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ABSTRACT
This thesis deals with the dark-field imaging and the optical spectroscopy of optically
trapped plasmonic nanoparticles. The optical trapping and the characterization of a single
particle or multiple nanoparticles as well are demonstrated. The number of the optically
trapped particles can be estimated from the dark-field scattering intensity. Experiments
show the presence of the interparticle coupling among trapped metallic nanoparticles
which has not been observed in case of dielectric particles. The scattering spectra of the
plasmonic nanoparticles were compared with theoretical models based on the Mie theory
and the Discrete dipole approximation.

KEYWORDS
optical spectroscopy, optical tweezers, dark field, metallic nanoparticles, scattering,
ADDA, Mie theory

ABSTRAKT
Tato práce se zabývá zobrazováńım v temném poli a optickou spektroskopíı opticky
zachycených plazmonických nanočástic. Optické chytáńı a charakterizace jednotlivých
částic nebo jejich určitého množstv́ı jsou názorně vysvětleny. Počet opticky chycených
částic může být odhadnut z intenzity rozptylu objektu v temném poli. Experimenty proka-
zuj́ı u chycených kovových nanočástic jejich vzájemnou interakci, na rozd́ıl od částic die-
lektrických. Rozptylová spektra plazmonických nanočástic jsou srovnána s teoretickými
modely založenými na Mieho teorii a Diskrétńı dipólové aproximaci.
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1 INTRODUCTION

Extraordinary light−matter interactions in metallic structures form a new branch

in nanophotonics called plasmonics. This field of science deals with the generation,

manipulation, guiding and transportation of electromagnetic waves in metals at

the nanoscale. It is based on the interaction between the electromagnetic radiation

and collective oscillations of conductive electrons in metals, so called plasmons. We

distinguish two main types of these oscillations: surface plasmon polaritons (SPPs)

and localized surface plasmon polaritons (LSPPs). SPPs are electromagnetic surface

waves of the charge density interacting with the incident electromagnetic wave that

exist at the metal−dielectric interface. They were predicted by R. H. Ritchie in 1957

[1] and three years later they were experimentally verified [2]. The second group,

LSPPs, represents oscillations of electrons in metallic nanoparticles. The application

of metallic nanoparticles is dated back to Roman times when the nanoparticles were

used for example in the staining of glass in ornamental windows or in Lycurgus

cup [3]. The clear mathematical foundation for these oscillations was established by

G. Mie in 1908 [4].

The electromagnetic field around metallic nanoparticles can be strongly enhanced

and highly confined on a scale much smaller than the wavelength of the incident light

due to plasmon oscillations [5]. Particles that enhance and confine electromagnetic

fields in their vicinities are called nanoantennas. Up to now, nanoparticles of different

shapes and materials have been studied, for example spheres [6, 7], nanorods [8, 9],

triangles [7, 10], discs [11, 12] and decahedrons [10, 13] fabricated from gold [10, 14],

silver [15, 16] or palladium [17, 18].

Plasmonic nanoparticles are widely used for Surface-Enhanced Raman Scattering

(SERS) [19, 20], Surface-Enhanced Infrared Absorption Spectroscopy (SEIRA) [21],

Single-Molecule Raman Spectroscopy [22], infrared detectors [23], biosensors [24,

25] and boosting fluorescence [26, 27]. Apart from a basic research in plasmonics,

nanoantennas have applications in the areas of medicine for labeling macromolecules

[28, 29], optoelectronics [30, 31], telecommunications [32, 33], microscopy [34, 35],

spectroscopy [36, 37] and many others.

The progress in nanotechnology and state-of-the-art techniques enable to fabri-

cate desired nanoparticles [38] and to theoretically and experimentally investigate

their properties. For nanoparticles utilization, there is a clear demand for their op-

timized characteristics, as localized-surface-plasmon (LSP) resonances of nanopar-

ticles. In some applications, only a single particle is used for the field enhancement or

sensing, e. g. SERS or biosensing. Therefore the investigation of the optical properties

of a single isolated nanoparticle is desired. This can be provided by optical trapping

of a single nanoparticle in a solution using a focused laser beam, so called optical
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tweezers [39], and the dark-field illumination for the nanoparticle spectroscopy.

In this thesis we deal with the dark-field imaging and the optical spectroscopy

of metallic nanoparticles. In order to have a possibility to investigate just a single

nanoparticle from a colloidal solution or a desired number of them, we implemen-

ted into an optical setup an optical tweezers that enables to trap a particle by

a focused light beam. Nanoparticles in an aqueous solution were illuminated by the

dark-field illumination and then only the light scattered by the nanoparticle could

be recorded. The chosen particle from the colloidal solution was optically trapped

and thus the scattering spectrum could be recorded for a desired time. So this tech-

nique should allow us to record scattering spectra of nanoparticles even with a lower

scattering intensity. The scattering spectra of metallic nanoparticles were also ob-

tained through the theoretical calculations using the Mie theory and the Discrete

dipole approximation (DDA).

This thesis is organized as follows; in chapter 2 we present basics of the electro-

magnetic-field theory. Afterwards, the Drude model for the dielectric-function de-

scription is explained. Then we introduce the theory for the field scattered by

a small particle. We show basic principles of the quasi-static approximation, the

Mie theory and also the numerical calculations that we used for the optical charac-

terization of plasmonic particles. At the end of this chapter we discuss an influence

of the particle size and its shape on the scattered field. In chapter 3 we describe

details of the experimental setup used for the particle spectroscopy consisting of op-

tical tweezers, Köhler dark-field illumination and an optical branch for a detection

and a characterization of the scattered light. Then we study nanoparticle scattering,

both experimentally and theoretically. For the setup alignment we use polystyrene

particles and consequently scattering spectra of silver and gold nanoparticles are

discussed. Finally, in chapter 4 we summarize this work and give an outlook on the

further studies.
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2 THEORETICAL BACKGROUND

The presented work deals with metallic nanoparticles in an aqueous solution and

investigates their scattered field by dark-field microscopy using optical tweezers. In

this chapter, an introduction to the theoretical description of the electromagnetic

field is given. At the beginning of the chapter, we deal with Maxwell’s equations and

the dielectric function that is necessary for the characterization of optical properties

of materials. Further we present two analytical descriptions of the scattered field of

metallic particles and the basic principle of the Discrete dipole approximation for

numerical calculations of the scattered field is described. At the end of this chapter

the effects of particle sizes and shapes on the scattering process are discussed.

2.1 Theory of the electromagnetic field

The electromagnetic field can be described by the macroscopic Maxwell’s equations

[40, p. 12]

∇ ·D = ρF, (2.1a)

∇ ·B = 0, (2.1b)

∇× E = −∂B

∂t
, (2.1c)

∇×H = JF +
∂D

∂t
, (2.1d)

where ρF is the density of free charges, B is the magnetic induction, E is the electric

field, t is time and JF is the free current density. The electric displacement D and

the magnetic field H are defined by the following expressions [40, p. 12]:

D = ε0E + P, (2.2a)

H =
B

µ0

−M, (2.2b)

where ε0 is the vacuum permittivity, P is the electric polarization (mean value of

the electric dipole moment per unit volume), M is the magnetization (mean value

of the magnetic dipole moment per unit volume) and µ0 is the vacuum permeability.

If the medium is linear, isotropic and nonmagnetic, vectors E and D are parallel,

as well vectors B and H, and they are linked via [41, p. 189]

D = εE, (2.3a)

H =
1

µ
B, (2.3b)

where ε is the electric permittivity and µ is the magnetic permeability of the medium.
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After inserting Eqs. (2.3) into Eqs. (2.2) we obtain [41, p. 189]

P = ε0χeE, (2.4a)

M = χmH. (2.4b)

The electric susceptibility χe and the magnetic susceptibility χm are given by

χe =
ε

ε0
− 1 = εr − 1, (2.5a)

χm =
µ

µ0

− 1 = µr − 1, (2.5b)

where εr and µr correspond to the relative permittivity and the relative permeability,

respectively.

Let us consider the harmonic time dependence of the fields [40, p. 25]

E (r, t) = Re {E0 exp [i (k · r− ωt)]} , (2.6a)

H (r, t) = Re {H0 exp [i (k · r− ωt)]} , (2.6b)

in linear, isotropic and nonmagnetic medium (∇ε = 0 and ∇µ = 0) without free

charges and free currents (ρF = 0 and JF = 0). E0 and H0 represent the amplitudes

of the electric field and the magnetic field, respectively, i is the imaginary unit, r

is the position vector, ω is the angular frequency, k is the wave vector and from

Maxwell’s equations (2.1) k ⊥ E and k×E = ωH. Using Maxwell’s equations (2.1)

we can derive the Helmholtz equation [42, p. 296]

(
∇2 + k2

){E

H

}
= 0. (2.7)

Solving Maxwell’s equations for a boundary of two different media we arrive at

the boundary conditions [43]

(D2 −D1) · n = σF, (2.8a)

(B2 −B1) · n = 0, (2.8b)

n× (E2 − E1) = 0, (2.8c)

n× (H2 −H1) = KF, (2.8d)

where σF is the surface density of free charges and KF is the surface free current

density, n is the normal vector oriented as in Fig. 2.1 and other notation is apparent

from Fig. 2.1.
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n

E1,B1,D1,H1 E2,B2,D2,H2

medium 1 medium 2
σF KF

Fig. 2.1: Notation of the field quantities at a boundary of two different media; adap-

ted from [43].

2.2 Drude model

Optical properties of materials are described by their relative permittivities. The

relative permittivities are generally functions of the angular frequencies of the inci-

dent electromagnetic waves thus they are often called dielectric functions. In 1900

Drude proposed a model for the description of the optical response of the conduction

electrons in metals. He supposed that electrically positive ions form a fixed crystal

lattice and conduction electrons can move freely. Thus the metal materials with the

low damping have similar optical properties as plasma. The damping γ is mainly

caused by scattering of conduction electrons on lattice vibrations (phonons) and

is defined as γ = 1/τ , where τ is the electronic scattering time. The equation for

motion of an electron is [40, p. 251]

meẍ +meγẋ = −eE, (2.9)

where me is the electron mass, x is the displacement from the equilibrium position,

e is the magnitude of the electron charge and the dot above the symbol means

time derivation. Supposing harmonic time dependence of the electric field with the

angular frequency ω, the solution of Eq. (2.9) is of the form

x (t) =
e

me

1

ω2 + iγω
E (t) . (2.10)

Conduction electrons are displaced by the external electric field E with respect to

the ion lattice and thus the material is polarized (the dipole moment of one electron

p = −ex). Via the density of free electrons N we can obtain the electric polarization

P (t) = Np (t) = −N ex (t) = − N e2
me (ω2 + iγω)

E (t) . (2.11)

Comparing Eq. (2.11) with Eq. (2.4a) and accounting Eq. (2.5a) we get the expression

for the dielectric function

εr (ω) = 1− ω2
p

ω2 + iγω
, (2.12)
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where we introduced the plasma frequency

ωp =

√
N e2
meε0

. (2.13)

The plasma frequency is the resonant frequency of the charge motion in the plasma

which consists of free electrons and positive ions. These oscillations can be described

by the same model as applies for metals supposing γ → 0.

