δ𝑧𝑓 = 𝐾𝑒
𝐹 𝛿max𝛿max, (5.15)

The optimal objective excitation current can be found using EOD’s Optics-Focus
module. The dynamic focus lens in figure 5.2(a) placed between the objective lens
and the condenser is then used to focus the beam on the sample for all deflections
up to the edge of the writing field 𝛿max. The optimal potential of the lens’s focusing
electrode can be calculated by the Optics-Focus module as described for magnetic
dynamic focusing in section 4.2.1. It was found that the focus potential is propor-
tional to the deflection; for 200 µm maximal deflection: For 200 textmu m maximal
deflection, the objective lens excitation is 1312.47 A-turns and the optimal dynamic
focus lens potential is

𝑈DF [V] = 1183.6 (𝛿max − |𝛿𝑖|) (5.16)
in accelerating mode, and

𝑈DF [V] = −1095.1 (𝛿max − |𝛿𝑖|) (5.17)
in decelerating mode. The electrode potential is then set to 15 kV + 𝑈DF. As the
potential of the lens electrode is relatively high, this option of dynamic focusing will
not be treated, and option IIIa will be used in further calculations.

5.3 Dynamic Correction of Astigmatism
An 8-electrode electrostatic dynamic stigmator has been designed according to fig-
ure 1.10. The electrodes are 13 mm long and are enclosed in a grounded casing. The
stigmator was placed just above the upper deflection stage as shown in figure 5.1.
The quadrupole field of the stigmator has a peak value of 78 mV/mm2 for unit
electrode potential at 𝑧 = −118.5 mm, the field width is 15.3 mm.

The formulas to calculate the astigmatism introduced by a dynamic stigmator
and its optimal field magnitude used for the treatment of magnetic stigmators (4.35)
hold for electrostatic stigmators as well. Here,

𝑘st
𝐴𝑜𝛿

2
𝑜 = 4.810 + 15.860 i mm, or (5.18)

𝑘st
𝐴𝑜𝛿

2
𝑖 = −1.777×104 + 7.417×104i mm. (5.19)

The optimal (complex) electrode potential of the dynamic stigmator is then

𝑚 =
(︁
7.769×10−5 + 2.409×10−3 i

)︁
𝛿2

𝑜 [mm], or (5.20)
𝑚 = (−5.291 + 9.747 i) 𝛿2

𝑖 [mm], (5.21)
The electrode voltage and the rotation of the stigmator field can then be calculated
as

𝑈 st [V] = |𝑚|, 𝜒 = arg(𝑚)/2. (5.22)
The electrode voltages 𝑉𝑎 and 𝑉𝑏 according to figure 1.10(c) are then

𝑉𝑎 = 𝑈 st cos(2𝜒), 𝑉𝑏 = 𝑈 st sin(2𝜒). (5.23)

68



5.4 Dynamic Correction of Distortion
The deflection distortion shifts the spot position in the image plane without chang-
ing its size. Additionally, the dynamic focus lens and the dynamic stigmator may
introduce further distortions.

Deflection Distortion
The image shift due to the deflection distortion is given by 𝑘𝑒

𝐷𝛿2
𝑖 𝛿𝑖 which can be

compensated by superimposing a small correction onto the deflection signal. The
correction deflection 𝛿𝑐 must satisfy

𝛿𝑐 + 𝑘𝑒
𝐷𝛿2

𝑐 𝛿𝑐 = −𝑘𝑒
𝐷𝛿2

𝑖 𝛿𝑖. (5.24)

The term containing 𝛿3
𝑐 is small compared to the others and can be neglected. The

correction of the deflection is then directly given by

𝛿𝑐 = −𝑘𝑒
𝐷𝛿2

𝑖 𝛿𝑖, (5.25)

from which the complex correction voltage 𝑈𝑐 = 𝑈𝑐,𝑥 + i𝑈𝑐,𝑦 can be calculated using
the deflection sensitivity 𝑢