Apart from free electrons, also bound electrons have a substantial effect on the

profile of the dielectric function; for example in gold a bound-electron contribution

to the dielectric function dominates at resonant frequencies [40, p. 337] (discussed

later in section 2.3.1). Therefore we have to add to the dielectric function derived

by the Drude model εDr (Eq. (2.12)) Lorentzian terms εLr where a restoring force is

included [40, p. 258]:

εr (ω) = εDr (ω) + εLr (ω) = 1− ω2
p

ω2 + iγω
+
∑
j

ω2
pj

ω2
j − ω2 − iγjω

, (2.14)

where ωpj is the oscillator plasma frequency, ωj is the oscillator resonant frequency

and γj is its damping constant.

2.3 The field scattered by small metallic particles

To explain the scattering process we consider an object which consists of electrons

and electrically positive ions. If the object is illuminated by an incident electromag-

netic wave, charges can start to oscillate. The oscillatory motion of charges driven

by the external electromagnetic field causes the emission of the radiation of the

electromagnetic field in all directions. This radiation is called the radiation scatte-

red by the object [40, p. 3] and the whole process consists of the excitation and the

reradiation.

We distinguish two types of scattering of the incident light, elastic and inelastic.

In the elastic scattering (Rayleigh scattering [40, p. 7]) the frequency of the scattered

light is the same as the frequency of the incident light. If the energy of the emitted

photon is different from the energy of the absorbed one, the scattering is inelastic

(Raman scattering [44]).

Except the reradiation of the energy of the excited charges, the energy can be

transformed into other forms, for example thermal energy. This energy-dissipation

process is called absorption and always appears simultaneously with the electromag-

netic-field scattering. The sum of scattering and absorption is generally called ex-

tinction. The magnitude of the extinction depends on dielectric functions of the
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studied object and its surrounding medium, its size, shape, orientation, the pre-

sence of other particles and on the polarization and the frequency of the incident

electromagnetic field.

For quantitative description of scattering and absorption of the incident field, it

is necessary to examine the flux of the Poynting vector S [40, p. 63]

S =
1

µ0

(E×B) . (2.15)

If we consider a sphere surrounding the studied particle, the rate of the energy

transmission through the sphere with the surface A is [40, p. 69]

Wabs = −
∫
A

S · er dA, (2.16)

where er is the unit vector in the radial direction. The energy entering the sphere

space is positive and the energy leaving the space is negative. It is evident that Wabs

represents the energy absorption rate. If the energy is absorbed by the particle, it

always applies Wabs > 0. Wabs can be written as the sum of three terms [40, p. 70]:

Wabs = Wi −Wsca +Wext, (2.17)

where

Wi = −
∫
A

Si · er dA, Wsca =

∫
A

Ssca · er dA, Wext = −
∫
A

Sext · er dA (2.18)

and the indices i, sca and ext denote the incident light, the scattered light and the

extinction, respectively. For a nonabsorbing medium, i.e. Wi = 0, we arrive at the

relationship

Wext = Wabs +Wsca. (2.19)

The ratio of Wext to the incident irradiance Ii is the so called extinction cross

section Cext, the quantity with dimensions of area:

Cext =
Wext

Ii
. (2.20)

Following Eq. (2.19), Cext is a sum of the absorption cross section Cabs and the

scattering cross section Csca:

Cext = Cabs + Csca, (2.21)

where

Cabs =
Wabs

Ii
, Csca =

Wsca

Ii
. (2.22)

The extinction cross section can have a different value from the geometrical cross

section of the particle. For instance gold nanoparticles can have severalfold larger

extinction cross sections than their real geometrical cross sections [45, 60].
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There are several ways how to determine scattered field of a particle. The sim-

plest one is the quasi-static approximation. This approximation is valid for particles

much smaller than the wavelength of the incident light. Retardation effect can be

neglected and the particle behaves like an oscillating dipole. As the size of the par-

ticle increases, the particle is not polarized homogeneously and higher-order modes

are now important. For spherical and ellipsoidal particle, Mie theory can be used

for the description of the scattered field. In other geometries, numerical methods

are required for solving of Maxwell’s equations, for example Discrete dipole approxi-

mation (DDA). These three different approaches how to characterize the scattered

field are described in more details in the following sections.

2.3.1 Quasi-static approximation

In this section, we analyse the scattered field of a metallic nanosphere with a radius

a � λ (λ is a wavelength of the incident light.), for a gold particle in an aqueous

solution 2a < 25 nm [8]. We can assume that the external electric field has the

constant phase over the whole nanoparticle volume and therefore the problem is

reduced to the electrostatic one. The nanoparticle behaves under the incident light

like an oscillating electric point dipole p (see Fig. 2.2) and the field outside of the

nanosphere can be described as a superposition of the external field and the field

of a point dipole located in the center of the nanosphere. This description of the

scattered field of a nanoparticle is called quasi-static approximation. The derivation

showed in this section follows the one presented in [46, p. 66].

E0 Or

a

εrεmr
p z

θ

Fig. 2.2: Scheme of a nanosphere placed into an electrostatic field E0; adapted from

[46].

To find the distribution of the electric field around the nanosphere, we have to

deal with the Laplace equation for the electric potential

∇2Φ = 0, (2.23)
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where the electric field is given by

E = −∇Φ. (2.24)

Due to the azimuthal symmetry, the general solution is of the form

Φ (r, θ) =
∞∑
l=0

(
Alr

l +Blr
−l−1)Pl (cos θ) , (2.25)

where r is the distance from the dipole to the point O where the field is studied, θ is

the angle between the position vector r and the z axis, Al and Bl are the coefficients

obtained from the boundary conditions and Pl (cos θ) are the Legendre polynomials

of the order l.

The solution for the electric potential inside Φin and outside Φout the nanosphere

is determined from the boundary conditions (for r → ∞: Φout → −E0r cos θ and

Eqs. (2.8))

Φin = − 3εmr
εr + 2εmr

E0r cos θ, (2.26a)

Φout = −E0r cos θ +
p · r

4πε0εmr r
3
, (2.26b)

where εmr is the dielectric function outside the nanosphere, εr is the dielectric function

of the nanoparticle, E0 is the amplitude of the applied electric field and p represents

the electrostatic dipole moment of the nanoparticle of the form

p = 4πε0ε
m
r a

3 εr − εmr
εr + 2εmr

E0, (2.27)

where a is the radius of the nanosphere. We see from Eq. (2.26b) that the potential

outside the nanosphere is given by a sum of the external potential (the first term) and

the potential of the electric dipole induced by the external field (the second term).

The radiation of the electric dipole results in scattering of the external field by the

nanosphere. The same result applies also for the electric fields. Using Eq. (2.24) we

can derive from Eqs. (2.26) the distribution of the electric field inside Ein and outside

Eout the nanosphere:

Ein =
3εmr

εr + 2εmr
E0, (2.28a)

Eout = E0 +
3n (n · p)− p

4πε0εmr

1

r3
, (2.28b)

where n = r/r is the unit vector in the direction of the point where the field is

studied.

11



Let us consider the sinusoidally varying fields of a localized oscillating source

E (r, t) = E (r) exp (−iωt) and H (r, t) = H (r) exp (−iωt). From Maxwell’s equati-

ons (2.1) using a Fourier analysis of the time dependence the following expression

for the dipole field can be derived [42, p. 411]:

E (r) =
1

4πε0εmr

{
k2 (n× p)× n

exp (ikr)

r

+ [3n (n · p)− p]

(
1

r3
− ik

r2

)
exp (ikr)

}
, (2.29a)

H (r) =
ck2

4π
(n× p)

exp (ikr)

r

(
1− 1

ikr

)
, (2.29b)

where k = 2π/λ is the wave number and c is the speed of light in vacuum. In the

near zone of the nanoparticle, where kr � 1, the fields can be simplified into

E (r, t) =
3n (n · p)− p

4πε0εmr

1

r3
exp (−iωt) , (2.30a)

H (r, t) =
iω

4π
(n× p)

1

r2
exp (−iωt) . (2.30b)

This field is called the near field of the nanosphere and is strongly decaying with

r. As we can see from the expression above, the field is not propagating and does

not transport energy away from the electric dipole (Note that the term exp (ikr) is

missing.). The electric field, apart from its harmonic time dependence, shows the

behaviour of the electrostatic point dipole, see Eq. (2.28b).

In the opposite limit of the radiation zone, kr � 1, the fields can be approximated

by

E (r, t) =
1

4πε0εmr
k2 (n× p)× n

exp (ikr)

r
exp (−iωt) , (2.31a)

H (r, t) =
ck2

4π
(n× p)

exp (ikr)

r
exp (−iωt) . (2.31b)

In this case, the field is called the far field and consists of propagating spherical

waves because of the term exp [i (kr − ωt)] and decays slower than the near field,

with a rate of 1/r.

We can rewrite Eq. (2.27) by introducing the polarizability α into the expression

p = ε0ε
m
r αE0, (2.32)

therefore the polarizability has the following form:

α = 4πa3
εr − εmr
εr + 2εmr

. (2.33)

The polarizability is the matter ability to polarize and is closely related to the

plasmon oscillations. When the polarizability reaches the maximum value, localized
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surface plasmons (LSPs) are generated in the nanoparticle. The polarizability is in

a resonant state under the condition that |εr + 2εmr | is minimal. If we consider small

or slowly varying Im{εr}, the condition is fulfilled with

Re{εr} = −2εmr , (2.34)

the so called Fröhlich condition.

Scattering and absorption efficiencies of the nanoparticle are characterized by

cross sections Csca and Cabs, respectively. They can be derived via the Poynting

vector (Eqs. (2.15) and (2.16)) determined from Eqs. (2.29)

Csca =
k4

6π
|α|2 =

8π

3
k4a6

∣∣∣∣ εr − εmrεr + 2εmr

∣∣∣∣2 , (2.35a)

Cabs = kIm{α} = 4πka3Im

[
εr − εmr
εr + 2εmr

]
. (2.35b)

The cross sections are strongly enhanced at the plasmon resonance given by the

polarizability of the nanoparticle and are dependent on the particle dimensions.

The extinction cross section is described by

Cext = Csca + Cabs = 9kε3/2m V
Im{εr}

[Re{εr}+ 2εmr ]2 + Im{εr}2
. (2.36)

2.3.2 Mie theory

We have shown through the calculations in section 2.3.1 that particles with dimensi-

ons much smaller than the wavelength of the incident light can be considered as the

electric point dipoles absorbing and scattering the incident electromagnetic wave. As

the size of the particle increases, the field retardation begins to play a major role, the

particle is no longer polarized by the incident electromagnetic wave homogeneously

and thus the quasi-static approximation cannot be applied.

The exact solution of the optical response of particles with dimensions compara-

ble to the wavelength was published by G. Mie in 1908 [4]. However this description

of the optical characteristics is available only for spheres and ellipsoids. The Mie

theory is derived from the vectorial Helmholtz equation (2.7) in the spherical coor-

dinates. This problem is transferred into solving the scalar wave equation and via

scalar solution we can express the primary vectorial spherical harmonic functions.