𝑈𝑐 = 𝛿𝑐

𝑢
, where 𝑢 = 6.666 µm/V. (5.26)

Dynamic Focus Lens Distortion
The effect of the dynamic focus lens on distortion can be easily calculated using
aberration theory. Let us take the paraxial equation (5.4) originally derived to cal-
culate the dynamic focus field curvature. This time, the we substitute the deflected
trajectory 𝑤 = 𝛿𝑜𝑤𝑒 into on the right-hand side terms. The ray shift in the image
plane due to the particular solution is then

Δ𝑤(𝑧𝑖) = 𝑀𝑒i𝜃𝑘DF
𝐷𝑜 𝛿𝑜𝛿

2
𝑜 = 𝛿𝑜𝑀𝑒i𝜃

𝑊

∫︁ 𝑧𝑖

𝑧𝑜

−
(︁
𝑄1(𝜑𝑐)𝑤′

𝑒 + 𝑄2(𝜑𝑐)𝑤𝑒

)︁
�̄�𝑎

√︁
𝜑*

0 d𝑧. (5.27)

It can be easily seen that the ray shift due to the dynamic focus coil field 𝜑𝑐 is
nonzero only in case the dynamic focus field overlaps the deflected trajectory. In all
discussed options of electrostatic dynamic focusing, the corrector lens was located
upstream of the stigmator and their fields did not overlap. The distortion due to
the introduction of the dynamic focus lens is therefore zero in all cases.

Dynamic Stigmator Distortion
Using aberration theory, the first-order effect of the dynamic stigmator on distor-
tion can be derived. We take the paraxial equation (4.7) with the right-hand side
derived for the dynamic stigmator (4.33). This time, the we substitute the deflected
trajectory 𝑤 = 𝛿𝑜𝑤𝑒 into 𝑃 to get

𝑤′′ +
(︃

𝛾𝜑′

2𝜑* − i𝑘𝐵0

)︃
𝑤′ +

(︃
𝛾𝜑′′

4𝜑* − i𝑘
2 𝐵′

0

)︃
𝑤 = 𝑃, (5.28)
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𝑃 = −
(︂

2𝑘𝐷2 + 𝛾

Φ* 𝐹2

)︂
𝛿𝑜�̄�𝑒. (5.29)

The ray shift in the image plane due to the particular solution is

Δ𝑤(𝑧𝑖) = 𝑀𝑒i𝜃𝑘st
𝐷𝑜𝛿𝑜𝛿

2
𝑜 = 𝛿𝑜𝑀𝑒i𝜃

𝑊

∫︁ 𝑧𝑖

𝑧𝑜

(︂
2𝑘𝐷2 + 𝛾

Φ* 𝐹2

)︂
�̄�𝑒�̄�𝑎

√
Φ* d𝑧. (5.30)

It is evident from equation (5.30) that the dynamic stigmator contributes to the
overall distortion only if the quadrupole field 𝐹2 (or 𝐷2 for that matter) overlap
the deflection field (or in general, with the deflected trajectory 𝑤𝑒). In the modeled
electrostatic deflection and correction system, the stigmator field and the deflection
field do not overlap as can be seen in figure 5.1. The voltage on the stigmator
electrodes does not affect the spot position in the image plane. This result has been
confirmed by ray tracing. A hundredfold increase of the stigmator field magnitude
shifted the deflected ray by mere 15 pm, well below the error level of the tracing.

The distortion introduced by the dynamic stigmator needs to be taken into
account in systems where 𝐹2�̄�𝑒 ̸= 0. The validity of (5.30) has been confirmed
by shifting the stigmator into the dipole field of the deflectors and comparing the
results of the derived formula with the results of ray tracing. The stigmator field was
shifted 40 mm so that the quadrupole and upper dipole field maxima were nearly
coincidental. The deflection was set to 200 µm. The integral (5.30) was evaluated
with these parameters; the resulting shift of the deflected ray per unit stigmator
voltage was

Δ𝑤der(𝑧𝑖) = 19.205 + 41.804i nm. (5.31)
With ray tracing, the obtained shift was

Δ𝑤rt(𝑧𝑖) = 19.200 + 41.804i nm. (5.32)
The relative difference between the two results was less than 10−4 confirming the
validity of the derived stigmator-induced distortion.

Third-order Dynamic Stigmator Distortion
In order to estimate the effect of third-order aberrations of the dynamic stigmator
on the distortion (and other aberrations) of the system, a derivation method similar
to the previous calculations was employed.

The electrostatic potential is given by the expansions (1.14)–(1.16). Terms up
to the third order in 𝑤 are taken and substituted into the trajectory equation (1.8).
From the magnetic potential expansion, only the rotationally symmetrical terms
are considered (1.19). After lengthy algebraic manipulations involving neglecting
high-order terms, the paraxial equation (1.23) is obtained with additional terms of
𝑤 and 𝐹2 on the right-hand side

𝑃𝐹 2 = 𝛾

2𝜑*

[︃
− 1

4𝑤�̄�𝐹 ′′
2 − 1

12𝑤3𝐹 ′′
2 + 𝛾

8𝜑* 𝑤𝜑′′
(︁
�̄�2𝐹2 + 𝑤2𝐹2

)︁
−

− 𝛾

2𝜑* �̄�
(︁
�̄�2𝐹 2

2 + 𝑤2𝐹2𝐹2
)︁

− 𝑤′�̄�′𝑤𝐹2

]︃
−

− d
d𝑧

[︃
𝛾

4𝜑*1/2

(︁
�̄�2𝐹2 + 𝑤2𝐹2

)︁
𝑤′
]︃ (5.33)
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The transverse shift of the ray in the image plane is expressed by

Δ𝑤(𝑧𝑖) = −𝑀𝑒i𝜃

𝑊

∫︁ 𝑧𝑖

𝑧𝑜

𝑃𝐹 2𝑤𝑎

√︁
𝜑* d𝑧. (5.34)

The standard definition of the deflection distortion is 𝑘𝑒
𝐷𝑜𝛿

2
𝑜𝛿𝑜, however, for example

Hawkes considers all terms containing 𝛿𝑛
𝑜 𝛿3−𝑛

𝑜 , 𝑛 = {0, 1, 2, 3} as distortion [45].
The deflected trajectory 𝑤 = 𝛿𝑜𝑤𝑒 is substituted into equation (5.33). Again, it is
evident, that the third-order distortion manifests only if the quadrupole field 𝐹2 and
the deflected trajectory 𝑤𝑒 overlap.

Considering all terms according to Hawkes and moving the stigmators 40 mm
towards the deflection stages to increase the effect of the quadrupole field, a 500 µm
deflected ray is shifted by the unit-potential stigmator by

Δ𝑤(𝑧𝑖) = −84.2 − 563i pm. (5.35)

This low value of the shift could not be confirmed as it is on the limit of the ray
tracing error, and for these high values of deflection and stigmator voltage other
effects are dominant, such as the linear stigmator distortion described in section 5.4.
It is safe to say that the third-order stigmator distortion does not affect the spot
position considerably.

5.5 The Corrected System
Hitherto, the dynamic correction of field curvature, astigmatism, and distortion of
the designed electrostatic deflection system was treated. In this section, the ef-
fects of these correctors on the spot size and shape is demonstrated. The series
of spots in figure 5.4 shows the studied dynamic corrections of on a 0.1 mm elec-
trostatically deflected beam spot. The electrostatic dynamic focus lens inside the
condenser gap eliminates field curvature thus decreasing the spot size; the stigmator
compensates deflection astigmatism and removes the spot ellipticity; and the distor-
tion correction moves the spot to the paraxial deflection position. Similarly to the
astigmatism-corrected magnetic deflection system, the dynamic stigmator removes
the spot ellipticity in all planes close to the image; as shown in figure 4.4 for a
magnetic deflection system.