The final solution has the form of infinite series consisting of the spherical Bessel

functions. A complete derivation of the scattering and absorption of electromagnetic

radiation by a sphere is presented for example in [40, p. 83], here we show only main

steps and the solutions.
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The dependent general solutions of the vectorial Helmholtz equation (2.7) are of

the form

M = ∇× (rψ) , (2.37a)

N =
∇×M

k
, (2.37b)

where ψ = ψ (r, θ, ϕ) is the generating scalar function in the spherical coordinates

that satisfies the scalar wave equation

∇2ψ + k2ψ = 0. (2.38)

The solution of Eq. (2.38) is the product of three independent function

ψ (r, θ, ϕ) = R (r) Θ (θ) Φ (ϕ) . (2.39)

Solving Eq. (2.38) we obtain three independent equations, each for one coordi-

nate. Two linearly independent solutions for the function Φ are

Φe = cos (mϕ) , (2.40a)

Φo = sin (mϕ) , (2.40b)

where m and n are the separation constants and the indices e and o denote even and

odd solutions. The expression for the ψ dependence on the angle θ has the form of

the Legendre functions of the first kind Pm
n (cos θ) of degree n and order m, where

n = m, m+ 1, . . . The dependence on r is given by the Bessel functions of the first

Jν and the second Yν kind, where the order ν = n+ 1/2. The solution is any linear

combination of the linearly independent spherical Bessel functions

jn (ρ) =

√
π

2ρ
Jn+1/2 (ρ) , (2.41a)

yn (ρ) =

√
π

2ρ
Yn+1/2 (ρ) , (2.41b)

where we introduced the dimensionless variable ρ = kr.

Then we can write the general solution of the scalar wave equation (2.38):

ψemn = cos (mϕ)Pm
n (cos θ) zn (kr) , (2.42a)

ψomn = sin (mϕ)Pm
n (cos θ) zn (kr) , (2.42b)

where zn is the linear combination of Eqs. (2.41). If we put the solutions given by

Eqs. (2.42) in Eqs. (2.37), we obtain the vectorial spherical harmonic functions for

the even modes:

Memn = ∇× (rψemn) , (2.43a)

Nemn =
∇×Memn

k
, (2.43b)
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and analogously for the odd modes.

In the next steps, we deal with the electromagnetic wave illuminating a spherical

object, propagating in the z-axis direction and linearly polarized in the x-axis di-

rection. The incident electromagnetic wave has to be decomposed onto the spherical

harmonic waves:

Ei = E0

∞∑
n=1

in
2n+ 1

n (n+ 1)

(
M

(1)
o1n − iN

(1)
e1n

)
, (2.44a)

Hi =
−k
ωµ

E0

∞∑
n=1

in
2n+ 1

n (n+ 1)

(
M

(1)
e1n + iN

(1)
o1n

)
, (2.44b)

where k is the medium wave number and µ is the medium magnetic permeability.

The field inside the sphere is

E1 = E0

∞∑
n=1

in
2n+ 1

n (n+ 1)

(
cnM

(1)
o1n − idnN

(1)
e1n

)
, (2.45a)

H1 =
−k1
ωµ1

E0

∞∑
n=1

in
2n+ 1

n (n+ 1)

(
dnM

(1)
e1n + icnN

(1)
o1n

)
, (2.45b)

where k1 is the wave number inside the sphere, µ1 is its magnetic permeability and

cn and dn are the corresponding coefficients. The scattered field is of the following

form:

Es = E0

∞∑
n=1

in
2n+ 1

n (n+ 1)

(
ianN

(3)
e1n − bnM(3)

o1n

)
, (2.46a)

Hs =
k

ωµ
E0

∞∑
n=1

in
2n+ 1

n (n+ 1)

(
ibnN

(3)
o1n + anM

(3)
e1n

)
, (2.46b)

where an and bn are the corresponding coefficients. The indices (1) and (3) indicates

the form of the R (r) solution, jn (ρ) and the spherical Hankel function h
(1)
n = jn (ρ)+

iyn (ρ), respectively. Because of the boundary conditions and the orthogonality of

the vectors, the coefficients for m 6= 1 are equal to zero. Therefore we consider only

expansions for m = 1.
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The coefficients an, bn, cn and dn can be defined from the boundary conditions:

an =
µm2jn (mx) [xjn (x)]′ − µ1jn (x) [mxjn (mx)]′

µm2jn (mx)
[
xh

(1)
n (x)

]′
− µ1h

(1)
n (x) [mxjn (mx)]′

, (2.47a)

bn =
µ1jn (mx) [xjn (x)]′ − µjn (x) [mxjn (mx)]′

µ1jn (mx)
[
xh

(1)
n (x)

]′
− µh(1)n (x) [mxjn (mx)]′

, (2.47b)

cn =
µ1jn (x)

[
xh

(1)
n (x)

]′
− µ1h

(1)
n (x) [xjn (x)]′

µ1jn (mx)
[
xh

(1)
n (x)

]′
− µh(1)n (x) [mxjn (mx)]′

, (2.47c)

dn =
µ1mjn (x)

[
xh

(1)
n (x)

]′
− µ1mh

(1)
n (x) [xjn (x)]′

µm2jn (mx)
[
xh

(1)
n (x)

]′
− µ1h

(1)
n (x) [mxjn (mx)]′

, (2.47d)

where the prime indicates the differentiation with respect to the argument in paren-

theses, x = ka is the size parameter and m is the relative refractive index

m =
√
εr/
√
εmr . (2.48)

Using the coefficients given by Eqs. (2.47) we can describe the scattering and

extinction cross sections Csca and Cext, respectively:

Csca =
2π

k2

∞∑
n=1

(2n+ 1)
(
|an|2 + |bn|2

)
, (2.49a)

Cext =
2π

k2

∞∑
n=1

(2n+ 1) Re{an + bn}. (2.49b)

Then the absorption cross section can be simply expressed by the relationship

Cabs = Cext − Csca. (2.50)

2.3.3 Discrete dipole approximation

The accurate theoretical description of cross sections can be obtained only for par-

ticles of spherical and ellipsoidal shapes (see the previous section 2.3.2). The ana-

lytical model of the scattered field can be applied also on nanorods, but only for

certain parameters (R � l and R � λ, where R is the radius of the nanorod,

l is its length and λ is the wavelength of the incident light) [47]. However in these

days, most of investigated particles have different shapes from spherical or ellipso-

idal ones or nanorods do not satisfy the conditions mentioned above. Therefore to

characterize optical properties of plasmonic particles with different geometries we

have to use numerical calculations. These include the Finite-difference time-domain
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technique (FDTD) [48] or the Discrete dipole approximation (DDA) [49]. Within

this thesis we utilized the latter method because the DDA can be much faster than

FDTD [50] and is available at the Institute of Scientific Instruments of the CAS

where the thesis was done.

The DDA (sometimes called the Coupled dipole approximation) was proposed

by Purcell and Pennypacker in 1973 [51]. The scatterer is divided into small discrete

subvolumes where each of them can be replaced by a point dipole (see section 2.3.1).

The external electromagnetic field induces dipole moments in each element and these

point dipoles interact with each other and the external field. The dipole polarization

of the whole system can be expressed by a system of linear equations. The desired

cross sections of the object or other scattering properties can be obtain from the

solution of the equation system.

The DDA software used for the thesis applied the CGS system, therefore the

formulations in this section are held in this way. The general integral equation solved

by the DDA is the following [52]:

E (r) = Einc (r) +

∫
V \V0

d3r′Ḡ (r, r′)χ (r′) E (r′) + M (V0, r)

− L̄ (∂V0, r)χ (r) E (r) ,

(2.51)

where E (r) is the total electric field inside the scatterer at location r, Einc (r) is

the incident electric field, Ḡ (r, r′) is the free-space dyadic Green’s function, χ (r) is

the electric susceptibility of the material, V is the volume of the object and V0 is

a smaller volume such that V0 ⊂ V and r ∈ V0 \ ∂V0. L̄ (∂V0, r) is the so called

self-term dyadic, the function defined via integral over ∂V0 that depends on the

shape of the subvolume V0 but does not depend on the size of the element. On the

other side, the function M (V0, r) depends on the cell size and is defined via volume

integral [52]:

M (V0, r) =

∫
V0

d3r′
(
Ḡ (r, r′)χ (r′) E (r′)− Ḡs (r, r′)χ (r) E (r)

)
, (2.52)

where Ḡs (r, r′) is the static limit (the wave number k → 0) of Ḡ (r, r′).

To obtain the numerical solution of Eq. (2.51), we have to apply a division of

the whole volume V of the scatterer into N smaller subvolumes Vi (dipoles), where

Vi ∩Vj = 0 for i 6= j. The location of each subvolume Vi is given by its central point

with the position vector ri. Using the usual approximation, we consider E and χ

constant inside each subvolume:

E (r) = E (ri) = Ei, χ (r) = χ (ri) = χi for r ∈ Vi. (2.53)
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Then Eq. (2.51) can be rewritten into the form [52]

Ei (ri) = Einc
i (ri) +

∑
j 6=i

Ḡij (ri, rj)Vjχj (rj) Ej

+
(
M̄i (Vi, ri)− L̄i (∂Vi, ri)

)
χi (ri) Ei.

(2.54)

The simplest formula of the problem can be expressed by introducing the dipole

polarization Pi [53]

ᾱ−1i Pi −
∑
j 6=i

ḠijPj = Einc
i , (2.55)

where ᾱi is the dipole polarizability defined through the following relation:

Pi = ᾱiE
exc
i = ViχiEi, (2.56)

where Eexc
i stands for the exciting electric field that is a sum of Einc

i . The polariza-

bility is often given by the Clausius−Mossotti relation [53]

αi = d3
3

4π

εi − 1

εi + 2
, (2.57)

where d is the size of one dipole and εi is the relative permittivity at the point with

the position vector ri. Note that Eq. (2.57) shows the same functional form as the

function of the polarizability derived by the quasi-static approximation in section

2.3.1 (Eq. (2.33)).

From the solution of the central equation, we can obtain desired scattering quan-

tities. The scattering amplitude F for the scattering direction n is [53]

F (n) = −ik3
(
Ī − n̂n̂

)∑
i

Pi exp (−ikri · n) , (2.58)

where Ī is the identity tensor and n̂n̂ is a tensor defined as n̂n̂µν = nµnν . The

scattering cross section Csca is then given by [53]

Csca =
1

k2

∮
dΩ |F (n)|2 (2.59)

and the extinction and absorption cross sections are determined from Pi

Cext = 4πk
∑
i

Im{Pi · Einc∗
i }, (2.60a)

Cabs = 4πk
∑
i

[
Im{Pi · Eexc∗

i } − (2/3) k3 |Pi|2
]
, (2.60b)

where * denotes complex conjugation.