Contrary to the magnetic deflection system, here the spot retains its properties
for lower deflections only. Astigmatism becomes considerable at 𝛿𝑖 = 200–300 µm
and the spot size actually decreases with increasing deflection as shown in table 5.2.

It was found that the chromatic aberrations has great effect in broadening the
spot. Figure 5.5 shows the spot after correction of the field curvature, astigmatism,
and distortion for the nominal energy 𝐸0 = 15 keV and for energies 𝐸0 − 𝑑𝐸/2 and
𝐸0+𝑑𝐸/2, where 𝑑𝐸 = 0.4 eV. Rays with a slightly different energy form the spot at
shifted positions. For deflections up to 200 µm the shift of the chromatic spot is less
than 1/3 of the nominal energy spot diameter. In further studies it may be useful
to find an optimal trade-off between probe size increase due to coma and chromatic
aberration.
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Figure 5.4: Change in 0.1 mm deflected spot size and shape after applying dynamic
focus to eliminate field curvature (option IIIa), dynamic stigmation to eliminate de-
flection astigmatism, and distortion correction. The ellipses correspond to 5 equidis-
tant initial ray angles up to the optimal aperture angle 𝛼opt. The dynamic focus
decreases the spot size in the sample plane, and the astigmatism correction com-
pensates its ellipticity. The dynamic correction of distortion moves the spot to the
paraxial deflection position within 0.1 nm which is around the tracing error level.
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Table 5.2: The effect of deflection on spot size after dynamic corrections. The spot
diameter was calculated for nominal beam energy.

Deflection Write Major Minor Diameter
field diameter diameter increase

[µm] [µm2] [nm] [nm] %
0 N/A 4.4 N/A 0

100 140x140 4.3 N/A -2
200 280x280 3.8 3.7 -15
300 420x420 3.5 3.1 -25
400 560x560 3.9 2.7 -25
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Figure 5.5: The effect of chromatic aberrations illustrated on a 0.1 mm deflected
beam of energies close to the nominal energy 15 keV. The energy spread 𝑑𝐸 is
0.4 eV. The field curvature, astigmatism, and distortion are corrected. The circles
correspond to 5 equidistant initial ray angles up to the optimal aperture angle 𝛼opt.

5.6 Summary

In this chapter, the dynamic correction of the field curvature, astigmatism, and
distortion of a newly designed electrostatic deflection system were studied. The
electrostatic deflectors resemble the original magnetic ones in that they utilize two
stages, they occupy the same space inside the objective lens bore, and have similar
size. The deflectors consist of 8 equisectored electrodes, they do not produce a
hexapole field, and share a voltage supply between the stages. The deflection system
was optimized so that it had negligible coma. As chromatic aberration becomes
significant, it may be useful in further studies to find an optimal trade-off between
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probe size increase due to coma and chromatic aberration by adjusting the rotation
of the electrodes. A dynamic electrostatic stigmator was added to the setup just
before the deflection system. The stigmator is also composed of 8 electrodes, and
its quadrupole field was used to compensate deflection astigmatism. To eliminate
field curvature, several methods and lenses have been proposed depending on the
location of the dynamic focus lens. The optimal voltages of the dynamic correction
devices, as well as their effect on distortion has been derived.