There are several open-source codes that utilize the DDA to compute scattering

characteristics of particles of arbitrary shapes, for example DDSCAT [54], OpenDDA
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[55], DDA-SI toolbox [56] and ADDA [57]. In this thesis, the DDA is implemented

by the freely available program ADDA (originally “Amsterdam DDA”). ADDA is

a C implementation of the discrete dipole approximation developed by A. G. Ho-

ekstra et al. since 1994 [57]. The code has been further improved by M. A. Yurkin

and coworkers [58]. ADDA has a versatile spectrum of applications and its biggest

advantage is that a single ADDA simulation can run on a multiprocessor system or

a multicore processor so the calculations are highly speeded up.

The ADDA manual [59] describes conditions of validity, capabilities and formu-

lation of a scattering problem. Here we introduce the general applicability of ADDA

and the fundamental characterization of the computational problem. The crucial

parameter is a dipole size d. It has to be small compare to any structural length of

the scatterer and the wavelength of the incident light λ. This condition for particles

of a size comparable to the wavelength is given by the rule of thumb:

d =
λ

10 |n| , (2.61)

where n =
√
εr is the refractive index of the scatterer. The refractive index should

be in the interval

|n− 1| < 2. (2.62)

If the Eq. (2.62) is not satisfied, it can be compensated by the rapid increase of the

number of dipoles in the system. For smaller scatterers (nanoparticles), the condition

for d expressed by Eq. (2.61) is not satisfactory. The shape of the particle should be

adequately described by dipoles so it is recommended to apply at least ten dipoles

for the smallest dimension.

The fundamental ADDA code is written for particles in vacuum. To count

a particle in a homogeneous non-absorbing dielectric medium with the refractive

index nm, the refractive index of the scatterer has to be replaced by the relative

index n/nm and the wavelength by the wavelength in the medium λ/nm.

The program contains several predefined shapes of scatterers with definable pa-

rameters, for example sphere, ellipsoid, line, plate, cylinder and other. Other shapes

have been still implemented but it is also possible to create a new shape through

C language. The orientation of the scatterer is determined by three Euler angles,

using the so called “zyz notation”. The direction, the polarization and the type of

the incident beam can be specified, too. Its direction is given by the certain propa-

gation vector and its type can be the ideal plane wave or an approximate description

of a Gaussian beam.

The parameters mentioned above are the fundamental characters of the ADDA

simulations, but of course the whole system is much more complex problem. More

detailed information can be found in the documentation of the code [59].
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2.3.4 Size and shape effects

Bulk dielectric functions derived from the Drude theory even with Lorentzian terms

(see section 2.2) cannot be simply applied to the small particles without modificati-

ons. A dielectric function is dependent on a size and a shape of the small particle

because for example the electron mean free path can be limited by the particle pro-

portions. Another effect originating from the higher surface-to-volume ratio comes

from the so called surface electronic states. Those states can be easily omitted in

bulk, but have a nonnegligible effect in nanoparticles.

The approximation for the condition of the resonance behaviour derived through

the Mie theory using the higher term of the expansion indicates the size dependence

of the dielectric function and consequently the resonant frequency [40, p. 329]:

εr = −
(

2 +
12

5
x2
)
εmr , (2.63)

where x = 2πa/λ is the size parameter with the radius a. With an increasing size

parameter the resonance is red-shifted to longer wavelengths.

Except of the resonance-position shift with the increasing particle size, the reso-

nant bandwidth is also changed. If we take into account the formula for the dielectric

function using the Lorentzian terms (Eq. (2.14)), the resonant bandwidth is given

by the damping constant γ. The mean free path of conduction electrons in a bulk is

given by τvF, where vF is the bulk Fermi velocity. At room temperature, the mean

free path in bulk gold is about 42 nm [39]. If the nanoparticle is of a diameter 2a

about or below the dimension of the mean free path, we have to consider not only

the damping by the scattering γ0 with the ionic cores but also with the surface.

Then the damping is given by [60]

γ = γ0 +
vF
a
. (2.64)

Thus the dielectric function is not dependent only on the material and the frequency

of the incident field but also on dimensions of the particle. Optical properties for

a gold particle are shown in Tab. 2.1. For small nanoparticles the scattering time

decreases rapidly while decreasing the dimensions which means an increase in the

damping γ and therefore the broadening of the scattering peak.

On the other hand, if the dimensions of the nanoparticle are larger (for a gold

particle in an aqueous solution with 2a > 25 nm [8]), the retardation effects are

more significant and the bandwidth is broadened with increasing dimensions [14].

This dependence of the bandwidth on the particle diameter is shown in Fig. 2.3.

To describe the resonant modes in arbitrarily shaped scatterers, it desires more

effort and the analytic solution is often unknown. Spheroids and ellipsoids can be

treated in the similar way as spheres and resonant modes in infinite cylinders can be
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Tab. 2.1: Optical properties (the scattering time τ and the dielectric function εr) for

gold particles of a different radius a at the wavelength of 500 nm [39, 61].

τ / 10−15 s−1 εr

bulk 24.7 −2.68− 3.09i

a = 100 nm 14.6 −2.68− 3.19i

a = 10 nm 3.1 −2.59− 4.08i
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Fig. 2.3: (a) Normalized absorption spectra of colloidal aqueous solutions of spherical

gold nanoparticles with diameters of 9 nm, 22 nm, 48 nm and 99 nm; (b) The plasmon

bandwidth as a function of a particle diameter; taken from [62], originally from [8].
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defined analytically, too [40, p. 342]. The exact theory for particles with more com-

plex shapes is quite complicated and these problems are usually solved numerically.

The model example of the LSP resonance in a particle with a shape different from

a sphere is a nanorod. From the geometrical insight we see that there are two major

directions of the electron oscillations in the nanoparticle, namely the one where the

electrons oscillate along the rod axis (the longitudinal mode − LM) and the second

one, electronc oscillations perpendicular to the rod axis (the transversal mode −
TM), see Fig. 2.4a. The restoring force proportional to the charge accumulation is

larger in the TM and hence, the resonant frequencies are higher and the resonant

wavelengths shorter in this mode [60]. In longer nanorods, the resonant wavelength

of the LM is shifted to longer wavelengths. The dependence of the resonant wave-

lengths of LMs and TMs in nanorods with different aspect ratios a/b is depicted in

Fig. 2.4b. The LSP resonance is easily tunable by changing the dimensional para-

meters of nanoparticles and therefore, these particles can be used for biosensing [29]

or optoelectronics [30].
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Fig. 2.4: (a) Scheme of a charge accumulation for longitudinal (LM) and transversal

(TM) modes in a nanorod; adapted from [60]; (b) Calculated absorption spectra for

gold nanorods with different aspect ratios a/b = 1−5 indicated in the figure, the

peak in shorter wavelengths represents the TM and in longer wavelengths is a peak

for the LM (for a higher aspect ratio it is evident its red shift to longer wavelengths);

taken from [60].

Using the linearly polarized light for illumination of a plasmonic particle, these

two modes can be excited separately. Nevertheless all particles in a solution should

be oriented in the same way or the optical spectra should be taken only from one

nanoparticle with a defined orientation. This requirement can be achieved by using

the optical tweezers (described in section 3.1.1), where the object of interest is op-
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tically trapped and can be aligned by changing the direction of the trapping-laser

polarization [16]. An example of such a behaviour is illustrated in Fig. 2.5a. The

scattering spectra of an elongated silver nanoparticle were obtained using two diffe-

rent polarization directions of the illumination. Blue points represent the transversal

mode and green points stand for the longitudinal mode.

In an optical trap, more nanoparticles might be held together. The number of

trapped particles can be determined through scattering intensities which are linearly

proportional to the number of nanoparticles in the optical trap [63]. If the optical

trap contains more nanoparticles (approximately ten nanoparticles), the scattering

spectrum is slightly red-shifted and broader due to the interparticle coupling because

trapped particles are more close to each other, see Fig. 2.5b.
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Fig. 2.5: (a) Dark-field images and scattering spectra of an elongated silver nanopar-

ticle in an aqueous solution in an optical trap. The scattering spectrum is red-shifted

for the polarization direction of illumination (white arrows) parallel to the trapping-

laser polarization direction (red arrows); taken from [16]; (b) Normalized scattering

spectra of trapped single and multiple gold nanoparticles with a diameter of 50 nm in

an aqueous solution. The spectrum for multiple particles is red-shifted and broader

due to the interparticle coupling; taken from [63].
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3 SPECTROSCOPY OF OPTICALLY

TRAPPED PARTICLES

Within this thesis, we deal with an optical response of a single isolated nanoparticle

or nanoparticle clusters in an aqueous solution. For their applications, there is clear

demand for their optimized LSP characteristics; for example nanoparticle LSP modes

are sensitive to any change in the surrounding refractive index and one can exploit

the resulting resonance-wavelength shift for biosensing. Knowing and tuning the LSP

resonance allow us to enhance the sensitivity of these biosensors. A straightforward

technique used within this work for the investigation of an optical response is the

optical trapping and the optical spectroscopy of particles in an aqueous solution.

This method allows us to select particles from a colloidal solution and record their

scattering spectra for the desired time.

At the beginning of this chapter we explain principles of the optical trapping

and the dark-field spectroscopy and show a schematic diagram of an experimental

setup. Then we deal with a characterization of the particle scattering. At first we

test the optical setup with polystyrene particles and show the dependence of the

scattering intensity on the illumination alignment and the trapped-particle count.

Then we focus on the field scattered by metallic nanoparticles, silver and gold. We

show obtained experimental data and also theoretical calculations of scattering cross

sections.

3.1 Experimental techniques

In order to have a possibility to characterize just a single metallic nanoparticle or

a desired number of them, we used the optical tweezers combined with a dark-

field spectroscopy. It allowed us to select a nanoparticle from a colloidal solution

and manipulate it at will. Individual nanoparticles could be seen as bright spots in

a camera and their scattering spectra were recorded by a spectrometer.

3.1.1 Optical trapping

For trapping and precise manipulation of nanoparticles or microobjects, it is possi-

ble to use a light beam. The first studies on optical forces acting on an object

were performed by A. Ashkin in 1970 [64], when he demonstrated microobject levi-

tation in light. In 1978, he proposed an idea about the optical trapping of atoms by

a highly focused laser beam [65] and later he published an article about the optical

trapping of dielectric particles [66].
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We distinguish two main types of optical forces that act on a dielectric particle

trapped by optical tweezers, radiation pressure force and gradient force. The ra-

diation pressure force can be easily estimated from a corpuscular nature of light.

A magnitude of a photon momentum pphoton is given by

pphoton =
hνnm

c
, (3.1)

where h is the Planck constant, ν = ω/2π is the frequency of the electromagnetic

wave and nm is the refractive index of a medium. Let us consider an electromagne-

tic wave illuminating a cube with a wall oriented perpendicular to a trapping-laser

beam. Some photons can be absorbed, then the change of their momentum magni-

tude is

∆pphoton = −hνn
m

c
, (3.2)

where some of them are reflected with the change of their momentum magnitude two

times larger compared to the absorbed one. The number of absorbed and reflected

photons is given by the material reflectance R.

The average force Fphoton acting on a single photon is connected with its momen-

tum change through the second Newton’s law of motion [67]

Fphoton =
∆pphoton

∆t
, (3.3)

where ∆t is the time segment. According to the third Newton’s law of motion, the

average force Fobject acting on an object can be expressed through the force Fphoton,

its direction is opposite and its size is given by the number of photons N and the

reflectance R [67]:

Fobject =−N (1 +R)Fphoton = −N (1 +R)
∆pphoton

∆t
= −N (1 +R)

−hνnm

c∆t

=P
nm (1 +R)

c
,

(3.4)

where P = Nhν/∆t is the power of the incident light.

If a particle placed in a single-beam gradient laser trap is much larger than the

wavelength of the trapping light, the gradient force can be demonstrated through

the ray optics model using the momentum transfer [67]. When the light illuminates

a particle, except of the reflection and the absorption of the incident light some

part of the light is refracted. This process is schematically shown in Fig. 3.1. The

momentum of the incident light is pi and the momentum of the refracted light is pr.

Then the change of the photon momentum is ∆p = pr−pi. As described above, the

force from one photon acting on an object can be obtained through the Newton’s

laws of motion from the change of the photon momentum:

Fobject = −Fphoton = −∆p/∆t. (3.5)
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If we summarize all photons acting on an object situated on the axis of the di-

verging beam, the resultant force Fgrad acts in the axis of the incident beam and

its orientation depends on the beam divergence. This force causes pushing a par-

ticle to the focus of the incident beam, thus if a particle is behind a focal point,

the force is oriented oppositely to the direction of the beam propagation. If the

particle is deflected from the axis of the beam, the radial forces push a particle

back into the axis of the beam. Once the gradient force is in the balance with the

radiation pressure force, the total force acting on the particle is equal to zero and

a particle is fully trapped.

pi

pr

∆p
Fphoton

Fobject
Fgrad

pipipi

∆p
FphotonFphoton

Fig. 3.1: Scheme of the ray optics model. An incident photon is refracted and the

change of its momentum ∆p = pr− pi causes pushing a particle to the focus of the

incident beam by the gradient force Fgrad =
∑

Fobject =
∑−Fphoton.

If the size of a particle fulfils the condition for the quasi-static approximation

described in section 2.3.1 (a � λ), the optical force acting on a nanoparticle can

be expressed analytically [39]. The total optical force F is given by integrating the

optical force density f over the whole volume V of a particle:

〈Fi〉 =

∫
V

〈fi〉dV, (3.6)

where i symbolizes one component of the vector and the brackets 〈. . . 〉 correspond

to the time average over the period T = 2π/ω. There are several approaches how to

calculate the optical force density [39], for example the following expression of the
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Lorentz force, that applies for a nonmagnetic particle and a nonmagnetic medium:

〈 f 〉 =
1

2
Re{(P · ∇) E∗ +

∂P

∂t
× µ0H

∗}. (3.7)

Using the relation for the induced polarization p with the polarizability α (Eq. (2.32)),

we arrive at the formula

〈 f 〉 =
ε0ε

m
r

2
Re{α (E · ∇) E∗ + α

∂E

∂t
× µ0H

∗}. (3.8)

The expression of the total optical force given by this optical force density can be

split into the gradient force and the scattering force. The gradient force that causes

attracting a nanoparticle into the focal spot is given by

〈Fgrad〉 =
ε0ε

m
r

4
Re{α}∇ (E · E∗) , (3.9)

where we used the vector identity ∇ (E · E∗) = 2Re{(E · ∇) E∗ + E × (∇× E∗)}
and the Maxwell’s equation (2.1c). From the Eq. (3.9) we can see that the gradient

force depends on the gradient of the intensity of the incident electromagnetic wave.

This gradient can be increased for example by using a microscope objective to focus

the beam into the diffraction-limited spot. The gradient force might be even more

increased by an immerse objective, where the numerical aperture exceeds the value

1.

The scattering force is connected with the momentum loss or transfer from the

incident beam to a particle, as mentioned above. This force is a sum of the force due

to scattering by an object 〈Fsca〉 and the force due to particle absorption 〈Fabs〉:

〈Fsca〉+ 〈Fabs〉 =
nm
r

c
Csca〈S〉+

nm
r

c
Cabs〈S〉, (3.10)

where 〈S〉 = 1/2Re{E×H∗} is the time averaged Poynting vector and Csca and Cabs

are the scattering cross section and the absorption cross section, respectively, given

by Eqs. (2.35).

As the size of a nanoparticle increases, these expressions presented above are no

longer valid and the behaviour of the particle illuminated by the electromagnetic

wave is much more complex. For the description of such a particle optical trapping,

the Lorentz−Mie scattering theory is used [68]. The incident wave has to be decom-

posed onto the spherical harmonic waves and the whole problem is solved through

the Mie theory.

Trapping of metallic nanoparticles is more complex than trapping of dielectric

particles because of the plasmon oscillations. If the trapping laser is tuned close

to the resonant wavelength of the nanoparticle (for silver and gold in the visible

and near infrared range), the scattering force increases and thus sometimes it is
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impossible to trap the particle. On the other hand, if the wavelength of the trapping

laser is far from the nanoparticle resonance, the trapping of metallic nanoparticles

is similar to trapping of high refractive-index dielectric nanoparticles [39].

The other limitation for the optical trapping of metallic particles is their size.

Up to the size of 50 nm the scattering cross section is negligible compared to the

gradient force. For larger spherical metallic particles, the scattering force begins

to play a major role and the particle cannot be stably trapped. But some non-

spherically shaped metallic particles of the size of 102 nm can be oriented in the

optical trap in a stable position and can be fully trapped [10].

The efficiency of the optical trapping is characterized via the trap stiffness κ.

This parameter depends on the particle size and shape, the dynamic viscosity of

the medium and the corner frequency in the power spectral density [10]. The trap

stiffness of the single focused beam for nanoparticles of different sizes and shapes

are compared in Fig. 3.2a (lateral trap stiffness) and Fig. 3.2b (longitudinal trap

stiffness). For smaller particles the trap stiffness strongly depends on the particle

diameter d. The penetration depth of gold particles is about 50 nm and therefore the

spherical particles of diameter d < 100 nm interact with the incident electromagnetic

wave by their entire volume V ∝ d3. Larger particles interact with the incoming

electromagnetic field just by a surface layer and thus the trap stiffness is proportional

to the diameter square.

One can see from the graphs in Fig. 3.2 that the longitudinal trap stiffness is

about one order weaker than the lateral trap stiffness. Therefore it is much more

difficult to trap particles in the z direction (beam-propagation direction) than in the

xy plane (the plane perpendicular to the beam propagation).

3.1.2 Köhler dark-field illumination

Within this thesis, metallic nanoparticles in a single-beam gradient laser trap were

illuminated by Köhler illumination. Köhler illumination is a type of the specimen

illumination that was design by A. Köhler in 1893 [69]. An image of the illumination

source at the sample plane is totally defocused and thus this illumination is extremely

even.

The fundamental optical components in the setup for the Köhler illumination are

collector lens, field diaphragm, condenser diaphragm and condenser lens set in this

order between the light source and the sample (see Fig. 3.3). In our installation, we

additionally use a collimator lens placed between the collector lens and the condenser

lens. In the bright-field illumination, the collector lens collects the light from the

halogen lamp and with help of the collimator lens the image of the light source is

formed at the plane of the condenser diaphragm. The second set of conjugate image
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Fig. 3.2: (a) Lateral (κx) and (b) longitudinal (κz) trap stiffnesses of optically trap-

ped gold nanoparticles of different sizes and shapes (spheres, decahedrons and trian-

gular prisms of different aspect ratios − 0.15 and 0.5) in an aqueous solution calcu-

lated by Mie theory and DDA. The wavelength of the trapping laser λ = 1064 nm,

the numerical aperture NA = 0.37, the incident power P = 1 W; taken from [10].
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planes is the projection of the field diaphragm whose image is formed at the sample

plane.

Köhler dark-field illumination has the similar alignment of the optical compo-

nents as the bright-field illumination, only the condenser diaphragm is replaced by

the dark-field annulus. The field diaphragm is always fully open allowing the con-

denser to operate at its maximum numerical aperture. In the dark-field illumination,

the light cone illuminating the sample (The central beam is blocked by the condenser

diaphragm.) is not directly collected by the objective lens, only the light scattered

by a sample can pass through the objective aperture (see the inserted scheme in

Fig. 3.4). Then objects look like bright spots in the dark background. To provide

this type of illumination, the numerical aperture of the condenser lens has to be

higher than the numerical aperture of the objective.

Halogen

lamp

Collector Collimator

Field Polariser

Condenser

Sample

Condenser
diaphragmdiaphragm

Fig. 3.3: The optical setup of Köhler dark-field illumination consisting of halogen

lamp, collector lens with field diaphragm, polariser, collimator lens and condenser

lens with condenser dark-field diaphragm. The red line represents the beam path,

the image of the light source is formed at the condenser-diaphragm plane and is

totally defocused at the sample plane.

In the setup used within this thesis, the sample illumination is provided by

unpolarized white light from the 100W halogen lamp OSRAM 64627 focused into

a fibre bundle. The light is collected by the aspherical lens with the focal length

f ′ = 20 mm (AL2018) and collimated by the achromatic doublet with f ′ = 100 mm

(AC254−100−A). The numerical aperture of the oil dark-field condenser (Olympus

U-TLO) is 1.4 with the dark-field annulus of the diameter approx. 19 mm. The linear

polariser is implemented into the experimental setup in order to have a possibility

to choose the polarization direction of the light illuminating the sample.
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3.1.3 Experimental setup

Details of the experimental setup used in this work are schematically illustrated in

Fig. 3.4. In general, the optical setup has three parts: optical tweezers, Köhler dark-

field illumination and a branch for a detection of the scattered light. Plasmonic

nanoparticles in an aqueous solution are trapped using a single-beam gradient laser

trap. The trapping laser Adlas GmbH & Co. is tuned at the wavelength of 1064 nm

that is far from the expecting resonance of the examined plasmonic particles (in

the visible range). The linearly polarized laser beam should slightly overfill the

back aperture of the objective used for the optical trapping, therefore the beam

from the laser source is expanded by a beam expander consisting of two aspherical

doublets from Thorlabs with focal distances f ′L1
= 40 mm (AC254−040−C) and

f ′L2
= 200 mm (AC254−200−C). Then the expanded laser beam passes through the

filter in order to filter out all wavelengths generated by exciting diodes in the laser

except of the trapping one (1064 nm). The filtered beam is reflected at the dichroic

mirror and focused at the sample plane from below by the oil objective (Olympus

PlanC N 100×) with the tunable numerical aperture NA = 0.6−1.25. A sample is

fixed in a sample holder that allows a sample to be positioned manually in the 3D

space with the precision of tens of micrometers.