To demonstrate the functionality of the proposed dynamic corrections, they were
implemented in the EOD model and their influence on spot size, shape, and position
evaluated as shown in figure 5.4. The correction devices worked as expected for lower
write fields up to around 250 µm2. Decrease of the spot size and increase of ellipticity
have been observed for higher deflections. A probable cause is that the derived
formulas are sensitive to numerical errors and the found correction device voltages
slightly differ from the optimal values. It was found that the spot becomes elliptical
at 200–300 µm and higher deflections. The chromatic aberration has considerable
effect on the spot properties by shifting the center of spots of slightly different
energy and induces a 200 µm deflection limit according to the criterion discussed in
section 5.5. For write fields used in electron-beam lithography applications at the
Institute of Physical Engineering around 150×150 µm2 the spot remains circular.
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CONCLUSION

This thesis was focused on studying dynamic correction options in direct-write
electron-beam lithography. The Tesla BS600 e-beam writer’s optical column con-
verted to Gaussian-beam mode was chosen to explore these possibilities. The goals
of the thesis were to study the properties of the current magnetic deflection and
dynamic focus system, and to design new electrostatic deflection and electrostatic
aberration correction devices. The deflection aberrations treated in this thesis were:
coma, field curvature, astigmatism, and distortion.

The first part of the thesis offers an introduction into the laws and relations
governing charged particle optics (chapter 1), as well as some practical aspects of
particle optics devices such as the design of lenses, beam deflectors, and stigmators.
The fundamental paraxial approximation and aberration theory are described. A
few pages of chapter 2 are devoted to electron-beam lithography; its evolution from
the early ages up to the state-of-the-art concepts of recent years. A very short de-
scription of the electron-beam pattering process is given, and a few other techniques
offering sub-micron or nanometer-scale pattering are listed. A short chapter 3 is ded-
icated to the Tesla BS600 series electron-beam writer the electron lenses of which
have been used as the studied optical system. The changes needed to convert the
shaped-beam writer to Gaussian-beam mode are described. The main part of the
thesis is the study of the magnetic deflection and correction devices in chapter 4,
and the design of an equivalent electrostatic system in chapter 5.

An EOD (Electron Optical Design) model of the lithography machine’s optical
components has been created and used extensively to evaluate its properties. The
existing magnetic deflection system and dynamic focus coils compensating the field
curvature have been supplemented with a dynamic stigmator to eliminate the de-
flection astigmatism. Multiple methods have been proposed to calculate the optimal
excitation of these correction devices such as using EOD’s focusing capabilities, fit-
ting the necessary parameters, or deriving the sought terms using aberration theory.
The methods were compared when possible, and the dynamic corrections imple-
mented in the EOD model. The final result of the optimal aberration correction
was demonstrated and its influence on the beam spot size and shape was shown.

A new electrostatic deflection system has been designed to replace the magnetic
deflectors. Electrostatic multipoles offer higher deflection frequencies as they are not
limited by induced eddy currents. An equisectored 8-electrode dual-stage deflection
system was designed, optimized, and its aberrations were evaluated. Several elec-
trostatic dynamic focusing options have been proposed to eliminate the deflection
field curvature, differing in the placement of the unipotential correction lens. An 8-
electrode electrostatic stigmator has been designed and implemented to compensate
the deflection astigmatism. The effect of the newly introduced correction devices
on distortion has been derived and compensated by superimposing a small correc-
tion onto the deflection signal. The functionality of the correction devices and the
correctness of the aberration integrals derivation have been demonstrated on beam
spots calculated by ray tracing.

The electrostatic deflection system has slightly higher field curvature, distortion,
and chromatic aberration coefficients; of these, only the chromatic aberration can-
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not be corrected dynamically. Using dynamic correction devices, the achievable spot
properties are similar for write fields up to 200×200 µm2 after which the electrostati-
cally deflected beam becomes considerably elliptical. The magnetically deflected and
corrected beam spot retains its properties up to a 1×1 mm2 write field. It was found
that the correctors have no effect on distortion as long as the correction fields are
situated before the deflectors. Formulas giving the influence of dynamic focus and
stigmator fields on distortion in the general case have been derived and tested by
ray tracing.

Dynamic correction of aberrations is an important aspect of direct-write electron-
beam lithography as it can increase the most limiting factor of these machines in
commercial applications— the throughput. The derived framework and results may
be used in future designs of electron-beam lithography or microscopy systems.
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