A nanoparticle trapped by the optical tweezers is illuminated from above by the

Köhler dark-field illumination, described in the previous section 3.1.2. Only the light

scattered by a nanoparticle is collected with the same objective as used for the optical

trapping. Then the beam passes through the dichroic mirror and is focused by the

tube lens L3 into the color camera Basler aCA2000-50gc where objects scattering the

incident light can be observed. To examine scattering spectra of nanoparticles, the

scattered light has to be analysed by a spectrometer. Therefore the mirror reflecting

the beam into the camera (M4) is a flip mirror that might be easily removed from

the beam path. It enables the beam to pass directly into the optical fibre that is

connected to the spectrometer Maya2000 Ocean Optics. This spectrometer is of the

Czerny−Turner type [70] which means that the light is collimated to a grating where

the light is diffracted. The diffracted light is focused at a detector plane where the

information about intensities in dependence on the light wavelength from 200 nm to

1100 nm is obtained.

The detection of the scattered light is based on a confocal microscopy [71]. This

technique eliminates the out-of-focus light by a spatial pinhole placed at the confocal

plane of the tube lens. In our setup, the spatial pinhole is done through the spectro-

meter fibre with the aperture of 200 µm and thus the light is collected predominantly

from the trapped nanoparticle.
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Fig. 3.4: The scheme of the setup used in this work. A nanoparticle is trapped by the

optical tweezers and illuminated by the Köhler dark-field illumination. The scattered

light is detected in the camera and the spectrometer. The beam path is represented

by red (trapping laser) and blue (scattered light) lines. L1, L2 − lenses of the beam

expander; M1, M2, M3 − dielectric mirrors; F − filter; DM − dichroic mirror; L3 −
tube lens; M4 − flip dielectric mirror. The inserted image is the detail of the particle

trapping and the dark-field illumination. The red line is the trapping beam, the blue

lines represent the dark-field illumination and the green lines represent the particle

scattering.
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In the beam path for the optical trapping, dielectric mirrors (M1, M2, Thor-

labs broadband dielectric mirrors, 750−1100 nm) suitable for the wavelength of the

trapping laser are used. In the optical branch for the detection of the scattered li-

ght, we placed broadband dielectric mirrors (M3, M4, Thorlabs broadband dielectric

mirrors, 350−950 nm) with the high reflectance over spectral ranges suitable for the

scattered light.

The dichroic mirror in the setup is applied to reflect the laser beam into the

microscope objective and has to be transparent for the scattered light. To meet

this requirements, the Thorlabs mirror blanks with the surface flatness of λ/10 was

coated with an one-dimensional photonic structure (2925 nm thick) where layers of

titanium dioxide (120 nm thick) and silica (220 nm thick) alternate. The coating

was performed by plasma ion assisted deposition by Mgr. J. Oulehla at the Institute

of Scientific Instruments of the CAS. The transmittance of the dichroic mirror for

s- and p-polarized light incident at the angle of 45 ◦ is plotted in Fig. 3.5. The

transparent window is from 400 nm to approximately 950 nm that is suitable for the

light scattered by a metallic nanoparticle. The transmittance at the trapping-beam

wavelength (1064 nm) approaches the zero value, therefore the trapping-laser beam

does not pass through the dichroic mirror and is mostly reflected.
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Fig. 3.5: The dependence of the transmittance of the dichroic mirror used in the

setup on the wavelength of the light incident at the angle of 45 ◦ with s-polarization

(red curve) and p-polarization (blue curve). The transparent window is in the range

of the visible light which is mostly in accord with the light scattered by metallic

nanoparticles.
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Using the experimental setup with the optical components described above, the

spectrum of the halogen lamp with spectral variations in the system response (here-

inafter illumination spectrum and consequently illumination intensity) was recorded

by the spectrometer (see Fig. 3.6). A testing sample was the demineralized water that

was later applied also in aqueous colloidal solutions. The integration time for one

spectrum was 7 ms and this final spectrum was obtained by averaging 500 spectra

and the consequential background subtraction. If we compare the transmittance of

the dichroic mirror plotted in Fig. 3.5 with the illumination spectrum in Fig. 3.6, it

is apparent that the illumination spectrum is partially influenced by the dichroic

mirror. But the spectrum of the halogen lamp itself plays a main role. The illumi-

nation intensity starts to increase at the wavelength λ = 400 nm and is approxima-

tely zero for wavelengths longer than λ = 900 nm. Thus the examined nanoparticles

have to fulfil the resonance condition for wavelengths in this transparent window.

The illumination intensity in the transparent window is oscillating therefore it is

necessary to take into account the profile of the illumination spectrum and scatte-

ring spectra of nanoparticles have to be corrected for spectral variations in system

response.
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Fig. 3.6: The normalized spectrum of the halogen lamp with spectral variations in

the system response recorded through a sample with the demineralized water.
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3.2 Characterization of nanoparticle scattering

In this section, we present experimental results that we achieved in the field of

a nanoparticle scattering. Examined particles are trapped by the optical tweezers

and illuminated by the Köhler dark-field illumination, described in the previous

section. Since the requirements for the numerical aperture of the objective for the

optical trapping and the dark-field imaging are contradictory, it is a big deal to

align the whole setup for the efficient signal collection of the trapped particle. We

describe the scattering of polystyrene particles that were used for the alignment

purpose. We show the scattering-intensity dependence on the number of trapped

particles and the illumination alignment. Then we focus on the trapping and the

optical characterization of silver nanoparticles. At the end of this section we give

a comment on problems of the optical trapping and the optical spectroscopy of gold

nanoparticles.

3.2.1 Setup alignment using polystyrene particles

At first we tested the experimental setup to assure the proper optical alignment.

For that purpose we used a colloidal solution of spherical polystyrene particles with

a diameter of 400± 5 nm (Thermo Scientific − Duke Standards [72]). The solution

was suitably diluted by the filtered demineralized water in order to allow us to

trap a single particle but the density of the solution should also allow us to find

other particles in an acceptable time. 50 µl of the prepared solution was applied on

the 1mm thick slide with the 0.1mm thick spacer. The slide with the solution was

covered by the cover glass with a thickness of 0.17 mm. The edges of the cover glass

were closed by a transparent nail polish to prevent the sample from its drying and

the liquid flow.

Then a drop of the immersion oil of the type B (the refractive index

nD = 1.5150 ± 0.0002 and the Abbe number VD = 42.6) was applied on the ob-

jective and the condenser lens and the prepared sample was inserted in between

these two lenses. The position of the settings for the bright-field illumination had

to be aligned in the way that the illumination was centred with the trapping laser

beam and the image of the field diaphragm was formed at the sample plane. Because

of the chromatic aberration and the diffraction on the aperture of the half-closed

field diaphragm, the illumination position for the field-diaphragm image differs for

different illumination wavelength. In Fig. 3.7, images of the field diaphragm in diffe-

rent positions of the illumination setup are shown. All colours from the illumination

spectrum appears during the illumination-settings moving. It signifies that scatte-

ring spectra of examined particles could be strongly dependent on the alignment of

36



the optical components even for the fully opened field diaphragm. The polystyrene

particles could be clearly observed in the bright field and the contrast could be even

more enhanced by half-closing of the field diaphragm (see Fig. 3.8a).

140µm 70µm 0µm

−70µm −120µm −190µm

Fig. 3.7: Images of the field diaphragm in different distances of the illumination

settings from the sample plane. The positions of the illumination settings are relative

to the illumination position that was used for the bright-field imaging.

Afterwards we aligned the setup for the dark-field illumination. The conden-

ser diaphragm was changed into the dark-field annulus and the whole illumination

settings was moved to obtain as high scattering signal as possible. The numerical

aperture of the objective had to be in balance with the numerical aperture of the

condenser lens. The higher numerical aperture of the objective is necessary for the

effective optical trapping but for the dark-field illumination the objective numeri-

cal aperture should be lower than the condenser numerical aperture. The dark-field

image of the polystyrene solution is shown in Fig. 3.8b. The polystyrene particles

appear like discoloured points in dependence on the distance from the illumination.

The particle colours are analogous to the images of the field diaphragm with the

different illumination positions in Fig. 3.7. The chromatic aberration of the system

and the diffraction on the annulus are significant.

We trapped a single polystyrene particle and observed this change in the scat-

tering spectra in dependence on the illumination distance from the sample plane

(Fig. 3.9). The trapping-laser power was approximately 40 mW in front of the filter,

and the transmission of the objective is about 40 %. Each spectrum was recorded

for 8 s. The final spectrum was obtained by averaging 10 measurements of the same
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(a) (b)

Fig. 3.8: Polystyrene particles with a diameter of 400 nm; (a) Bright-field image; (b)

Dark-field image.

setup alignment and the subsequent subtraction of the corresponding background.

In Fig. 3.9 we show the scattering spectra of the optically trapped polystyrene par-

ticle for 8 different distances of the dark-field Köhler illumination from the sample

plane. The scattering intensities are naturally changing for different positions but

also the peak position is shifting. Illuminating with the dark-field setup closer to

the sample (from −200 µm to −50 µm) the scattering spectra are blue-shifted − the

peaks are in shorter wavelengths. On the other hand, if the illumination is further

from the sample plane (from 50 µm to 150 µm), the scattering spectra are red-shifted

− the peak appears in longer wavelengths. This peak shifts can be evident from the

dark-field images shown below the graph in Fig. 3.9. Colours are varying from orange

to yellow−green. These measurements demonstrate that scattering spectra of any

particle can be highly sensitive to the dark-field illumination alignment. Therefore

it is necessary to fix the illumination position for all measurements otherwise we

could not compare different spectrum records.

For the following measurements, the illumination was set into the position for

the highest intensity of the light scattered by the polystyrene spheres (the distance

0 µm in Fig. 3.9). We optically trapped the polystyrene particles one by one and

recorded corresponding spectra, see Fig. 3.10a. The laser power was again approxi-

mately 40 mW and each spectrum was recorded for 2 s. The plotted spectra were

obtained by averaging 10 measured spectra of the same number of particles with the

subtracted background. The profile of the scattering spectrum and the peak position

remained unchanged, only the scattering intensity was increasing with the increasing

number of the polystyrene particles. It means that there is no coupling between the

trapped polystyrene particles. The acquired scattering peak intensity in dependence

on the number of particles is shown in Fig. 3.10b (blue points). It is clear that the
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Fig. 3.9: Scattering spectra of a single polystyrene particle for different distances

of the illumination settings. The scattering peaks for the shorter distances of the

illumination settings from the sample plane (from −200 µm to −50 µm) shift to the

shorter wavelengths. Below the graph, dark-field images of the trapped particle are

depicted. The distances are relative to the illumination position with the highest

scattering intensity that was later used for all measurements.
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peak intensity is directly proportional to the number of the trapped particles. The

red line represents the fit obtained by the least-square method and we can see that

the blue points representing the experimental data lie approximately on the fitting

curve. The standard deviations marked with the black lines are relatively small, for

lower numbers of particles the deviation is negligible, therefore the number of the

trapped particles can be with certainty determined from the scattering intensity.
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Fig. 3.10: (a) Scattering spectra of various numbers of trapped polystyrene particles

with a diameter of 400 nm; (b) The scattering peak intensity of the spectra in (a) in

dependence on the number of the trapped polystyrene particles. Blue dots represent

experimental data and the red line is the fit obtained by the least-square method.

The standard deviations are determined from ten measurements. For lower numbers

of polystyrene particles the standard deviations are negligible.

3.2.2 The light scattered by silver nanoparticles

Using polystyrene particles we showed that we can perform the dark-field ima-

ging, the optical trapping of particles in an aqueous solution and the recording of

their scattering spectra. So now we can move ahead toward plasmonic particles and

a characterization of their optical properties. We started with silver (Ag) nanosphe-

res with a diameter of 80± 7 nm (EM.SC80 BBI Solutions [73]). The nanoparticles

are covered by the reduction agent − citric acid (2-hydroxypropane-1,2,3-tricarboxyl

acid C6H8O7) that prevents the nanoparticles from their agglomeration.

The sample of Ag nanoparticles was prepared in the same way as the sample of

the polystyrene particles. The diluted solution of Ag nanoparticles was applied on

the slide with the 0.1mm thick spacer and was covered by the cover glass. The cover-

glass edges were closed by a nail polish to prevent the sample from drying and the
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fluid flow. The prepared sample was placed the cover glass downwards between the

objective and the condenser lens with the immersion oil. The illumination settings

was aligned into the position of the highest scattering intensity of the polystyrene

spheres (the distance 0 µm in Fig. 3.9).

The dark-field image of the denser solution of Ag nanoparticles is depicted in

Fig. 3.11a. The colours of the nanoparticles correspond to the resonant wavelengths

of plasmonic oscillations in the nanoparticles. The nanoparticles are differently colou-

red, from light blue to yellow-orange. This behaviour can be partially caused by the

distance of the nanoparticles from the illumination settings, as we discussed above

in section 3.2.1, and then the profile of the illumination spectrum might determined

the dominant colour. But as the focused nanoparticles are in the same distances

from the illumination setup, this varicoloured performance is mostly caused by the

heterogeneity of the colloidal solution. In Fig. 3.11b, the image of the Ag solution

taken by the scanning electron microscope (SEM) is depicted. Different sizes and

shapes of nanoparticles can be observed. Even if the standard deviation of their

size is 7 nm we can find in the solution some Ag nanoparticles that differ from the

specified dimension and the spherical shape much more and thus the plasmonic

oscillations are set into the different frequencies.

(a) (b)

300 nm

Fig. 3.11: (a) Dark-field image of the colloidal solution of silver nanoparticles with

the average diameter of 80 nm ; (b) SEM image of Ag nanoparticles from the solution

on the silicon substrate. Different sizes and shapes can be observed, taken by Ing.

Zdena Druckmüllerová.

All scattering spectra presented in this section were proceeded in the following

way. At first the recorded spectra were 10× averaged and subsequently the back-

ground was subtracted. Then the obtained spectrum was divided by the illumination

spectrum plotted in Fig. 3.6 to correct the scattering spectrum for the spectral vari-

ations in the optical system. In Fig. 3.12, the normalized scattering spectra of diffe-

rently coloured Ag nanoparticles are plotted. We optically trapped several Ag nano-

particles of the same colour (The trapping-laser power was approximately 200 mW
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in front of the filter.) and recorded one scattering spectrum for 10 s. From the graph

in Fig. 3.12 we see that the peak position for differently coloured nanoparticles is

significantly shifted, from 472 nm to 530 nm. The corresponding dark-field images of

the trapped nanoparticles are shown below the graph. The colours approximately

correspond to the resonant wavelengths in the scattering spectra, from light blue to

yellow-green. The red circle in the left image indicates the collection area. Since the

camera and the spectrometer were approximately in the same distances from the

tube lens, the size of the red circle was estimated from the spectrometer-fibre dia-

meter (200 µm) and the size of the camera pixel (5.5 µm). Even if the collection area

is relatively small and involves mostly only the trapped nanoparticle, it is necessary

to have the highly diluted colloidal solution in order to avoid the optical trapping of

another object during the spectrum recording and to suppress the scattering from

nearby nanoparticles.

400 450 500 550 600 650 700 750 800
0.0

0.2

0.4

0.6

0.8

1.0 P1
P2
P3
P4

wavelength (nm)

n
or
m
al
iz
ed

sc
at
te
ri
n
g
in
te
n
si
ty

P1 P2 P3 P4

Fig. 3.12: The normalized scattering spectra of Ag nanoparticles with different peak

positions. The plotted curves are corrected for the system spectral variations. The

corresponding dark-field images are shown below the graph. The red circle indicates

the estimated collection area.

Then we optically trapped the nanoparticle of the most frequent colour, green

one. We cannot with certainty claim that it was only one Ag particle or i.e. its
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dimer, but we tried to trap the objects with the lowest scattering intensity we

could distinguish in the camera image. We recorded the scattering spectrum for

20 s and proceeded the acquired data as described above. The received spectrum

was normalized to the calculated scattering intensity (see Fig. 3.13). Because the

nanoparticles are of the spherical shape we could apply the Mie theory for the

theoretical calculations. For that purpose we used the open-source code written by

Ch. Mätzler in MATLAB [74]. This code utilizes the formalism of C. F. Bohren

and D. R. Huffman [40] described in section 2.3.2. The refractive indices were taken

from the book written by E. D. Palik [75]. The number n of summarized terms is

approximately given by the wave number k of the incident light and the radius a of

the sphere:

n
.
= 2 + x+ 4x1/3, (3.11)

where x is the size parameter defined as x = ka. If we compare the calculated and

the measured scattering intensity, the peak position fits well and the profile of the

measured scattering intensity in the longer wavelengths follow the behaviour of the

simulated spectrum. In shorter wavelengths we cannot compare these two spectra

because the illumination intensity in shorter wavelength than approximately 450 nm

is practically negligible (see Fig. 3.6). However, the calculated profile of the scattering

intensity slightly differs from the experimental data in longer wavelengths, too. This

behaviour can be probably caused by the particle shapes. Since the Ag nanoparticles

are not ideal spheres but they are significantly deformed, the scattering-intensity

profile can have slightly different trend. Differences in the experimental and the

calculated data can be also caused by inaccurate calculations. The shape and the

position of the scattering peak can be affected by the choice of the refractive indices.

The dielectric function values from different sources can give slightly different results

for the scattering spectra [76].

The peak broadening can be achieved by the optical trapping of the multiple

metallic nanoparticles (demonstrated for example by L. Ling et al. [63]). We opti-

cally trapped the single Ag nanoparticle (the object with the lowest intensity) and

recorded the scattering spectrum for 10 s. Then we trapped another particle from

the solution and recorded the scattering spectrum again. In this way we continued

step-by-step with other Ag nanoparticles. We tried to trapped the nanoparticles of

the same colour therefore they should have the similar optical characteristics. In

Fig. 3.14 and Fig. 3.15 the normalized scattering intensities for the various number

of the trapped object are plotted. For the low particle count, the spectrum profile

is almost identical. If we add more object into the optical trap, the scattering peak

gets broaden. The peak broadening for seven and ten objects is nearly the same.

For even higher particle count the peak broadening stays unchanged. There are two
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Fig. 3.13: The experimentally obtained scattering spectrum of the smallest visible

green object from the Ag colloidal solution normalized to the calculated scattering

spectrum. The profile of the experimental data is corrected for the system spectral

variations. The red solid line represents the experimental data and the black dashed

line represents calculated spectrum.
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main factors that can affect this peak broadening. The first one is the shape hetero-

geneousness of the trapped nanoparticles. We tried to minimize this contribution to

the peak broadening by picking the Ag particles of the same colour. The other cause

of the peak broadening is the interparticle coupling [15]. The distances between the

particles in the optical trap are very short and therefore the nanoparticles can in-

teract with each other [63]. To the peak broadening, the position of the trapped

particles can partially contribute (as discussed above). The nanoparticles can be

trapped inline and create a chain. But the length of this chain is only about 1 µm

therefore the chromatic aberration should not play a significant role.

The peaks in Fig. 3.15 are generally narrower compared to the scattering spectra

in Fig. 3.14. It is given by the illumination profile where the intensity for shorter

wavelengths than 500 nm rapidly decreasing (see Fig. 3.6). Despite this limitation,

the peak broadening in Fig. 3.15 can be clearly observed.

400 450 500 550 600 650 700 750 800
0.0

0.2

0.4

0.6

0.8

1.0

1
2
5
7
10

wavelength (nm)

n
or
m
al
iz
ed

sc
at
te
ri
n
g
in
te
n
si
ty

Particle
count

Fig. 3.14: The normalized scattering spectra of the different particle counts. For more

particles the peak is significantly broader. The scattering spectra are corrected for

the system spectral variations.

In Fig. 3.16a we plot the unnormalized scattering spectra for the different particle

counts used in Fig. 3.14. The scattering intensity is higher for the higher particle

count. In Fig. 3.16b the dependence of the scattering-peak intensity on the particle

count is plotted (blue points). This dependence is clearly linear, as well as for the

polystyrene particles. The red line represents the fit obtained by the least-square

method. The blue points representing the experimental data lie approximately on

the fitting line. The standard deviations is negligible compared to the intensity
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Fig. 3.15: The normalized scattering spectra of the different particle counts. For

more objects, the peak is significantly broader. The rapid decrease in the scattering

intensities in shorter wavelengths is caused by the illumination-intensity profile. The

scattering spectra are corrected for the system spectral variations.

values and therefore the trapped-particle count can be estimated from the scattering

intensity.

The characterization of the optical properties of the silver nanoparticles was re-

latively successful. We were able to stably trap a single object or a desired number

of them and record the scattering spectra of the optically trapped nanoparticles.

The dark-field images and the corresponding scattering spectra demonstrated the

heterogeneity of the colloidal solution. The scattering intensity gave the information

about the trapped particle count and thus the number of the trapped nanoparticles

can be easily estimated in this way. The profile of the scattering spectrum varied

with the particle count. The more particles, the wider scattering peak. The rea-

son for this behaviour could be the interparticle coupling and the particle-shape

heterogeneousness.

3.2.3 Optical spectroscopy of gold nanoparticles

Since we were able to measure the scattering spectrum of the single and multiple

silver nanoparticles, we started with the optical characterization of gold (Au) colloi-

dal solutions. The Au colloidal solutions were prepared by Ing. F. Novotný at CTU

in Prague using the seeded growth method [77]. For the nanoparticle formation, the

surfactant CTAB (hexadecyltrimethylammonium bromide (C16H33)N(CH3)3Br) was
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Fig. 3.16: (a) Scattering spectra of various numbers of trapped Ag nanospheres with

a diameter of approximately 80 nm; (b) The scattering peak intensity of the spectra

in (a) in dependence on the number of trapped Ag nanoparticles. Blue dots represent

experimental data and the red line is the fit obtained by the least-square method.

used and the Au nanorods of the following dimensions were grown: (26± 4) nm ×
(54± 6) nm, (25± 4) nm × (76± 11) nm and (97± 8) nm × (146± 11) nm, where

the first dimension is the base size. In Fig. 3.17a the SEM image of the smallest

Au nanorods (26 nm× 54 nm) is depicted. The solution contained mostly Au nano-

particles of the desired shape and dimensions and the homogeneity of nanoparticle

features was significant.

To know what scattering spectra we should expect from these colloidal solutions,

we applied the numerical calculations. Since the shape of the nanoparticles is not

spherical or ellipsoidal, we had to use the ADDA method described in section 2.3.3.

We calculated scattering cross sections of gold nanoparticles in an aqueous solu-

tion. The simulated objects were nanorods with square bases and their dimensions

were given by the fabricated nanorods, it means 26 nm× 54 nm, 25 nm× 76 nm and

97 nm×146 nm. The distance between the dipoles was set on 0.7 nm for two smaller

particles and for the longest one the interdipole distance was 1.5 nm. We studied the

scattering cross sections of gold particles illuminated by a plane wave propagating

in the z-axis direction and polarized in the y-axis direction. We considered three

orientations of a nanoparticle, the long axis of a nanoparticle parallel with the axes

of the Cartesian coordinate system. The dielectric functions of gold and water were

taken from Sopra S.A. [78]. The accuracy of the numerical calculations was 10−4 %.

In Fig. 3.18 the scattering cross sections for all three positions of the Au nanorod

with dimensions 97 nm × 146 nm are plotted. If the polarization direction of the
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Fig. 3.17: (a) SEM image of the colloidal solution of the Au nanorods with dimensi-

ons of 26 nm × 54 nm; taken by Ing. Filip Novotný; (b) Dark-field image of the

colloidal solution of the Au nanorods with the dimensions of 97 nm× 146 nm.

incident electromagnetic wave is parallel with the long nanorod axis (black line),

the longitudinal mode (LM) is generated. On the other hand, if the incident-light

polarization direction is parallel with the short nanorod axis (red and blue lines), the

transversal modes (TM) are excited. As we supposed on the basis of the described

theory in section 2.3.4, the scattering peak of the longitudinal mode is situated at the

longer wavelengths compare to the transversal modes. The LM scattering intensity

is significantly higher than for the transversal modes and the scattering LM peak is

broader.

In Fig. 3.19 we compare the calculated scattering cross sections for all three

nanorods oriented parallel to the y axis (excitation of LM). The scattering peak for

the smaller nanorod is at the shorter wavelengths and the scattering intensity is

much lower (Note that the scale for the scattering cross section is logarithmic.). All

calculated spectra have the scattering peaks in the visible region or near-infrared

region, that satisfies the requirement given by the transparent window of the dichroic

mirror used in the optical setup (see Fig. 3.5).

Before the dark-field imaging and the optical spectroscopy of the Au nanopar-

ticles, the colloidal solutions had to be properly prepared. Since the gold nanopar-

ticles formed into the large clusters, we used the 1% solution of sodium dodecyl

sulfate (CH3(CH2)11OSO3Na) to prevent the nanoparticles from agglomerations.

After applying the prepared solution on the slide, the Au nanoparticles attached

in a little time to the glass substrate. Therefore we applied the siliconizing reagent

Sigmacote [79] on the slide and the cover glass and then the nanoparticles sticked

to the surface much less.

The sample for the dark-field imaging was prepared in the same way like the
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Fig. 3.18: The scattering cross section in dependence on the wavelength of the

incident light calculated by ADDA method. The spectra are calculated for the

97 nm× 146 nm Au nanorod oriented parallel (o ‖ y) and perpendicular (o ‖ z, o ‖x)

to the polarization direction of the incident light. If the long nanorod axis is parallel

with the polarization direction, the longitudinal (LM) mode is excited. If the long

nanorod axis is perpendicular to the polarization direction, the transversal modes

(TM) are excited.
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Fig. 3.19: The scattering cross section in dependence on the wavelength of the inci-

dent light calculated by ADDA method. The spectra are calculated for the different

Au nanorods with the long axis parallel with the polarization direction of the inci-

dent light.
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sample with the silver colloidal solution. The illumination settings was aligned into

the same position. In Fig. 3.17b we show the dark-field image of the colloidal solution

with the Au nanoparticles with the dimensions of 97 nm×146 nm. The nanoparticles

were often clustered (It can be seen also in the dark-field image.) but sometimes we

observed much smaller nanoparticles. These nanoparticles had very low intensity

that was close to the noise level. Since the nanoparticles were very small, the trap

stiffness was low and the nanoparticles could not be easily trapped in the optical

tweezers (see section 3.1.1). Thus we tried to record the scattering spectrum of the

nanoparticle sticked to the glass surface. But the scattering intensity was very low

and the spectrometer was not sensitive enough for this purpose.

The larger clusters could be optically trapped and also the scattering intensity

was higher. The nanorods in the optical trap can be aligned parallel or perpen-

dicular to the trapping-laser polarization direction. For the laser wavelength that

we used for the optical trapping and the aspect ratios of the investigated nanopar-

ticles, the nanoparticle alignment should be parallel with the polarization direction

[80]. We recorded the optical spectrum of the trapped object with the illumination-

polarization direction parallel to the polarization direction of the trapping laser (see

Fig. 3.20). The trapping-laser power was approximately 100 mW in front of the filter.

If we compare the obtained spectrum (red line) with the illumination spectrum (blue

line), the scattering peak is in the same position as the intensity maximum of the

illumination. This result repeated for any illumination-polarization direction and for

all three prepared solutions with the different dimensions of the nanoparticles. The

nanoparticles could attach to each other and form larger objects. Thus the scattering

peak would be shifted into the longer wavelengths in the infrared region where our

setup is not sensitive. In the visible region, the scattering spectrum of the trapped

object just followed the illumination-intensity profile. Up to now, we have tried to

improve the setup alignment and the sample preparation. We have improved the

optical components and optimized the numerical aperture of the objective together

with the diameter of the dark-field annulus but the measurements have not been

successfully performed yet.
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Fig. 3.20: The normalized scattering spectrum of a cluster of the Au nanoparticles

with the dimensions of 97 nm × 146 nm (red line). The spectrum was recorded for

20 s. The blue line represents the normalized illumination spectrum.
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4 CONCLUSIONS

This thesis reports on the investigation of the optical responses of polystyrene and

metallic particles. Metallic nanoparticles are widely utilized in the nanooptics appli-

cations e.g. in biosensing, microscopy and optoelectronics, especially for their unique

optical properties originating in the localized-surface-plasmon resonances. Silver and

gold nanoparticles are chemically stable and their resonance frequencies are typically

set in the visible range, therefore these metallic nanoparticles are objects of an active

research. The resonance wavelengths are strongly dependent on the nanoparticle size

and shape. In some applications, just a single particle is used and therefore there

is a demand on the investigation of the isolated-nanoparticle optical characteristics.

For that purpose, the optical trapping combined with the optical spectroscopy can

be utilized to characterize the nanoparticles in a solution.

As a part of this thesis, we designed and tested the optical setup suitable for

measurements of the scattering spectra of the optically trapped plasmonic nanopar-

ticles. It consisted of three branches: optical tweezers, dark-field illumination and

a branch for a detection of the scattered light. The optical trapping was performed

using a single-beam gradient trap created by an inverted microscope focusing the

laser beam (λ = 1064 nm) into the sample plane. The dark-field illumination using

halogen lamp as a white-light source was of the Köhler type. The light scattered

by the trapped particles in the colloidal solution was collected and focused into the

spectrometer and the camera.

The proper alignment of the optical setup was tested using spherical polysty-

rene particles with a diameter of approximately 400 nm. In this thesis we pointed

out to the illumination-spectrum dependence on the dark-field illumination setting

position and consequently also the polystyrene scattering spectrum dependence on

the illumination-setting position. This spectral variation was caused by the chroma-

tic aberration of the illumination system. However, since nanoparticles are always

trapped approximately in the same distances from objective used for the optical trap-

ping and condenser lens used for the dark-field illumination, the scattering spectra

could be corrected for the spectral variations of the optical system and therefore

the measurements were reproducible. It was proved that the scattering intensity of

the polystyrene particles was directly proportional to the number of the optically

trapped particles.

Then we investigated the optical responses of the silver spherical nanoparticles

with a diameter of approximately 80 nm. Using a scanning electron microscope it

was found that the nanoparticles were of the various shapes and sizes. Thus the

scattering-peak positions representing the LSP resonance wavelengths were shifted

and in the dark-field image we could observe differently coloured nanoparticles. The
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scattering spectrum of the Ag nanoparticle with the most frequent colour (green

one) was compared with the theoretical calculations following the Mie theory. We

found a good agreement between the experimental data and the Mie solution. Slight

differences were probably caused by the nanoparticle shape and size that could differ

from the ideal spherical object for which the Mie theory is derived.

As well as for the polystyrene particles, the scattering intensity of the silver

nanoparticles was directly proportional to the trapped-nanoparticle count, but the

scattering-intensity profile was varying for the increasing number of the trapped

nanoparticles. The distances between the optically trapped particles were too short

and therefore the nanoparticles started to interact with each other. This interparticle

coupling caused the broadening of the resonance scattering peak for a higher number

of the trapped nanoparticles.

Consequently we investigated the scattering properties of the gold nanoparticles.

Using the DDA method, we theoretically studied scattering cross sections of three

nanorods with different dimensions illuminated with a linearly polarized plane wave.

If the illumination-polarization direction was perpendicular to the nanorod long axis,

transversal modes were excited, where for the polarization direction parallel to the

nanorod long axis the longitudinal modes were excited. The longitudinal modes had

generally higher intensities and were shifted to longer wavelengths compared to the

transversal modes. For shorter nanorods, the scattering intensity of the LM peak

was lower and shifted to shorter wavelengths.

Since the Au nanoparticles in an aqueous solution exhibited very low scatte-

ring intensity, only clustered object could be seen in the dark-field image and con-

sequently analysed by the spectrometer. But if we recorded the scattering spectrum

of the Au cluster, it had approximately the same profile as the illumination spectrum.

The scattering peak for significantly larger objects is shifted into the near infrared

region where our setup is not sensitive and therefore we recorded only the faint

reflection of the illumination spectrum.

The next steps of this work will be to improve the optical setup in order to

increase the sensitivity for lower scattering intensities. This could be performed

by implementation of better quality components, especially a spectrometer with

higher sensitivity. As we will have obtained high enough scattering intensity, we

will compare scattering-intensity profiles in dependence on the nanorod size and the

illumination-polarization direction.
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[9] Karg, M., Lu, Y., Carbó-Argibay, E., Pastoriza-Santos, I., Pérez-Juste, J., Liz-

Marzán, L. M., and Hellweg, T.: Multiresponsive Hybrid Colloids Based on

Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature-

and pH-Tunable Plasmon Resonance. Langmuir. 2009, 25(5):3163−3167.
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LIST OF ABBREVIATIONS

ADDA Amsterdam Discrete Dipole Approximation

CAS Czech Academy of Science

CGS Centimetre−Gram−Second

CTAB hexadecyltrimethylammonium bromide

CTU Czech Technical University

DDA Discrete Dipole Approximation

FDTD Finite-Difference Time-Domain

LM Longitudinal Mode

LSP Localized Surface Plasmon

LSPP Localized Surface Plasmon Polariton

SEIRA Surface-Enhanced Infrared Absorption Spectroscopy

SEM Scanning Electron Microscope

SERS Surface-Enhanced Raman Scattering

SPP Surface Plasmon Polariton

TM Transversal Mode
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